
NPS72-86-003CR

NAVAL POSTGRADUATE SCHOOL

Monterey, California

CONTRACTOR REPORT

ANALYTICAL AND NUMERICAL COMPUTATION OF

RING- SYMMETRIC SPACECRAFT EXHAUST PLUMES

by

Joseph Falcovitz
II

December 1986

Approved for public release; distribution unlimited,

Prepared for: Strategic Defense Initiative Office
The Pentagon
Washington, DC 20301-7100

FedDocs
D 208.1U/2
NPS-72-86-003CR



VddUdoO

NAVAL POSTGRADUATE SCHOOL

Monterey, California

RADM R. C. Austin D. A. Schrady
Superintendent Provost

The work reported herein was performed for the Naval Postgraduate School oy
Dr. Joseph Falcovitz under contract N62271-86-M-0214. The work presented in
this report is in support of "Rarefied Gas Dynamics of Laser Exhaust Plume"
sponsored by the Strategic Defense Initiative Office/Directed Energy Office.
This is a partial report for that contract. The work provides information
concerning continuum approximation of flow at the fringes of spacecraft
exhaust plumes; it is to be used in con3unction with an ambient scattering
model. The project at the Naval Postgraduate School is under the cognizance
of Distinguished Professor A. E. Fuhs who is principal investigator.

Reproduction of all or part of this report is authorized.

Prepared by:



ITi LASSIFIED
nilTY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
liPORT SECURITY CLASSIFICATION

^CLASSIFIED

lb RESTRICTIVE MARKINGS

NONE
iCURITY CLASSIFICATION AUTHORITY

ECLASSIFICATION / DOWNGRADING SCHEDULE

3. DISTRIBUTION /AVAILABILITY OF REPORT
Approved for Public Release; Distribution
Unlimited

RFORMING ORGANIZATION REPORT NUMBER(S)

PS72-86-003CR

5 MONITORING ORGANIZATION REPORT NUMBER(S)

JAME OF PERFORMING ORGANIZATION

rOSEPH FALCOVITZ

NPS72-86-003CR
6b OFFICE SYMBOL

(If applicable)

72

7a. NAME OF MONITORING ORGANIZATION

NAVAL POSTGRADUATE SCHOOL, CODE 7 2

VDDRESS (City, State, and ZIP Code)

Research Contractor
laval Postgraduate School

lonterey, CA 93943-5100

7b. ADDRESS (City. State, and ZIP Code)

Space Systems Academic Group
Monterey, CA 93943-5100

MAME OF FUNDING /SPONSORING
)RGANiZATiON Strategic Defense
[nitiative Office

8b OFFICE SYMBOL
(If applicable)

SDIO/DEO

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

MI PR DGAA60045

ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

5DI0/DE0

Washington, DC 20301-7100

PROGRAM
ELEMENT NO.

PE63221

PROJECT
NO.

TASK
NO

WORK UNIT
ACCESSION NO.

riTLE (Include Security Classification)

Analytic and Numerical Computation of Ring-Symmetric Spacecraft Exhaust Plumes

'ERSONAL AUTHOR(S)

JOSEPH falcovit;

TYPE OF REPORT
Contractor Report

lib. TIME COVERED
^OM Aug 86 ^oDec 86

J14
DATE OF REPORT [Year, Month, Day)
December 1986

115 °±GE :OUNT
58

SUPPLEMENTARY NOTATION

COSATI CODES

=<ELD GROUP SUB-GROUP

3 SUBJECT terms \Conrmue on reverse <f necessa.-, j/ia aentiry oy olock numoer;

Exhaust Plume, Ring Plume, Analytic Approximation, Lasei

Exhaust, Centered Rarefaction Waves

ABSTRACT (Continue on reverse if necessary and dentify by block number)

doubleheader approach to the computation of a ring-symmetric spacecraft exhaust plume is presented.
e plan to use the present analytic approximation in conjunction with a model for backilow from the
haust plume of an orbiting spacecraft, induced by oncoming ambient molecules. This process takes place
the regions of centered rarefaction waves (CRW) that flank the central plume. A semi-inverse marching
aracteristic scheme (SIMA) is formulated specifically for accurate computation of a CRW in *.wo-

Tiensional axisymmetnc coordinates, as a variant of the classical inverse marching method, it replicates a

andtl-Meyer How exactly, resulting in an accurate marching scheme for axisymmetric CRW. The analytic
'proximation to a ring-symmetric CRW is formulated in two phases. An analysis of the flow near the
rner using characteristic coordinates, results in fan-wise gradients of flow variables ( Riemann invariants).
lese gradients are then used to extrapolate the How field along fan characteristics from the presumably
andtl-Meyer flow at the corner, while matching exactly the cylindrically diverging How along the
[reflected portion of the CRW leading characteristic. The resulting approximation compares favorably with
imencal (SIMA) computations, even at about 10 corner radii away from the corner. Closed-form
pressions are obtained for lateral plume opacity at the CRW fringes.

DISTRIBUTION /AVAILABILITY OF ABSTRACT

3 UNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED
. NAME OF RESPONSIBLE INDIVIDUAL
LLEN E. FUHS, Distinguished Professor

22b TELEPHONE (II

(408)646-2
e Area Code) a,

?r
ICE SYMBOL

FORM 1473, 84 mar 83 APR edition may be used until exhausted

All other editions are obsolete
SECURITY CLASSIFICATION OF THIS PAGE

t» U.S. Government Printing Office 1986—606-24.



ABSTRACT

A doubleheader approach to the computation of a ring-symmetric spacecraft exhaust plume is

presented. We plan to use the present analytic approximation in conjunction with a model for

backflow from the exhaust plume of an orbiting spacecraft, induced by oncoming ambient molecules.

This process takes place in the regions of centered rarefaction waves (CRW) that flank the central

plume. A semi-inverse marching characteristic scheme (SIMA) is formulated specifically for accurate

computation of a CRW in two-dimensional axisymmetric coordinates, as a variant of the classical

inverse marching method. It replicates a Prandtl-Meyer flow exactly, resulting in an accurate

marching scheme for axisymmetric CRW. The analytic approximation to a ring-symmetric CRW is

formulated in two phases. An analysis of the flow near the corner using characteristic coordinates,

results in fan-wise gradients of flow variables (Riemann invariants). These gradients are then used to

extrapolate the flow field along fan characteristics from the presumably Prandtl-Meyer flow at the

corner, while matching exactly the cylindrically diverging flow along the unreflected portion of the

CRW leading characteristic. The resulting approximation compares favorably with numerical

(SIMA) computations, even at about 10 corner radii away from the corner. Closed-form expressions

are obtained for lateral plume opacity at the CRW fringes.
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1. INTRODUCTION

The exhaust of a large space-based HF/DF chemical laser can be idealized as a zero-thrust

supersonic ring-symmetric jet (Figure 1-1). Assuming a vacuum background, the exhaust plume is

always flanked by a pair of ring-symmetric rarefaction waves centered at the nozzle lips (Figure 1-1).

