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On the Pseudospectral Covector Mapping Theorem for Nonlinear Optimal
Control

Qi Gong, I. Michael Ross, Wei Kang and Fariba Fahroo

Abstract— In recent years, a large number of nonlinear
optimal control problems have been solved by pseudospectral
(PS) methods. In an effort to better understand the PS approach
to solving control problems, we present convergence results
for problems with mixed state and control constraints. A set
of sufficient conditions are proved under which the solution
of the discretized optimal control problem converges to the
continuous solution. Conditions for the convergence of the duals
are described and illustrated. This leads to a clarification of
Covector Mapping Theorem and its connections to constraint
qualifications.

I. INTRODUCTION

The main difficulties in solving a state- and control-
constrained nonlinear optimal control problem are in seeking
a closed-form solution to the Hamilton-Jacobi equations,
or in solving the canonical Hamiltonian equations resulting
from an application of the Minimum Principle. Over the last
decade, a third alternative based on discrete approximations
has gained wide popularity [2], [4], [5], [10], [11], [13],
[14], [16] as a result of significant progress in computation
and theory. In simple terms, the idea can be characterized
as discretizing the optimal control problem and solving the
resulting large-scale finite-dimensional optimization prob-
lem. The simplicity of this approach belies a wide range of
deep theoretical issues (see [16]) that lie at the intersection
of approximation theory, control theory and optimization.
Regardless, a wide variety of industrial-strength optimal
control problems have been solved by this approach [2], [13],
[15], [19], [21], [27].

In this paper we focus on pseudospectral (PS) methods.
PS methods were largely developed in the 1970s for solving
partial differential equations arising in fluid dynamics and
meteorology [3], and quickly became “one of the big three
technologies for the numerical solution of PDEs” [28].
During the 1990s, PS methods were introduced for solving
optimal control problems; and since then, have gained con-
siderable attention [5], [6], [13], [15], [23], [27], [29], [30],
particularly in solving aerospace control problems. Examples
range from lunar guidance [13], magnetic control [30], orbit
transfers [27], tether libration control [29], ascent guidance
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[15] and a host of other problems. As a result of its con-
siderable success that includes experimental validation [26],
NASA’s next generation of the OTIS software package [18]
incorporates the Legendre PS method as a problem solving
option. Further details on NASA’s plans are described at:
http:// trajectory.grc.nasa.gov/projects/lowthrust.shtml. In ad-
dition, the commercially available software package, DIDO
[22], exclusively uses PS methods for solving optimal control
problems.

Because PS methods are of recent vintage, when com-
pared to, say, Runge-Kutta (RK) methods, a theory for PS
discretizations is an emerging area of interest. In recent years,
it has become clear that standard convergence theorems fre-
quently employed in the analysis of differential equations are
not applicable to discretizations of optimal control problems.
For example, Hager [11] has shown that “convergent” RK
methods can diverge while Betts et al [1] demonstrate that
“nonconvergent” RK methods can converge. Furthermore,
with regards to PS methods, its marked differences with
other methods implies that a new approach is needed to
address some fundamental questions. In this paper, we ad-
dress some of these basic questions. For example, does the
discretized problem always have a solution if a solution
to the continuous-time problems exists? If so, under what
conditions? Does the discretized solution converge to the
continuous optimal solution? These questions are of interest
not only from a theoretical standpoint, but are also of great
practical value, particularly in the real-time computation of
optimal control [25], [26].

In this paper, we strengthen earlier results and weaken
prior assumptions. For example, in [10] the existence and the
convergence results of PS methods are proved for nonlinear
systems in feedback linearizable normal form. In this paper,
we extend these results to the general nonlinear systems, and
show that the discrete dynamics must be relaxed to guar-
antee feasibility. In [24] a set of “closure conditions” were
identified to map the Karush-Kuhn-Tucker (KKT) multipliers
associated with the discretized optimal control problem to the
dual variables associated with the continuous-time optimal
control problem. Unlike Hager’s RK method which imposes
additional conditions on the primal problem (i.e. coefficients
of the integration scheme), the conditions of [24] imposes
constraints on both the primal and dual variables. In the
absence of a convergence theorem, this procedure requires
solving a difficult primal-dual mixed complementarity prob-
lem (MCP). In this paper, we prove that for constrained
optimal control problems, the solution of the discretized
optimal control problem converges to the solution of the
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continuous optimal control problem. Thus, the MCP may
be replaced by simpler NLP techniques and solvers. More
importantly, we demonstrate why the convergence of the
primal variables does not necessarily imply the convergence
of the KKT multipliers to the continuous costate. This leads
to a clarification of the closure conditions of [24] that ensure
the convergence of the duals. A simple example is introduced
to tie these ideas to constraint qualifications.

Throughout the paper we make extensive use of Sobolev
spaces [3], W m,p, that consists of functions, ξ : [−1, 1] →
R whose j-th distributional derivative, ξ(j), lies in Lp for all
0 ≤ j ≤ m with the norm,

‖ ξ ‖W m,p =

m∑
j=0

‖ ξ(j) ‖Lp

For notational ease, we suppress the dependence of W m,p on
vector-valued functions.

