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Real-Time Computation of Neighboring Optimal Control Laws

Hui Yan∗, Fariba Fahroo† and I. Michael Ross ‡

Naval Postgraduate School, Monterey, CA 93943

Feedback solutions to the neighboring optimal control problem are typically obtained
by solving the matrix Riccati differential equation. In this paper, we propose a new ap-
proach based on solving linear algebraic equations in real-time. Our method is based on
a pseudospectral discretization of the linear time-varying boundary value problem that
arises from an application of the Minimum Principle. We show how feedback control laws
can be computed without any explicit integration, construction of transition matrices or
solving the matrix Riccati differential equation. This facilitates a real-time implementa-
tion of the scheme and the design of predictive guidance and control laws. A numerical
example of a low thrust orbit transfer problem shows the effectiveness of the method for
neighboring optimal guidance.

1 Introduction

AMONG different feedback control schemes to
handle deviations from nominal trajectories,

neighboring optimal control (NOC) laws have been
used effectively in a variety of guidance problems.
Since the initial presentations by Bryson and oth-
ers,1–4 NOC laws have been used for the guidance
of low-thrust trajectories5 and advanced launch sys-
tems.6 More recently,7 NOC has been used to handle
parameter changes in the dynamic model.
The basic idea in neighboring optimal control is

to control deviations about a nominal optimal tra-
jectory by minimizing a second order expansion of
the performance index, subject to first-order expan-
sions of the appropriate differential and terminal con-
straints around the nominal trajectory. From this
approach, a linear state perturbation feedback con-
trol law with time-varying gains results. The feedback
gain matrix is typically computed by using a back-
ward sweep method which involves solving a matrix
Riccati differential equation (RDE).4 One standard
practice is to solve the RDE off-line and store the
gain matrices at a number of points along the nom-
inal trajectory, and then interpolate the gains. This
and other gain-scheduling techniques are manpower
intensive and highly time consuming.8 Another issue
is the fact that the gain matrices can go to infin-
ity when at least one hard constraint is imposed on
one of the state variables, or if the final time is free.
Some solutions to these problems have been proposed
in Refs. [3, 9] using time-to go guidance and min-
distance guidance, respectively, and in Ref. 5 these
two techniques were compared by an application to a
low-thrust orbit transfer problem.
Motivated by the higher demands of future astro-
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Fig. 1 A 2-DOF Nonlinear Optimal Control Sys-
tem Architecture

nautical systems, recently Lu8 proposed the use of
a receding-horizon guidance system for precision en-
try guidance. Implementing this type of a model-
predictive guidance law requires an on-line (i.e. real-
time) solution to the Riccati differential equation. To
circumvent the issues inherent in solving RDEs, Lu10

proposes a method to solve the linear-quadratic prob-
lem directly. Based on Simpson-trapezoid approxima-
tions for the integral and Euler-type approximations
for the derivatives, he approximates the problem to a
quadratic programming (QP) problem. The QP can
be solved analytically thus yielding approximate con-
trol laws. But in his method, finding higher order
control laws for step-by-step replacements for states
can be too tedious.
In recent years, pseudospectral methods have

emerged as a new way of rapidly solving computational
optimal control problems.11–15 When applied to lin-
ear time-varying (LTV) systems with quadratic cost,
the method reduces the linear two-point-boundary-
value problem to a linear system of algebraic equa-
tions. Thus, approximate analytical feedback laws
can be easily and accurately obtained without solv-
ing RDEs.16 Thus our method can be implemented in
real-time. When combined with a feedforward outer-
loop that uses the same pseudospectral method for
nonlinear optimal control problems (NL OCP), an in-
tegrated two degree-of-freedom control system can be
designed (see Figure 1). The design of the outer-loop is
discussed in our companion paper, Ref. 17. The focus
of this paper is the design of the inner-loop.
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The design of the inner-loop extends our prior
method for solving soft terminal controllers for fixed
horizons. Neighboring optimal control demands that
both hard and soft boundary conditions be consid-
ered. While hard boundary conditions create addi-
tional problems in solving RDEs, it is not a stumbling
block for our method. In the following sections, we
outline our approach and present a numerical exam-
ple.