When ambient molecules traveling at orbital speed impinge obliquely at the centered rarefaction wave

(CRW), they give rise to a molecular backflow of scattered exhaust species. This effect constitutes a

potentially significant contribution to spacecraft contamination [1].

iMost ambient molecules are stopped within several mean free paths from their point of entry into

the plume. A quantitative estimate of ambient back-scattering would thus depend on the flow field at

the outer (hypersonic) fringes of the lip-centered CRW. Even though the flow in those regions is

generally past the point of continuum breakdown [2], the density there is reasonably well

approximated by the continuum flow field, as demonstrated by Bird's Monte-Carlo simulation of a

Prandtl-Meyer expansion to vacuum [3]. The evaluation of ambient scattering thus calls for an

ancillary computational procedure capable of rendering the continuum flow field at a large number of

points in the ring-symmetric CRW of an HF/DF laser exhaust plume.

The purpose of this report is to present a doubleheader approach to this CFD task, consisting of a

specially formulated finite difference scheme valid throughout the plume and an analytic

approximation for the CRW portion of the flow. This approach is motivated by [he need to

approximate the CRW tlovv field in a simpie and computationally affordable way. A finite difference

integration by marching out from the nozzle exit to every point in the CRW where ambient scattering

is to be evaluated, is not affordable due to the very large number of such points. An interpolation

from a 2-D grid of pre-computed points is affordable but rather cumbersome and complex (if only for

the need to maintain an elaborate 2-D finite difference code that would make its output available to

the ambient scattering code). We propose to obviate both the finite diiference computation and

subsequent interpolations by constructing an analytic approximation to a ring-symmetric CRW. The

finite difference code "JET" that was written for the purpose of computing a ring-symmetric

supersonic flow field, is thereby relegated to the role of aiding in the verification of the analytic

approximation. We aiso use this code to obtain whole-plume solutions for the purpose of illustrating

some features of the flow field by means of graphic output.

The finite difference scheme used for computing the exhaust flow field, is a modification of the

well-known inverse marching characteristic method [4]. Rather than using the two velocity



components often recommended in the literature [4], we use the two Riemann invariants (v±0) as

flow variables. The key element in the scheme is a Semi-Inverse Marching Algorithm (SI MA). The

flow is assumed to exit the spacecraft with a uniform supersonic speed in the radial (y) direction,

which is hence the marching direction. New grid points are determined by the forward intersection of

continuous C +
(fan) characteristics with a new line y=ynew .

whereas segments of the transverse

C~ characteristic lines are reversely extended from each new grid point and require interpolation

between old line grid points (y = yoW ). This modified marching scheme is analogous to existing time

dependent 1-D characteristics methods (see Sections 19-6(a) and 19-6(j) in [4] ); however, we found no

reference to the use of Riemann invariants as flow variables in a CRW computation in order to

reduce interpolation errors.

The resulting SIMA scheme replicates a planar CRW (Prandtl-Meyer flow) exactly, lending an

extra measure of credibility to its accuracy in computing a ring-symmetric CRW. For the new line

segment lying outside the CRW, grid points are evenly distributed through the segment, and a fully

inverse marching scheme is used. The SIMA scheme is described briefly in chapter 2 ; it was

implemented in a FORTRAN code named "JET", which was specifically written for the computation

of ring-jets having a vacuum background. A detailed description of the code JET and the finite

difference schemes on which it is founded will be given in a future report [1 1] .

Our analytic approximation ' to a ring-symmetric CRW is formulated as follows. In a planar

(Prandtl-Meyer) CRW the flow is uniform along the characteristic lines that fan out from the corner

(we assume it is the C family). In the ring- symmetric case the flow near the corner approaches

asymptotically a corresponding planar CRW flow, which we term the associate CRW. However,

the gradients along C characteristics at the corner of a ring-symmetric CRW do not vanish as in a

planar CRW. The key idea is thus : evaluate flow gradients in C " directions at the corner, then

use them to extrapolate the associate CRW along C ^ lines to a finite distance from the corner.

This extrapolation constitutes an approximation to the ring-symmetric CRW. Our present approach

is analogous to the GRP (Generalized Riemann Problem) analysis from which high resolution upwind

schemes for time dependent Euler equation were derived [5,0] . In terms of specific results, however,

it is quite different from the original GRP analysis.

A perturbation approach to steady supersonic flow in two-dimensional space (plane or axial

symmetry) using characteristic coordinates, has been developed by Ostwatitsch and colleagues [7].

Their work also included treatment of axisymmetric CRW. However, their approach is formulated in

terms of small perturbation relative to a uniform supersonic flow. In our analysis the CRW is



assumed to span the range from some finite pressure to vacuum, and the perturbation scheme

consists of regarding the axisymmetric terms in the governing equations as causing a small deviation

from a Prandtl-Meyer flow. Our analytic approximation to a ring-symmetric CRW is presented in

chapter 3 and Appendix A.

The present approach to the approximation of a ring-symmetric CRW can also be adapted to treat

other axisymmetric centered waves, such as the divergent lip-centered CRW at an axisymmetric

nozzle exit, or the cylindrically converging CRW at the base corner of an axisymmetric projectile

moving at supersonic speed in air.

A series of computations were performed on a sample case of typical HF/DF laser exhaust. A

comparison was made between results of numerical integration (SIMA) and the method of matched

approximation to the ring-symmetric CRW . In particular, molecular opacity (expected number of

collisions along a path of a fast penetrating molecule) was evaluated. Reasonable agreement between

SIMA and approximated opacity was demonstrated. These results and their analysis are presented in

chapter 4.

It seems that the present approach can be adapted to other problems calling for opacity of the

CRW region in a ring-symmetric or axisymmetric exhaust plume.
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2. THE FINITE DIFFERENCE SCHEMES FOR COMPUTING RING - JETS

The free expansion of a spacecraft exhaust plume is idealized in our study as a steady supersonic

isentropic flow in two-dimensional axisymmetric coordinates, with a zero-pressure background. The

most accurate finite difference scheme for this type of flow is the well known method of

characteristics [8]. At an earlier phase of the present laser exhaust study, a code AXSYM [9] was

written for the computation of ring-jet flow fields, using the direct method of characteristics. A

notorious shortcoming of this method is that it yields the flow field at a set of grid points formed by

the (oblique) intersection of the C and C families of characteristic lines. The resulting grid is

highly irregular (especially at regions of hypersonic flow), and it also requires the retention of grid-

image matrices for the several regions formed by intersection of families of characteristic lines and

their reflection from the mid-plane of symmetry (x = 0).

A commonly accepted remedy to these shortcomings is the inverse marching characteristic scheme

[4]. The marching is in the downstream direction, i.e., the y direction in our case. The grid points

are located on a succession of constant y rows, thereby introducing a measure of regularity in the

solution grid. Computer memory requirements are drastically reduced : just two rows are kept in

core memory - an "old" line of grid points and a "new" line of grid points. For reasons which will be

elucidated below, the flow variables in our scheme are the Riemann invariants ( v ± 0) . The

integration of of the How equations in characteristic form (sometimes referred to as compatibility

relations [-4]), is performed by a combination of two marching schemes. At grid points outside the

CRW we use the conventional inverse marching scheme. At grid points within the CRW. we use a

modified scheme named SIMA - Semi Inverse Marching Algorithm, tailored specifically to render

accurate computation of a centered wave flow. In the sequel, we outline both schemes and describe

the procedure by which they are combined to yield the flow field of a ring-symmetric jet. More

information on the schemes and the code JET will be provided in a future report [1 lj .