II. THE PROBLEM AND ITS DISCRETIZATION

Problem B: Determine the state-control function pair, t �→
(x, u) ∈ R

Nx × R
Nu , that minimize the cost function

J [x(·), u(·)] =

∫ 1

−1

F (x(t), u(t)) dt + E(x(−1), x(1))

subject to the dynamics,

ẋ(t) = f(x(t), u(t)) (1)

endpoint conditions

e(x(−1), x(1)) = 0 (2)

and path constraints

h(x(t), u(t)) ≤ 0 (3)

It is assumed that F : R
Nx ×R

Nu → R, E : R
Nx ×R

Nx →
R, f : R

Nx × R
Nu → R

Nx , e : R
Nx × R

Nx → R
Ne , and

h : R
Nx ×R

Nu → R
Nh , are continuously differentiable with

respect to their arguments and their gradients are Lipschitz
continuous over the domain. In order to apply the first order
necessary conditions, appropriate constraint qualifications
are implicitly assumed throughout the rest of the paper. In
addition to these standard assumptions, we assume that an
optimal solution (x∗(·), u∗(·)) exists with the optimal state,
x∗(·) ∈ Wm,∞, m ≥ 2. Note that, if x∗(t) is C1 and ẋ∗(t)
has bounded derivative everywhere except for finitely many
points on the closed interval t ∈ [−1, 1], then x∗(·) ∈ W 2,∞.
On the other hand, from Sobolev’s Imbedding Theorems [3],
any function x∗(·) ∈ Wm,∞, m ≥ 2 must have continuous
(m − 1)-th order classical derivatives on [−1, 1]. Therefore,
this condition requires the optimal state x∗(t) be at least
continuously differentiable.

In the Legendre PS approximation of Problem B, the basic
idea is to approximate x(t) by N -th order Lagrange poly-
nomials xN (t) based on the interpolation at the Legendre-
Gauss-Lobatto (LGL) quadrature nodes, i.e.

x(t) ≈ xN (t) =

N∑
k=0

xN (tk)φk(t),

where tk are LGL nodes defined as,

t0 = −1, tN = 1
tk, for k = 1, 2, . . . , N − 1, are the roots of L̇N (t)

where L̇N (t) is the derivative of the N -th order Legendre
polynomial, LN (t). The Lagrange interpolating polynomial
φk(t) is defined by

φk(t) =
1

N(N + 1)LN (tk)

(t2 − 1)L̇N (t)

t − tk
. (4)

It is readily verifiable that φk(tj) = 1, if k = j and φk(tj) =
0, if k �= j. The derivative of the i-th state xi(t) at the LGL
node tk can be approximated by

ẋi(tk) ≈ ẋN
i (tk) =

N∑
j=0

Dkjx
N
i (tj), i = 1, 2, . . . , Nx

where (N + 1)× (N + 1) differentiation matrix D is defined
as

Dik =

⎧⎪⎪⎨
⎪⎪⎩

LN (ti)
LN (tk)

1
ti−tk

, if i �= k;

−N(N+1)
4

, if i = k = 0;
N(N+1)

4
, if i = k = N ;

0, otherwise

(5)

Let x̄k = xN (tk), k = 0, 1, . . . , N. In a standard PS method,
the continuous differential equation is approximated by the
following nonlinear algebraic equations

N∑
i=0

x̄iDki − f(x̄k, ūk) = 0, k = 0, 1, . . . , N (6)

where ūk is taken to be analogous to x̄k. This discretization
is used in [5], [6], [24] for optimal control problems. It will
be apparent shortly that a feasible solution to (6) may not
exist; hence, to guarantee feasibility of the discretization, we
propose the following relaxation,∣∣∣∣∣

∣∣∣∣∣
N∑

i=0

x̄iDki − f(x̄k, ūk)

∣∣∣∣∣
∣∣∣∣∣
∞

≤ (N − 1)
3
2−m, (7)

Deferring a justification of this relaxation, note that when
N tends to infinity, the difference between conditions (6)
and (7) vanishes, since m, by assumption, is greater than or
equal to 2. Throughout the paper, we use the “bar” notation
to denote discretized variables. Note that the subscript in x̄k
denotes an evaluation of the approximate state, xN (t) ∈ R

Nx ,
at the node tk whereas xk(t) denotes the k-th component of
the exact state. The endpoint conditions and constraints are
approximated in a similar fashion

||e(x̄0, x̄N )||∞ ≤ (N − 1)
3
2−m (8)

h(x̄k, ūk) ≤ (N − 1)
3
2−m · 1, k = 0, . . . , N (9)

where 1 denotes [1, . . . , 1]T .
Finally, the cost functional J [x(·), u(·)] is approximated

by the Gauss-Lobatto integration rule,

J [x(·), u(·)] ≈ J̄N (X̄, Ū) =

N∑
k=0

F (x̄k, ūk)wk + E(x̄0, x̄N )

where wk are the LGL weights given by

wk =
2

N(N + 1)

1

[LN (tk)]2
, k = 0, 1, . . . , N

and X̄ = [x̄0, . . . , x̄N ], Ū = [ū0, . . . , ūN ].

45th IEEE CDC, San Diego, USA, Dec. 13-15, 2006 ThA10.1

2680



Since practical solutions are bounded, the following con-
straints are added

{x̄k ∈ X, ūk ∈ U, k = 0, 1, . . . , N}
where X and U are two compact sets representing the
search region and containing the continuous optimal solution
(x∗(t), u∗(t)). Hence, the optimal control Problem B is
approximated by an NLP with J̄N as the objective function
and (7), (8) and (9) as constraints; this is summarized as:

Problem BN : Find x̄k ∈ X and ūk ∈ U, k = 0, 1, . . . , N ,
that minimize

J̄N (X̄, Ū) =

N∑
k=0

F (x̄k, ūk)wk + E(x̄0, x̄N ) (10)

subject to∣∣∣∣∣
∣∣∣∣∣

N∑
i=0

x̄iDki − f(x̄k, ūk)

