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ABSTEACT

We consider the problem of reconstructing Jacobi matrices and real symmel-
ric arrow maltrices from two cigenpairs. Algorithmes Tor solving these inverse
problems are presented. We show that there are reasomable conditions un-
der which this reconstruction is alwavs possible. Muoreover, it is seen that in
certaln cases reconstruction can proceed with little or no cancellation. The
algorithm is particularly elegant for the tridiagonal matrix associated with a
bidiagonal singular value decompaosition.
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1 Introduction

We consider the problem of reconstructing Jacobl matrices and real symmetric arrow
matrices [rom (wo eigenpairs. The algorithims we present [or solving Lhese inverse
problems are simple, and usctul for constructing test matrices for clgenproblems.
I'he algorithm for reconstructing Jacohi matrices was applied to the problem of
model identification of reciprocal stochastic processes iu [3].

2 Jacobl matrices

Let /' be an unreduced real symmetric fridiagonal matrix (i.e. a Jacobi matrix)

(&3] ,81
3 e e
T = ,t'_-'}g (QJ.)
,‘ﬁ‘n —1
,8;1, -1 t¥p

with 3 > 0fori=1,2,...,n— 1. We use the notation introduced in [13] and lel
UST(r) denote the set of n % n real unreduced symmetric tridiagonal matrices,
and let UST(n) denote that subset of UST(n) with positive 5.



We wish to develop an algorithm ta reconstruct 1" fram the knowledge of two of
its elgenpairs (A, u) and (g, v). The eigenvecior recurrence lor symmetric tridiagonal
matrices 1s

w1+ ogug + ,’3@"&;’4_1 = Au; (22)

where (A, u) 18 any clgenpair of T w; 1s the ¢th clement of u, and 5 = 3, = 0.
Applying this relation to both eigenpairs gives

S Fogup + Fiug = Ay
Gicavior togu + Fivis = pos

Combining these two cquations and climinating y; gives

A (vpgo ) — ugvg ) 4 Fi(uepios — viprug) = (A — pagug. (2.3)

Sinee [y = A, = 0 we get the following initial and terminal conditions

A {usv; —vony) = (A= plujvy (2.4)
.ﬁ”,‘\ (_T‘:‘H. Ty —1 — Upln ) = ()‘ - ﬂ)”n Ygy - (2‘3)

Caobining (2.3) with (2.1} gives a special case of the Christollel-Darboux identily,

i
Gi(tig10; — vip1u;) = (A — p) Z Up Uk (2.6)
k=1
fori=1,2,...,n— 1. There is also a backward formmla,
n
Glugprv; —vipw) = —(A — p) Z U T (2.7)
k=it

which fallaws from (2.3) and (2.5), ar fram (2.6) and the orthogonality of the eigen-
veclors, In a sunilar manner, we can show {hal

2ogasty = (A 4+ phuges — Fimi(ugvioy + vt — Fi(uipive + vip1us). (2.8)

T'his formula nses all of the available information but it is possible to obtain an
equation [or the o; using the 3 and a single eigenpair with the formula

oty = p — Fi v — Fiviga. (2.9)

We can use these equations to reconstruct the original matrix from the two
cigenpairs provided that no clement of the two clgenveetors 1s zero and that vy —
ity £ 0 for any 4 = 1,2, ... n— 1. If this is true, then the equations for the n;
simplily to
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Notice that (2.10) is just the simple average of (2.11) aver both eigenpairs. Using
(2.11), (2.6), and (2.7) we can reconsbruct the original malrix in 137 — 12 lops.

In order to determine when these formulas can be applicd, we need some addi-
tional results. We lutroduce the lollowing fact Lfrom [12].

Fact 1 Le! T € UST (n) and assume thal the etgenvalues are ovdered so thal
AL = Aa > o> Ay Then the number of sign changes bedween consceutive elements
of the kth eigenvector of 1", denoted sy, is kb — 1.

We refer the reader to [12] for a proof but note that it can be derived from
the Sturm sequence properly lor the characteristic polynomials of (he principal
submatrices. With this fact in hand we can prove the following theorem.

