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fln RpproKimate Solution Technique for the Constrained Search Path

Mouing Target Search Problem

James N. Eagle

James R. Vee

Department of Operations Research

Naval Postgraduate School

llonterey, CR 93943

R discrete time search is conducted for a target mouing among a

finite set of eel Is C = {1, . .
.
,N}. Rt the beginning of each time

period one cell is searched, If cell i mas searched in the previous

time period, the current search cell must be selected from the set

Cj c. C. If the target is in the selected cell k, it is detected

(i.e., found) with probability q|<€[QJ]. If the target is not in

the cell searched, it can not be detected during the current time

period. After an unsuccessful search, a target in cell i moves to

cell j with probability y^ for the next time period. The transition

probability matrix T= [^j;] and the initial distribution of the

target over the search cells are known to the searcher. The

objective of the searcher is to select a T-time period search path

which minimizes the probability of nondetect ion.

1. Background

The path constrained search problem, described above, is a

difficult one to solve efficiently. Trummel and Uei singer [1985]

showed that the path constrained search problem with a stationary

target is NP-complete. The moving target problem, which is a



generalization of the stationary target problem, is then also HP-

complete.

Other than total enumeration of all search paths, the only

optimal solution technique mentioned in the literature for the

moving target constrained search problem has been the dynamic

programming procedure of Eagle[1964a] . Although this method can

solve problems much more quickly than total enumeration, it can

require a large amount of computer storage as problem size

increases.

It was the difficulty experienced with solving large problems

optimally that motivated the development of good suboptimal solution

procedures. The first such method proposed mas a modified branch-

and-bound method by Stewart [1979]. Stewart used a discrete version

of a moving target search algorithm given by Brown [1960] to provide

bounds for his procedure. However, Brown's algorithm does not

necessarily give optimal solutions when search effort is discrete,

so these "bounds" may result in an optimal branch of the enumeration

tree being mistakenly fathomed. Nonetheless, Stewart's

computational experience with 1 -dimensional search problems

indicates that the method can perform well.

Another approximate procedure was given by Eagle [1981b]. This

dynamic programming method uses a moving or "rolling" time horizon

that greatly reduces the computer storage requirements, It was used

to approximately solve a small 2-dimensional problem (3 by 3 search

grid) for 10 time periods. This procedure generalizes myopic search

by selecting in each time period the next cell to be searched under

the assumption that the search ends m time periods in the future.



For myopic search, m is 1. For small enough m, this procedure can

be implemented on a microcomputer.

Reported here is a third sub-optimal solution method which, like

Brown's algorithm, is derived from a nonlinear programming

formulation of the search problem. Unlike the problem addressed by

Brown, however, this formulation (a) allows for path constraints to

be specified for the searcher, (b) does not allow search effort in

each time period to be infinitely divisible over the search cells,

and (c) does not have a convex detection function. Consequently

the objective function of the nonlinear program is not necessarily

convex and the solutions obtained may be local rather than global

optima. But like Brown's method, the structure of the problem

allows a simple implementation of the nonlinear programming solution

technique. Uhen considered without path constraints, this procedure

has similarities to discrete versions of both Brown's algorithm and

those of Washburn [1980] and [1983],

2. Definitions

The movement of the searcher is described by a nonhomogeneous

flarkov process. Let Sjj(t) be the probability that the searcher will

search cell j in the time period t, given that cell i was searched in

time period t-1 . Then a search plan . S = {S(1),...,S(T)}, is a

sequence of T NxN stochastic matrices satisfying

Zj€Cj Sy(t) = 1, i = 1,...,N; t = 1,...,T.



fl deterministic search plan is a S composed entirely of ones

and zeros.

Pjj(t) is the joint probability that, after the search and

target transition in time period t, the searcher is in cell i and

the target is in cell j and has not been detected by the first t

searches.

p(0) € !R
NxN

is the initial j oint searcher-target distribution

and is assumed to be known by the searcher.

Hate that Ejj pjj(t) is the probability that the target has not been

detected by the searches conducted in time periods 1 through t,

Also, Pjj(t) can be calculated recursively from pjj(t-1)by

conditioning on the searcher cell and the target cell, after the

search and target transition in time period (t-1). Specifically,

Pij(t) = (l-q^jj) £w PW(t-DSkj(t)ru , (0

where d\\ is 1 if i
=

j and if i*j.