The basic building block of both inverse and semi-inverse marching schemes is the evaluation of

flow variables at a new grid point x
4

on the new line ty = ynew ). given the flow at a row of grid

points on the old line (y=y id),
which is initially the nozzle exit surface where flow is assumed

uniform (Figure 2-1).

Consider first the inverse marching scheme (Figure 2-la). The trace points x
;

. x, are

determined by reversely extending C and C ' characteristic lines from point ( ^4.ynew ) t0 the old

line (Figure 2-la). The characteristic segments are approximated by straight line segments, whose



slopes are initially taken from linearly-interpolated flow properties at the old point (x
4,yold ). Trace

points X. and X, are assigned values of flow variables obtained by linear interpolation between their

respective nearest-neighbor (old) grid points.

The compatibility relations along segments of C ~ and C characteristic lines in finite difference

form are now solved, yielding the flow variables (v ± 0) at the new grid point :

Along C + (v-9)
4
= (v-8)

2
+ co sinn24

sinG
24 An / y24

(2-1)

Along C~ (v + 9)4
= (v + 0), + co sinfi,

4
sin8,

4
A^ / y 14

Where A^ , At] are the length of the respective characteristic segments; indices 14, 24 refer to

centered segment values obtained by averaging the values of variables at segment endpoints. The

symmetry index co is as follows : co = for plane flow, co = 1 for axisymmetric flow. The usual

isentropic relation [S] is used to determine fi from v.

Equation (2-1) is now regarded as an implicit relation between the flow variables at the new grid

point x
4

and the interpolated flow variables at the trace points X. and x., . An updated pair of

trace points is re-computed from an updated value of tlow variables at the new grid point, and the

procedure is repeated until convergence is established.

The Semi Inverse Marching Algorithm (SIMA) is a relatively simple modification of the inverse

marching scheme. Rather than seek a solution on a new grid point x
4

whose location is unrelated

to the row of old grid points, we determine x, by the forward extension of a C' characteristic line

from an old grid point x., (Figure 2- lb). The trace point X, is determined by reversely extending

the C characteristic line from the new grid point, just as in the inverse marching scheme. The

same compatibility equation (2-1) is solved for the flow at the new grid point, except for an obvious

geometrical modification : whereas in the inverse marching scheme the trace points X. and X, were

re-computed in each iteration, the SIMA variant calls for re-computing the new grid point x
4

and

the trace point x
{

until convergence is established.

The resulting scheme replicates a (planar) Prandtl- Meyer flow exactly. The reason for that is the

combination of the semi-inverse marching idea with the choice of Riemann invariants as flow

variables. Due to this choice, the compatibility relation along the fan characteristics (C ) reduces to

the exact relation (v -0)= constant. The equation along C~ still requires interpolation in old



values of (v + 6). However, in a C Prandtl-Meyer flow (v + 0) is uniformly constant, so that

interpolation does not introduce any truncation errors. It is noted that this feature is lost if any other

flow variable is used in conjunction with a SIMA scheme for computing the flow in a CRW.

The boundary conditions are quite simple. Marching starts out from the nozzle exit surface where

the flow is assumed uniform. The flow is bounded on the left by a mid-plane of symmetry (x=0),

where the boundary condition is simply 9 = 90°. On the vacuum side we approximate the idealized

zero-pressure background by terminating the computation at a high Mach number (fan) characteristic

line (typically M = 34 at the corner). It is noted that as a result of ending the computation at a

characteristic line, the total mass flow through a solution line y decreases slishtlv as vc J new ° * « new

increases.

A sample computation performed by the code JET is displayed in Figure 2-2. The CRW region is

clearly shown as bounded by the final C characteristic line on the vacuum side, and by the leading

C characteristic and its reflection, on the other side. The code JET can also plot an assortment of

special lines : characteristics, continuum breakdown lines (2], lines of constant Mach number,

streamlines and lines of constant lateral molecular opacity (expected number of collisions by a fast

molecule entering the plume in the x direction).
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3. ANALYTIC APPROXIMATION OF RING-SYMMETRIC

CENTERED RAREFACTION WAVES

The procedure for the analytic approximation of a ring-symmetric CRW comprises of two distinct

phases. The first phase is an analysis of the flow field near the corner of a ring-symmetric CRW,

resulting in fan-wise gradients of flow variables at the corner. The second phase is an extrapolation

of the associate CRW at the corner, using the fan-wise gradients obtained in the analytic phase. A

concise description of each phase is given below, followed by a detailed presentation in sections 3.1,

3.2 and 3.3.

The first phase is an analysis of the flow near the corner of a ring-symmetric CRW. It is noted

that in a planar C CRW all directional derivatives of flow variables along C vanish, but

directional derivatives in any non C direction increase beyond bound as the point at which they

are evaluated approaches the corner. This suggests that the analysis of a ring-symmetric CRW as a

perturbation of its associate CRW should be formulated in characteristic coordinates. The goal of

this analysis would be to derive closed-form expressions for the C directional derivatives of flow

variables at the corner. A detailed presentation of the analytic phase is given in section 3.1 below.

In the second phase, the C ^ gradients at the corner are used to extrapolate the associate CRW
at the corner to some finite distance along C characteristic lines. It is this extrapolation that

constitutes our analytic approximation to a ring-symmetric CRW. Rather than merely extend the

associate CRW through linear extrapolation (i.e.. a Taylor series truncated after the first-order term)

using the corner C derivatives, we opt for a specially formulated "matched extrapolation"

scheme, where the extended tlow field is matched to conform exactly to the flow along the pre-

reflection segment of the leading characteristic C"
1"^) . The result is a ring-symmetric CRW

approximation that maintains reasonable accuracy levels up to several corner radii away from the

corner - a considerably larger range of validity than that of a linear (unmatched) extrapolation. The

matched extrapolation is described in section 3.2 below.

Finally we consider an "inverse problem" which is stated as follows. Given a point (x ,y ) within a

ring- symmetric CRW, find the flow variables at this point. The matched extrapolation scheme is

geared to deliver the flow field along entire C + characteristic lines (including the determination of

the characteristic lines themselves in (x.y) coordinates). We do not know apriori the line C +

passing through (x
Q ,y ) . and we seek an algorithm for obtaining the flow at (x ,y ) without

resorting to excessive numerical integrations. The solution to the inverse problem relies on the

observation that C lines are usually just slightly curved: it is presented in section 3.3 below.