Theorem 1 If T € UST . (n) and {f (A,u) and (y,v) arc the cxtremal cigenpairs
of T, thal s A = Xy and p = A, then vigog —wgvop Z0 forangi=1,2 .. n—1.

Proof. The prool [ollows trivially by noting thal the sbrict interlacing property
for unreduced symmetric tridiagonals (sce [14] p. 300) guarantces that nonc of the
nutnhers w,, i1, ¥, ¥y can be zero. And, since u; and w; 4 must have the same
sign and »; and ;41 must have opposite signs (lrom fact 1), it lollows that both
terms in wivgp1 — viuse) have opposite signs and arc nonzero so this difference is
really a sum of bwo striclly positive (negalive) numbers and hence is nol zero, O

Hence, if we choose the two extremal eigenpairs of a given element of UST we
can always rcconstruct the original matriz using the formulas above. Notice that
the denominator is computed without cancellation in this case because of the sign
pablern. Moreover, i we use tle smallest (largest) elgenpair in (2.9) (o gei the oy,
then these can be reconstructed from the derived [ and the data without further
cancellation if the matrix is positive (negative) definite. If the matrix is indefinite
then there 13 only oue additional cancellation [or each of the oy, If the malrix s
gingular then choosing the eigenvector associated with the zero eigenvalne prevents
[urther cancellation.

Note that any clement of UST(n) has cxactly 2n— 1 real degrees of freedom and
that two eigenpairs contain 2n4 2 numbers but, in fact, also have 2n— 1 real degrees
ol [reedom since there are lwo arbilrary scaling paramelers [or the eigenveclors and
a gingle orthogonality condition. The eigenpairs contain precisely the right amount
ol information.

This algorithm 13 cspecially robust when applied to the tridiagonal matrix as-
sociated with the bidiagonal SV 1. It is well known [§] that the Jordan-Lanczos
ralrix

A= [ o B ] , (2.12)



where B € R™*" is an unreduced bidiagonal with positive elements, can be reduced
via Lhe perfect shuffle to an unreduced tridiagonal 7" ol the (orm

1] ,’3}_
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The matrix T 18 2n x 2r and its cigenvalues oceur in plus-minus pairs. Tt is
not difficult to show that if (A, u) is an eigenpair of 7' then (—A, Su) is also an
eigenpair where S 1s diagonal with 1 and —1 alternaling as the diagonal elewments.
The reconstriuction formula for this matrix simplifics considerably sinec we need
only a single eigenpair. In particular, the ; are given by

(1) A

Uiy 1t Py

8 = (=1 upuy. (2.14)
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As a special case of the more general algorithm it 1s obvious that the denomina-
Lor w41t s nol zero provided we use Lhe eigenvecior associaled with the largest
cigenvalue., Even more intrigning is that, provided none of the principal submatri-
ces shares an eigenvalue with the full matrix, this denominator will he non-zero for
any eigenpair since i Lhis case no elernent of any eigenveclor can be vero. In other
words, the reconstruction from any cigenpair 18 well-posed provided that the given
eigenvector has no zero elemenls. The algorithin requires i — 6 lops working with
(2.14) and the backward cquation

L =1 & B .
Ll — Uig1 U ]Z( D uets (25)

Notiee that this matrix has only » — 1 real degrees of [reedom whicli is exactly
what is given by onc eigenpair since the cigenvector containg an arbitrary scaling
parameter and must satisfy the special orthogonality condition

1
S (=1rul =0 (2.16)
i=1
We poinl oul thal this algorithm can be interpreled as the reconstruclion ol an
unreduced hidiagonal B from its largest singular valuc and hoth associatod singular
vectors.