∣∣∣∣∣
∣∣∣∣∣
∞

≤ (N − 1)
3
2−m (11)

||e(x̄0, x̄N )||∞ ≤ (N − 1)
3
2−m (12)

h(x̄k, ūk) ≤ (N − 1)
3
2−m · 1 (13)

III. FEASIBILITY OF PROBLEM BN

In Eulerian discretizations, for any given initial con-
dition and control discretization, the states are uniquely
determined. Hence, there always exists a feasible solution
to the discretized dynamic system. For RK methods, a
similar property holds if the mesh is sufficiently dense
[11]. For pseudospectral methods such an existence result
for controlled differential equations is not readily apparent.
There are two main issues. PS methods are fundamentally
different than traditional methods (like Euler or RK) in that
they focus on approximating the tangent bundle rather than
the differential equation. Since the differential equation is
imposed over discrete points, in standard PS methods the
boundary conditions are typically handled by not imposing
the differential equations over the boundary [3], [28]. This
technique cannot be used for controlled differential equations
as it implies that the control can take arbitrary values at
the boundary. This is one of the many reasons why PS
methods for control are different from their counterparts
in other fields. A counter example in [10] shows that (6)
may not have any feasible solution. In [10], the feasibility
problem was circumvented by restricting the dynamics to
be feedback linearizable. In this paper, we relax (6) to (11)
so that even general nonlinear systems can be guaranteed
a feasible solution to Problem BN as proved in Theorem 1
below. First, we need the following lemma.

Lemma 1: [3] Given any function ξ ∈ W m,∞, t ∈ [−1, 1],
there is a polynomial pN (t) of degree N or less, such that

|ξ(t) − pN (t)| ≤ CC0N
−m, ∀ t ∈ [−1, 1]

where C is a constant independent of N and C0 = ‖ξ‖W m,∞ .
(pN (t) with the smallest norm ||ξ(t) − pN (t)||∞ is called
the N -th order best polynomial approximation of ξ(t) in the
norm of L∞ .)

Theorem 1: Given any feasible solution, t �→ (x, u),
for Problem B, suppose x(·) ∈ W m,∞ with m ≥ 2. Then,

there exists a positive integer N1 such that, for any N > N1,
Problem BN has a feasible solution, (x̄k, ūk). Furthermore,
the feasible solution satisfies ūk = u(tk) and

‖x(tk) − x̄k‖∞ ≤ L(N − 1)1−m, (14)

for all k = 0, . . . , N , where tk are LGL nodes and L is a
positive constant independent of N .

Proof: Let p(t) be the (N −1)-th order best polynomial
approximation of ẋ(t) in the norm of L∞ . By Lemma 1
there is a constant C1 independent of N such that

‖ẋ(t) − p(t)‖∞ ≤ C1(N − 1)1−m, ∀t ∈ [−1, 1] (15)

Define

xN (t) =

∫ t

−1

p(τ)dτ + x(−1)

x̄k = xN (tk)

ūk = u(tk) (16)

From (15),

‖x(t) − xN (t)‖∞ ≤ 2C1(N − 1)1−m, ∀t ∈ [−1, 1] (17)

It follows that both x(tk) and x̄k are contained in some
compact set whose boundary is independent of N . On this
compact set, because f is continuously differentiable, it must
be Lipschitz continuous. By definition, xN (t) is a polynomial
of degree less than or equal to N . It is known (see [3]) that,
for any polynomial of degree less than or equal to N , its
derivative at the LGL nodes t0, . . . , tN are exactly equal to
the value of the polynomial at the nodes multiplied by the
differential matrix D, which is defined by (5). Thus we have

N∑
i=0

x̄iDki = ẋN (tk) (18)

Therefore,∣∣∣∣∣
∣∣∣∣∣

N∑
i=0

x̄iDki − f(x̄k, ūk)

∣∣∣∣∣
∣∣∣∣∣
∞

≤
∣∣∣∣∣∣ẋN (tk) − ẋ(tk)

∣∣∣∣∣∣
∞

+ ||ẋ(tk) − f(x̄k, ūk)||∞
≤ ||p(τk) − ẋ(τk)||∞ + ||f(x(tk), u(tk)) − f(x̄k, ūk)||∞
≤ C1(N − 1)1−m + C2‖x(tk) − xN (tk)‖∞
≤ C1(1 + 2C2)(N − 1)1−m

where C2 is the Lipschitz constant of f with respect to x.
Since there exists a positive integer N1 such that, for all
N > N1,

C1(1 + 2C2)(N − 1)1−m ≤ (N − 1)
3
2−m

Hence, (11) holds for all N > N1.
As for the constraint (13), because h is continuously

differentiable, the following estimate holds.

‖h(x(t), u(t)) − h(xN (t), u(t))‖∞
≤ C3‖x(t) − xN (t)‖∞ ≤ 2C1C3(N − 1)1−m

where C3 is the Lipschitz constant of h with respect to x
which is independent of N . Hence

h(x̄k, ūk) ≤ h(x(tk), u(tk)) + 2C1C3(N − 1)1−m · 1
≤ 2C1C3(N − 1)1−m · 1

Thus, the constraint (13) holds for all N ≥ N1. As for the
endpoint condition (12), it can be proved in a similar fashion.
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Thus, we have constructed a feasible solution (x̄k, ūk) for
Problem BN . Finally, (14) follows directly from (17).

Remark 1: In practice, we use a small number, δP > 0
as a feasibility tolerance. Then, Theorem 1 guarantees that
for any δP howsoever small, (11)–(13) always has a solution
provided a sufficiently large number of nodes are chosen.
Furthermore, the right hand side of (11)–(13) converges to
zero as N tends to infinity.

