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ABSTRACT:

The equations governing free turbulent mixing are derived from the
Navier -Stokes equations and transformed into a mathematical plane which
is explicitly independent of the eddy viscosity model. The coupled
momentum and turbulent kinetic energy equations are analytically solved
in the transformed plane by a perturbation technique and subsequently
retransformed into physical space based on a hypothesized dependence of
the eddy viscosity on the turbulent kinetic energy. The adequacy of a
given model in reproducing the velocity and turbulent kinetic energy
field is assessed by comparing the results of the analysis with some
experimental data of planar turbulent wake mixing in constant adverse
and favorable pressure gradients.





TABLE OF CONTENTS

Section Page

LIST OF FIGURES iii

NOMENCLATURE iv

INTRODUCTION 1

EQUATION DEVELOPMENT 3

MATHEMATICAL ANALYSIS 9

I. Equation Reformulation 9

II. Equation Simplification- -Linearized Case 12

III. Equation Simplificat ion- -Nonlinearized Case 12

IV. Specification of u (cp) , J^(cp) 15

SOLUTION OF THE EQUATIONS 20

COMPARISON WITH EXPERIMENT 21

CONCLUSIONS 22

REFERENCES kl

APPENDIX 29

INITIAL DISTRIBUTION LIST k2

li





LIST OF FIGURES

Figure Page

1. Initial Conditions for Sample Calculation 2k

2. Favorable Pressure Gradient Solution. 25

3. Adverse Pressure Gradient Solution. 26

k. Transformation from cp to x. 27

5. Comparison of Analytical Results with Experiment. 28

in





NOMENCLATURE

A = Cross-Sectional Area of Wind Tunnel Test Section

p = Strength of Pressure Gradient, Equations (U9) and (51)

C = Constant in Equation (32)

Dv = Turbulent Dissipation

6* = Displacement Thickness

o
e = Perturbation Parameter = l/u ; DK/p in Equation 2k

F = Arbitrary Function in Equation (73)

F* = Fe -J
f^)dcP

G = Greens Function

H = Shape Factor = §*/e

I = Initial Conditions in Equation (75)

i = Unit Vector in x-direction

J = Nonhomogeneous Function in Equation (7^) = g(cp>Y)e J
^'^P

j
= Unit Vector in y-direction

/ 2 2 2\

K = Turbulent Kinetic Energy = \

k = Constant in Equation (52)

k = Unit Vector in z-direction

2 -2
X = u - u* e

I = Macros cale of Turbulence

(j,
= Coefficient of Viscosity

[i,
= Eddy Viscosity

v = Kinematic Viscosity

v,
= Turbulent Kinematic Viscosity

P = Pressure

Y = Stream Function Defined in Equation (25)

cp = Transformed Independent Variable in Equation (33)

q = Dynamic Pressure

IV





p
= Density-

ax, = Turbulent Diffusion Coefficient in Equation (23)K
o

S = Velocity Ratio Function = (u /u )

t = Time

t = Apparent Turbulent Shear Stress

9 = Momentum Thickness

u = Axial Velocity (x-direction)

U = Average Axial Velocity External to the Wake

v = Lateral Velocity (y-direction)

V = Velocity Vector = ui + vj + wk

w = Transverse Velocity (z-direction)

x = Axial Coordinate

y = Lateral Coordinate

z = Transverse Coordinate

Subscripts

e = External to the Wake

i,«j,k = Three Orthogonal Components of a Vector

L = Exit of Test Section

= Inlet of Test Section

t = Turbulent Function

0,1 = Zeroth and First Order Solutions of x and K

Superscripts

u = Time Average of u

u' = Fluctuating Part of u





INTRODUCTION

The solution of the Navier-Stokes equations as applied to the problem

of turbulent flow has classically been approached either from the point of

view of elegant rigor on limitingly simple flows or one of empirically

guided analysis of flows of real interest. The Reynolds averaging

technique is nearly a pre -requisite to attacking any real turbulent flow

and the associated necessity to empirically close the system of equations

with a Reynolds stress model makes the mathematics tractable yet often

unreliable. Various so-called eddy viscosities which arise from the

Boussinesq laminarization of the apparent turbulent stresses are functions

of the flow field and as yet there are no known universal functions which

adequately model these stresses in all cases.

Possibly the most successful application of eddy viscosity approaches

lies in the area of free mixing where velocity differences through the flow

field are small and the associated turbulent field is a fairly simple one.

However, in the pressure gradient situations which are encountered in

ejector and combustor mixing phenomena, classical eddy viscosities fail

since they are explicitly independent of the turbulent field which, in

these cases, can become complex and exert a dominant effect on the form of

the eddy viscosity. Modern approaches have attempted to include the local

turbulence structure effect on the eddy viscosity through an explicit

dependence on the local turbulent kinetic energy.

In conjunction with a highly idealized wake mixing experiment, the

two-dimensional incompressible turbulent wakes in constant adverse and

favorable pressure gradients have been studied analytically with a formu-

lation of the equations which allows the coordinated solutions of the

velocity and turbulence field in a transformed plane which is explicitly



independent of the eddy viscosity model. Subsequently, the retransform-

ation of the equations for a variety of models allows for a comparison

of the adequacy of the models and an evaluation as to which most

accurately reproduces both the velocity and kinetic energy fields.

EQUATION DEVELOPMENT

The basis for any rigorous analysis of problems involving turbulent

fluid flow must, to the best of current knowledge, be founded in the

Navier -Stokes equations. For an incompressible, Newtonian fluid these

may be written

7 • V = (1)

P ^ = - VP + n V^ (2)

No analytical solution of the full equations appears possible and,

although some success has been shown with numerical approaches to the

solution of the equations, as of yet no numerical attack for a genuinely

turbulent flow is feasible (Ref. l) . Apart from the numerical approach,

only Fourier analysis has shown any progress in the solution of the

equations. However, with this method, only limitingly simple turbulent

fields have been treated and its relevance to a general turbulent mixing

problem has yet to be proven.

