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Design and Control of Libration Point

Spacecraft Formations

Samantha I. Infeld, ∗ Scott B. Josselyn † Walter Murray, ‡ I. Michael Ross,§

We investigate the concurrent problem of orbit design and formation control around a
libration point. The problem formulation is based on a framework of multi-agent, nonlin-
ear optimal control. The optimality criterion is fuel consumption modeled as the L

1-norm
of the control acceleration. Fuel budgets are allocated by isoperimetric constraints. The
nonsmooth optimal control problem is discretized using DIDO, a software package that
implements the Legendre pseudospectral method. The discretized problem is solved using
SNOPT, a sequential quadratic programming solver. Among many, one of the advantages
of our approach is that we do not require linearization or analytical results; consequently,
the inherent nonlinearities associated with the problem are automatically exploited. Sam-
ple results for formations about the Sun-Earth L2 point in the 3-body circular restricted
dynamical framework are presented. Globally optimal solutions for relaxed and almost
periodic formations are presented for both a large separation constraint (about a third to
half of orbit size), and a small separation constraint (a few hundred km or about 5× 10−6

of orbit size).

I. Introduction

GIVEN the old adage that two or more persons
working cooperatively can achieve more than the

sum of their individual efforts, it is no surprise that
the same holds for space systems. In fact, this concept
holds for many other control systems such as under-
water vehicles, mobile robots and airplanes including
non-vehicular control systems such as those arising in
medicine, economics and software engineering. Such
multi-agent systems require a certain level of abstrac-
tion to manage complexity; see Tanner et al1 for an
excellent review of the literature and some recent re-
sults along this direction. A distributed space system
(DSS) is a multi-agent control system and has long
been recognized2–5 as a key technology area to enhance
the scope of both military2, 4 and civilian3, 5 space ap-
plications. A particular type of DSS that is challenging
to design2–5 is a collection of spacecraft in formation.
Unlike other multi-agent systems, the design of a DSS
has a specific unique requirement: the propellant con-
sumption must be minimal.4, 5 This requirement stems
from the simple notion that if propellant consumption
was not a prime driver, then any arbitrary configura-
tion is possible, such as a circular “halo orbit” whose
center is not the gravitating body in an inverse-square
gravity field. Thus, to explore various formation con-
figurations, it is crucial to concurrently design the
formation and the minimum-fuel control.6, 7 In other
words, we do not necessarily propose to control a par-
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ticular formation configuration in minimum fuel (i.e.
the problem of optimal formation keeping); rather,
we follow Ross et al6 and King,7 and propose that
the more fundamental problem is to explore forma-
tion configurations (e.g. by varying initial estimates)
that are minimum fuel solutions. Thus it is part of the
method to find several locally optimal solutions, rather
than looking for the one local optimal solution closest
to an estimate of a particular formation configuration.
Once this problem is solved, the next step would be
to evaluate the formation configurations for science or
military applications, modify the requirements if nec-
essary, re-solve the problem and re-evaluate the result
in conjunction with the propellant expenditures to de-
termine its viability.6 This approach, of telling agents
what to do, rather than how to do it, has been suc-
cessfully applied for the design and control of a variety
of Earth-orbiting formations6, 7 and station-keeping of
libration-point missions.12 In this paper, we extend
the results of Infeld and Murray12 by adopting the ap-
proach of Ross and King.6, 7

Research on formation at libration points is moti-
vated primarily by the opportunity to create the effect
of larger telescopes with a precise formation of smaller
telescopes. Currently in design are infrared interfer-
ometry missions NASA’s Terrestrial Planet Finder8

and ESA’s Darwin,9 as well a NASA x-ray tele-
scope formation mission, Constellation-X Observa-
tory.10 These are all located at the Sun-Earth L2
point. There are also ideas for formations spaced
about a libration point orbit; more of a constellation
around the point. An example of this idea is the two
satellite constellation Solar Wind Satellite proposed at
Sun-Earth L1 by the Department of Defense.11 Sim-
ilar to the extensive work on spacecraft formation in
the two-body problem, much of the research on the
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three-plus-body problem is centered around lineariza-
tion about a reference libration orbit.13–16 Thus, the
problem is split into two problems: the design of a
“good” reference orbit and formation control around
the reference orbit. There are number of procedures
for finding a reference orbit,17, 18 many of them are
based on a Lindstedt-Poincaré technique proposed
by Richardson.19 In this approach, the perturba-
tion method of Lindstedt is applied to the circular
restricted three-body problem with Legendre polyno-
mials as expansion coefficients. The accuracy of this
method is then judged by comparing the results to a di-
rect numerical integration of the dynamical equations.
This naturally leads to a procedure for improving the
initial conditions by shooting methods.18, 20 Junge
et al20 describe the issues and difficulties of this ap-
proach for real-life missions. Having determined the
reference orbit in such a manner, formation keeping
methodologies can be developed by applying linear
control theory to the linearized equations of motion
for a neighboring orbit.15, 16 Many variants of this
approach are actively being pursued by various re-
searchers. While such a two-step approach may be
viable for certain missions, a simple, unified, single-
step approach to the design and control of spacecraft
formations was proposed by Ross and King.6, 7 In this
approach, the orbits and the formation control strate-
gies are designed concurrently using the framework of
multi-agent optimal control theory. It will be appar-
ent shortly that this framework, described Sec. II, is
not the same as applying optimization techniques to
compute the standard problem of impulsive trajectory
correction maneuvers.21 In any case, once the prob-
lem framework is set up, the optimal control problem
it is solved by a Legendre pseudospectral method.22–24