IV. CONVERGENCE OF THE PRIMAL VARIABLES

With an existence result in hand, we now establish the
convergence of the primal variables, (x, u). That is, to show
the existence of a sequence of optimal solutions of Problem
BN converging to an optimal solution of Problem B. The
method we used is similar in spirit to Polak’s theory of
consistent approximations [20]. We show that, under certain
conditions, the sequence of finite dimensional nonlinear
programming, Problem BN , consistently approximate the
infinite dimensional continuous optimal control Problem B.

Let (x̄∗
k, ū∗

k), k = 0, 1, . . . , N , be an optimal solution to
Problem BN . Let xN (t) ∈ R

Nx be the N -th order interpo-
lating polynomial of (x̄∗

0, . . . , x̄
∗
N ) and uN (t) ∈ R

Nu be any
interpolant of (ū∗

0, . . . , ū
∗
N ), i.e.

xN (t) =

N∑
k=0

x̄∗
kφk(t), uN (t) =

N∑
k=0

ū∗
kψk(t)

where φk(t) is the Lagrange interpolating polynomial defined
by (4) and ψk(t) is any continuous function such that
ψk(tj) = 1, if k = j and ψk(tj) = 0, if k �= j. Note
that uN (t) is not necessarily a polynomial. Typically, we
use linear or spline functions for interpolating (ū∗

0, . . . , ū
∗
N ).

Now consider a sequence of Problems BN with N increasing
from N1 to infinity. Correspondingly, we get a sequence of
discrete optimal solutions {(x̄∗

k, ū∗
k), k = 0, . . . , N}∞N=N1 and

their interpolating function sequence {xN (t), uN (t)}∞N=N1 .
Definition 1: A continuous function ρ(t) is called

the uniform accumulation point of a function sequence
{ρN (t)}∞N=0, t ∈ [−1, 1], if there is a subsequence of
{ρN (t)}∞N=0 that uniformly converges to ρ(t).

Assumption 1: x∞
0 is an accumulation point of the

first element (i.e. k = 0) of the sequence, {x̄∗
k, k =

0, . . . , N}∞N=N1 .
Remark 2: In many optimal control problems, an initial

value of the state is fixed by the endpoint condition. Then,
from (12), it is easy to verify that Assumption 1 is automat-
ically satisfied.

Lemma 2: [8] Let tk, k = 0, 1, . . . , N , be the LGL
nodes, and wk be the LGL weights. Suppose ξ(t) is Riemann
integrable; then,

∫ 1

−1

ξ(t)dt = lim
N→∞

N∑
k=0

ξ(tk)wk

Theorem 2: Let {(x̄∗
k, ū∗

k), 0 ≤ k ≤ N}∞N=N1 be a
sequence of optimal solutions of Problem BN satisfying
Assumption 1, and (xN (t), uN (t))∞N=N1 be their interpolating
function sequence. Let the pair of continuous functions,
(q(t), u∞(t)), be any uniform accumulation point of the
sequence (ẋN (t), uN (t))∞N=N1 . Then, u∞(t) is an optimal

control to the original continuous Problem B, and x∞(t) =∫ t

−1
q(τ)dτ + x∞

0 is the corresponding optimal trajectory.
Proof: By definition, there is a subsequence Ni ∈

0, 1, · · · , with limi→∞ Ni = ∞, such that

lim
i→∞

(ẋNi(t), uNi(t)) = (q(t), u∞(t)).

It is easy to show (under Assumption 1)

lim
i→∞

xNi(t) = x∞(t) (19)

uniformly on t ∈ [−1, 1]. The remaining part of the proof is
broken into three steps. First, we show that (x∞(t), u∞(t))
is a feasible solution to Problem B. Then, we prove the
convergence of the cost function J̄Ni(X̄∗, Ū∗) to the con-
tinuous cost function J(x∞(·), u∞(·)), and finally show that
(x∞(t), u∞) is indeed an optimal solution of Problem B.

Step 1: To prove that (x∞(t), u∞(t)) is a feasible solu-
tion to Problem B, we first need to show that (x∞(t), u∞(t))
satisfies the state equation (1). By the contradiction ar-
gument, suppose (x∞(t), u∞(t)) is not a solution of the
differential equation (1). Then there is a time t′ ∈ [−1, 1]
so that

ẋ∞(t′) − f(x∞(t′), u∞(t′)) �= 0

Since the LGL nodes tk are dense with N → ∞ [8], there
exists a sequence kNi satisfying

0 < kNi < Ni and lim
i→∞

tkNi = t′.

By assumption, (xNi(t), ẋNi(t), uNi(t)) converge uniformly
to (x∞(t), ẋ∞(t), u∞(t)); thus

ẋ∞(t′) − f(x∞(t′), u∞(t′))

= lim
i→∞

(ẋNi(tkNi ) − f(xNi(tkNi ), u
Ni(tkNi )) �= 0 (20)

Because xN (t) is a N-th order polynomial, we have

ẋNi(tkNi ) =
Ni∑
j=0

x̄∗
jDkNi j .

Thus from (11) and the fact that (xN (t), uN (t)) are the
interpolating functions of {(x̄∗

k, ū∗
k), 0 ≤ k ≤ N}, the

following holds

lim
i→∞

(ẋNi(tkNi ) − f(xNi(tkNi ), u
Ni(tkNi ))

= lim
i→∞

(Ni − 1)
3
2−m = 0

This contradicts (20); therefore, (x∞(t), u∞(t)) must be a
solution of the differential equation (1).