Classically, the most fruitful approach in the analysis of turbulence

has been to decompose each of the dependent variables in Equations 1 and

2 into a mean term, which is independent of time or has a long character-

istic period with respect to the turbulent fluctuations, plus a fluctua-

ting term whose time average is zero. The velocity field

V = ui + vj + wk (3)



may be decomposed term by term such as the decomposition of u

u (x,y,z,t) = u (x,y,z) + u' (x,y,z,t) (k)

When this decomposition is applied to each term in the continuity

equation we obtain

dji + £l + ^ + QL + *lL + *lL = o (5)
dx dy dz dx dy dz

If we now take the time average of Equation (5), we obtain

|H + |v
+
|w =0 (6)

dx By dz

which is the continuity equation for the mean flow. Upon subtracting

Equation (6) from Equation (5), we obtain

*i£
+ dw + ^-° ™

This is the continuity equation which the velocity fluctuations must

satisfy. Prior to applying this decomposition technique to the momentum

equations we first reformulate the convective operator in a conservative

form, with the aid of the continuity equation. The general convective

operator

i + u l + v l + w l ( 8 )St dx dy dz

becomes

&&»<>+&*)£«( ) O)



where the appropriate dependent variable is placed within the parentheses,

Applying this formulation to Equations (2) and expanding them in rectang-

ular Cartesian coordinates, we obtain

3u 3 / 2x b / s 9 / > 1 dp 2
tt + tt (u ) + r- (uv) + — (uw) = - - ^ + v v u
3t dx By 3z p 3x

g^w^('?)^w--| t^ ( 10 >

dw^d/N d / n B/2x 1 Sp 2

dT
+
a^

(uw) +
a7

(vw) +
a^

(w }
=

p" dT
+ v v w

Each of the dependent variables in Equations (10) is now decomposed and

the appropriate expression is inserted into the equations. The resulting

system of equations is

du
+

du'
+

3u
+

3uu'
+

3u'
+
3uv

+
3uv'

+
3u'v

+
3u'v'

at at 3x 3x dx 3y 3y 3y 3y

duw 3u*w duw' du'w' _ 1 dp 1 dp' .
2- 2

+ — + — + — + — - - — — - +vVU + v VUdz dz dz dz p dx p dx

— — — — —2—2
d_v d_v_|_

+
duv du'v + duv' +

du'v'
+
3v_

+ „ 3w'
+ dv'

at at ax ax ax ax ay ay ay

(ii)

d^ +
dwv

+ d^vi + aw^i = _ i dF _ i a?: 2- 2 ,

az az az az p ay p ay v



dw ,
3w' duw J du'w

,

duw'
,
du'w'

,
dvw JL dvw' dv'w

,

dv'w'+ ——— + + + + —_ + + + +
dt dt dx dx dx dx dy dy dy dy

dw
2

dww' dw'
2

1 dp 1 dp' „2- .
2 ,

+ rr + 2 -r + — = r-£ T"- + v VW+ v Vw'
dz dz dz p dz p dz v v

If we now take the time average of each equation, we can simplify the

system by dropping out all those terms whose time average is zero (i.e.

those which have terms that are linear in the fluctuating properties).

Note, however, that we must retain the nonlinear terms containing

fluctuations since the products or powers of purely fluctuating terms may

generate a steady time averaged value. When the appropriate time averages

are taken of each term in Equations (ll) we retain the following system of

equations

du d /—2\ 3 /— \ 3 /— \ Id/—, ,2\ d —;—r 3 —;—r ,

2—
at

+
dx"

(u }
+
d7

(uv)
aT

(uw) =
" p~ ax"

(p +
pu } - d7

u v " dT
u w + v v u

dv d /

—

n d /-2x d /— x Id/-, ,2\ d -7—r d T7 j „2_

dt
+ ^ (uv) +

a7
(v }

+
di (w )

=
"

p d7 (p pv } " ^ u v " dT
w v +

- v v

If + I- (w) + #- (w) + I- (w
2

) = - - |- (p + pw'
2

) - |- u^T7" - |- v^w1" + v V
2
w

(12)

Note that the price of this "simplification" through the Reynolds averaging

has been the introduction of six new unknowns by discarding of all of the

phase information of the fluctuations. For a steady, two-dimensional mean

flow Equations (12) may be simplified to

|H + ^ = (13)
dx dy

v J



- Bu , Bu 13/—. ,2v B —:

—

r ,

2-- /_, x

u
to

+ v
b7

=
"

* & (p pu }
_

37
u v v 7 u (lU)

- Bv ,
— Bv 1 3 /r . i2n B —s—r . 2- /,_*

u — + v — = — (p + pv' )-— u'v' + v v v (15)Bx By p By Bx v v "

In general we may make the assumption that the apparent pressures (pu' ,

2 — —
pv' ) may be neglected with respect to p. We should note that when p =

constant some care must be exercised in applying this approximation since

- — —- (pu' ) and - — — (pv' ) may be significant terms in the equations
p Bx p By

for a particular problem. In addition, for a "thin" wake, we may make the

standard boundary layer-type parallel flow approximation that

*- A dU
|P = f£

= _ pU
e

( 6)dx $x * e $x v '

This eliminates the necessity of solving the lateral momentum equation,

since the only unknowns are u and v with p being imposed on the mixing

region by the external flow. The only remaining term which explicitly

involves the turbulent field is -u'v' which represents an apparent Reynolds

shearing stress (t).

t = - pu'v' (17)

In general this apparent stress is very large with respect to the average

laminar shear stress and we may neglect the laminar component. With these

approximations the resulting system of equations to be solved is

|^ + ^=0 (18)
Bx By

Bx By p dx p By

6



At this point, some empiricism is necessary since t is not retrievable

from the equation set we have derived. This is clear from Equations (ll)

when either is multiplied by the appropriate fluctuating velocity and

time averaging is performed to obtain an equation for the Reynolds stress,

triple correlations appear which are unknowns also. This cascade of

unknown higher order correlations continues for all further equations

which are derived. Some success (Ref . 2) has been made attacking these

problems by making purely heuristic approximations in higher order

correlations in an effort to make the least sensitive approximations

possible in the equations. However, in lieu of attacking this spiralling

set of equations, it has generally proved more effective to introduce some

empirically based models of the Reynolds stress into Equations (l8) and

(19). The most successful models have been based on extensions of

Prandtl's mixing length analysis which analogizes turbulent eddy momentum

transfer with the molecular manifestation of viscosity. In line with this

approach an eddy viscosity, ^ ,

, is introduced into the problem via the

definition

H '- - »^f (20)

where (j,, is a function of the local mean flow field. Classical models

infer that u., is purely a function of the local non-turbulent mean flow,

however, more modern results (Ref. 3) indicate that some specific

dependence on the turbulence field is indicated. Thus we hypothesize that

M-+ =
M-+ (u >v,K)

where

K = I (u'
2

+ v'
2

+ w'
2

) (21)



In order to implement a model of this form, we must formulate and solve an

equation for K along with the momentum and continuity equations. In order

to obtain an equation for K, we multiply Equations (ll) by u' , v 1

, w'

respectively, add them and take the time average. This operation results

in the following equation for K which is most conveniently written in

tensor notation

Dt ax. Vp 3 2 k i 3 i Vax. ax. ;;

(22)

,du. du. s
au\ du*. v

2
2 1 (_i + <A _ f i. + J

dx . 9x./ v
\ ax . dx.