3 Arrow Matrices

We can reconsbruct Lhe arrow malrix in a sitnilar manner to that given above. The
arrow is of some iImportance as it aceurs in certain divide and conguer schemes for
finding the eigenvalues ol a tridiagonal matrix. The arrow is also an element of the
class of symmetric acyclic matrices {(as is the Jacobl matrix) and henee it is possible,



under certain conditions (e.g. ifit is positive definite or scaled diagonally dominant)
Lo find its eigenvalues with “liny component-wise relative backward error”, [6].
The general form of an arrow matrix is

e ,ﬁ]
o Ao
A= : . (3.1)
1 Py
B Bn-1

I3 #0ford=1,2,....n—1aud il o; # oy [or any ¢ # j then we shall
say that A € USA{n), where USA(n) is the set of unreduced symmetric arrow
matrices. FPraceeding as before, we let (A, n) and (js, v) be twa eigenpairs of A. ‘l'he
eigenveclor recurrence 1s

oty + Siun = Aug (3.2)
vy + ;’3;: Uy = MU (33)

fori=1,2, ..., n— 1. Moreover, the eigenvector relation also gives

n—1

L
Y- — > By (3.1)
n

=1

for any eigenpair (g, v) of A, Il we cowbine (3.2) and (3.3) and eliminale o; we gel

J’Bz‘(viu'n — ) = (A — H)U'iﬂf (}—))

Similarly, eliminating 3; gives

(g, — Uy ) = g, — AU, (3.6)

This gives a very simple, easily veclorizable recoustruction algorithin. The only
remaining question is whether the quantitics wy1; — up vy arve all nonzero. In order to
show that this is true nnder the carrect conditions, we nead to first establish some
factys aboul the eigenveclors of an unreduced arrow matrix. We begio by noting
that

D — Al b s

A-A= [ b H‘;_)\] (3.7

where ) = diag(og, o, o 1), and b = [3, 5, .., 3 1]7. Following [9] we
compute the Gauss factorization

D-x b ] / 0][P-AI b 53

BT =) | T bTin-ant 1 0T f() 1)

where f, the speclral funclion, is given by



FO=2—y+Y A (3.9)

IFrom (3.8) and (3.9) the seros of [ are the eigenvalues of A. Furthermore, il A
15 unreduced, then the cigenvalucs of A arc strictly interlaced by the oy, It follows
that the eigenvector associated with X is

v(A) = [ (/\1—11))-11) ] . (3.10)

Note that distinetness of the a; is critical since it gnarantees that (Af — 1)) is
nonsingular. Combining this description of the eigenvectors with the [act that the
oy interlace the eigenvalues, we have the following fact.

Fact 2 Let A be an unreduced arrow matriz with 3, >0 fori=1,2,...n—1. Then
the Jollowing hold.

1. Ifuis any cigenveetor of A then w; £ 0 foranyi=1,2, ... n.

2. If we order the eigenvalues of A so that Xy > Ao > .. > A, and let vy be The
cigenvector, from (3.18), associated with Ay, then the first k — 1 clements of
Wy, are less than zero, and the last n — %k + 1 elemenis are greater than zero.

Proof. 'I'he proof of the first fact follows directly from formula (3.10) and the
interlacing property. The second [act [ollows [rom formula (3.10), the inlerlacing
property. and the positivity of the 3;. O

This simnplilies the reconstruclion lormula sinee, if we assume thal the eigenvec-
tors arc normalized se that their last clements arc cqual to one, the reconstruction
formulas can be rewritten as

o, = A- (o= M
i — g
— M
& = % (3.11)
Pa—
1 n—1
Y o= p—-— By

Using these [orimulas and the lact that (g — Ay /{u; — ;) is a conunon subex-
pression, we can reconstruct the arrow matrix in 7n — 5 flops. Under the previously
mentioned conditions, it s easily shown that none of the denominators in the re-
construction formula are zero and hence we can always reconstruct the matrix from
WO eigenpairs.

Theorem 2 [f A is an unreduced avrow matriz, and if X and p ave any twoe distinet
etgenvalues of A with associaled ergenvectors w and v, normalized lo have thewr last
clements cqual {o one, then wy —v; 20 fori=1,2 ...,n—1.