10



3.1 Analysis of Ring-Symmetric CRW

Consider a 2-D axisymmetric steady inviscid flow of an ideal gas. If the flow is also supersonic,

isentropic and irrotational, the governing equations in characteristic form using the Riemann

invariants as flow variables [8] are :

Along C +
(p) .... (v - 8)a

= sinn(a,P) sin9(a,P) na(a,P) / y(a,P)

Along C "
(a) .... (v + G)

p
= sinn(a,p) sin6(a,p) ^(a,p) / y(a,P)

(3.1-1)

Direction of C + (P) V(a,P) = 6(a,p) + n(a,P)

Direction of C"(a) X(«,P) = 6(a,P) - n(a,P)

where (a,P) are the characteristic coordinates , a being constant along C ~~
(a) and P being

constant along C (P). ^(a.P) and r|(a,p) are the distance (from an as vet unspecified origin)

along C " and C ' respectively. We note that (s,H) would not qualify as an alternate set of

characteristic coordinates . since in general ^ is not constant along C ^ and likewise x\ is not

constant along C .

The specific definition of (a.p) , s(a -P) an^ n(a -P) 1S now tailored to the needs of the intended

ring-symmetric CRW analysis. To fix ideas we consider a C CRW ; it is then natural to stipulate

that a = and r|=0 at the corner. Denoting by index 1 the leading characteristic C
T

(p
1
j . we

define the characteristic coordinates a and p as follows :

a = rua-P,)

(3.1-2)

P = M(O.P)

Where M(0,p) is the Mach number at the associate CRW. We shall generally use p in lieu of

M(O.P) , in order to simplify notation while maintaining the important distinction between the

associate Mach number M(O.P) and the Mach number within the ring-symmetric CRW M(a.p) .

11



Let Q(a,P) denote any flow variable. We are seeking the corner gradient Qa(0,P)
in a ring-

symmetric CRW. Since any flow variable Q can be expressed as function of (v±0)
, Qa

can

likewise be expressed in terms of (v±0) and (v±8)
a

. Consequently, we should seek to derive

expressions for (v±9)
a

at a = , from the governing equations (3.1-1). These equations are in a

particularly simple form, in that only one Riemann invariant appears in each equation. Thus, the

corner gradient (v _ 6)a
is already given by (3.1-1) upon setting a = . We now turn to the

derivation of (v + 6)a
•

A closed form expression for (v + 0)a
can be derived from (3.1-1) as follows. Differentiate the

equation along C characteristics with respect to a , set a = and then integrate the ensuing

relation with respect to p , from the leading characteristic C (pj) to some internal characteristic

C (P) . Since C
—

(a) characteristic lines within the CRW shrink in size as a approaches zero,

^p(0,p) = . Hence, the only non zero term left for the P integration along C
-

(0) is the term

containing ^a p(0,P)
. The result is the following expressions for (v ± G)

a
at the corner :

[(v-e)J(0,P) = sinn(0,P) sin9(0,p) na(0.P) / y(0,P)

(3.1-3)

i-i
P

[(v + 9)J(0.P) = shHKO.Pj) /v(O.Pj) + [v(0.p,)j ' j sinu(O.m) sin0(O.m) s»(0.m) dm

Pi

The boundary condition for the integration of ( v + 0)« was obtained by noting that along the

leading characteristic C (p.) :

e(a.p,) = k/2

e
a
(a.p,) = (3.1-4)

(v-e)
a
= shnua.Pj) / y(a.P;)

We also note that at the corner V(O.p) = yc
for any p . However, we shall maintain the

notation y(a.p) and V(O.p) in order to emphasize that y(a,P) is a field variable. The geometrical

derivatives ^(O.p) and n.a(0.P) are readily derived from standard expressions of the associate

CRW (Prandtl- Meyer flow, see Appendix A for details). They are given by :
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n„(o,P) = {[i+aY-iWl/Ii+aY-D/^,
2]}^7'

1

"
{( Pl

2 - i)/(p
2
-

1)}
,/4

(3.1-5)

3 ,_2 x-1 r 2,-1

Sap(0,P)
= ((Y+D/4)no(0,P)P (P -l)" [l+((Y-D/2)p]

Now, equations (3.1-3) and (3.1-5) constitute closed form expressions for the corner gradients

(v±6)
a

. The only additional information needed is the standard Prandtl-Meyer expressions for

0(0,p) and v(0.p) in the associate CRW (Appendix A). The integral in (3.1-3) cannot be expressed

in terms of elementary* functions ; however, it is readily evaluated by quadrature.

This concludes the analytic phase of the ring-symmetric CRW approximation. We now turn to the

task of deriving closed-form expressions approximating the flow in a ring-symmetric CRW using the

corner gradients (v±0)
a

.

3.2 The Matched Extrapolation Scheme

We seek an approximation to a ring-symmetric CRW that would be valid up to several corner radii

from the corner. A direct substitution of the C * corner derivatives (3.1-3) in a Taylor series

truncated after the first-order term, could be made. The result would be an expression where the

local deviation of the ring-symmetric CRW from the corresponding associate CRW is proportional to

Ay = (y~~y ) , i.e., a 'linear extrapolation".

It turns out that in this case it is possible to formulate a "matched extrapolation" scheme.

where the the aforementioned deviation depends nonlinearly on Ay. which would be consistent to

first-order in (Ay/y ) with the corresponding linear extrapolation. This extrapolation is formulated

to match exactly the flow along the leading characteristic C '

(pj). The advantage of this improved

scheme is that it maintains better accuracy at (Ay/y.) = 0(1) than the linear extrapolation, even

though either scheme is formally first-order accurate near the corner.

The implementation of the matched scheme is effected through a change in flow variables from

(v,0) to (f,0) , where f is the streamtube area ratio function [8] , linked to the Prandtl-Meyer

function and to the flow Mach number through the isentropic relations :

13



-1 f r 2-,i (y+ l)/2(y-l)

f = M {(2/(Y+l))[l + ((Y-l)/2)M ])

df/f = (M
2

-l)
l/2

dv (3.2-1)

-1
r

2r l t 2 xl/2
dv = M [l + ((Y-l)/2)M

]
(M-l) dM

We note that relations (3.2-1) hold in any steady flow where entropy is uniformly constant

(homentropic flow). Thus, the thermodynamic flow variables M , f and v can be used

interchangeably. The replacement of v by f is motivated by reasons which will be made clear in

the sequel.