The respective convection, diffusion, production, and dissipation terms

have been modelled by Patankar and Spalding (Ref . 4) in the following

equation

r-V- dK
+
- dK = d_

dx dy " ay Lav Sy_

t dK"

K

-.2 D
+ vt(|) "f <*>

Where av is the effective Prandtl number for the diffusion of K and D is
K. ft

the turbulent dissipation. With appropriate auxiliary expressions or

equations for u
.

, D , and a we may consider the system of equations to
t ft ft

be closed. Clearly the adequacy of the equation system in modelling any

particular flow field is dependent on the exact formulation which is used

for the unknown coefficients

.

Based on dimensional reasoning, we can specify the coefficients ^,.

and J) to be
ft

(j,,
= const, x density x velocity x length

D = const, x density x velocity /length

8



From experimental results (Ref. 3) we specify a to be a purely empirical

constant in the range 0.5 -• 1.0.

With the explicit expression which we will test for p, , along with

a value for a , only the formulation for D„ is left unspecified. Jones
ft Jv

(Ref. 5) has hypothesized an equation for e = D /p °f the following form

t, > ,v+ a v du. .du. Qu C e

Dt
'*

ax. w axJ i k v
t ax. Vax. ax./ k (2k)

3 e j j 1 j

where C-, and r are empirical constants. In lieu of this complication,

we will make some experimentally justified approximations for D and its
K

dependence on K and the mean velocity field.

MATHEMATICAL ANALYSIS

I. Equation Reformulation

In order to reduce Equations (18) , (19) 3
and (23) to a form more

amenable to an analytic approach, we introduce the stream function

Y, = u , Y = - v (25)

which automatically satisfies the continuity equation. With this definition

of the stream function, the von Mises transformation is applied to the

independent variables (x,y) to transform them into (x,y) via the following

equations

k'h-*h w
(26)

-^- = u —
ay " ay



When this transformation is applied to Equations (19) and (23), we obtain

3u
z . _J_dp + _3_/ _3u

dx pu dx dY \ t * %) ™

dK 3 /
vt

U
3K

-.2 D
+

Vj u (P) - -i (28)dx dy \ a
R BY/ t VdY/ pu

where continuity need not be solved since v does not appear explicitly in

the equations when u and K are expressed in stream function variables.

The dependent variable u is now transformed into X via the equation

X h u
e

2
- u

2
(29)

Upon substituting u = (u - x)
2 into Equations (27) and (28) we can write

the equations of momentum and turbulent kinetic energy as

&->*».
C
1 -^ ft (30)

U SY

9x

1 -Ion -1

% &DH 1 - ^)' If]
+ ^M1

- ^)
2

ft)
- -hC 1

- 5) 1

<

31)

'K u ku U LL.U
N U

e e e ^t e e

To this point, based on the assumptions previously outlined, these

equations are as exact as the specifications of Bvt \>,, and a . To be
D
K

consistent with our previous dimensional reasoning, the coefficient — in

H
the kinetic energy equation may be expressed dimensionally as

D
K 2— = constant x (velocity/length)

10



Following experimental^ indications we hypothesize the exact formulation

for this coefficient to be

i - C x K// (32)

where i is the maxroscale of the turbulent flow, generally accepted to be

of the order of the mixing width and a physical measure of those turbulent

eddies most intimately involved in momentum transfer. We have not yet

explicitly used an independent expression for v in the equations and, as

we shall see, the hypothesis for its formulation need not be specified

until the equations have been solved in a transformed plane.

With these equations and expressions, we again transform the indepen-

dent variables, this time from (x,y) to (cp,Y) using the following defini-

tion of cp

x

cp =
f

u v. dx (33)
d e z

where we have introduced a crucial yet common and experimentally justified

assumption that y+
= v+ (x ) alone. However, our interest lies in specifying

a useful v+
(K) which is implicitly v+ [K(cp>y)] in "the transformed plane and

we are free to select a particular y. for optimum results, thus v+ ( x ) is in
J t

actuality v^ = vt
[K(ep,Y.)].

Applying this transformation to the equations , we can write the

momentum and turbulent kinetic energy equations as

u
e

9y

11



dK i a
i _1 p 1
2 am 1 / v \"2/Av\^ f! / v \

"2

H *tL\ ^) 3Yl
Uu 2l

U
2J UJ ,2U

2^ 2;
(35)

e e e e e

Subject to the following boundary and initial conditions

B.C.x-> 0;K->0 as y - = °°

(36)

I.C. x = X
i
(Y) ; K = K

±
(y) at cp -

II. Equation Simplification—Linearized Case

For many wake or jet -like parallel flows the velocity within the wake

differs only slightly from that in the local external flow. In these cases

-*2 « 1
u
e

and we can write Equations (3^) and (35) as

& = d_JL

^ a/
(37)

2 T

dK . 1 d^K /_C_\ v ,
1 /3X\ / Q ox

^ K ^ £ u 4u
e e

subject to the identical boundary and initial conditions specified for

Equations (3*0 and (35).

III. Equation Simplification—Nonlinearized Case

In free mixing cases, although the square of the velocity defect (^)

2
is small with respect to u , it is not negligible and some influence of

the finiteness of the velocity defect must be included. With the governing

12



equations in the (cp,Y) plane it is particularly convenient to include

this effect. This is accomplished, first with the momentum equation, by-

expanding the dependent variables in powers of the parameter which makes

X small, namely some measure of the freestream velocity.

With the following definitions

2

B-(J) ...Jg (39)
e u^

the momentum equation becomes

* (i - . s x)
4 s-% (to)

y dY

We are seeking here only a first order correction to the linearized set of

equations, however, successive higher order approximations may be derived

in exactly the same manner. Using the binomial theorem, we expand the

diffusive term and, keeping only a first order correction to the linearized

case, we can write the momentum equation

£* (i - *..-a x ) j4 (*i)
T dY

00

We now expand the dependent variable x i-n a- power series x = 2 e x •

i=0
X

and, in line with the objective of obtaining a first order correction to

the linearized system, we retain only the first two terms in the series

which results in

® 1

13



Upon substituting this expression into Equation (hi) and collecting terms

of equal order in e we obtain the following equations for yn » X n

(te)
ax *

2

*o
3cp . 2

dY

dcp . 2
dY

~ 2 S x p
By

(^3)

Clearly the zeroth order equation is the strictly linearized case and the

first order solution is the correction term for the finiteness of the

velocity defect which tends to force the solution to satisfy the full

equation.

Similarly, the linearized solution for K may be corrected for the

improved velocity field solution and for the direct effect of a finite

velocity defect. Here again we seek a first order correction for the

linearized solution by expanding ^ and K in Equation (35) in terms of e

.

