NAVAL POSTGRADUATE SCHOOL
 Monterey, California

CONTRACTOR REPORT

> WAVE ROTOR RESEARCH: A COMPUTER CODE FOR PRELIMINARY DESIGN OF WAVE DIAGRAMS

A. MATHUR

EXOTECH, INC.
1901 S. BASCOM AVE, SUITE 337
CAMPBELL, CALIFORNIA ,

MAY 1985

FINAL REPORT FOR PERIOD OCTOBER 1984 - MAY 1985

Approved for public release; distribution unlimited.

Prepared for:

Monterey, CA 93943

NAVAL POSTGRADUATE SCHOOL

 Monterey, CaliforniaRear Admiral R. H. Shumaker Superintendent
D. A. Schrady Provost

The work reported herein was carried out for the Naval Postgraduate School by Exotech, Inc. under contract NO0014-84-C-0677. The work was part of the Air-Breathing Propulsion Research Program carried out at the Turbopropulsion Laboratory under the sponsorship of Naval Air Systems Command, under the cognizance of G. Derderian (AIR310E).

This report was prepared by:

REPORT DOCUMENTATION PAGE

1] REPORT SECURIIY CLASSIFICATION UNCLASS IFIED	
2a SECURITY CLASSIFICATION AUTHORITY 20 DECLASSIFICATION / DOWNGRADING SCHEDULE	3 DISTRIBUTION/AVAILABILITY OF REPORT Approved for Public Release; Distribution Unlimited
a PERFORMING ORGANIZATION REPORT NUMBER(S) NPS67-85-006CR	5 MONITORING ORGANIZAIION REPORT NUMIBER(S)
ó NAME Of PERFORMING ORGANIZATION Naval Postgraduate School 6 C OFFICE SYMBOL (If applicable) 67 Sf	7a. NAME OF MONITORING ORGANIZATION
6S ADDRESS (City, State, and ZIP Code) Monterey, CA 93943-5100	7b. ADDRESS (City, State, and 2IP Coae)
8. NAME OF FUNDING/SPONSORING ORGANIZATION Naval Air Systems Command AD OFFICE SYMBOL (If apolicable) AIR310E	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER $\text { NOOO1984WR } 41099$
8c. ADDRESS (City, State, and ZIP Code) Washington, DC 20361	10 SOURCE OF FUNDING NUMBERS
	PROGRAM PROJECT TASK WORK UNIT ELEMENT NO NO NO ACCESSION NO $61153 N$ WRO24 03 00

11 TITLE (Include Security Classification)
Wave Rotor Research: A Computer Code for Preliminary Design of Wave Diagrams

12 PERSONAL AUTHOR(S)
A. Mathur

13a. TYEF RFAL REPORT FINAL	i3b TIME COVERED FROM OCT 84 TOMay 85	$\begin{aligned} & 14 \text { DATE/OF REPORT (Year, MOnth, Day) } \\ & 85 / 6 / 15 \end{aligned}$	$\begin{array}{r} 15 \text { PAGE COUN } \\ 74 \\ \hline \end{array}$

16 SUPPLEMENTARY NOTATION
Exotech, Inc. Final Report TR8502 (June 1985) under Contract N00014-84-C-0766

Cosati codes			18 SUBJECT TERMS (Continue on reverse if necessary and identity by block number) Wave Rotor Research Random Choice Method 1D Euler Code	
FIELD	Group	SUB-GROUP		

i3 ABSTRACT (Continue on reverse if necessary and identity by block number)
A one-dimensional program for solving the unsteady, inviscid, compressible flow
in wave rotor devices is described. The Random Choice Method implemented in
the code is shown to be very suitable for describing the multiple discontinu-
ities and wave interactions in these flows. The modular structure of the
program allows studying different "families" of wave diagrams quickly and
inexpensively. Example applications are included.

20 DISTRIBUTION / AVAILABILITY OF ABSTRACT \square UNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS	21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED	
22a NAME OF RESPONSIBLE INDIVIDUAL R. P. SHREEVE	22b TELEPHONE (include Area Code) (408)646-2593	$\begin{aligned} & \text { 22C. OFFICE SYMBOL } \\ & 67 \mathrm{Sf} \end{aligned}$