Let us find the expression for f
a(0,|3) . This is done by first eliminating 9

a(0.P)
by summing

(v + G)
a

and (v - 0)a
in (3.1-3), obtaining an expression for v

a(0,P)
. Then, using the isentropic

relations (3.2-1) to replace v
a

by f
a

and using (3.1-5) for ila(0.P)
and <;a

n(0,p) we finally get :

f
u(0,P) / f(0,P) = 6(0.p) ya(0.P) / y(0,P)

5(0,p) = (1/2) {(p
2
- i)

I/2

/ JJ, na(0,P) sinv|/(0,P)} +

(1/2) {(P - l) " sin6(0.p) / p sinM/<0\P)} + ((y+ l)/2(3-y)) H(P) (3.2-2)

H(P) - ((3-Y)/4) {(P
2
-1)

3/4
[l + ((y-l)/2)p

2
]'my~ l)

I siniK(O.p)}
*

,• r ?i(2-Y)/2(7-l) / , x-5/4 ,

j
[l + ((Y-l)/2)m

2
3

(m--l) m2
sin6(0.m) dm

P,

where the specially defined function H(p) has been normalized by a preceding factor so that

H(oo) = 1 . A typical case of H(p) is shown in Figure 3-1. By pre-computing (and storing) values

of H(p) as function of 1/p at a sequence of points (typically 50 points), H(p) can readily be

evaluated by linear interpolation.
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Consider equations (3.2-2) at the leading characteristic C (P<) . It is readily verified that

H(Pj) = and 6(0,0,) = 1 . Consequently, equation (3.2-2) assumes the following form at the leading

i'
characteristic C (P.) :

fa(0,P 1
)/f(0,p

1
) = ya(0,p 1)/y(0,P 1

) (3.2-3)

Now, along C (P,) the relation between f and ya can be derived directly from the the

equation along C for (v - 8)a
(equation (3.1-1)), since along C (P,) a

= O, and v can be

replaced by an "isentropically equivalent" expression containing f and f according to the

isentropic relation (3.2-1). The result is the following differential relation which holds along the

entire leading characteristic C (p.) of the ring-symmetric CRW :

fa(o,p 1
)/«[o

ip 1
) = ya(o,p,)/y(a tp l)

(3.2-4)

This differential relation can be readily integrated, yielding f(a,P,)/y(a.p,) = constant . Indeed.

this result is consistent with the very definition of f as an area ratio function, since the flow crossing

the leading characteristic C (Pj) diverges with cylindrical symmetry.

The analogy between (3.2-3) and (3.2-4) is appealing. Can the first equation of (3.2-2) be recast in

a form that would yield the exact relation (3.2-4) along C '

(P,) . rather than the "linearized"

relation (3.2-3) ? Let us formally rewrite the first equation of (3.2-2) as if it were valid for any

a £ ; not just for a =
:

fa(a,P)/f(a,P)
= 5(a,P) [ya(a,P)/y(a,P)|

(3.2-5)

Since 6(«.P) is not known to us (indeed, it is defined by the preceding equation), we introduce

the following assumption which constitutes the key approximation of our matched extrapolation

scheme :

8(a,P) - 5(0.p) (3.2-6)

Using this approximation, equation (3.2-5) is readily integrated, yielding a relation between

f and y that does not explicitly involve the function y(a.p) :

f(a,p) = f(0,P) [y(a,P)/y(0,P)]
5(0,Pj

(3.2-7)
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This is the matched extrapolation of the area function f ; it is consistent with the linear

extrapolation of f near the corner as would be derived from (3.2-2), and it is exact along the leading

characteristic C (Pj) . Does this matching assure a reasonable level of accuracy throughout the

ring-symmetric CRW ? We defer the consideration of this question to chapter 4, where the subject of

accuracy will be discussed in conjunction with comparison to finite-difference computations using the

code JET.

Let us examine the range of variation of 6(0. P) (Figure 3-2). Along the leading characteristic

C (pj) we have 5(0,pj) = 1 , which corresponds to a cylindrically divergent flow. At high values

of p the power 6(0,p) increases almost monotonically to 6(0, oo) = 2/(3-y) . (It actually attains a

maximum value slightly higher than 6(0, so) -- see Figure 3-2). Assuming that a dilute gas has a

specific heats ratio y ^ (5/3) , the maximum value of 6(0,^0) for any dilute gas is

6(0,^0) ^ (3/2) , which corresponds to a power no larger than midway between the cylindrical

power (6= 1) and the spherical power (6 = 2).

The power-law form of approximation (3.2-7) to streamtube area ratio in a ring-symmetric CRW
suggests the following geometrical interpretation.

(a) Consider the variation of area ratio along a particular streamtube. It consists of the product of

two factors : the 'planar CRW" area ratio f(0.P) and a radial divergence factor, where the

radial power is function only of P . There is some form of separation of variables in (3.2-7).

1(0. p) and 0(0. p) depend only on P which designates a characteristic line C ' (p) . The

radial divergence factor involves y which designates points on C"
r
(p). This is a direct

consequence of our key assumption (3.2-6).

(b) Consider the spacing between streamlines in the (x.y) plane of a ring-symmetric CRW. They

are stretched by a factor (y/y )
^°'^ 1

relative to corresponding streamlines in an otherwise

identical planar CRW. The stretching power vanishes at the leading characteristic C'Np,) and

increases to an asymptotic value of (y-l)/(3-Y) as p increases to infinity.

(c) At very7 large distance from the corner, one would expect streamtube cross-section area to

exhibit spherical divergence, i.e, for a certain streamtube f should increase as y
2

. regardless

of the value of y . The fact that our power-law approximation does not exhibit these features

indicates that it is an intermediate-range fit to the radially divergent CRW flow. Can a

matching scheme between the intermediate-range and the far-range flow regimes be formulated?

This question is presently an open one.
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Any flow variable linked isentropically to f(a,p) can now be evaluated from the approximation

(3.2-7). The "kinematic" variable 6(a,P) , however, is not related to f(a.P) in this manner, so its

approximation is still pending.

A matched extrapolation scheme for G(a,p) is now formulated in a manner consistent with the

scheme for f(a,P) . This is done by regarding equation (3.1-1) along C (P) as defining a

differential relation between G(a.P) and y(a.P) , since the differential relation between v(a,P) and

y(a,P) can be eliminated by virtue of (3.2-5) and the isentropic relation between v and f given in

(3.2-1). The result is a differential relation for G(a,P) along C (P) analogous to the relation

(3.2-5) for f(a,p):

9
a
(a,p) = c(«,P) [ya(a,p)/y(a,p)]

(3.2-8)

c(a,P)= 6(a,p) tann(a,p) - sinn(a,P) sin0(a,p) / sin\}/(a,P)

Now we invoke the same argument that lead to the key approximation (3.2-6), namely, that £(a.P)

may be replaced by its associate CRW value £(0,P) . Hence, the matched extrapolation for G(a.p)

is given by :

0(a.P) = 9(0.p) + £(0.P) ln[y(a.p)/y(0.p)j

(3.2-9)

£(0.p) = 6(0. p) tann(O.p) - sin^O.p) sinG(O.p) / siny(O.P)

Let us examine the function £(0.p) (Figure 3-3). We observe that £(0,p,) = in accordance with

the boundary condition at the leading characteristic C (Pj) : 8
)X
(a.P)=0. (Since by (3.2-8)

£(a,Pj) = for any a , this boundary condition cannot be considered as a guideline in improving the

6(a.P) extrapolation as was the case with the f(a.p) extrapolation). At large p: 5(0.p)->2/(3-y) ,

so that p£(0.P)—»("/- l)/(3-y) . Consequently, the effect of ring symmetry is to deflect streamlines

toward the radial direction (y) relative to their associate CRW direction, by an amount that decreases

in the hypersonic portion of the CRW. as the inverse of the associate Mach number.