The expressions for u are expanded with the binomial theorem with use of

the appropriate expressions for x = Xn + e Xtj the appropriate zeroth and

first order solutions to the momentum equation. Clearly the equation for

K is now explicitly dependent upon e and we can expand K also in powers of

e, again to first order, so that a correction to the linearized case may be

obtained. Upon substituting

K = K
Q

+ « Kl

the respective equations for K and K can be obtained by collecting terms

of equal order in e . The equations for K and K can be written

1U



2 2

e e

2
dK .. 3 K..

*V Oy- ^2
C K 1

A 2 1 2ctk
e

,

1
dX SX

1 c
s
*o

K
o

2u
2 dy dY

e

,2 2 2

e

s ~a r o
x

By L
ao 5y J

2

+ ^(itHif) ( '5)

IV. Specification of u (cp) , i(cp)

To this point, whether a linearized or nonlinearized approach is

taken, the solution can be developed analytically only providing u , I

are known functions of cp. We want to generate solutions for x(cp>Y)> K(cp,y),

hypothesize a dependence of v+
upon K and unwind the transformation via the

definition of cp in the following manner.

dcp = v+ u dx (U6)

dcp

r
—nrt tt = f tt ax (W

J v+ (K [cp,Y,]) J e v
'

which results implicitly in

f(cp) = g(x)

After performing this integration, we can solve for cp(x) based on a given

u (x) and the hypothesized functional dependence for v (K) . The solutions

can then be retransformed into physical variables and the validity of the

hypotheses can be checked by comparison with the experimental u and K field,

15



In order to obtain expressions for u and I as functions of cp, we

must first specify a general flow field to be studied. The following

development serves only as a guide toward the specification of a class of

functions which u (cp) and jfc(cp) must be in order to adequately model

realistic wake flows in pressure gradients. However, none of the approxi-

mations in the following section involves an actual specification of v+

since u and Z could be specified as any arbitrary class of functions of

cp and the actual physical flow field could later be inferred.

The flow external to the wake in the experimental phase of the

investigation was flowing through a channel whose area ratio is

f"
=

1
(W)

J 1 + px

where

2

p = -^— (w

For incompressible flow, this area distribution results in a velocity

distribution

u
e— = J 1 + f3x (50)

U

with a resultant pressure gradient

dp

dx pqo
(51)

In order to map u and I into the cp plane , we need a reliable approximate

guide as to the shape of the v+
function so as to specify the transformation

16



from x to cp. From Schlichting (Ref 6) planar incompressible constant

pressure wakes may "be approximately solved with a v+ °f "the fori•m

v
t

= k u
e

(52)

In this expression 8 serves as the characteristic length and for weak

wakes is a measure of the macroscale (i) as is shown by the following

development. From the definition of y we can write

l

e 1I- -, Y„ , x-2

•-J'^.-J'C1 --^ d* (53)
v u

e

which for weak wakes can he approximated by

u ^J e
(i + -^ x)dY »)

~0 2u
e

In addition from the definition of momentum thickness

Y

~e "e
/

"e "e'
• irf^-D^-jI'f^-f)* (")

the following approximate expression can be derived

Y
e 1

e
2u

By comparing Equations 5^ and 56

u £ = Y + u 9 (57)
e e e

Since mass flux in the wake and hence f will be approximately conserved,

9 will reflect the functional dependence of the macroscale on x.

17



In order to obtain an expression for 9 we can return to the momentum

integral equation written with the specified external field which

generates a constant pressure gradient — = - Pqn . The momentum integral

equation

dU

i + f if t H + s = ° < 58 )

e

can be integrated for a constant shape factor (H) resulting in

6

=

(1 + px)
1 + H/ 2

(59)

With this external velocity field, the Schlichting model for v , and the

solution for 9 we can write the transformation as

X
2

cp = k P u 9 dx (60)
J e

2
after inserting the expressions for 9 and u we obtain

2
ke^u

cp =
p

°o r/, Q a - h/2 .-] ,,. v

(1 -H/2) L
(1+PX)

-
1
]

(6l)

Using this relationship, the expressions for u (x) and 9(x) can be

transformed into u (cp) and (cp)

/ 6 \
X/ (2 "

H)

".W""^1
•
7 2 f

u
2 (62 )

, o N
(H + 2)/(H - 2)

e(cp) = e (1 -
2

p
2 cp) (63)

[ - 2/
k9

o
U

18



It should now be clear that we can consider the system of governing

equations in the problem to be closed and well defined since all

functional coefficients have been specified as functions of cp. Namely

S(cp) and l(<p)

n" -® (1
-<ste •>

2/(H - 2)

(Sh)

and from Equation (57)

4(cp)u
e
(cp) = Y

e
+ u 9 (l -

g
P

g
cp)

\k^~2J
k0

o
u
o

(H + 1)/(H - 2)

(65)

The specification of the value of the shape factor (H) to be used

must be consistent with the formulation and the inherent approximations

From the definition of H we can write

6*
H = — =

J(i-f)* rKi-t)*

tHi-B* J't(
1 -6 dy

(66)

H =

J(l -§*
(67)

iC(
1 -

H =

_2L-

u
e

- 1 dY

j[r-(i-^']-a,
(68)
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Expanding the integrand, consistent with the order of the analysis we

obtain

S[1 + ^2-i
2u

dy

H

11-1 + -*-=
I df

L 2u J

= 1 (69)

If we insert this value of H into Equations (6l), (6U), and (65) we can

write

cp

2kVo
(1 + px) 2 - 1 (70)

B(«p)-(J) =(l +

2kVo
2 V (71)

4(cp) u
e
(cp) = Y

e
+ u e (1 +

2ke u
2 V

-2

(72)

SOLUTION OF THE EQUATIONS

The general form for each of the linearized and nonlinearized equa-

tions for both K, x can ^e written

U = ^| + f^)F + g(q>, f

)

(73)

where f(cp) = for the momentum equations.
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If we let F* = Fe~J ^P'^, simple differentiation verifies that the

solution to the equation

9
ay

satisfies the general form of Equation (73).

The general solution of Equation (7*+) can be written in terms of

Greens function G(x,y;cp,Y) as

+oo CD +00

F*(cp,Y) -
J

G(0,y;cp,Y) I (y) dy +
J J G(x,y;cp,Y) J (x,y) dx dy (75)

-00 -co

a a
2

where the Greens function appropriate to the — - -^-— operator is

p

!»(»*».») - p «p [- l&^f] (76)

7 2rr(cp - x) VVK

Once the appropriate initial conditions (i) and nonhomogeneous functions (J)

are inserted and integrated, the solution of F is

Jf(cp)dcp
(7?)F = F*e

COMPARISON WITH EXPERIMENT

In order to test the adequacy with which the solutions presented in

Equations (73) > (75) 5
and (77) predict a turbulent free mixing flow field,

a sample quadrature was performed which could be compared with experiment.