2 Nominal Optimal Trajectories
The problem is to choose a control function that

minimizes the performance index

J = φ[x(τf ), τf ] (1)

subject to the state equations

ẋ = f [x(τ),u(τ), τf ] (2)

and the boundary conditions

ϕ[x(τf ), τf ] = 0 (3)

where x is the state vector, and u is the control vector.
The initial conditions x(τ0) = x0 are given at the fixed
initial time τ0 . Define the Hamiltonian

H = λT f [x(τ),u(τ), τf ] (4)

and the auxiliary function

Φ = φ+ νTϕ (5)

where λ is the adjoint variable and ν is a constant
Lagrange multiplier. The necessary conditions for op-
timal control are given by the adjoint equations

λ̇ = −∂H

∂x
(6)

and the control optimality condition

∂H

∂u
= 0 (7)

subject to the transversality condition

λ(τf ) = −∂Φ
∂x

|τ=τf
(8)

When the final time τf is free, we have the additional
transversality condition

(
∂Φ
∂τ

+H)|τ=τf
= 0 (9)

From Eqs. (3) and (8), we have

ψ[x(τf ),λ(τf )] = 0 (10)

where ψ is a n×1 vector. In all the equations, vector-
valued variables are in boldface, and the partials of
the scalar and vector-values quantities are gradient
or Jacobian of appropriate dimensions. From these
equations, it is clear that the necessary optimality
conditions for the optimal control problem result in
a two-point-boundary-value problem (TPBVP).

3 Neighboring Optimal Control
In practice the actual trajectory flown by a vehicle

is never precisely the same as the pre-calculated nomi-
nal trajectory. This deviation can be attributed to the
systematic and random errors in the dynamic model as
well as measurement errors. One way to handle devia-
tions from a nominal trajectory is to re-compute new
optimal trajectories in flight as deviations are sensed.
But this approach can prove computationally expen-
sive and intensive. A less demanding approach is the
neighboring optimal control which involves solving the
corresponding linear time-varying system with a linear
quadratic cost function (see Figure 1). A neighbor-
ing optimal control problem is formulated as follows:4

Consider small perturbations from the nominal tra-
jectory produced by small perturbations in the initial
state, δx(τ0) and in the terminal conditions, δψ. Such
perturbations will give rise to perturbations δx, δλ, δu
that are governed by equations that are obtained by
linearizing Eqs.(2-10) around the nominal trajectory

δẋ = fxδx+ fuδu (11)
δλ̇ = −Hxxδx − fT

x δλ−Hxuδu (12)
0 = Huxδx+ fT

u δλ+Huuδu (13)
δx(τ0) = δx0 (14)

0 = [ψxδx+ψλδλ]|τ=τf
(15)

Eqs. (11-15) represent a linear TPBVP since the coef-
ficients are evaluated on the nominal trajectory. When
Huu is nonsingular for τ0 ≤ τ ≤ τf , we may solve Eq.
(13) for δu(τ) in terms of δλ(τ) and δx(τ) :

δu(τ) = −H−1
uu (Huxδx(τ) + fT

u δλ(τ)) (16)

Substituting Eq. (16) into Eqs. (11-12), we have

δẋ = A(τ)δx+B(τ)δλ (17)
δλ̇ = −Q(τ)δx −AT (τ)δλ (18)

where

A(τ) = fx − fuH−1
uuHux (19)

B(τ) = −fuH−1
uu fT

u (20)
Q(τ) = Hxx −HxuH

−1
uuHux (21)

Equations (17-18) subject to the initial conditions (14)
and final time conditions (15) form a linear two-point
value problem for δx(τ) and δλ(τ).

4 Discretization of the NOC Problem
The traditional techniques in solving the two-point

boundary value problem posed above are either using
transition matrices or the sweep method. In the tran-
sition matrices method, the gain matrix can become
infinite as τ → τf , and in the sweep method the Ric-
cati solution can become infinite when the final time
is free. Although various solutions and approaches to
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resolve these issues have been proposed, they are, at
best, computationally expensive or at worst unstable.
The approach in this paper is to first discretize the

linear boundary value problem using a Legendre pseu-
dospectral method. It will be shown that the problem
is discretized to a coupled set of linear algebraic equa-
tions. These equations can then be efficiently and
accurately solved using linear algebra techniques. The
ultimate goal is to derive a feedback law that maps the
initial states to the control, and our method presents
this law without any explicit integration or use of Ric-
cati solutions and in the process avoids the pitfalls
associated with these techniques.