An unexpected difficulty arises when the logarithmic extrapolation (3.2-9) for 6(a.P) is considered

for large y(a,P) . At some sufficiently large v(a.p) , G(a.P) will exceed nil , which seems

physically unrealistic. A possible remedy would be to replace (3.2-9) by a modified extrapolation

obtained as follows. Multiply (3.2-8) by tanG(a.P) , and invoke the modified approximating

17



assumption that c(a,P) tan0(a,p) may be replaced by £(0,P) tanG(0,p) . Since

d(tanz) = - d(ln(cosz)) , the result is the following power-law extrapolation :

r i-K(0,p)
cos6(a,p) = cosG(0,P) [y(a,P)/y(0,P)J

(3.2-10)

K(0,P) = £(0 ?P) tan9(0,P)

We notice that by this power-law approximation 6(a,p) cannot exceed n/2 . Also, in applying

(3.2-10) care should be exercised near p = P 1? since K(0,pj) is singular. However, a simple analysis

shows that K(0,p) approaches a finite limit at p
L

, which can be expressed in closed form, and since

cos0(O,Pj) = O the boundary condition cosG(ct,pj) = is fulfilled regardless of the value of K(0,Pj) .

The power K(0,P) for a typical case is shown in Figure 3-4.

One more variable is needed to complete the approximation to the ring-symmetric CRW : the

C (p) characteristic direction \|/(ot,P) • It is simply given by :

V/(a,P) = G(a,P) + H(a,p) (3.2-11)

where 0(a.p) is given by either (3.2-9) or (3.2-10). The Mach angle fi(a.p) is obtained from

f(a,P) through the isentropic relation (3.2-1), where f(a.P) is given by the approximation (3.2-7).

This concludes the specification of a ring-symmetric CRW through matched extrapolation of the

associate CRW . To obtain the flow field of a particular ring-symmetric CRW, one integrates the

relation defining C (P) , i.e.. dx = cot\|/dy, while evaluating the flow variables using the

aforementioned approximations. The result is flow field information at a series of points (x.y) along

C (P) characteristic lines.

There remains one more approximation task : the "inverse problem", which is stated as follows.

Given a point (x«,y ) in the ring-symmetric CRW, trace 'inversely" the characteristic line through it,

and hence find the flow variables solely at (X ,y ) , using the matched extrapolation scheme. An

efficient method for resolving the inverse problem is described in section 3.3 below.
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3.3 The Inverse Problem

Consider the following application of the present approximation to a ring-symmetric CRW. A

physical model is related to the flow in a ring-symmetric CRW. The computation scheme of that

model requires flow variables at a large number of points (x ,y ) within the flow field. The

implementation of such a model calls for an efficient algorithm capable of providing flow variables at

points (x
Q .y ) , without resorting to computation of the flow at a surrounding cluster of points, or

along a set of adjacent characteristic lines.

It is observed that through all but the low supersonic portion of a ring-symmetric CRW, the C

characteristics are nearly straight lines. This suggests the following approximation procedure for the

inverse problem. Assume as a first guess that C (P) through point (x
Q,y ) is a straight line; then

correct the resulting value of P by finding the small deviation of C (p) from a straight line, using

a linearized approximation to vj/(a,P) .

To do that we need a closed-form expression for V|/(a,P) - vj/(0,P) . The implicit definition (3.2-1 1)

will not be adequate. Instead, we seek, an extrapolation scheme formulated directly for y(a.p) .

Following a procedure analogous to that by which the f(a.P) and 6(a.P) approximations were

obtained, we get :

i|/a(a,p)
= X.(a,P) [ya(a,P)/y(a,p>]

A(a.P) = e(a.p) - 6<a.P) [l + ((Y-l)/2)M"] (m~-i)~ (3.3-1)

M = M(a.p)

Again we invoke the argument that (3.3-1) is exact, but it involves the unknown functions G(a.B) .

6(a,P) and M(a.p) . so that they ought to be approximated by their respective associate functions.

i.e., S(0,p) . 6(0. p) and M(0.p) . ( We might have retained the Mach number as M(a.P) and

approximate it through (3.2-7); however, that would have made it impossible to obtain a closed-

form expression for the ensuing y - integration). Thus, replacing X(a.P) by X(O.P) , we get :
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V (a,P) - v(0,P) = X(0,P) ln[y(a,P)/y(0,p)]

X(0,p) = c(0,p) -
8(0,P) [1 + ((Y-1)/2)P

2

] (p
2

"l)"
3/2

The unknown Pn is now to be determined by solving the equation :

v
o

(3.3-2)

x = x
c
+

J
coty(a,p ) dy(a,p )

(3.3-3)

j c

To get an explicit solution for p from (3.3-3), we "linearize" this equation by letting :

coti^p,,) * coti|/(0,P )
-

[ \|/(a,P) - v(0,P ) ] / sin
2
V|/(0,P ) (3.3-4)

We substitute this approximation in (3.3-3) and we use the expression (3.3-2) for y(a.P) . The y

integration can then be performed in closed form, yielding the following equation for p :

cot\|/(0.p > = (x -x
c)/(y -y

c)
+

I y ln(y /yc) / (y ~y
c)

" [
1 [Mo.P<p / sin

2
v(o,p )] (3.3-5)

When X(0.p
o
) is sufficiently small, (3.3-5) can be solved for P by repeatedly computing p

()
on

the left side using a former iteration value of p on the right side. In this procedure, we also use the

associate CRW relation between vy(0,p ) and P (see Appendix A). For the initial iteration we set

X(0,p ) = 0.

The accuracy o[ solving the inverse problem is not as good as that of the direct matched

extrapolation. Additional errors are generated by the linearization (3.3-4) and also by the

approximation (3.3-2) to Vj/(a,p) which is inferior to (3.2-11). Thus, along the leading characteristic

C '

(pj) the direct approximation becomes exact, but the inverse procedure remains an

approximation.
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The coefficient X(0,p) is usually fairly small (Figure 3-5). For large P the following asymptotic

expression is readily found from (3.3-2) : pX(0,P)-»0 , so that the accuracy of the inverse procedure

improves as (x^y^ moves into the hypersonic portion of the ring-symmetric CRW. If this accuracy

is inadequate when (x
Q,y ) is near C (P,) , we can revert to solving (3.3-3) for P by some

iterative scheme, performing the integration along C (P ) numerically, while using the better

approximation (3.2-11) for y(a,P ) . Naturally, this procedure would entail a much higher

expenditure of CPU time than the approximation (3.3-5).

For the sake of completeness, there is one more point to discuss in regards to the inverse problem.

When the iterative procedure of Eq. (3.3-5) involves values of P sufficiently close to the value Pj

of the leading characteristic, a difficulty may arise. The reason is that while the leading characteristic

is exactly replicated by the matched approximation, the "linearized" approximation to the leading

characteristic (obtained by computing X
Q

as function of y from Eq. (3.3-5) with P
=

P| ), curves

towards the interior of the CRW. This situation is depicted in Figure 3-6. Thus, the iteration

procedure of Eq. (3.3-5) would come up with a tentative solution having P < Pj for points (x
Q ,y )

located between the exact and approximate leading characteristics (shaded area in Figure 3-6), which

is inconsistent since the range of acceptable values within the CRW is P > P r The remedy is

simply to set P = P
T

as the approximate solution to any point (x ,y ) within that "shaded area".