3. The Search Problem as a Nonlinear Program (NLP)

We seek the solution of the following NLP

subject to

Sjj(t) =0, i = \,...,H} j^Cjj t = I, ...J (1)

S(t) >, Q, 1 =
1 , ..... T (5)



where Py(T) is calculated recursively from (1). The decision

variables are the NxN matrices SO ), . .
.
,S(T) . To solve this

problem, p(0), (qj, ...^h)* and r must be specified,

The four propositions which follow establish certain properties

of the above nonlinear program. It is noted that this problem,

while having a relatively complicated objective function, has

constraints which are linear and highly structured.

Proposition 1: The minimum of nonlinear program (2)-(5) is achieved

by a deterministic search plan.

Proof: Let S be an optimal search plan. (Such a plan exists

since the objective function (2) is continuous in S and the

set of feasible S defined by (3)-(5) is compact.) S defines a

T-time period, N-cell Narkov process defining probabi

I

ist icly

an optimal search path. Let {£fj...j£z} De tne finite se * of

possible deterministic search paths generated by S . Each (.\,

has an associated a k € IR
Nx1

where the j component of a^ is the

probability of nondetect ion given the searcher follows £|< and

the target starts in cell j. Also let

Tlj = £, Psj(O)

be the probability that the target starts in cell j. Then the

probability of nondetect ion given fj, is followed and an initial

target distribution of T|€lR
1xM

is the dot product T|a k . How if

P(£ k ) is the probability of the searcher following path f k when

S is used, we have



2

Prob{nondetection| S*,T) } = V P(fk ) T|a k

1 r\a*
t

where

a* = argmin a (T]a k ).

So the deterministic search path associated with a* (and the

deterministic search plan which generated it) is also optimal.

Proposition 2: S is a deterministic search plan if and only if S is

an extreme point of the linear constraints (3)- (5).

Proof: If S is deterministic, then by definition all component

matrices of S must be composed entirely of zeros and ones.

Such an S can not be written as a 3trict convex combination of

two other matrix series satisfying (3)-(5). So S is an

extreme point. Find if S is not deterministic, then some

component matrix must contain a row uector with two or more

components strictly between and 1, This row vector can then

be expressed as a strict convex combination of two other

distinct and feasible row vectors. Thus S is not an extreme

point .

Proposition 3: The objective function (2) is linear in S when

constrained to any edge of the simplex formed by (3)- (5).

Proof: Lets' and S" be any two adjacent extreme point solutions

of the constraints (3) -(5). Specifically, S" and S" are



identical stochastic (OJ) matrix series except in one row of

one matrix. Let t be the time period where S' and S" differ,

and for any A€[0, 1 ] let

S
k = AS' * (1-A)S"

= S(1 ),..., S(t-1),AS'(t) + (1-A)S"(t),S(t + 1 ),..., S(T)

Conditioning on the searcher's cell and the target's cell

before the search in time period t, we can write the objective

function (2) evaluated at S
k

as

Zu EmPu^-^ [(1-qkd|i)$Vt)7ji] Q kl
(t + 1), (6)

where <5y is as in (1), and Qy(t+1) is the probability that the

target is undetected by searches in time periods t+1,...,T

given the searcher is in cell k and target is in cell I at the

end of time period t. Uniting

S\(t) = AS'
ik
(t) (1-A)S"

ik
(t),

and observing that pjj(t-l) and Q ki(t
+ 1) ore not functions of A,

shows (6) to be linear in A.

Proposition 4: Rll basic feasible, solutions to the non I i near-

program (2) -(5) are nondegenenate.