The path constraint can be proved by the same
contradiction argument. As for the end-point condition
e(x∞(−1), x∞(1)) = 0, it follows directly from the con-
vergence property, since

e(x∞(−1), x∞(1)) = lim
i→∞

e(xNi(−1), xNi(1))

= lim
i→∞

e(x̄∗
0, x̄

∗
Ni

) = 0

Step 2: In this step, we will show that

lim
i→∞

J̄Ni(X̄∗, Ū∗) = J(x∞(·), u∞(·)), (21)
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where

J̄Ni(X̄∗, Ū∗) = E(x̄∗
0, x̄

∗
Ni

) +

Ni∑
k=0

F (x̄∗
k, ū∗

k)wk

J(x∞(·), u∞(·)) = E(x∞(−1), x∞(1)) +∫ 1

−1

F (x∞(t), u∞(t))dt

Since (xNi(t), uNi(t)) uniformly converges to
(x∞(t), u∞(t)), we have,

lim
i→∞

|xNi(tk) − x∞(tk)| = lim
i→∞

|x̄∗
k − x∞(tk)| = 0(22)

lim
i→∞

|uNi(tk) − u∞(tk)| = lim
i→∞

|ū∗
k − u∞(tk)| = 0(23)

uniformly in k. From this property, it is easy to conclude
(x̄∗

k, ū∗
k) is bounded for all Ni and 0 ≤ k ≤ Ni. Therefore,

by the fact that F (x, u) is continuously differentiable, there
exists a constant M > 0 independent of Ni, such that

|F (x∞(tk), u∞(tk)) − F (x̄∗
k, ū∗

k)|
≤ M(|x∞(tk) − x̄∗

k| + |u∞(tk) − ū∗
k|)

for all 0 ≤ k ≤ Ni. Furthermore, F (x∞(t), u∞(t)) is
continuous in t. Thus, by Lemma 2, we have∫ 1

−1

F (x∞(t), u∞(t))dt = lim
i→∞

Ni∑
k=0

F (x∞(tk), u∞(tk))wk

Therefore,∫ 1

−1

F (x∞(t), u∞(t))dt = lim
i→∞

(
Ni∑

k=0

F (x̄∗
k, ū∗

k)wk+

Ni∑
k=0

[F (x∞(tk), u∞(tk)) − F (x̄∗
k, ū∗

k)] wk

)
(24)

From the uniform convergence of (22) and (23) and the
property of wk,

∑N
k=0 wk = 2, we know that

lim
i→∞

∣∣∣∣∣
Ni∑

k=0

(F (x∞(tk), u∞(tk)) − F (x̄∗
k, ū∗

k)) wk

∣∣∣∣∣
≤ lim

i→∞
M

Ni∑
k=0

(|x∞(tk) − x̄∗
k| + |u∞(tk)) − ū∗

k|) wk = 0

Thus,∫ 1

−1

F (x∞(t), u∞(t))dt = lim
i→∞

Ni∑
k=0

F (x̄∗
k, ū∗

k)wk (25)

It is obvious that

lim
i→∞

E(x̄∗
0, x̄

∗
Ni

) = E(x∞(−1), x∞(1)) (26)

Thus the limit in (21) follows from (25) and (26).
Step 3: Denote (x∗(t), u∗(t)) as any optimal solution of

Problem B with the property that x∗(t) ∈ Wm,∞, m ≥ 2,
(the optimal solution may not be unique). According to
Theorem 1, there exists a sequence of feasible solutions,
(x̃N

k , ũN
k )∞N=N1

, of Problem BN that converge uniformly
to (x∗(t), u∗(t)). Now, from (21) and the optimality of
(x∗(t), u∗(t)) and (x̄∗

k, ū∗
k), we have

J(x∗(·), u∗(·)) ≤ J(x∞(·), u∞(·))
= lim

i→∞
J̄Ni(X̄∗, Ū∗)

≤ lim
i→∞

J̄Ni(X̃, Ũ). (27)

By using the same arguments as in Step 2, it is straightfor-
ward to show that

J(x∗(·), u∗(·)) = lim
i→∞

J̄Ni(X̃, Ũ), (28)

since (x̃N
k , ũN

k )∞N=N1
converge uniformly to (x∗(t), u∗(t)).

Equations (27) and (28) imply that

J(x∗(·), u∗(·)) = J(x∞(·), u∞(·))

This is equivalent to saying that (x∞(·), u∞(·)) is a feasible
solution that achieves the optimal cost. Therefore, t �→
(x∞(t), u∞(t)) is an optimal solution to the optimal control
Problem B. Thus, the conclusions in Theorem 2 follows.

Theorem 2 demonstrates that discrete Problem BN is
indeed a consistent approximation [20] to the continuous
optimal control Problem B. In other words, if the optimal
solution of the discretized Problem BN converges as N
increases, then the limit point must be an optimal solution of
the continuous Problem B. Thus, under relatively mild condi-
tions, Theorems 1-2 guarantee the existence and convergence
of the discrete-time optimal solution to the continuous-time
solution of the original problem.

V. CONVERGENCE OF THE DUAL VARIABLES

The convergence of dual variables is an extremely im-
portant issue in discrete approximations of optimal control
problems as it provides insights on both the method of ap-
proximation and the resultant solution that would otherwise
be unavailable from a consideration of the primal variables
alone. For example, the discrepancy between the state and
costate discretizations led Hager [11] to design new Runge-
Kutta methods for control applications. Furthermore, in solv-
ing industrial-strength optimal control problems, verification
and validation methods are crucial for safety, robustness and
other issues. The Minimum Principle provides a plethora of
such tests through integrals of motion (e.g. constancy of
the lower Hamiltonian for autonomous systems) and other
conditions. This is one reason why indirect methods (i.e.
methods based on solving the necessary conditions arising
from an application of the Minimum Principle) continue to
be used; however, indirect methods are replete with many
problems [2]. Thus, in designing direct methods that provide
the appeal of indirect methods, a study of the convergence
of dual variables takes center stage. In this section, we
explore the link between the KKT multipliers and the discrete
costates and clarify the covector mapping theorem of [24].
Throughout this section, we assume that Assumption 1
always holds.