Figure 1 presents the initial conditions for x and K which were used in

Equation (75) to solve for x n > X-, > K , and K in constant adverse and

favorable pressure gradients. Figures 1, 2, and k contain the results for

a constant favorable pressure gradient with the experimental conditions in
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indicated on the figures. Figures 1, 3> and k contain the results for

the same calculations with a constant adverse pressure gradient of the

same magnitude. The mathematical retransformation plots in both cases

(Figures k and 5) were used with the eddy viscosity model

v
t
- JT~ i (78)

to test the ability of this model to reproduce experimental results for

wakes in constant pressure gradients. The comparison of the analytical

results with experiment shown in Figure 5 verifies that, with some further

study of the proper values of the empirical constants, the approach out-

lined here presents a consistent method for testing wake-type eddy

viscosity models with streamwise pressure gradients and predicting

untested physical situations with reliable eddy viscosity models.

Although the analytical form of the solution has been obtained,

often the initial conditions are discrete and do not satisfactorily fit

any known analytic functions. In these cases a numerical solution of the

governing equations can be easily obtained and the computer program

needed to perform such a computation is listed and explained in the

Appendix.

CONCLUSIONS

The equations of momentum and turbulent kinetic energy appropriate

to free turbulent mixing have been developed. The resultant equations

have been transformed into a plane which is independent of the eddy

viscosity model and have been analytically solved by a perturbation

technique. The solution depends upon prior knowledge of u (cp) and i(qp)

and to specify these, an approximation for cp(x) must be available in

order to study a flow field which is specified a priori. For this
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analysis, the wake model given by Equation (52) proved to be satisfactory.

If, on the other hand, only general classes of flow fields are of

interest, u (cp) and 4(cp) may be specified independent of a specific

physical problem with the resultant re -transformation determining the

flow field which they implied. The results of the analysis have been

compared to experimental wake data in constant adverse and favorable

pressure gradients. The results of that comparison indicate that the

analysis supplies a satisfactory method for obtaining analytical solu-

tions to wake problems in freestream pressure gradients.
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C APPENDIX
C
C THE FCLLOWING CCMPUTER PROGRAM IS A FORTRAN IV CODED FINITE DIFFERENCE
C CALCULATION OF THE ZEROTH AND FIRST ORDER SOLUTIONS TO THE EQUATIONS
C CF MOMENTUM AND TURBULENT KINETIC ENERGY APPLIED TO THE PROBLEM OF
C FREE TURBULENT MIXING IN FAVORABLE AND ADVERSE PRESSURE GRADIENTS
C
C TFF FOLLOWING PARAMETERS MUST BE INPUT AT THE BEGINNING OF THE DECK
C UINF U(1,J) EKK1.J) SIGMA C CI AL AO ALL MY MX DELY DELX Dl AKK
C

C * *
C * UINF IS THE INLET FREESTREAM VELOCITY *
C * *
C * UINF ALSO SERVES AS THE PERTURBATION UO *PA 4e

C. * SIGMA IS THE CONSTANT IN ENERGY DIFFUSION *
r * if.

C * C IS THE CONSTANT IN THE DISSIPATION TERM *
C * *

C * CI IS THE CONSTANT IN THE EDDY VISCOSITY *
r * *
C * AL IS THE AREA OF THE TEST SECTION AT X=L *

C * AO IS THE AREA OF THE TEST SECTION AT X = *
C * *
C * ALL IS THE LENGTH OF THE TEST SECTION *
C ~ *
C * MY IS THE NUMBER OF LATERAL POINTS CALCULATED *
C * *
C * MX IS THE NUMBER OF AXIAL POINTS CALCULATED *
C * *
C * DELY IS THE LATERAL GRID SPACING *
C * *
C * Dl IS THE CONSTANT IN THE STEP SIZE *
C * *
C * DELX IS THE AXIAL SPACING TO RETRANSFORM *
C it* •

C * AKK IS THE CONSTANT IN THE APPROXIMATE PHI(X) *
C * *
C * MUMMY2 IS AN INDEX FOP A PARTICULAR PSI *
C * *

c
DIMENSION CHI1 ( 200 , 81 ) , CHI2( 200, 8 1 ) , AK 1 ( 200, 81) , AK2( 200 , 81)
DIMENSION THETAC200) ,DELSTR(200) ,SHAPE (200 ) , PS I E (200 ) , ELL ( 200

)

DIMENSION PHI (200) ,P2(200) ,P4(200) ,X(200) , FF( 2 00) ,GG (200

)

DIMENSION APS I (81) , AU ( 81 ) , AK ( 81 ) , Y( 81 ) , U ( 81 ) , URATI0( 81) ,EK1( 81)
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DIMENSION PSK81 )

DO 1 1=1, MX
HO 1 J=1,MY

CHIK I,J)=0.0
CHI2C I, J) = 0.0
AKKI J) =0.0
AK2U , J)=0.0

THETAd )=0.0
CELSTRt I ) = 0.0
SHAPEC I J =0.0
PSIEU )=0.0
ELL(I ) = 0.0
PHICI )=0.0
PSK I )=0.0
P?( I )=0.0
P4(I )=0.0
X( I )=0.0
FP( I ) = 0.0
GGCI )=0.0

APSK J)=0.0
AU( J)=0.0
AK( J)=0.0
Y( J)=0.0
U( J) =0.

3

URATIOf J)=0.0
EK1 ( J)=0.0

1 CONTINUE

THE FCLLOWING METHOD OF INPUTING U AND EK1 USES A "STANDARD" SHAPE
FOR ROTH THE VELOCITY AND TURBULENT KINETIC ENERGY PROFILES FOR USE
IN TEST CASES. IF THIS INPUT IS DESIRED ADDITIONAL INPUTS ARE NEEDED.
UCL-THE CENTERLINE VFLQCITY AT THE INLET, EKCL-THE TURBULENT KINETIC
FMFRGY CN THE CENTERLINE AT THE INLET, AND EKMAX-THE MAXIMUM TURBULENT
KINFTIC ENERGY AT THE INLET. THESE VALUES SCALE THE SHAPE TO PROVIDE
SUITABLE INITIAL CONDITICNS FOR USE IN EVALUATING THE CONSTANTS AND
SPECIFYING A ST C P SIZE WHICH WILL BE BOTH STABLE AND ACCURATE

U( 1)=100.0
U(2)=99.0
U(3)=98.0
UI4)=96.
U(5)=92.0
U(6) =88.0
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c

c

c

U(7)
UI8)
u(<n
U( 10
U(ll
U(12
U( 13
U(14
U(15
U( 16
U( 17
U(18
U( 19
U(20
U(21
U(22
U(23
U(24
U(25
U(26
U(27
U(28

= 81.0
= 73.0
=68.0
)=59.0
)=52.0
)=48.0
)=41.3
)=35.0
)=30.0
)=26.D
)=21.0
J=18.0
)=14.0
)=11.0
)=8.0
)=5.0
)=3.0
)=2.0
) = 1.0
)=0.5
)=0.25
) = 0.0