This method, summarized in Sec. III, essentially allows
the state, control and costate variables to be repre-
sented as a series expansion of Legendre polynomials.
Thus, although Legendre polynomials are also used, as
in Richardson’s method, the pseudospectral approach
is fundamentally different and resembles a Galerkin
method.25 However, unlike a Galerkin method, all the
computations in the pseudospectral method are per-
formed in the time domain by an equivalent represen-
tation of the unknown variables in terms of Lagrange
interpolating polynomials. The net result is that the
semi-analytical framework of series expansion and the
computational aspects of finding the coefficients are
unified. The computational problem is reduced to a
large nonlinear programming problem. Solving such
large-scale problems are significantly easier today than
ever before: thanks to major advances in practical al-
gorithms pioneered by Betts26 and Gill et al;27 these
algorithms promise global convergence under mild as-
sumptions.28 The results of this approach are reported
in Sec. V. We briefly note that global convergence
does not imply global optimality;28, 29 we also present

globally fuel-optimal solutions in the sense that the
propellant expenditures are zero.

II. General Framework

A general framework for spacecraft formation design
and control is described by Ross et al6 and repeated
here for the purposes of completeness. Suppose that
we have a collection of Ns ∈ N spacecraft that consti-
tute a DSS. Let xi(t) ∈ R

N
xi denote the state of the

ith spacecraft at time t. This can be the usual 6-vector
position-velocity state or any other set (e.g. orbital el-
ements). We assume that the dynamics of the DSS is
given in some coordinate system by a set of differential
equations,

ẋi = f i(xi,ui, t;pi) i = 1 . . .Ns, (1)

where f i : R
N

xi × R
N

ui × R × R
N

pi → R
N

xi is a given
function, ui ∈ U

i ⊆ R
N

ui is the control variable of the
ith spacecraft constrained to some compact set U

i, and
pi ∈ R

N
pi is a vector of (constant) design parameters.

In general, the dynamics need not be given in state-
space form, as in Eq. (1), but for the purpose of brevity
we limit our discussion to such a vector-field approach.
By defining the state and control variables as,

x = (x1, . . . ,xNs) andu = (u1, . . . ,uNs),

the dynamics of the DSS may be represented quite
succinctly as,

ẋ = f(x,u, t;p) u ∈ U, (2)

where U = U
1 × . . . × U

Ns . Typically, the functions
f i are all the same so that f is simply Ns copies of f1.
Let d(xi,xj) ∈ R+ be a generic distance metric (not
necessarily Euclidean) between any two spacecraft. If
d(xi(t),xj(t)) is a given constant in time, ci,j , then we
say we have a frozen formation,

ci,j ≤ d(xi(t),xj(t)) ≤ ci,j ∀ t, i, j. (3)

Here and the rest of the paper, by ∀ t, we mean for all
t associated with the finite lifetime of the DSS whereas
by ∀ i, j we mean ∀ i, j ∈ {1, . . . , Ns}. Further, from
the definition of a metric, d(xi,xj) = 0 ∀ i = j; hence,
we must have ci,j = 0 ∀ i = j as a necessary condition
for feasibility. Note that Eq.(3) is really an equality;
the reason for masquerading it as an inequality is to
define a relaxed formation as

ci,j−δi,j
l ≤ d(xi(t),xj(t)) ≤ ci,j +δi,j

u ∀ t, i, j, (4)

where δi,j
l ≥ 0 and δi,j

u ≥ 0 are lower and upper tol-
erances associated with the relaxation. When i = j,
the tolerances must be zero in conformance with the
definition of a metric. Equation (4) generalizes Eq.(3)
since if δi,j

l = δi,j
u = 0 ∀ i, j, we recover the represen-

tation of the frozen formation defined by Eq.(3).
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We can define and design various configurations
based on various metrics. For example, in libration
point missions, in order to generate halo orbits, there
may be a forbidden zone such as a disk of radius R
centered around the libration point, y; in this case, we
define an allowable region for x as,

d(xi(t),y) ≥ R ∀ i, t.

See King7 for an implementation of such constraints
for a variety of Earth-orbiting missions. The require-
ment that no two spacecraft collide may be articulated
as,

d(xi(t),xj(t)) ≥ bi,j > 0 ∀ t and i 6= j.