4.1 Legendre Pseudospectral Approximations

The basic idea of this method is to seek approxi-
mations for the state, costate and control functions in
terms of their values at some carefully chosen node
points. The approximation space is typically polyno-
mial and the node points belong to the class of Gauss
quadrature points which yield optimal results in poly-
nomial interpolation and approximation of integrals.
In Legendre pseudospectral method, the node points
are Legendre-Gauss-Lobatto (LGL) points which have
fixed end-points at −1 and 1, and the interior points
are the extrema of the Legendre polynomials which
are orthogonal on the interval [−1, 1], with respect
to the weight function w(t) = 1. The approximation
polynomials are the interpolating polynomials with the
values of the functions as the coefficients of expansions.
Since the node points lie in the computational inter-
val [−1, 1], before performing any approximation, the
problem is transformed to this interval by the linear
transformation for

t ∈ [t0, tN ] = [−1, 1] : τ =
(τf − τ0)t+ (τf + τ0)

2
(22)

It follows that Eqs. (17-18) and Eqs.(14) and (15) can
be transformed to

δẋ(t) =
τf − τ0

2
[A(t)δx(t) +B(τ)δλ(t)] (23)

δλ̇ = −τf − τ0
2

[
Q(t)δx(t) +AT (t)δλ(t)

]
(24)

δx(−1) = δx0 (25)
ψxδx(1) +ψλδλ(1) = 0 (26)

In the equations above all the functions and func-
tional such as δx(t) are actually δx(τ(t)) where τ(t) is
given by (22).
Let LN (t) be the Legendre polynomial of degree N

on the interval [−1, 1]. In the Legendre pseudospectral
approximation11-18 of Eqs.(23)-(26), we use the LGL
points tl, l = 0, . . . , N which are given by

t0 = −1, tN = 1

and for 1 ≤ l ≤ N − 1, tl are the zeros of L̇N , the
derivative of the Legendre polynomial, LN .

We start by approximating the continuous state and
control variables by Nth degree polynomials of the
form

δx(t) ≈ δxN (t) =
N∑

l=0

δxlφl(t) (27)

δλ(t) ≈ δλN (t) =
N∑

l=0

δλlφl(t) (28)

where, for l = 0, 1, ..., N

φl(t) =
1

N(N + 1)LN(tl)
(t2 − 1)L̇N(t)

t− tl
(29)

are the Lagrange polynomials of order N which inter-
polate the functions at the LGL points. The interpo-
lating polynomials satisfy the condition,

φl(tk) = δlk =
{

1 if l = k
0 if l �= k

It follows that for collocation at the LGL points

δxN (tl) = x̃l, δλ
N (tl) = λ̃l (30)

To carryout the approximation of the state equa-
tions, we impose the condition that the approxima-
tions above satisfy the differential equations at the
node points. To express the derivative δẋN (t) in terms
of δxN (t) at the points tk, we differentiate (27) and
evaluate the result at tk to obtain a matrix multipli-
cation of the following form:

δẋN (tk) =
N∑

l=0

x̃lφ̇l(tk) =
N∑

l=0

Dklx̃l (31)

For LGL points Dkl = φ̇l(tk) are the entries of the
(N + 1)× (N + 1) differentiation matrix D

D := [Dkl] :=




LN (tk)
LN (tl)

. 1
tk−tl

k �= l

−N(N+1)
4 k = l = 0

N(N+1)
4 k = l = N

0 otherwise

(32)

Multiplication by this differentiation matrix, trans-
forms a vector of the exact state variables at the LGL
points to the vector of approximate derivatives at these
points.
In any event, the state and costate equations are

transformed into the following algebraic equations for
k = 0, . . . , N,

N∑
l=0

Dklx̃l − τf − τ0
2

(Akx̃k +Bkλ̃k) = 0 (33)

N∑
l=0

Dklλ̃l +
τf − τ0

2
(Qkx̃k +AT

k λ̃k) = 0 (34)
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where for a generic matrix A(t), the notation Ak de-
notes A(tk). Also, the boldface 0 represents the zero
vector of appropriate dimension. Writing these equa-
tions in block matrix notation, for

X = [x̃T
0 , x̃T

1 , . . . , x̃T
N ]T , Λ = [λ̃

T

0 , λ̃
T

1 , . . . , λ̃
T

N ]T (35)

we have

Ã−X− τf − τ0
2

G̃Λ = 0 (36)

τf − τ0
2

Q̃X+ Ã+Λ = 0 (37)

Where Ã−, Ã+, G̃, Q̃ are [n(N+1)×n(N+1)] matrices
whose (ij)th blocks are n×n matrices of the following
form