ALPHA=1.3~(UCL/UINE)

DD 2 J=l,51
U( J) =UINF*(1.0

2 CONTINUE
^LPhA"U (J)/100.0 )

FKK
EKK
EKK
EK1(
EKK
EKK
EKK
EKK
EKK
EKK
EKK
EKK
EK1(
EKK
EKK
EKK
EKK
EKK
EKK

1) =80.3
2) = 81.0
3)=82.0
4) =84.0
5)=87.0
6)=90.0
7)=95.0
8)=98.0
9J=100.0
10)=98.0
11)=92.0
12)=83.0
131=75.0
14)=67.0
15)=60.0
16)=53.0
17)=48.0
18)=41.0
19) =36.0
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c

EK1(20)=32.0
EKK21 )=26.0
FK1(22)=21.0
EK1C 23)=17.0
EK1(24)=13.0
EKK25) =10.0
EK1(26)=8.0
EKK27)=6.0
EK1<28)=4.0
EKK 29) = 2.0
EK1(30)=1.0
EK1(31)=0.25
EK1(32)=0.0

GAMMA=5.0*(1.0-(EKCL/EKMAX) )

DO 344 J=l,9
EKK J) = EKMAXM1.0-(1.0-EK1 ( J )/ 100 .0 )*GAMMA )

344 CONTINUE
DO 345 J=10,51
EK1( J)= C KMAX*EK1 (J) /l 3.0

345 CONTINUE
C

UINF2=UINF**2
C=C/C1
BETA={ (AO/AL )**2-l .0 )/ ALL

C
C SET UP INITIAL Y FIELD

Yd )=0.0
DO 50 J=2,MY
Y(J)=FLOAT( J-l )*DELY

50 CONTINUE
C
C SET UP INITIAL PS I FIELD

PSI (1 )=0.0
PSI (2) = (U( 1)+U(2))*0.5*DELY
DO 51 K=3,MY
K1=K-1
A=0.5*(U( 1)+U(K) )

B =0.0
DC 52 L=2,K1
B=U(L)+B

52 CONTINUE
PSI (K)=DELY* (A + B )

51 CONTINUF

NY1=MY-1
DELPSI=PSI(MY) /MY1
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C SET UP UNIFORM PSI FIELD
APSI (1) =0.0
DO 53 J=2,MY
APSK J)=FLOAT{ J-1)*DFLPSI

53 CGNTINUE
f.

WRITE(6,995)
995 F0RMAT(1H1,40X, ***** TABULATED INPUT VARIABLES IN PHYSICAL CCORDIN

1ATES ****•

)

C
WRI"<"c (6,770)

770 FGRMAK 1H0.25X, 1 VELOCITY' ,10X, 'TURBULENT KINETIC ENERGY ', 10X ,' L AT

E

1RAL POSITION' ,10X, 'STREAM FUNCTION')
C

00 880 J=1,MY
WRITE (6,996) U(J),EK1(J),Y(J),APSI(J)

996 FCRMAT(1H0,2 5X,E15.7,10X,E15.7,10X,E15.7,10X,E15.7)
880 CONTINUF

C
C REDISTRIBUTE THE INPUT VALUES IN A UNIFORM PSI FIELD

AU(1)=U(1)
AK(1 )=EK1(1

)

DO 54 J=2,VY
PCS=APSI(J)
AU ( J ) = P I F2 ( POS , P S U MY , U )

AK( J)=PIF2(P0S,PSI , MY,EK1)
54 CONTINUE

C
C SET THE VALUES FOR THE DEPENDENT VARIABLES OF THE CALCULATION

DO 55 J=1,MY
CHIH1, J)=UINF **2-AU(J)* J-2

AKK 1, J)=AK( J)
PSI(J)=APSI(J)
U( J)=AU( J)

55 CONTINUE
C

DO 40 J=1,MY
MUMMY=J
MUMMY1=J-1
IFCCHI1 (1, J) .LT.0.1 ) GO TO 41

40 CONTINUE
41 CONTINUE

C
PSIEll)=PSI( MUMMY)
UF =U(MUMMY)
UE2=UE=**2

C
C SET UP NEW Y FIELD BASED ON UNIFROM PSI FIELD
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c

r.

c

Y(1)=0.0
Y(2)=((U(1)+U(2) )/(2.0*U(l )*U(2) ) KDELPSI
DG 5fc K=3,MY
K1=K-1
A = 0.5*( (1.0/UC1) )+(1.0/U(K)) )

. B=0.0
DO 57 L=2,K1
B=(1.0/U(L) )+B

57 CONTINUE
Y(K)=DELPSI*(A+B)

56 CONTINUE

ELLC1 )=Y(MUMMY )

DO 43 J=1,MY
URATIO( J)=SORT(1.0-CHIl( 1, JJ/UE2)

43 CONTINUE
C
C CALCULATE DISPLACEMENT THICKNESS

A=0.5*{ ( 1.0/URATIO(1))+ (1.0/ URATIO (MUMMY) )-2.0)
B = 0.0
CO 44 J=2,MUMMY1
B=(

(

1.3/URATI0( J))-1.0)+B
44 CONTINUE

DFLSTR(l)=DELPSI*(A+8)/UE
C
C CALCULATE MOMENTUM THICKNESS

A=0.5*(2.0-URATIC(1 )-URAT 10 ( MUMMY )

)

R = 3.0
DO 45 J=2,MUMMY1
B=(1.0-UPATI0< J) )+B

45 CONTINUE
THETAU )=DELPSI*(A+B)/UE

THETOTHETM 1)

SHAPF(1)=DELSTRC1 )/THETA(l )

WRITE(6,997)
997 FORMAT ( 1H1 f 40Xf ***** TABULATED INPUT VARIABLES IN STREAM FUNCTION

1CC10RDINATES **"**' )

WRITE (6,666) PHI ( 1 ) ,TH ET A ( 1 ) , S HAP E( 1 ), DELS TR ( 1 ) , ELL ( 1) , PS IE ( 1

)

666 FORMAT( 1H0,2X, 'PHI =• , E 10. 4 , 2X ,
' THETA =

' , E 10. 4 ,2X ,
' SHAP E FACTOR = •

1 ,P10.4,2X,'DELSTAR = • , E 10.4, 2X, • MACROSCAL E = . E 10. 4, 2X, » MA SS FLUX
2=« ,E10.4)