It is apparent that all these constraints (and many
more that are specific to a particular mission) can be
described in terms of a generic set of a possibly large
number of inequality constraints that can be repre-
sented as,

hl ≤ h(x,u, t;p) ≤ hu, (5)

where h : R
Nx ×R

Nu ×R ×R
Np → R

Nh and hl,hu,∈
R

Nh . In this description of a formation, there is no
leader or follower; rather a system of multiple space-
craft. Thus, if any one spacecraft has an additional
configuration constraint, it would automatically trans-
fer in some fashion to the remainder of DSS by way
of the couplings between the various equations. For
example, if there was a mission requirement to desig-
nate a particular spacecraft as a leader and designate
the others as followers, this can be easily accomplished
by picking out the particular index, i, representing the
leader. Then, when the leader moves along some tra-
jectory, t 7→ xi, the distance metrics along with any
additional path constraints, Eq.(5), dictate how the
remainder of the spacecraft must follow certain trajec-
tories to meet the path constraints; i.e., a formation.
Thus, although our framework is based on a collection
of DSS, it does not exclude a leader-follower system.

As noted earlier, fuel consumption dominates any
DSS design. Since L1-norms are a direct measure of
fuel expenditures,30 we compute the fuel consumption
for any one spacecraft, i, according to,

Ji =

∫ tf

t0

∥

∥ui(t)
∥

∥

1
dt, (6)

where tf − t0 is the time interval of interest and ‖·‖1

is the usual l1-norm. Note that the cost function is
non-smooth31 and represents a practical configuration
of six thrusters.30 The whole discretized system is
a well-posed smooth problem because of the use of
six thrusters, because each is positive and bounded
by zero. The reason for not choosing the more popu-
lar smooth quadratic cost is that the L2-norm of the
control does not minimize propellant expenditures.30

Treating the problem to be invariant under time trans-
lations allows us to set t0 = 0. A critical modeling

issue in the design and control of spacecraft forma-
tions is the treatment of the horizon, tf , vis-à-vis the
mission life time. Ideally, we would like to choose tf to
be equal to the mission life. Deferring a discussion of
alternative choices for the horizon, we choose the cost
functional for designing the DSS to be the total fuel
consumption,

J =

Ns
∑

i=1

Ji =

∫ tf

t0

Ns
∑

i=1

∥

∥ui(t)
∥

∥

1
dt. (7)

In certain applications, it may be necessary to require
that each spacecraft in the DSS consume the same
amount of propellant. This requirement can be stipu-
lated as the so-called isoperimetric constraints,

Ji = Jk ∀ i, k. (8)

If the equal-fuel requirement is “soft” as in, Ji ≈ Jk,
it can be simply stipulated as an inequality with ap-
propriate upper and lower bounds. Likewise, the allo-
cation of fuel budgets can be similarly defined.

It will be apparent shortly that the problem for-
mulation as posed so far is quite sufficient to handle
Libration point formations in the Sun-Earth system if
the spacecraft lifetime measured in terms of the dura-
tion of the formation is about a year or so as in the
Genesis Mission.32 This is because the number of halo
orbits over this duration is about two. For a similar
lifespan, the number of orbits in the two-body Earth
system range from several hundred to thousands. To
properly account for this periodicity, we adapt Bohr’s
notion of almost periodic functions.33, 34 Under this
framework,6, 35 periodicity may be exploited for an al-
ternative problem formulation based on a modification
to optimal periodic control theory. In this problem for-
mulation, we write6, 35

J =
1

tf − t0

∫ tf

t0

Ns
∑

i=1

∥

∥ui(t)
∥

∥

1
dt, (9)

which is a measure of fuel consumed by the DSS av-
eraged over the time period, (tf − t0). It is quite
tempting to choose a priori this time period equal to
the period of some appropriately chosen reference or-
bit; however, a far better option6 is to let this period
be free so that the problem formulation allows the de-
termination of an optimal time period as well. In this
case tf is bound away from t0 to prevent invalid func-
tion evaluations. As noted in Sec. I, this option tells
the agents what to do rather than how to do it. In
order to facilitate the existence of a solution for this
scenario, it is now necessary to impose two additional
constraints on the problem formulation:

1. The dynamical equations, Eq.(1), must be written
in an appropriate coordinate system that facili-
tates a periodic or almost periodic solution, and
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2. Boundary conditions representing the almost pe-
riodic structure of the desired solution must be
included.