A. Necessary Conditions for Problems BN and B

Motivated by the results in [24], we use the discrete
weights wk to construct a Lagrangian for Problem BN as

LN = J̄N +

N∑
k=0

λ̄T
k (−

N∑
i=0

x̄iDki + f(x̄k, ūk))wk

+ν̄T e(x̄0, x̄N ) +

N∑
i=0

µ̄T
k h(x̄k, ūk)wk
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where λ̄k ∈ R
Nx , ν̄ ∈ R

Ne and µ̄k ∈ R
Nh are the

KKT multipliers associated with Problem BN . As a result
of choosing a weighted inner product (1-form) for the
construction of the Lagrangian, the KKT multipliers must
be interpreted accordingly. Let, δP = (N − 1)

3
2−mx . Then,

a feasible point is called a KKT point if the KKT conditions
are approximately satisfied,

∣∣∣∣∣
∣∣∣∣∣

N∑
i=0

x̄iDki − f(x̄k, ūk)

∣∣∣∣∣
∣∣∣∣∣
∞

≤ δP , (29)

h(x̄k, ūk) ≤ δP · 1, ||e(x̄0, x̄N )||∞ ≤ δP , (30)∣∣∣∣
∣∣∣∣ ∂L

∂ūk

∣∣∣∣
∣∣∣∣
∞

≤ δD,

∣∣∣∣
∣∣∣∣ ∂L

∂x̄k

∣∣∣∣
∣∣∣∣
∞

≤ δD, (31)

||µ̄k · h(x̄k, ūk)||∞ ≤ δD, µ̄k ≥ −δD · 1, (32)

where k = 0, 1, . . . , N and 1 = [1, . . . , 1]T with appropriate
dimension and δD is a dual feasibility tolerance. A proper
selection of δD will be apparent shortly. Part of the moti-
vation for δD comes from the convergence criteria used in
solving NLPs; see for example [9].

For the purpose of brevity, we omit a detailed derivation of
an evaluation and subsequent simplification of (29) – (32);
these steps can be found in [24]. The final result can be
summarized as follows:

Problem BNλ: Find a KKT point (x̄∗
k, ū∗

k, λ̄∗
k, µ̄∗

k, ν̄∗), k =
0, 1, . . . , N , of Problem BN such that

∣∣∣∣∣
∣∣∣∣∣

N∑
i=0

x̄∗
i Dki − f(x̄∗

k, ū∗
k)

∣∣∣∣∣
∣∣∣∣∣
∞

≤ δP

‖e(x̄∗
0, x̄

∗
N )‖∞ ≤ δP , h(x̄∗

k, ū∗
k) ≤ δP · 1∣∣∣∣∣

∣∣∣∣∣wk

[
N∑

i=0

λ̄∗
i Dki + Fx(x̄∗

k, ū∗
k) + fT

x (x̄∗
k, ū∗

k)λ̄∗
k+

hT
x (x̄∗

k, ū∗
k)µ̄∗

k

]
+ ck

∣∣∣∣∣∣
∞

≤ δD∣∣∣∣∣∣wk [Fu(x̄∗
k, ū∗

k) + fT
u (x̄∗

k, ū∗
k)λ̄∗

k + hT
u (x̄∗

k, ū∗
k)µ̄∗

k]
∣∣∣∣∣∣

∞
≤ δD

||wk µ̄∗
k · h(x̄∗

k, ū∗
k)||∞ ≤ δD, µ̄∗

k ≥ −δD · 1,

where ci = 0 for 2 ≤ i ≤ N − 1 and

c0 = λ̄∗
0 +

∂E

∂x0
(x̄∗

0, x̄
∗
N ) + (

∂e

∂x0
(x̄∗

0, x̄
∗
N ))T ν̄∗

cN = −λ̄∗
N +

∂E

∂xN
(x̄∗

0, x̄
∗
N ) + (

∂e

∂xN
(x̄∗

0, x̄
∗
N ))T ν̄∗.

The first-order necessary conditions for Problem B are
based on Minimum Principle that uses the D-form of
the Lagrangian of the Hamiltonian [12], H(x, u, λ, µ) =
H(x, u, λ) + µT h(x, u), where H(x, u, λ) = F (x, u) +
λT f(x, u) is the control Hamiltonian, λ(t) is the costate
and µ(t) is the instantaneous KKT multiplier (covector)
associated with the Hamiltonian Minimization Condition.
Under suitable constraint qualifications [12], the necessary
conditions for Problem B together with the state equation
and constraints can be summarized as follows.