WP.ITEC6.771)
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771 FORMAT! 1H0,20X, »CHI',15X, 'VELOCITY' ,10X, 'TURBULENT KINETIC ENERGY'
ltlOXt 'LATERAL POSI T ICN' , 10X ,' STREAM FUNCTICN')

C
CO 881 J=1,MY
WRITE (6, 99 8) CHIHl ,J) , AU ( J) , AK1 < 1 , J ) , Y ( J ) , PS I ( J

)

998 FORM AT ( 1 HO, 10X, El 5. 7,1 OX, El 5. 7,1 OX, El 5. 7,1 OX, El 5. 7,1 OX, El 5. 7)
881 CONTINUE

C
C SET STABLE STEP SIZE FOR DELPHI

DELPHI=D1*(DELPSI**2)
C

PHI(1)=0.0
CO 5 1=2, MX
PHK I)=FLOAT(I-l)*DELPHI

5 CONTINUE

AMEGA=0.5*BETA/(AKK*THETO* (UINF**2) )

C
CO 7 1=1, MX
P2(I) = 1.0/( <1.3+AMEGA*PHIU) )**2)
P4(I)=1.0/( { 1.0+AMEGA*PHI(I) )**4)

7 CONTINUE
C

MX1=MX-1
C
C START MAIN CALCULATICN LOOP

DO 20 1=1, MX1
C

F=-C/((PSIE( I)+UINF*THET0*P2 (I

)

)**2)
C

DO 10 J=2,MY1
DERIV=(CHI1(I, J + D+CHIKI , J-l ) -2.0*CHI 1 ( I , J ) ) / ( DEL PS 1**2 )

CHIKI + 1, J)=CHI1( I, J)+DELPHI*DERIV
10 CONTINUE

C

c

DERIV=2.0*(CHI 1( I,2)-CHI1( I, 1) ) /

(

DELPSI**2 )

CHI1(I+1,1)=CHI1(I,1)+DELPHI*DERIV

DO 11 J=2,MY1
G=-0.5*P2( I)*CHI1(I,J)*(CHI1(I,J+1)-2.0*CHI1( I ,

J

)+CHIl( I , J-l ) ) /
1(DELPSI**2)
DERIV=(CHI2( I,J+1)-2.0*CHI2( I , J ) +CHI 2( I , J-l ) ) /( DE LP SI** 2

)

CHI2(I+1,J)=CHI2(I,J)+DELPHI*(DERIV+G)
11 CONTINUE

G=-0.5*P2(I )*CHU(I ,1)*2.0*(CHI1(I,2)-CHI1( 1 , 1 ) )/ ( DELPS 1**2 i

DERIV=2.0*(CHI 2( I,2)-CHI2( I ,1) )/(DELPSI**2)
CH 12 (1+1,1 )=CHI2( I,11+DELPHI*{DERIV+G)
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c

c

DO 12 J=2,MY1
G=0.25*P2( I)*( ( (CHIKI ,J+1)-CHI1(I , J-l ) ) /

(

2.0*DELPS I*U I NF) )**2

)

CERIV=(AK1( I,J+1)-2.0*AK1( I , J ) +AK 1 ( I , J- 1 ) ) / ( DELP S 1**2

)

AKKI + 1, J) =AK1 ( I, J)+DELPHI*{ ( DER I V/S I GMA ) + F* AK1 { I, J )+G)
12 CONTINUE

DERIV=2.0*(AK1 ( I ,2 )-AKl (1,1) )/ ( DEL PS 1**2

)

AKKI + 1, 1)=AK1( I,1)+DELPHI*( ( DER I V/S I GMA ) +F* AK1 ( I , 1 ) )

DO 13 J=2,MY1
G1A =CHIKI,J)*( AKK I , J + l )-2. 0*AK1 ( I , JJ + AKKI ,J-1) ) / ( DEL PS 1**2 )

G1B=(CHU( I,J +1)-CHIK I,J-1) )*(AKl(I ,J+1)-AK1(I,J-1) )/(4.0*
1(DELPSI**2))
G1=-0.5*P2(I )*(G1A+G1B )

G2=0.12 5*P4( I)*CHI1(I, J)*( ( ( CHIKI, J+l) -CHIK I , J- 1 ) ) /( 2 . 0*DE LPSI

*

1UINF) )**2)
G3=0.5*P2( I)* (CHIK I,J + 1)-CHIK I , J-l ) )* ( CH I 2 ( I ,J+1)-CHI2(I ,J-1) )/

1 (4.0*(DELPSI**2)*(UINF**2) )

G4=-0.5*C*P4(I )*CHIKI,J)*AK1(I,J)/((PSIE( I )+UI NF*THET0*P2( I ) )**2)
G=G1+G2+G3+G4
DERIV=(AK2(I,J+1)-2.3*AK2( I, J)+AK2( I. J-l) ) / ( DELPS 1**2

)

AK2( 1+1, J)=AK2( I,

J

)+DELPHI*( ( DERI V/S I GMA ) +F* AK2 (

I

,J)+G)
13 CONTINUE

G1A=CHI 1(1, 1)*2.0*(AK1(I ,2)-AKKI ,1) ) / ( DEL PS 1**2 )

G1B=0.0
G1=-3.5*P2( I)*(G1A+G1B)
G2=0.0
G3=0.0
G4=-0.5*C*P4(I )*CHI 1(1 ,1)*AKK 1,1 )/( (PSIE( I )+UINF*THETO*P2( I ))**2)
G=G1+G2+G3+G4
CERIV =2.0*(AK2( I,2)-AK2( 1 , 1 ) ) / ( DEL PS 1**2

)

AK2( I + 1,1)=AK2(I , D+DELPHI* ( ( DERI V/S I GMA) + F*AK2 ( 1,1 )+G)
C END OF MAIN CALCULATION LOOP
C

DO 75 J=1,MY
U( J) = SORT(UINF2/P2( I )-CHI K 1 + 1 , J )

)

AU( J)=SORT(UINF2/P2 (

I

)-( CHI 1 ( 1 + 1 , J

)

+CHI2 ( I +1, J )/U INF2) )

75 CONTINUE
C

DO 61 J=1,MY
MUMMY=J
MUMMY1-J-1
IF(CHI1(I+1,J) .LT.0.1 ) GO TO 70

61 CONTINUE
C

70 CONTINUE
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c

c

MUMMY2=MUMMY/2

PSIE (1+1 ) = PSI (MUMMY)

. U C =U(MUMMY)
UE2=UE**2

C
C CALCULATE NEW Y FIELD

Y(1)=0.0
Y(2)=0.5*DELPSI*(1.0/U(1)+1.0/U(2) )

DO 59 K=3,MY
K1=K-1
A=0.5*( 1.0/U(1)+1.0/U(K) )