Thus, assuming that the the first condition is satis-
fied, the boundary conditions for strict periodicity of
a periodic formation can be stipulated as,

xi(t0) = xi(tf ) ∀ i. (10)

Two points are worth noting at this juncture: first,
these conditions are not the same as specifying
standard boundary conditions because the values of
xi(t0) and xi(tf ) are unknown. Second, as briefly
noted earlier, it is sufficient to stipulate all the con-
straints of Eq.(10) as a single constraint,

xi(t0) = xi(tf ) for i = 1 (11)

or any other index. This is because, the path con-
straints will automatically enforce the remainder of the
constraints. In this context, we may designate i = 1
as the leader, but it essentially reduces to semantics
rather than a leader-follower architecture. By relaxing
the constraint represented by Eq(10) to,

εi
l ≤ xi(t0) − xi(tf ) ≤ εi

u ∀ i, (12)

where εi
l and εi

u are formation design parameters, we
easily stipulate a practical means to design and control
almost periodic formations.7 It is clear from these defi-
nitions that a frozen formation in the Euclidean metric
is a periodic formation but not vice versa. The con-
cept of almost periodicity is not only quite practical,
it has significant theoretical advantages. See Fischer33

for a quick review of almost periodic functions, and
Junge et al20 for practical demonstrations of possible
contradictions in applying ordinary Floquet analysis.
Deferring the details of applying this framework for
Libration point missions to Sec. IV, we note that the
problem of designing and controlling spacecraft forma-
tions can be summarized as a nonsmooth, nonlinear,
multi-agent optimal control problem.

III. Solving Multi-Agent Optimal

Control Problems

Solving multi-agent optimal control problems are,
in principle, more complicated than ordinary optimal
control problems. Until about the early 1990s, solv-
ing even a smooth nonlinear optimal control problem
was widely considered to be extremely difficult. As
noted in Sec. I, rapid advances in globally convergent
computational methods have altered our notion of dif-
ficult and easy problems. In his famous statement,
Rockafellar36 noted that, “... the great watershed in
optimization isn’t between linearity and nonlinearity,
but convexity and nonconvexity.” Until the late 1990s,
advancements in optimization did not translate to ad-
vancements in optimal control since discretization and

Problem B

Problem B λ Problem B λN

Problem B N

d
u
a
liz

a
ti
o
n

d
u
a
liz

a
ti
o
n

discretization
(direct)

discretization
(indirect)

convergence

convergence

gap

Covector
Mapping
Theorem

Problem B Nλ

Fig. 1 Solving optimal control problems (from
Ross and Fahroo23,29)

dualization are noncommutative operations.29 Thus, a
Runge-Kutta method that converges for ordinary dif-
ferential equations may fail gloriously when applied
to optimal control problems.37 When a proper dis-
cretization is blended with modern algorithms, not
only does it render “difficult problems” easy, it also
enlightens why one approach is unquestionably supe-
rior to another as amplified by Betts et al.38 Much
of the technical issues pertaining to solving optimal
control problems can be encapsulated by the diagram
shown in Fig. 1.

Let Problem B denote a generic Bolza optimal con-
trol problem; then, Problem Bλ represents the primal-
dual boundary value problem obtained by applying the
Minimum Principle. Much of the difficulties reported
in the literature center around solving Problem Bλ.
Regardless of the type of method applied to solving
Problem Bλ, the sheer act of using a computer to solve
it implies discretization: this is denoted abstractly as
Problem BλN to denote that a computational solu-
tion is sought after dualization, where N denotes some
degree of approximation. Problem BλN is fundamen-
tally difficult to solve due to a variety of reasons that
goes to the heart of the symplectic structure of Hamil-
tonian systems and numerical propagation.39 The
simpler path to solve optimal controls problems is to
discretize first (Problem BN in Fig. 1) and dualize af-
terwards.26, 29, 38 Solving an optimal control problem
is fundamentally different from numerical propaga-
tion of an ordinary differential equation: the former
is a global problem while the latter is local problem.
Thus, even traditional methods for convergence anal-
ysis must be abandoned in favor of new ideas.37, 38

The implementation of these ideas require that any
gap (see Fig. 1) resulting in favor of discretizing prior
to dualizing must be closed, if it can be closed at al.
Thus, if a discretization based on the popular family of
Runge-Kutta methods is desired, the correct approach
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for solving optimal control problems is the Hager fam-
ily of Runge-Kutta methods.37, 40

In recent years, pseudospectral (PS) methods have
been widely applied to solve optimal control prob-
lems. See the recent paper by Ross and Fahroo24 and
the references contained therein. PS methods satisfy
conditions similar to those of the Runge-Kutta-Hager
method but offer higher accuracy known as spectral
accuracy.41 To truly appreciate this concept in the
context of optimal control, we use the notion of a
Sobolev space.42 See Ross30 for a practical demon-
stration of the utility of Sobolev spaces. A Sobolev
space, denoted as, Wm,p(Ω, R), consists of all func-
tions, f : R ⊇ Ω → R whose jth-derivative is in Lp for
all 0 ≤ j ≤ m. The Sobolev norm of f is defined as,

‖f‖W m,p :=

m
∑

j=0

∥

∥

∥
f (j)

∥

∥

∥

Lp
. (13)

This definition implies that the normed space W 0,p is
the same as Lp. The integer, m, is essentially a math-
ematical representation of smoothness. This concept
allows us to state the following informal theorem43

Theorem 1.1 (Convergence) Let x∗(·) ∈
Wmx,∞([τ0, τf ], RNx) be the optimal state trajec-

tory associated with the optimal control trajectory,

u∗(·) ∈ Wmu,∞([τ0, τf ], RNu). Under proper technical

conditions, the following convergence result holds

∥

∥x∗(·) − xN (·)
∥

∥

L∞
= O(N−mx)

∥

∥u∗(·) − uN (·)
∥

∥

L∞
= O(N−mu).