[Ã−]ij =

{
DijIn, i �= j

DiiIn − τf−τ0
2 Ai i = j

[Ã+]ij =

{
DijIn, i �= j

DiiIn + τf−τ0
2 AT

i i = j

[G̃]ij =

{
0n, i �= j

Bi, i = j

[Q̃]ij =

{
0n, i �= j

Qi i = j

In the above, In and 0n are the n×n identity and zero
matrices, respectively. The initial and final conditions
are

x̃0 = δx0 (38)

ψxx̃N +ψλλ̃N = 0 (39)

The goal is to solve Eqs.(36) and (37) subject to the
transversality conditions Eqs. (38) and (39). There-
fore, first we write the equations for the values of the
state and costate vectors at the nodes, X and Λ, in
block matrix form

 Ã− − τf−τ0
2 G̃

τf−τ0
2 Q̃ Ã+

P̃ Ĩ


[

X
Λ

]
≡ V Z =


0
0
0


 (40)

In these equations ZT = [XT ,ΛT ] and P̃ and Ĩ are
the following n × n(N + 1) matrices

P̃ = [0n, . . . , 0n,ψx] (41)

Ĩ =
[
0n, . . . , 0n,ψλ

]
(42)

The matrix V in Eq.(40) is of dimension n(2N + 3)×
2n(N + 1). We partition V as V = [V0 Ve] such that

V0x̃0 + VeZe = 0 (43)

where vector Ze is of dimension n(2N + 1)× 1 and is
defined as

Ze = [x̃T
1 , x̃T

2 , . . . , x̃T
N , λ̃

T

0 , . . . , λ̃
T

N ]T (44)

Thus, V0 and Ve are [n(2N + 3) × n], [n(2N + 3) ×
n(2N + 1)] block matrices of V , respectively. We can
solve Eq. (43) for Ze as

Ze = −Ve\V0x̃0 = W x̃0 (45)

where, the \ operator denotes the least-squares solu-
tion in MATLAB. As indicated in Eq. (45), W ≡
−Ve\V0 is a matrix of dimension (2nN +n)×n. Since

Z =
[
x0

Ze

]
we get

Z =
[
X
Λ

]
=

[
In

W

]
x̃0 ≡

[
W1

W2

]
x̃0

where W1 and W2 are partitions of the [In W ] ma-
trix, each of dimension n(N + 1)× n so that we have,

x̃k = W1kx̃0 (46)

λ̃k = W2kx̃0 (47)

Where W1k and W2k are partitions of dimension n×n
of the matrices W1 and W2, respectively. The sub-
script k refers to the kth LGL point. To derive a
discretization for the optimal control law, Eq. (16)
can be evaluated at the shifted LGL points, τk

δu(τk) = −H−1
uu (Huxδx(τk) + fT

u δλ(τk)) (48)

Substituting Eqs.(46-47) into Eq.(48) and using the
notation in Eq.(30) we have

δu(τk) = −H−1
uu

(
HuxW1k + fT

u W2k

)
δx0 (49)

The values of the control at instants of time between
the LGL points can be obtained by interpolation.
Replacing τ0 by the current time, τ , we obtain a

sampled data feedback law. Thus we can form a
predictive controller for a fixed- horizon where the
horizon is the time-to-go. Since these controllers are
obtained without any explicit integration or construc-
tion of transition matrices, it is apparent that they can
be computed in real-time.
The following example of low-thrust guidance illus-

trates the technique and numerically demonstrates the
accuracy and stability of our approach. See Ref. 17 for
a discussion of the outer-loop for this same problem.

5 Example: Low-Thrust Guidance
The example is the well known Earth-Mars trans-

fer from Ref. 4. Consider the problem of determining
the optimal trajectory and thrust direction history to
transfer a rocket from an initial circular orbit to the
largest circular orbit. The variables are: r the ra-
dial distance, vr the radial component of velocity, vt
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the tangential component of velocity, m the mass of
spacecraft, ṁ the constant fuel consumption rate, µ
the gravitational constant and ε , the thrust steering
angle measured from the local horizontal. The con-
trol problem is formulated as finding ε(τ) to maximize
r(τf ) subject to the equations of motion

dr

dτ
= vr, (50)

dvr

dτ
=

v2
t

r
− µ

r2
+A(τ) sin ε, (51)

dvt

dτ
= −vrvt

r
+A(τ) cos ε, (52)

where
A(τ) =

T

m0 − |ṁ|τ . (53)

The boundary conditions are

r(0) = 1.0LU, vr(0) = 0, (54)
vt(0) = 1.0LU/TU (55)

vr(τf ) = 0, vt(τf )−
√

µ

r(τf )
= 0. (56)