To illustrate the magnitude of error introduced by this simplification, we show in Figure 3-6 the

characteristic corresponding to p = 4.1 (versus P,=4 ). This difficulty, however, is probably of no

concern to ambient scattering applications, since ambient molecules are typically stopped at the outer

fringes (hypersonic portion) of the ring-symmetric CRW.
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Fisure 3-1. The Integral Function H(P) as Function of Inverse Mach Number
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4. RESULTS AND DISCUSSION

We now present computational results intended to exhibit some relevant features of ring-symmetric

supersonic jets, and to demonstrate the nature of our matched approximation to the CRW region of

the ring-jet flow field. A typical case of HF/DF laser exhaust was chosen [1,10] for these sample

computations. It is specified in Table 4-1 below.

Table 4-1. Typical Operating Conditions of HF/DF Laser Exhaust

Mole fractions [H ] = .091 [HF] = .091 [H
2 ]

= .104

[DF] = .135 [He] = .579

Average molecular weight 7.27

Specific heats ratio 1.54

Stagnation temnerature and densitv 2300 (K) and .0075 fks/nr)

Exit Mach number 4.0

Molecular diameter (hard spheres) 2.5xl0"
10 (m)

Spacecraft diameter

Aperture of rinsz-nozzle

2.5 (m)

1.0 (m)
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4.1 Finite Difference Computation of Ring-Symmetric CRW

An accurate finite difference computation of the entire ring- symmetric CRW flow field was

performed by the code JET utilizing the SIMA scheme (Ch. 2). A brief description of the

computational procedure is now presented. Referring to Figure 4-1, the y marching step started at

0.01 (m) and was subsequently limited to half the step determined by the closest forward intersection

of pairs of C characteristics extended from adjacent grid points. At the outset, the number of

lateral (x) grid intervals was 100, of which 60 were in the CRW and 40 spanned the nozzle exit.

SI VIA scheme was applied to all CRW grid points which were determined by a fan of C

characteristic lines indexed from k= 1 (leading) to k=61 (final). These fan lines were chosen to have

equally spaced values of the Riemann invariant (v - 0) at the corner. The flow at all remaining grid

points was computed via the inverse marching scheme (Ch. 2).

As the marching progressed, the leading characteristic (k= 1) approached the mid-plane of

symmetry (x=0) and it became necessary to switch the first SIMA-computed characteristic to k= 2.

then subsequently to k=3 and so on, until at y = 24 (m) it reached the index k=19 (Figure 4-1).

The result is that in addition to the region designated as CRW (Figure 2-2), also the region roughly

coinciding with the open triangle between k= 19 on the left and the reflected characteristic k= I on

the neht, was comDuted via the SIMA scheme.

4.2 Continuum Breakdown

In a source-like flow of dense gas exhausting into vacuum, a breakdown of continuum flow

inevitably takes place at some point along each streamtube [2]. In a planar CRW i Prandtl-Mever

flow), the breakdown surface approaches asymptotically a particular streamline as the distance from

the corner increases [3.10]. However, in a ring-symmetric CRW the breakdown surface curves

towards the mid-plane ot" symmetry, reaching it at some finite radius. Two breakdown surfaces were

traced in the JET computation, corresponding to the plausible values of the breakdown parameter

B=0.05 and B=0.08 ; they are shown in Figure 4-2. It is evident from this figure that most of the

ring-symmetric CRW lies outside the breakdown surface.

Moreover, consider ambient scattering by molecules entering the CRW in the x direction. Most

of these molecules will be stopped within a range for which the expected number of collisions with

exhaust molecules is T~ 1 . In Figure 4-3 we show the line x = 1 plotted from the JET computation
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of the typical laser exhaust (Table 4-1). It is clear that virtually all ambient scattering will take place

outside the breakdown surface. Our model for estimating the molecular backflow induced by ambient

scattering, relies on the presumption that continuum flow holds throughout the rarefaction fan, even

at regions of near-vacuum. How can that approach be justified in view of the preceding discussion?

Consider a spherical source flow into vacuum [2] , where the breakdown surface is in a region of

hypersonic flow. A special situation in regards to continuum breakdown exists in this idealized case.

The breakdown in continuum flow is first manifested by the failing of local temperature to adhere to

the isentropic relation with local density. In fact, "temperature" ceases to exist, since the random

component of molecular velocity does no longer have the (isotropic) Boltzmann distribution. By

contrast, conservation of mass holds regardless of continuum flow breakdown, so that by virtue of the

spherical symmetry, density decreases as 1/R" to arbitrarily large R .

As demonstrated by Bird's Monte Carlo simulation of a Prandtl-Meyer flow [3] , an analogous

situation exists also in this self-similar flow field : the density follows quite closely the continuum

(self similar) solution, even in regions well downstream from points where the isentropic relation

between temperature and density has broken down. Since only density and flow velocity are needed

in order to estimate ambient scattering (see [1] . in particular the "cold" assumption), the foregoing

discussion provides a justification for the use of continuum flow approximation to this end.

4.3 The Matched Approximation

Consider a particular characteristic line (k = 47) in the sample case computation (Figure 4-1). We

focus on the variation of the three thermodynamic variables f (area ratio). M
I
Mach number) and v

(Prandtl-Meyer function), along this characteristic line. These variables were computed via both the

SIMA scheme (Ch. 2) and the matched approximation, and the results are shown in Figures 4-4, 4-5

and 4-6. As expected, Mach number and area ratio both increase along the characteristic line, due to

the radial divergence of the flow. How well is this variation predicted by our matched

approximation?

The matched approximation for thermodynamic variables is the radial power-law expression for

the area ratio (3.2-7). M and v are computed from f via the standard isentropic relations. The

following features are observed regarding the nature of the matched approximation in this sample

case (Figures 4-4, 4-5 and 4-6).
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(a) Both SIMA and matched approximation curves start out with equal corner gradients. This

constitutes a mutual validation for both the numerical integration scheme and the analytic

approximation, in the vicinity of the corner.

(b) The approximated f (Figure 4-4) is undervalued, resulting in a correspondingly undervalued

Mach number (Figure 4-5). Had we opted for a linear extrapolation of f from the corner

along fan characteristics, it is evident from Figure 4-4 that f would have been even more

undervalued, and so would be the Mach number. Matched approximation is thus

demonstrated to be clearly superior in accuracy to linear extrapolation.

(c) What would be the quality of an approximation based on a linear extrapolation of v ? Using

this variable would be consistent with the fact that the analytic expression of fan-wise

gradients (3.1-3) is for gradients of the Riemann invariants.

From Figure 4-6 it is evident that a linearly extrapolated v would be grossly overvalued,

while the matched approximation for v is moderately undervalued. A linear extrapolation of

v would thus result in a grossly overvalued Mach number. (In fact, from Figure 4-6 it can be

estimated that this would result in M reaching infinity around y/y =4 ). This observation

is not inconsistent with (b) above, as may seem at first. The isentropic relations between f .