From this theorem it is clear that the smoother the
optimal solution, the faster the convergence of the
PS solution. Moreover, the Covector Mapping The-
orem23, 29(see Fig. 1) allows a quick check of the satis-
faction of the optimality conditions without an explicit
derivation of the all the necessary conditions that can
be quite burdensome in solving practical problems.26

Thus the multi-agent problem posed in Sec. II can be
solved quite readily. The PS method is implemented
in DIDO44 within the MATLAB problem solving en-
vironment. No explicit knowledge of PS methods or
nonlinear programming techniques is necessary to use
DIDO. The software exploits the suite of mathematical
programming solvers available through TOMLAB.45

The default solver in DIDO is SNOPT.27

As a matter of completeness we note that any real-
time computational scheme automatically implies a
feedback implementation.30 For orbit control applica-
tions, the goals of real-time computation can be met
if the computation time is significantly less than the
orbital period (relative orbit for formation keeping).
This is the well-known concept of a sampled-data feed-
back system. Given that halo orbital periods for the
Sun-Earth system is about 180 days, if a computa-
tional method took as large as one day to compute a

Fig. 2 Coordinate system for the restricted three-
body problem

solution, it would generate 180 samples per orbit. In
other words, solutions obtained in a matter of hours
can also be interpreted as a one-sample feedback so-
lution. Depending upon the problem, PS methods
have been demonstrated to produce solutions in frac-
tions of a second43, 46–48 that include a starting point
from random guesses.46 Thus, if an optimal control
problem can be formulated, modern methods can be
used to generate “robust” solutions in real-time for
a wide variety of problems. The multi-agent problem
posed in Sec. II belongs to this family of solvable prob-
lems. We note that not all multi-agent problems can
be posed under the framework of Sec. II; for example,
the multi-agent launch problem49 can only be posed as
a hybrid optimal control problem involving categorical
variables.50

IV. Libration Point Formations

Let ri = (xi, yi, zi) denote the Cartesian compo-
nents of a generic spacecraft in the barycentric frame
(see Fig. 2) of the circular restricted three-body prob-
lem. The spacecraft dynamical equations are well-
known and given by,

ṙi = vi (14)

v̇i = Cvi +
∂U i

∂ri
+ ui, (15)

where

C =

(

0 −2 0
2 0 0

)

U i ≡ U(xi, yi, zi)

U(x, y, z) =
x2 + y2

2
+

1 − µ

rA(x, y, z)
+

µ

rB(x, y, z)

r2
A(x, y, z) = (x + µ)2 + y2 + z2

r2
B(x, y, z) = (x + µ − 1)2 + y2 + z2.
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The acceleration control ui is norm-bounded,
∥

∥ui
∥

∥

∞
≤ ui

max

and represents the thruster size of a particular con-
figuration.30 A multitude of formation options can be
defined in various ways. For example, it may be neces-
sary to keep the relative Euclidean distance (l2-norm)
bounded according to,

ci,j
2 − δi,j

l ≤
∥

∥ri(t) − rj(t)
∥

∥

2
≤ ci,j

2 + δi,j
u ∀ t, i, j

(16)
Another option may require to bound the l∞-norm,

ci,j
∞ − δi,j

l ≤
∥

∥ri(t) − rj(t)
∥

∥

∞
≤ ci,j

∞ + δi,j
u ∀ t, i, j

(17)
as an alternative or additional requirement. In some
complex mission geometries, metrics not based on
norms may also be used. All the conditions posed
above apply to relative formation configurations. In
order to design the ensemble about a generic Lagrange
point, L ∈ {L1, . . . , L5}, an allowable zone can be de-
fined as,

ci,L
l ≤

∥

∥ri(t) − rL

∥

∥

2
≤ ci,L

u ∀ t, i,

where rL is the position vector of L. Similar to the
relative configuration metrics, other metrics or norms
may also be chosen for the allowable zone.

All of the prior conditions apply to a design of the
formation system. Thus there is no leader or follower
system; rather a system of distributed spacecraft. As
noted before, it is possible to transmit conditions to
the entire system by stipulating conditions on any one
spacecraft. For example, to create a formation along
a halo orbit, it is necessary to specify the “halo con-
ditions” for just one spacecraft. This is also an orbit
design problem and can be designed concurrently with
the formation by imposing additional conditions. For
example, if the formation system is required to be
periodic, then it is necessary to impose the periodic
conditions for just one spacecraft, say

rj(t0) = rj(tf ) (18)

vj(t0) = vj(tf ) for j = 1. (19)

To generate almost periodic trajectories, these condi-
tions can be relaxed to give

εj
r,l ≤ rj(t0) − rj(tf ) ≤ εj

r,u (20)