Problem Bλ: If (x∗(t), u∗(t)) is the optimal solution to

Problem BN , then there exist (λ∗(t), µ∗(t), v∗) such that

ẋ∗ = f(x∗, u∗)

λ̇∗ = −Fx(x∗, u∗) − fT
x (x∗, u∗)λ∗ − hT

x (x∗, u∗)µ∗(t)

0 = Fu(x∗, u∗) + fT
u (x∗, u∗)λ∗ + hT

u (x∗, u∗)µ∗(t)
0 = e(x∗(1), x∗(−1))

0 ≥ h(x∗, u∗)
0 = µ∗(t)h(x∗(t), u∗(t)), µ∗(t) ≥ 0

λ∗(−1) = −Ex(−1)(x
∗(−1), x∗(1)) −

eT
x(−1)(x

∗(−1), x∗(1))v∗ (33)

λ∗(1) = Ex(1)(x
∗(−1), x∗(1)) +

eT
x(1)(x

∗(−1), x∗(1))v∗ (34)

Remark 3: It is easy to observe that a PS discretization
of Problem Bλ will not generate Problem BNλ although
they appear to be similar. The discretization of Problem Bλ

is denoted as Problem BλN in Fig. 1 and illustrates that du-

Problem B

Problem B λ Problem B λN

Problem B N

d
u
a
liz

a
ti
o
n

d
u
a
liz

a
ti
o
n

approximation
(direct method)

approximation
(indirect method)

convergence

convergence

Covector
Mapping
Theorem

Problem B Nλ

Fig. 1. Schematic for the covector mapping theorem [24].

alization and discretization are not necessarily commutative
operations. As noted earlier, a similar observation has been
made by Hager on Runge-Kutta methods.

The main points of Fig. 1 is illustrated by the following
example. (which is a counter example to the widely-held
notion that if the primals converge, the KKT multipliers
associated with the discretized dynamic constraints converge
to the costates).

Example 1: Minimize J [x(·), u(·)] = x(2), subject to

ẋ(t) = u(t), t ∈ [0, 2] (35)

x(0) = 0, u(t) ≥ −1 (36)

The dual feasibility conditions for (35)-(36) are

λ̇∗(t) = 0, λ∗(2) = 1 (37)

λ∗(t) − µ∗(t) = 0

µ∗(t)(−u∗(t) − 1) = 0, µ∗(t) ≥ 0

which uniquely determine the optimal solution as

x∗(t) = −t, u∗(t) = −1, λ∗(t) = µ∗(t) = 1.

A numerical solution by the PS method with 20 nodes is
shown in Figure 2. The left plot clearly shows that the
primal variables (x̄∗

k, ū∗
k) coincide with the analytic solution

(x∗(t), u∗(t)). On the other hand, the right plot shows that
the KKT multipliers λ̄∗

k, do not agree with the costate, λ∗(t).
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Fig. 2. Discrete solution by PS method with N=20.

These KKT multipliers were obtained in accordance with the
weighted Lagrangian. If the standard inner-product is used,
the disagreements between the multipliers are even worse
[7]. Clearly, the convergence of the discretized primals does
not imply the convergence of the KKT multipliers to the
continuous costates. To clarify this point, consider the PS
discretization of (35)-(36). For the purpose of clarity, we
ignore the tolerances, δP and δD. This is further justified
by the fact that the optimal continuous-time solutions being
polynomials, the discretized problem can be posed exactly
without introducing any infeasibility problem. Thus, an ap-
plication of the method yields,

Min. J̄N = x̄N , subject to

D

⎛
⎜⎝

x̄0

...
x̄N

⎞
⎟⎠ =

⎛
⎜⎝

ū0

...
ūN

⎞
⎟⎠ (38)

x̄0 = 0 (39)

ūk ≥ −1, 0 ≤ k ≤ N (40)

It is easy to show that, for any N , the discretized problem
admits a unique globally optimal solution: ū∗

k = −1, x̄∗
k =

−tk, 0 ≤ k ≤ N , where tk are the LGL nodes. Thus, for any
fixed N , the discrete optimal solution, (x̄∗

k, ū∗
k) = (−tk,−1),

can always be found and hence the convergence of the
discrete solution to the continuous-time optimal solution is
guaranteed. The left plot in Figure 2 demonstrates this point.

Next, the KKT conditions for the discrete problem are

D

⎛
⎜⎜⎜⎜⎜⎝

λ̄∗
0

λ̄∗
1

...
λ̄∗

N−1

λ̄∗
N

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

v̄
0
...
0

(λ̄∗
N − 1)/wN

⎞
⎟⎟⎟⎟⎠ (41)

λ̄∗
k = µ̄∗

k, 0 ≤ k ≤ N (42)

µ̄∗
k(−u∗

k − 1) = 0, µ̄∗
k ≥ 0 (43)

where v̄ is the multiplier associated with the initial condition.
Since the constraint ūk ≥ −1 is always active at the optimal
solution, µ̄∗

k is undetermined in (43). In addition, it is easy
to show that (41) has infinitely many solutions. In other
words, the KKT multipliers are not unique although the
optimal primal solution is unique. It is also straightforward
to show that the linear independence constraint qualification
is violated in this example but the weaker Mangasarian-
Fromovitz constraint qualification [17] holds. Thus, the KKT
multipliers exist but are not unique. This nonuniqueness
persists even as N → ∞. Uniqueness can be restored by
supplying the missing condition, λ̄∗

N = 1to the discrete

dual feasibility conditions. This condition is obtained simply
by comparing (41) with (37). With this additional condition,
it is easy to see that the KKT conditions (41)—(43) admit a
unique solution. This is plotted in the right plot of Figure 2
indicating a perfect match with the costate λ(t).