Pnoof: The constraint matrix represented by (3) and H) consists

o f NT I i near I y i ndependent rows . So bas i c so I ut i ons will a I ways

have NT basic variables. Ue argue that these basic variables

will always be positive. Each constraint consists of nonnegat ive

variables summing to unity. So any feasible solution must

i nvo I ve at I east one var i ab I e from each const v-q int. Si nee t here

are NT const ra i nt s and NT bas i c oar i ab I es , any bas i c so I ut i on



must involve a single basic variable in each constraint. Rnd

furthermore, since the constraints sum to unity, the value of

each basic variable must be 1,

4. Applying the ConueH Simplex Method (CSM)

The CSM, which is a generalization of the simplex method, is

applied to. nonlinear programs mith linear constraints. If the

current feasible solution is an extreme point of the constraints,

then the CSI1 determines the rate of change of the objective function

along the edges radiating from that extreme point. The current

solution then moves along an edge mith the greatest initial rate of

improvement. This movement continues until a local optimum is found

along that edge or an adjacent extreme point is reached (whichever

occurs first). If there is no edge along which the objective

function can be improved, then the current extreme point is a Kuhn-

Tucker point, and a local optimum has been found. The importance of

Propoposit ion 1 is that it guarantees that an extreme point which

does not satisfy the Kuhn-Tucker conditions can always be improved

with a single iteration of the CSI1.

The CSH is applicable to the nonlinear program (2)-(5) because

the constraints are linear. Furthermore, its implementation is

especially easy since from Proposition 3 the objective function is

linear along edges of the simplex. Thus once movement along an edge

is determined to reduce the objective function, this movement

continues until an adjacent extreme point is reached. That is, no

one-dimensional searches for local minima along extreme edges are

required.



The CSfl can thus be implemented for this problem by starting at

any feasible extreme point, evaluating the objective function at all

adjacent extreme points, and moving directly to the adjacent extreme

point with the smallest objective function value.

The calculations required to evaluate the objective function

(2) at any extreme point of the constraints are simplified when the

searcher's starting cell is known with certainty (the usual case for

most search applications). This occurs because the searcher's

starting cell, together with the deterministic search plan

associated with an extreme point, uniquely determine a search oath

s = (s(1 ), . .
.
,s(T)), where s(t) is the searcher's cell in time

period t. find the probability of nondetect ion given s is

T

PND(s) = Tl(n rs(t))1 (?)

t=i

where r\ is the initial target distribution, 1 is a column vector of

ones, and T £( t )
is the target transition matrix T with row s(t)

mult ipl ied by (1-q s(t))

.

It is also, observed that, although a general search plan S is

an element of IR
TxNxN

, a deterministic search plan can be represented

by a TxH integer matrix S. Each element 5(t,j) is the searcher'

5

cell in time per i od t g i ven t he searcher ' s cell i n t i me per i od t -

1

was j. S represents a feasible search plan if and only if each

5(t,j) is an element of Cj.



The CSN, specifically tailored for the search problem in (2)-

(5), is the fol lowing:

1. Specify s(1) and an initial feasible 5.

2. Determine s = (s(1 ), . .
.
,s(T)) from s(1) and S.

3. Calculate PHD(s) from (7) and set PHD min = PHD(s),

4. For t=1 to T,

a. Uary 5(t,s(t)) over all C s(tj to generate

candidate adjacent extreme points S'.

b. For each 5', calculate the new search path s'

and PND(s').

c. If PND(s') < PHDmJn , save S"' and s\ and set

PNDmin =PND(s').

d. Cont inue to next t

.

5. If no improvement is achieved in PHD
rrijn

after t=T, then

STOP. Otherwise define 5 as S', s as s', and return

to step 4.

Note that each main iteration of this algorithm (i.e., step 1.)

requires the calculation of PND for 2j |Cj| search paths, where ICJ

is the number of cells in Cj.

10



5. The Starting Solution

In this section, a procedure for generating an initial feasible

S is described, fl reasonable S would be one that corresponds to a

myopic search path, fl myopic search path is a path where the

searcher moves from the cell searched in time period t to that

accessible cell j with the largest qjT)j(t), where

rjj(t) = 2j p^t)

= Prob{target in cell j and has not been

detected by searches in time periods 1,.,.,t}.