εj
v,l ≤ vj(t0) − vj(tf ) ≤ εj

v,u for j = 1. (21)

V. Numerical Examples

We demonstrate our ideas for a two spacecraft sys-
tem (Ns = 2); the extension of this approach to three
or more spacecraft is straightforward. Although our
method can be applied to any libration point with
similar results, we choose to design and control for-
mations about the Sun-Earth L2 point because of the

multitude of telescope formation missions proposed at
this location; thus, we have,

µ = 2.448× 10−6

rL = (1 − µ + 0.01, 0, 0) DU

in the barycentric frame, where DU is the distance
unit equal to the astronomical unit, AU . The origin
in these examples is shifted to L2 to improve variable
scaling, so rL = (0, 0, 0). Also, we chose the Euclidean
distance, the maximum acceleration and the allowable
zone parameters as the design parameters. The sepa-
ration parameter between the two spacecraft is chosen
to reflect the spread of an interferometry mission. The
TPF requirement is a 1km range (see requirements in
Ref.[8] ). The next generation of “hypertelescopes”
being explored by optical engineers51 will use even
larger baselines for resolution of smaller objects. At
150 km, characteristics of Earth-sized planets several
parsecs away can be directly observed. At one million
km, the hypertelescope will angularly resolve neutron
stars, which are hundreds of parsecs away. We choose
15 km as the separation for our first two examples. In
problem formulations with constraint dimensions this
small in comparison to the state variable size (4 orders
of magnitude difference), issues of scaling must be re-
solved in order to obtain optimal solutions. In the last
example, the separation is much larger, approaching
one million km, which reflects the design of a constel-
lation of observers, similar to the SWS proposal (in
Ref.[11]), or the outer edges of the DSS neutron star
observer of the distant future.

Example 1

In the first example, we consider a fixed-horizon
problem, and set tf = 3.5 timeunits(TU) (about 205
days). The time unit is equal to the period of the rota-
tion system, which is the inverse of the frequency, 2π
radians per year. In seeking a relaxed formation with
a separation of 1×10−7 DU (about 15 km), we set the
design parameters as,

ci,j
2 = 1 × 10−7 DU for i 6= j (22)

δi,j
2 = 5 × 10−6 DU for i 6= j (23)

ui
max = 0.001 DU/TU2 ∀ i (24)

Ji = Jk ∀ i, k, (25)

where TU , the time unit is 1/(2π) of the period of the
of the primary system; i.e. a year for the Sun-Earth
system. The input states and controls (the start-
ing point for the optimization algorithm) were found
by propagating an initial state and applying enough
thrust along the x axis at the step closest to crossing
the x− z plane to make the x velocity zero at the next
step. This was done for 3 maneuver and propagate
cycles, producing a trajectory tracing a little further
than one “orbit”, and a final time of 3.5 TU (thus the
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tf defined above). This set of states and controls are
the input for both spacecraft. This means the initial
estimate of the solution is infeasible since the separa-
tion is below the minimum bound. The initial state
that produced the input for this example is (in DU
and DU/TU):

x(t0) = 0.0 × 10−3, vx(t0) = 1.0 × 10−3

y(t0) = 2.5 × 10−3, vy(t0) = −4.5 × 10−3

z(t0) = 1.0 × 10−3, vz(t0) = −1.0 × 10−3

To reduce the computation time, the initial state of the
solution was bound to a box of 0.001 DU on either side
of the about input initial state. Periodic constraints
are not imposed but the isoperimetric constraint of
equal-fuel consumption is required (Cf. Eq. (25)).
As noted earlier, we used DIDO44 with SNOPT27 to
solve the multi-agent optimal control design problem.
A solution to the problem for a choice of 100 nodes
(roughly, a 99th-order Legendre polynomial) is shown
in Fig. 3. This solution is globally optimal because it
has zero cost, i.e. J = 0 ⇔ u = 0. The trajectories

−10
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−4

−2

0

2

x 10
−3

−2
−1

0
1

2

x 10
−3

−1

0

1

2

x 10
−3

X

Optimal Trajectories

Y

Z

s/c 1
s/c 2
L2
Earth

Fig. 3 Trajectories for a two-agent DSS

show that each of the two spacecraft appear to follow
the same shaped halo-like orbit about L2, but paral-
lel along the path, maintaining the tolerances on the
specified separation distance as shown in Fig. 4. The
relative orbit, i.e. the orbit of one of the spacecraft
relative to the other, is shown in Fig. 5. The optimal
controls are all zero at each node as shown in Fig. 6.
The plots for the other thrusters are similar.