B = 0.0
DO 60 L=2,K1
B=1.0/U(L)+B

60 CONTINUE
Y(K)=DELPSI* (A+B)

59 CONTINUE

ELL(I+1)=Y(MUMMY)

DO 62 J=1,MY
URATIOC J)=SQRT(1.D-CHI1(I+1, J )/UE2)
APSI(J)=SQRT(1.0-(CHI1(I+1,J)+CHI2(I+1,J)/UINF2)/UE2)
EKK JJ = AK1( 1+1, JJ+AK2( 1+1, J)/UINF2

62 CONTINUE

A=0.5*( (1.0/URATI0{1) ) + ( 1.0/URAT 10 ( MUMMY) )-2. 0)
B = 0.0
DO 63 J=2,MUMMY1
B = ( (1.0/URAT IOC J) )-1.0)+B

63 CONTINUE
DELSTR( I+1)=DELPSI*(A+B)/UE

A=0.5*(2.0-URATI0(

1

J-URATIO ( MUMMY)

)

B =0.0
DO 64 J=2,MUMMY1
B=( 1.0-URATIO( J) )+B

64 CONTINUE
THFTA(I+1)=DELPSI*(A+B)/UE

SHAPE ( I + 1)=DELSTR( 1 + 1) /THETAd+1)

WRITE(6,991)
991 FCRMAT(lHl f 40Xf •**** INTEGRATED PROFILE PARAMETERS ****•)

37



WRITE (6,992) PHI (1+1) ,THETA( I+1),SHAPE( I + 1 ) , DELSTR ( 1 + 1 ) , ELL ( I + 1 )

,

1PSIEU + 1)
992 FQPMAT(1H0,2X, 'PHI =

• , E 10 . 4, 2X , 'THET A =
• , E 10. 4, 2X, SHAP E FACTOR =•

1,E10.4,2X,»DELSTAR =• , E10.4 , 2X ,
' MACROSCAL E =

' , E10.4, 2X, 'MASS FLUX
2=»,E10.4)

WRITE(6,999)
999 FCRMAT( 1H0,40X, •**** CALCULATED OUTPUT VARIABLES ****

i

WRITE(6,772)
772 FORMAT

(

lHOt »J« ,8X, 'U/UE • ,8X,'UT/UE' , 8X,'U« » 8X, " UT' , 8X t * Y" ,8X,»PSI»
1 ,8X, 'CHIl' ,8X, •CHI2S8X, 'AK1S8X, • AK 2 ' , 8X, »AKT« )

DO 883 J=1,MY
WRIT EC 6, 990) J , URAT 10 ( J ) , APS I ( J ) , U (

J

),AU(J),Y(J),PSI(J)tCHI1(I+1,J
D,CHI2(I +ltJ)»AKl(I+l f J) ,AK2(I+1, J) , EKK J)

9 90 FORMAT (1 HO, I2,2X,F5.3,2X,F5.3,2X,F7.3t2X,F7.3t2X,F5.3,2X,F7.3,2X,E
112.5,2X,E12.5,2X,E12.5,2X,E12.5,2X,E12.5)

883 CONTINUE
ICALC=I
IF(U(1) .LT.5.0) GO TO 21

20 CONTINUE

21 CONTINUE
WRITE(6,993)

993 FORMAT( 1H1, 1 **** SUMMARY OF INTEGRATED QUANTITIES ****•)

DO 874 I=1,ICALC
WRITE (6,994) THE TA ( I ) , DELSTR ( I ) , SHAPE ( I ) , PS I E ( I )

,

ELL ( I ) ,

I

C94 FORMATClHOt 5E20.8, 13)
874 CCNTINUF

X( 1)=0.0
DC 869 I =2, MX
X( I)=FL0AT(I-1)*DELX

8 69 CONTINUE

FF(1)=0.0
DO 870 1=2, MX
FF(I)=2.0*C1*UINF*( (1.0+BETA*XC I ) )**1 .5-1 .0 )/ ( 3.0*BETA)

870 CONTINUE

GG(1 ) = 3.0
GG(2)=0.5*( 1. 0/(SORT(AKK 1,MUMMY2) )*ELL(1) )+ 1.0/ (SORT (AK1(2,MUMM

1Y2))*ELL(2)) )*DELPHI
DO 871 I=3,ICALC
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11=1-1
A = 0.5*( 1.0/ ( SORT (AKK 1 ,MUMMY2 ) ) *E LLC 1) )+ 1.0/ (SORT ( AK1 ( I , MUMMY2 ) )*

1ELL(I) ) )

3 = 0.0
DO 872 K=1,I1
B=1.0/( SORT (AKK I,MUMMY2) )*ELL(K) )+B

872 CONTINUE
GG(I ) = DELPHI*(A + B)

871 CONTINUE
DO 877 I=ICALC,MX
GG( I )=0.0

877 CONTINUE

850

848

873
849

WRITE(6,850) CI
FORMAT (lHl,30Xt«RETRANSF0RMATI0N RESULTS FOR CI =',E10.3)

WRITE(6,848)
FORMAT (1 HO, 30X , «F«

,

20X,«G« , 20X, 'PHI' , 20X, »X'

)

DO 849 1=1, MX
WRITE (6, 873) FF(I),GG(I),PHI(I),X(I)
FORMAT! 1H0,10X,4E2 0.8)
CONTINUE

END

FUNCTION PIF2 (X ,XL 1ST , N, FL 1ST

)

FUNCTION PIF2 IS A SECOND ORDER LOOKUP FUNCTION
DIMENSION XLIST (100), FLIST (100)
BLIF (P,0,R,S,T) = UQ-P)*(S-T)/(R-Q)+S)
IF (X-XLIST(N) ) 2,1,1

1 I = NtI
GO TO 5
IF(X-XLIST( 1)) 4,4,6
I = 1
K = 1
GO TO 30
K = 2
DO 8 I = 1,N
IF (X-XLIST( I) ) 9,9,8
CONTINUE
I=N
I = 1-1
BLIF1 = BLIF(X,XLIST(I ) ,XL 1ST ( 1+1 ) , FL I ST ( I ),FLIST(I + 1)

)

IF (K-l) 11,11,12
PIF2 = BLIF1
RETURN

2
4
5

6
7

9
30
10
11
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12
13
14
15

16
17

18

IF((I+2)-N) 13,13,16
IF (CI-l)-l) 15,14,14
IF(ABS(XLIST(I-l)-X)-ABS(XLIST(I+2)-X)) 16,15,15
L = 1+2
GO TO 17
L = 1-1
BLIF2 = BLIF ( X , XL I ST ( I ) ,XL I ST ( L) , FL 1ST ( I ) , Fl_ I ST ( L) )

PIF2 = BLIF (X,XLI STCI+1) ,XLIST(L) ,BLIF1 ,BLIF2)
RETURN
END

ko
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