If two or more accessible cells have identical maximal values

of qiT)j(t), then the myopic policy, as used here, attempts to break

the tie by selecting a cell with the minimum Euclidean distance (or

some other reasonable norm) to a cell with the maximum value of

qjT"|j(t). If a tie still exists, it is broken randomly. Uhen the

target is distant, this tie breaking procedure attempts to generally

move the searcher towards a favorable cell and, hopefully, into

position for a future detection.

fl procedure is still needed to complete the initial feasible S. One

procedure would be to assume that the target distribution is a stationary

distribution generated by the target transition matrix T. (That is, the

target distribution isTjelR where r\ = T)r, T\\ % . ) Then for each time

period (i.e., each row of S) the myopic policy is used to determine the

next cell to be searched. This results in an S which, except for one

element in each row, has identical rows. The element which is different

11



corresponds to the initial myopic search path. This starting solution mas

tested and, for the problems examined, appeared to work well.

6. Three Examples

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 21 25

Figure I. 25 cell search grid.

The target and searcher move among the 25 cells of Figure 1.

In the next time period, the searcher has access to the cell just

searched plus all adjacent cells. Cells are adjacent if they share

a common side. Thus, for example, 0j = {1,2,6} and

C3 = {2,3,4,6}.

In each target transition, the target remains in the previously

occupied cell j with probability .4 and mooes to an adjacent cell

with probability .6/irij, where uij is the number of cells adjacent to

ce I I j .

In the first two examples, the searcher starts in cell 1 and

the target in cell 13. Assume that detection is certain if the

target's cell is searched. That is, q k = 1, k = 1,2,..., 25.

12



fl 10-time period problem mas solved using FORTRRN 77 on an IBfl

3033 mainframe computer. The following results were obtained:

Prob. of CPU time

Search path Nondetection (sec)

Myopic 6 ? 12 13 14 13 18 19 14 9 .497? .1

CSM 6 7 8 13 14 19 18 17 12 7 .4886 1.42

In addition, a total enumeration routine was written to find

the optimal solutions. This procedure required 25 CPU minutes to

examine the 1,225,623 possible 10-time period search paths, and

showed the CSI1 solution to be one of 12 distinct optimal solutions.

In this example the myopic policy was close to optimal. Using

the CSfl resulted in only a slight improvement, while requiring

considerably more CPU time. The next examples show these

observations are not true in general.

In the second example, a "fast" target was considered.

Specifically, the probability that the target in cell j remained in

j was 0, and the probability that a transition occured to any of the

m
f

adjacent cells was 1/mj. Rll other problem parameters remained

the same. This problem gaive the following results:

Prob. of CPU time

Search path Nondetection (sec)

flyopic 6 7 12 12 7 8 9 14 19 18 .4540 .1

CSM 67 7 6 91419181712 .3868 1 .73

Rgain, total enumeration showed the CSI1 solution to be optimal.

The third example examined the possible consequences of a

moving mean target position. Here the target started in cell 21 and

moved up or right one cell, each with probability ,45. The target

\\



Prob. of CPU time

Nondetect ion (sec)

.2517 .1

.1531 1.09

remained in its current cell with probability , 1. This movement up

and right continued until either the top or right boundary was

reached. Then with probability .9, the target moved one cell up (if

currently in cell 25, 20 15, or 10) or one cell to the right (if in

cell 1, 2, 3, or 1) . Rgain, the target remained in the current cell

with probability .1. Uhen the target reached cell 5, it remained

there forever and was assumed to have escaped. Except in cell 5,

detection was certain if the target's cell was searched. In cell 5

the target could not be detected. For the 10-time period problem,

the following results were obtained:

Search path

Myopic 6 11 11 12 13 13 11 15 15 10

CSM 6 11 11 12 13 11 15 15 10 10

Total enumeration again showed the CSI1 path to be optimal, In this

final example, the stationary target distribution has the target in

cell 5 (the trapping state) with certainty. Since q5 is 0, the

modified myopic procedure given in the previous section fails to

give a unique starting S. To find a starting solution for this

example, it was assumed that q 5 was an arbitrarily small, positive

number.

Finally it is noted that, like most nonlinear programming

solution procedures, using a poor starting solution can result in a

poor final solution. In the last example, setting S-g =
j (except

for the one element of each row determined by the myopic path)

resulted in a local optimal PHD of .2379, a slight improvement over

the myopic solut ion.

14
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