Our claim of optimality is based on several tests
as described in Ref.[44]. One of these tests is the
approximate constancy of the Hamiltonian with an av-
erage value equal to zero.23 The non-zero values of
the Hamiltonian for this example are trivially small as
shown in Fig. 7. In order to practically demonstrate
the convergence of the solution, we use the optimal

0 0.5 1 1.5 2 2.5 3 3.5 4
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

−7

Normalized Time

Distance Between Spacecraft

Fig. 4 Separation between the two spacecraft over
time
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−8

−5
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x 10
−8

−1

−0.5

0

0.5

1

x 10
−7

Relative Orbit

Fig. 5 Relative orbit for the two-agent DSS

initial conditions (in DU and DU/TU),

x1(t0) = −0.43 × 10−3, v1
x(t0) = 2.00 × 10−3

y1(t0) = 1.52 × 10−3, v1
y(t0) = −4.30× 10−3

z1(t0) = 1.93 × 10−3, v1
z(t0) = −0.15× 10−3

(x2(t0) is the required 1 × 10−7DU away in position,
and has similarly small differences in velocity) to prop-
agate the solutions using ode45 in MATLAB. Fig. 8
shows a comparison of the optimized states to the
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Fig. 6 Thrust along the x axis for the two-agent
DSS
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Fig. 7 Evolution of the Hamiltonian for the two-
agent DSS; note the scale on the ordinate

propagated states of one of the spacecraft. It is appar-
ent that the propagated states track fairly well to the
optimized ones indicating that the 100 node solution
is a good solution over this time period for preliminary
design considerations. The timestep at which the solu-
tion diverges from the propagated trajectory increases
proportionally to the number of nodes.

Example 2

Having obtained a zero-cost solution in Example 1,
we now consider the same problem with the addition
of periodicity constraints. As explained in Sec. II, per-
odicity in the states is imposed under a free horizon,

0 0.5 1 1.5 2 2.5 3 3.5 4
−3

−2

−1

0

1

2

3
x 10

−3 Optimal States vs. ODE Propagation

TU

D
U

X 

Z 

Y 

Fig. 8 Comparison of the position states of space-
craft one (solid) to those propagated by ODE45 in
Matlab (dotted)

tf ; thus, we now have,

ci,j
2 = 1 × 10−7 DU for i 6= j (26)

δi,j
2 = 5 × 10−6 DU for i 6= j (27)

ui
max = 0.001 DU/TU2 ∀ i (28)

Ji = Jk ∀ i, k (29)

xi(t0) = xi(tf ) for i = 1. (30)

The input states and controls for this example were
the optimal states and controls of the first example.
The initial state of the solution was again bound to a
box of 0.001 DU on either side, but only the positions
were bound so that the initial velocities were totally
free variables. This input trajectory is shown along
with the optimal trajectories in Fig. 10, which is a
zoomed in and stetched view of Fig. 9 Nevertheless,
the trajectory plots illustrate that the solution to this
problem is substantially different from that of Example
1. To properly illustrate the shape of this orbit, the
trajectory in y-z plane is plotted in Fig. 11 with y-
axis stretched appropriately. The optimal period,
tf , for this design configuration was 3.18 TU, or 185
days. This solution is also globally optimal because
J ≈ 0. That u is almost zero (well within numerical
tolerances) is shown in Fig. 12 for one of the thrusters.
The plots for the other thrusters are similar.

The trajectories show that each of the two space-
craft appear to follow the same orbit about L2, but
parallel along the path, maintaining the tolerances on
the specified separation distance as shown in Fig. 13.
The relative orbit is shown in Fig. 14. A clearer pic-

ture of the satisfaction of the periodicity constraints is
illustrated in Fig.s 15 and 16. The circles in Fig. 15 are
the initial and final (x, y, z). In Fig. 16 they mark the
initial and final (vx, vy, vz). The velocity plot shows
only the data for spacecraft one for clarity. Of course,
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Fig. 9 Trajectories for a two-agent DSS with pe-
riodicity constraints
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Fig. 10 Input and Optimal Trajectories for a two-
agent DSS with periodicity constraints. NOT TO
SCALE: stretched to show orbit shape

xi(t0) does not exactly equal xi(tf ), but the differ-
ences are all around 1 × 10−7 DU, with the largest
difference occurring in the z velocities of 2×10−6 DU.
These are physically small enough compared to the or-
bital dimension of about 0.002 DU to confirm that the
set feasibility tolerances for the optimization algorithm
make sense.

The Hamiltonian plot in Fig. 17 shows that this is an
optimal solution because of its average value of zero.

We demonstrate the convergence of this large-
baseline solution by propagating a trajectory from the
optimal initial conditions (in DU and DU/TU),

x1(t0) = −0.78 × 10−3, v1
x(t0) = 0.23 × 10−3

y1(t0) = 0.03 × 10−3, v1
y(t0) = 0.05 × 10−3

z1(t0) = 1.86 × 10−3, v1
z(t0) = −2.53× 10−3

(x2(t0) is the required 1 × 10−7DU away in position,

−5 −4 −3 −2 −1 0 1 2 3 4 5
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−1.5
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0

0.5

1

1.5
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−Y

Z

2D Optimal Trajectory − view from Earth

Fig. 11 Trajectories on the y-z plane for a two-
agent DSS with periodicity constraints. NOT TO
SCALE: stretched along the y axis
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−6 X thrust
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Fig. 12 Thrust along the x axis for the periodic
two-agent DSS.

and has similarly small differences in velocity), using
ode45 in MATLAB. Fig. 18 shows a comparison of the
optimized states to the propagated states of one of the
spacecraft. It is apparent that the propagated states
track fairly well to the optimized ones indicated that
the 100 node solution is a good solution for preliminary
design considerations.