The normalized constants in this problem are: µ = 1.0,
m0 = 1.0, T = 0.1405, τf = 3.32 and |ṁ| = 0.0749. .
Let x = [r, vr , vt]T be the state vector and u = ε. The
difference between the actual state and control vari-
ables from their nominal values due to perturbations
in the initial states is denoted by δx(τ) and δu(τ).
The time-to-go guidance scheme for the neighboring
optimal control can be outlined as follows: First we
calculate a nominal optimal trajectory x∗ and optimal
control u∗(τ) using optimal control theory and shoot-
ing methods to maximize r(τf ) subject to Eqs.(50-56).
We define this optimal trajectory as the reference tra-
jectory. We can easily compute the Jacobian matrices
in Eq. (49) at each τ. Then, we set the initial pertur-
bation δx0. The actual (perturbed) trajectory is then
controlled by u = δu+u∗ with the nonlinear dynamics
governed by Eqs.(50-52), where the asterisk denotes
the reference value. The next perturbations δx are
generated from δx = x − x∗, where x is the state re-
sponse from system Eqs. (50-52) with u = δu + u∗.
In other words, δx is not generated from Eqs. (11-12)
and the feedback control law Eq.(49) is used only for
the control law. We repeat this procedure to the final
time.
In Fig. 2 , the optimal nominal control and states

calculated using a shooting method are shown . The
accuracy for the shooting method is of order of 10−12.
We set the number of LGL points at 64 and the sam-
pling time interval at 0.02 seconds. The initial per-
turbations are shown in Table 1, which are equivalent
to those in Ref. 5. Figures 3-6 depict the feedback
laws and the variations of the states compared with
the nominal values. The control δu → 0 as τ → τf as
shown in Fig. 3. Notice the example includes a hard
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Fig. 2 The nominal control and states
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Fig. 3 The feedback control law error

terminal constraint for vr and soft constraints for r
and vt in Eq. (56). So, δr and δvt do not approach
zero but δvr → 0 as τ → τf due to the hard constraint
as illustrated in Figs. 4-6.

Table 1 Initial Perturbations

Cases δx0

1 (0.0033, 0, 0)
2 (−0.0023, 0, 0)
3 (0, 0.0033, 0)
4 (0, −0.0023, 0)
5 (0, 0 , 0.0033)
6 (0, 0, −0.0023)

To verify the accuracy for the neighboring opti-
mal control using the spectral method, the reference
trajectory is recomputed with the perturbed initial
conditions, x∗

0 +δx0. Define the states obtained by re-
optimizations as xreo. We illustrate the error between
the actual states (computed using the perturbed con-
trol u∗ + δu) and the re-optimized states in Figs. 7-9.
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Fig. 5 Deviations for the radial component of ve-
locity
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Fig. 6 Deviations for the tangential component of
velocity

Table 2 Final REO Errors

Cases δrreo δvrreo δvtreo

1 -5.08e-6 -1.44e-7 -3.56e-6
2 -2.64e-6 -2.96e-8 -1.65e-6
3 -3.57e-6 -3.77e-9 -1.44e-7
4 -1.79e-6 3.14e-8 3.87e-8
5 -4.00e-6 -1.66e-6 -5.13e-6
6 -1.66e-6 -3.29e-8 -2.34e6
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Fig. 7 Re-optimized deviations for radial distance
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Fig. 8 Re-optimized deviations for radial velocity

From the figures, one can see the deviations are very
close to zero at the final time. In Table 2, the states’
error at final time for different initial perturbations
are presented. The results illustrate that actual final
states are in excellent agreement with the re-optimized
final states which indicate accuracy and effectiveness
of our technique in solving and applying neighboring
optimal control laws.
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Fig. 9 Re-optimized deviations for tangential ve-
locity

6 Conclusions

Pseudospectral methods can be effectively used
in an integrated fashion for the design of a high-
performance two degree-of-freedom (DOF) guidance
and control system. The proposed “spectral method”
uses the same discretization for the designs of the
outer- and inner-loops. The outer-loop employs a
direct method while the inner-loop uses a modified in-
direct method. Speed, efficiency and robustness of the
inner-loop is obtained by a predictive control method
that circumvents the real-time-solving of a matrix Ric-
cati differential equation. Since the outer-loop man-
ages “slow” dynamics, an online “concurrent” param-
eter identification model can be easily incorporated to
facilitate a 2-DOF adaptive system. It is apparent that
this research has opened many new vistas in the design
of guidance and control systems.
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