Proof. Assume that u, = »;. The eigenvector relation implies that

w1 ap | | Ay o
[ v 1 :| [ 3 ] - [ HY; :| (.3.12)

which implies that A = g, bur this contradicts the distinctness of the eigenvalues.
Tence, il follows that w; # v;. O

The reconstruciion algorithm has another very important property: il the two
extremal eigenpairs (A and X, and their associated eigenvectors) are used, then
the 3; can be lound, up Lo the scaling lactor Ay — A, , withoul cancellation. This
follows from the normalization of the cigenvectors which implics that the differences
in the denominator do not invalve cancellation. Moreover, if A is indefinite there
are no cancellations whatsoever in computing the 3;. Conversely, i A is delinite the
formulas may be rearranged se that there are no caneellations in computing the ;.
Il A is serni-definile (and singular) then there is no cancellation at all, including the
compnutation of 5. The computation of 4 involves one cancellation if the matrix is
indefinite, and nane if it is definite, or semi-definite, provided we choose the correct
eigenvector [or its compulation. Tu any case, whenever Liere 18 cancellation iu this
algorithmm, it is henign.

4 Breakdown of the Jacobl reconstruction

On seeing that the reconstruction algorithm for the arrow is well posed for any two
eigenpairs, it s ltempling Lo believe that this might also hold lor Jacobi matrices
since the same conditions apply — unreduced, no principal submatrix sharcs an
eigenvalue with the [ull mabrix. To see thal il is not true consider the matrix

62 0 0
245 0
R (1)
00 2 6

T'his matrix is in UST, and shares no eigenvalues with its prinecipal submatrices.
The eigenvalues are 10, (54++/65)/2, 5, (5—+v65)/2 and the cigenvectors associaled
with 10 and 5 are [I 2 2 1] and [-2 1 1 — 2]1, respectively. Using these two
eigenpairs the algorithm breaks down o compuling 32, Manipulation of the scalar
cquations shows that the two cigenpairs in question are cigenpairs of any matrix of
the farm

(1.2)
1] 1] 2 ]

We can say a fow things about breakdown, First of all, if the algorithm breaks
down in Lthe compulation of 3; then il cannol break down lor 3;_q or 2,11 as Lhis
implics that two distinet cigenvalues share the same cigenveetor. Sccond, if there
is a breakdown then it 18 possible to reconstruct a parametrized matrix with the
specilied eigenpairs by setling 3; = 7 and solving [or ¢; and o;4q i lerms of 7.
Betting + = 0 will vicld a reduced tridiagonal with the specified cigenpairs.



5 Stabilizing divide and conquer algorithms

We nole that there are several otlier important inverse problems lor the symmetric
arrow matrix. Of interest, is the reconstruction of the symmetric arrow from the
eigenvalues and the shafl of the arrow {(i.e. Lhe elemenls ;). Tu this case we can
reconstruct the arrow in a straightforward manncr. We need to determine the 3
and the element 5. We obtain % from the trace formula

n—1

n, 1
’)‘:Z)\,jfzﬂ'i- (‘3'1)
i=1 i=1

The & can be computed directly since the —3? are the residues of the partial
fraction decomposition

[T (A=) = & .
f)\ :3_7:)\—“—‘— 2 : 3.2
W) H;;l(,\ — ;) } ; o — A (5:2)
"I'hus we have
2 _ 1 y — H?:l(“’j - Ai) s
7 = Jiu (o = IO = LT (5.3)

This algorithm is uscd in [2] for the reconstruction of a periodic Jacobi matrix.
It can also be applied to stabilize the extension hased tridiagonal divide and conquer
algorithms [9, 1].

We note that this is very similar to the inverse problem first considered in [1]
and then used in [10] to stabilize the modilication based Cuppen-Dongarra-Sorensen
algorithm [5, 7]. In particular, the zeros of the spectral function

7

it
t; — A

=143 (5.4)
=1
are the cigenvalues of 12 4 bb?. The authors of [IO] show that loss of orthogonality
in computing the eigenvectors can be avoided by using the computed eigenvalues
A; 1n the recoustruction formula
32 H:LL('\a —aj)

gr=t=e Jf 3.9
" H#j(ai — ;) (i)

. . . N . .. .
and then computing the cigenvectors of D 4+ bb from their explicit cxpressions.
'I'he enlightened use of shifts of the arigin [10] is crucial to bath algorithms.
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