Example 3

In this example, we are looking for a large baseline
formation, with spacecraft spread out over the libra-
tion point orbital space. This kind of formation would
be used for the constellation type of mission, like the
Solar Wind Satellite mentioned in Section I. Thus we
want a separation of about one third to one half of the
’diameter’ of the orbit, which from previous experi-
ments with orbits found using the same input is about
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Fig. 13 Separation between the two spacecraft
over time
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Fig. 14 Relative orbit for the periodic two-agent
DSS

.005 DU; around 750,000 km. The nominal values of
the design parameters for the third example are,

ci,j
2 = 0.002 DU for i 6= j (31)

δi,j
2 = 0.0015 DU for i 6= j (32)

ui
max = 0.001 DU/TU2 ∀ i. (33)

The input states and controls are those of the first
example, a propagation and maneuver schedule start-
ing from the same initial state. The horizon, tf was
fixed then at 3.5 TU . No periodicity constraints were
imposed, and the initial states were all free with no
bounds, however there were bounds on the positions
of ±5× 10−3, which was an active constraint at a few
time steps for the x coordinate.

A solution to the problem for the choice of param-
eters listed above is shown in Fig. 19. This solution
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1.845
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1.875

1.88

x 10
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X

Position Periodic Conditions, zoomed to 1% of orbit size 

Y

Z

Fig. 15 The values of the position half of xi(t0)
and xi(tf ) for i = 1, 2 are marked with circles on
this close-up view of the trajectory where it starts
and ends.
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4
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8
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V
z

Fig. 16 The values of the velocity half xi(t0) and
xi(tf ) for i = 1 are marked with circles on this close-
up view of the velocity trajectory start and end.

again is globally optimal because it has zero cost, i.e.
J = 0 ⇔ u = 0. The trajectories show that each
of the two spacecraft appear to follow distinct halo-
like orbits about L2 maintaining the tolerances on the
specified separation distance as shown in Fig. 21. The
relative orbit, i.e. the orbit of one of the spacecraft
relative to the other, is more illustrative of the config-
uration and is shown in Fig. 22.
The Hamiltonian plot in Fig. 23 shows that this is an

optimal solution because of it’s average value of zero.
We demonstrate the convergence of this large-baseline
solution by propagating a trajectory from the optimal
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Fig. 17 Evolution of the Hamiltonian for the pe-
riodic two-agent DSS
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Fig. 18 Comparison of the position states of space-
craft one (solid) to those propagated by ODE45 in
Matlab(dotted)

initial conditions (in DU and DU/TU),

x1(t0) = −5.00 × 10−3, x2(t0) = −3.94× 10−3

y1(t0) = 1.94 × 10−3, y2(t0) = 0.71 × 10−3

z1(t0) = 2.72 × 10−3, z2(t0) = 2.09 × 10−3

v1
x(t0) = 12.74× 10−3, v2

x(t0) = 10.55× 10−3

v1
y(t0) = 3.50 × 10−3, v2

y(t0) = −2.30× 10−3

v1
z(t0) = 7.88 × 10−3, v2

z(t0) = 10.54× 10−3

(note x2(t0) is the required distance away from x1(t0)
of 0.002) using ode45 in MATLAB. Fig. 24 shows a
comparison of the optimized states to the propagated
states of one of the spacecraft. It is apparent that the
propagated states track fairly well to the optimized
ones indicated that the 100 node solution is a good
solution for preliminary design considerations.
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Fig. 19 Trajectories for a large-baseline two-agent
DSS
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Fig. 20 Thrust along the x axis for the large-
baseline two-agent DSS; note the scale on the or-
dinate

VI. Conclusions

We presented a multi-agent-optimal-control frame-
work for the design and control of spacecraft forma-
tions. This problem was discretized by the Legendre
pseudospectral method and the resulting large-scale
nonlinear programming problem was then solved by
a sparse sequential quadratic programming method.
These techniques are automated in the DIDO/SNOPT
package which was used to solve the formation prob-
lem. Because there is no linearization in this frame-
work, we can use the same technique and inputs for
both small and large baseline formations, and find
globally optimal (zero-cost) solutions for both with en-
tirely different trajectories. We have shown that we
can limit our results as needed to find specific types
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Fig. 21 Separation between the two spacecraft
over time
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Fig. 22 Relative orbit for the large-baseline two-
agent DSS

of formations by including different constraints (e.g.
periodic conditions). This framework has this flexibil-
ity in applications with a simple consistent problem
formation process because the design and control are
approached concurrently.
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