B. The Augmented KKT Conditions

In the general case, comparing Problem BλN with Prob-
lem BNλ, it is apparent that the transversality conditions
(33)-(34) are missing in the KKT conditions. Alternatively,
the costate differential equations are not naturally collocated
at the boundary points, -1 and 1. By restoring this informa-
tion loss to the KKT conditions, the KKT multipliers can be
mapped to the discretized covectors associated with Problem
Bλ. More specially, the following conditions are needed in
addition to the KKT conditions∣∣∣∣

∣∣∣∣−λ̄∗
0 − ∂E

∂x0
(x̄∗

0, x̄
∗
N ) − (

∂e

∂x0
(x̄∗

0, x̄
∗
N ))T ν̄∗

∣∣∣∣
∣∣∣∣
∞

≤ δD (44)∣∣∣∣
∣∣∣∣λ̄∗

N − ∂E

∂xN
(x̄∗

0, x̄
∗
N ) − (

∂e

∂xN
(x̄∗

0, x̄
∗
N ))T ν̄∗

∣∣∣∣
∣∣∣∣
∞

≤ δD (45)

These equations generalize the “closure conditions” iden-
tified in [24]. They lead to a proof of Theorem 3 which
clarifies the Covector Mapping Theorem [24].

Theorem 3 (Covector Mapping Theorem): Given any
feasible solution, t �→ (x, u, λ, ν), for Problem Bλ, suppose
x(·) ∈ Wmx,∞ and λ(·) ∈ Wmλ,∞ with mx,mλ ≥ 2. Then,
there exists a positive integer N2 such that, for any N > N2,
the augmented KKT conditions, i.e., (29)-(30) plus (44)-(45),
has a feasible solution with a primal feasibility tolerance
of δP = (N − 1)

3
2−mx and a dual feasibility tolerance of

δD = (N − 1)
3
2−mλ .

The proof of this theorem is based on ideas similar to that
of the proof of Theorem 1. For the purpose of brevity, we
skip it.

Remark 4: In practice, we often observe the convergence
of the primal variables, and as observed in Example 1,
the KKT multipliers do not converge. In the absence of
Theorem 3, the existence of a solution to the augmented
KKT conditions was questionable. Theorem 3 guarantees the
existence of solution to both the KKT conditions and the
augmented KKT conditions. When multiple solutions exist
for the KKT multipliers, the closure conditions, (44)-(45),
act as a selection criterion in picking the proper set of KKT
multipliers that constitute the subsequence which converges
to the continuous-time covectors. In the event the KKT
conditions admit a unique solution, the closure conditions
do not introduce an infeasibility problem into the augmented
KKT conditions.

We now establish a final theorem on the convergence of
the sequence of the mapped dual variables. This is done in
a manner similar to the analysis of the convergence of the
primal variables. Let (x̄∗

k, ū∗
k, λ̄∗

k, µ̄∗
k, ν̄∗), k = 0, 1, . . . , N , be

a solution to the augmented KKT conditions, i.e, Problem
BNλ plus the closure conditions (44)-(45). Consider a se-
quence of the augmented KKT conditions with N increasing
from N2 to infinity. Correspondingly we get a sequence
of discrete solutions {x̄∗

k, ū∗
k, λ̄∗

k, µ̄∗
k, ν̄∗}∞N=N2 . Furthermore,

denote (xN (t), λN (t)) as the N -th order interpolating poly-
nomials of (x̄∗

k, λ̄∗
k), and (uN (t), µN (t)) as any interpolating
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function of (ū∗
k, µ̄∗

k), i.e.

xN (t) =

N∑
k=0

x̄∗
kφk(t), uN (t) =

N∑
k=0

ū∗
kψk(t),

λN (t) =

N∑
k=0

λ̄∗
kφk(t), µN (t) =

N∑
k=0

µ̄∗
kψk(t),

where φk(t) is the Lagrange interpolating polynomial defined
by (4) and ψk(t) is any continuous function such that
ψk(tj) = 1, if k = j and ψk(tj) = 0, if k �= j. For instance,
ψ(t) can be a linear or spline interpolant.

Assumption 2: Let the primal and dual feasibility tol-
erances be chosen as in Theorem 3. Suppose the sequences{
xN (t0)

}∞
N=N2

,
{
λN (t0)

}∞
N=N2

and {ν̄∗}∞N=N2
converge as

N → ∞ ; denote their limits as (x∞
0 , λ∞

0 , ν̄∞).
Theorem 4: Let {xN (t), uN (t), λN (t), µN (t)}∞N=N2 be a

sequence of interpolating functions constructed from opti-
mal solutions, (x̄∗

k, ū∗
k, λ̄∗

k, µ̄∗
k), k = 0, 1, . . . , N , to Problem

BN . Suppose Assumption 2 holds. Let continuous func-
tions (η(t), u∞(t), ρ(t), µ∞(t)) be any uniform accumulation
point of the sequence (ẋN (t), uN (t), λ̇N (t), µN (t)). Then the
functions (x∞(t), u∞(t), λ∞(t), µ∞(t)) must satisfy all the
necessary conditions indicated by Problem Bλ, where

x∞(t) =

∫ t

−1

η(τ)dτ + x∞
0

λ∞(t) =

∫ t

−1

ρ(τ)dτ + λ∞
0 .

This theorem can be proved in the same manner as the
proof of Theorem 2 and is therefore omitted.

Remark 5: Theorem 4 completes all the associations
identified in Fig. 1. Thus, although a direct PS method is used
to solve the optimal control problem, the results of Theorem
3-4 indicate that there is essentially no distinction between
direct and indirect PS methods. Even more appealing is
the fact that the well-known ease and robustness of direct
methods can now be used to solve problems while still
maintaining a direct link to the Minimum Principle but
without all the difficulties associated with solving problems
by an indirect method.

Remark 6: As indicated earlier, a Legendre PS method
is available through the software package, DIDO [22]. DIDO
has been publicly available since about 2001. Recently,
the Legendre PS method became available as part of the
NASA-developed software package, OTIS [18] (Version 4.0).
Unlike DIDO, OTIS has a substantial number of additional
tools for generating quick solutions to aerospace trajectory
optimization problems.
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