M and v are highly nonlinear, so that the quality of an approximation scheme depends on

the particular thermodynamic variable chosen to be approximated (while the others are

evaluated from the isentropic relations). The observation that a linear extrapolation of v

would be a poor cnoice of approximation scheme, thus provides yet another support to the

choice of f as the thermodynamic variable to be approximated.

Can any statement be made at this point about the level of accuracy of matched approximations

to ring-symmetric CRW ? Discussing this question is contingent upon specifying some physical

feature of the flow field for which a comparison will be made. Merely computing a How variable,

such as Mach number, does not constitute a meaningful test.

For the application which motivated the present study, namely ambient scattering, a meaningful

feature of the How field would be the cumulative number of collisions that a fast moving molecule

entering the CRW from a bordering cavitation region, can expect. This quantity is path-dependent,

so as a simplification we consider only rays parallel to the x axis (constant y ). The number of

collisions expected by a molecule reaching point (x ,y ) is :

t(x ,y ) =
J

<jn(x,y )dx (4.3-1)

x,
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Where n is the number density, <r is the collision cross-section and xL corresponds to the

limiting characteristic. We generally assume hard-sphere collisions so that <J is a constant, and the

"molecular opacity" t is essentially a mass integral multiplied by a.

The molecular opacity T(x ,y ) was computed along with the computation of the flow field by

the code JET. Some lines of constant opacity were traced; two of them are shown in Figure 4-3. The

opacity in the CRW region was also computed from the matched approximation; the results compare

well with those of SIMA computations, as can be seen in Figures 4-7 and 4-8. The method by which

t(x .y ) was evaluated from the matched approximation is not a numerical integration. Rather, it is

a closed-form approximation which we now proceed to describe.

Referring to Figure 4-9, the law of conservation of mass along a particular streamtube is used to

establish the following relation between flow variables at points S on the characteristic line passing

through (x ,y ) and points X on the segment y=y :

n(S) u(S) sinfl(S) y(S) AS = n(x) u(x) sinG(x) y Ax (4.3-2)

The opacity integration (4.3-1) can thus be replaced by an integration along the characteristic line

from (x
c,yc)

to (X^y^) . Now, some further simplifications are introduced, enabling a closed-form

integration for the opacity. First we assume that the entire region of interest is one of verv msih

Mach number, so that I + ((y- 1)/2)M « ((y-l)/2)M" . Powers of M can be approximately

replaced by appropriate powers of f . We also assume that \\) and do not vary greatly through

the region of interest, so that both can be reasonably well approximated by their corner values.

Using the power law (3.2-7), the opacity integration is then readily performed, yielding the following

expression :

t(x ,y ) = G<0.p
()
)(y /y/ [(y /yc)

2^ +1^2 - l] / [2 - 6(7 + l)/2]

G<0,P ) = (7 n(0.(3 ) yc / M(0.p ) sin0(O.p
o
) sinn/iO.fy (4.3-3)

6 = 6(0.p ) (see Eq.(3.2-2) above)

The opacity distributions shown in Figures 4-7 and 4-8 were computed from this expression. They

compare favorably with SI.MA opacities, demonstrating that for our purpose the matched

approximation is reasonably accurate. In these JET computations the opacity at points on the
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boundary (final) characteristic line was estimated from Eq. (4.3-3). The value of the boundary'

opacity represnts the effective thickness of the "missing" layer of fluid due to terminating the

numerical computation at the characteristic having M(0,p) = M
f

. The maximum value of this

boundary opacity in the typical case was found to be about 0.16 (at y/yc
= 3.2 as in Fig. 4-7). This

relatively low value indicates that as far as the interaction with invading ambient molecules is

concerned, the final Mach number M
f
= 34 is a reasonable substitute for M

f
= °o

.

We observe that Eq. (4.3-3) predicts that opacity generally peaks at some point along each

characteristic line (due to its particular dependence on y ), which in the case shown in Figure 4-8, is

confirmed by the SIMA opacity curve. An interesting feature of the expression (4.3-3) is that it is

given in a separation-of-variables form, the variables being P and y that uniquely designate a

point in the CRW. We believe that this approach can be adapted to other physical problems calling

for opacity integrals in a ring-symmetric CRW .
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APPENDIX A. PRANDTL - MEYER FLOW

Denoting by P the Mach number of the fan characteristic, the Prandtl-Meyer function [8] is

given by :

1/2 r, 2 >J/2 l/2i IV 2 \l/2l
v(P) = T arctan[(p - l) ' /r

J
- arctanl(p - l)

J

(A-l)

r = (y+i)/(y-d

In a C wave, the Riemann invariant (v + G) is uniformly constant. This leads (after some

manipulation) to the following relations between the Mach number P and the C characteristic

angle \\i :

V(P) = VL
+ r

1/2

arctan[r
1/2

/(p
2

-l)
,/2

]

(A-2)

p
2 = 1 + r/tan2

[(v-i|/L)/r
I/2

]

Where the characteristic ande and Macn ansie are aiven bv

V(P) = 9(p) + w p)

(A-3)
2 xI/2.

M(P) = arcsin(p) = rc/2 - arctan[(p~- l) "j

We now seek an expression for the distance rj of a point on the transverse (C ) characteristic

from the corner. The following differential relation is derived from flow field geometry (Figure A-l)

in a planar CRW :

r\ d\j/ - - tan(2n) drj (A-4)
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In order to replace Ay by Ap , we use the following expression derived by differentiating the

relation vji(P) given in Eq.(A-5) with respect to P :

Vr - - <(Y + 0/2) P (P
2
- l)"

1/2

[l + ((Y-l)/2)p
2

r' (A-5)

Using (A-5), we eliminate Av|/ from (A-4), getting :

(lnn)p = ((Y + 0/4) P (P
2 - 2) (P

2
- I)"' [ 1 + ((y- 1)/2)P

2
]"

1

(A-6)

The right hand side of (A-6) is decomposed into two partial fractions, resulting in an integral

consisting of the sum of two log functions. Thus, the dependence of v\ on P is the following

product of two factors, normalized to yield t|(Pi) at tne leading characteristic :

TUP) = rtfPj) {[l + ((Y-l)/2}p
2

3/{l + <(7-I)/2)p
1

2

]}
r//2(Y"'

{(p,
:

-l)/(p
2

-l)}
1/4

(A-7)

Since r|(p) is identical with the definition (3.1-2) of the characteristic variable a . by

differentiating (A-7) with respect to a with P = constant, we get Eq.i 3.1-5 1 for 11 .

Now we turn to the other geometrical function needed in the analysis of the ring-symmetric CRW
flow at the corner. The following geometrical relationship is established by inspection from Figure

A-l :

A^ = Art / cos(2n) (A-8)

Where the t and rj increments correspond to an increment in characteristic angle \\i . or to an

implied increment in Mach number P . When Ar| is replaced by AP using (A-6) and when also

cos(2^i) is replaced by a p expression, we get a expression for £^ in terms of rj and p . The a

derivative of this last expression is Eq.(3.1-5) for ^a o .
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Fieure A-l. Geometry of Characteristics and Streamlines in a Prandtl-Mever Flow
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