1. INTRODUCTIUN $\xrightarrow{\text { Passe }}$
2. IETHOD 3
2.1. Solution Procedure 3
2.2. Boundary Conditions 8
2.2.1. Solid Wall 9
2.2.2. Outf1ow 10
2.2.3. 'Piston' Inflow 11)
2.2.4. Isentropic Inflow from Reservoir 12
2.2.5. Special Formulation - 'Tuning' Ports 13
2.3. Example Calculations 14
2.3.1. Test Case for I-D Random Choice Method (RCM) 14
2.3.2. Wave Turbine Experiment 15
2.3.3. General Electric Wave Engine 18
2.3.4. Spectra Technology Pressure Exchanger 20
3. DISCUSSION AND RECOMMENDATIONS 24
3.1. Discussion 24
3.2. Recommendations 24
REFERENCES 26
figures 27
APPENDIX A. Listing of Program RCM A. 1
APPENDIX B. Program RCM B. 1
B.l. Program Description B. 1
B.l.1. Computational Grid B. 1
B.I.2. Data Input B. 1
B.1.3. Non-dimensionalization $\frac{\text { Page }}{B .1}$
B.1.4. Structure B. 2
B.2. Example Use of Program RCM B. 3
B.3. Execution B. 3
B.4. List of Variables 3.4
B.5. List of Subroutines and Function Subprograms . . . B. 6
B.5.1. Subroutines 3.6
B.5.2. Function Subprograms B. 7
Page
4. The Riemann Problem in Gas Dynamics; Special Case of Shock-Tube Flow 27
5. Cartesian Grid for l-D Random Choice Method 28
6. General Wave Structure Resulting from the Solution of a Riemann Problem 29
7. Ideal Wave Diagram for Pressure Exchanger (Spectra Technology) 30
8. Test Case for 1-D Random Choice Method 31
9. Wave Diagram Computed by 1-D Random Choice Method 32
10. Ideal Wave Diagram for General Electric Wave Engine 33
11. Gas Exhaust and Fresh Air Induction Process in G. E. Wave Engine 34
12. Ideal Performance Curves for G. E. Wave Rotor as Gas Gumerator 35
10a. Distribution of Flow Parameters in Rotor Passage Just as Inlet Port Opens 36
10b. Distribution of Flow Parameters in Rotor Passage Just as Exhaust Port is Closed 36
10c. Distribution of Flow Parameters in Rotor Passage Just as Inlet Port Closes 37
13. Distribution of Flow Parameters in Rotor Passage When Port Closes Late, i.e., After Arrival of Shock 37
12a. Distribution of Flow Parameters in Rotor Passage When the H. P. Air Outlet Port Opens on Time 38
12b. Distribution of Flow Parameters in Rotor Passage for Condition of Mismatch: H. P. Air outlet Port Opens Prenaturely 39
12c. Distribution of Flow Parameters in Rotor Passage for Condition of Mismatch: H. P. Air Outlet Port Opens Late 39

1. INTRODUCTION

Unsteady flow in the passages of wave rotor devices can adequately be modelled on a one-dimensional basis. However, this modelling can be quite involved due to the peculiar characteristics typical of wave rotor type flows. The numerical calculation has to provide approximate solutions of time-dependent compressible fluid flow problems which involve discontinuities and strong wave interactions. Ref. (1) lists three criteria which such approximate solutions should satisfy simultaneously: (i) the solution must be reasonably accurate in smooth regions of the flow. Continuous waves (rarefaction waves, compression waves) should propagate at the correct speed and should maintain the correct shape which involves steepening or spreading at the correct rate; (ii) discontinuities which are transported along characteristics (gradient discontinuities, contact surfaces), should be modelled by sharp and discrete jumps, and should be transported at the correct speed; and (iii) nonlinear discontinuities such as shocks should be coaputed stably and accurately.

In addition, the complex pattern of shock waves and contact surfaces that could evolve in wave rotor devices precludes the use of numerical methods which rely on either some type of artificial viscosity or a special tratment of discontinuities. Such methods would quickly become quite impractical for this application due to progranming difficulties and cost of execution.

Computation of such solutions has generally been carried out by solving a set of finite difference equations which approximate the governing differential equations of flow. All such schemes inherently have a finite amount of dissipation as well as dispersion of the wave modes they model, and it is difficult to construct difference schemes which simultaneously satisfy the criteria given above. Stability problems may also be an added concern for
these schemes.

In view of the foregoing, an alternative approach to solving wave rotor type flows was sought, and the purpose of this report is to describe such a scheme along with some results. The scheme is known variously as Glimm's method, the Random Choice Method (RCM) or the piecewise sampling method. The method evolved from a constructive proof of the existence of solutions to systems of nonlinear hyperbolic conservation laws given by Glimm (Ref. 2). Chorin (Refs. 3 and 4) developed the scheme into an effective numerical tool for gas dynamic applications, with emphasis on detonation combustion problems and reacting gas flows. Although the RCM computes solutions on a fixed grid, it is not a difference scheme, utilizing solutions of locally defined Riemann problems as the basic building blocks for the global solution. Each of the local Riemańn problems (defined in more detail in section 2) provides an analytically exact elementary similarity solution. By means of a suitable sampling procedure, usually of a pseudo-random or quasi-ranilom nature, the similarity solutions are superposed to construct the approximate solution to the equations.

With an appropriate sampling technique, the $R C M$ in one dimension is possibly superior to any finite difference scheme in meeting the criteria established above.

2. METHOD

2.1. Solution Procedure

The method models the one-dimensional, compressible, inviscid Euler equations, expressed in conservation form as

$$
\begin{gather*}
\frac{\partial U}{\partial t}+\frac{\partial F(U)}{\partial x}=0 \text {, where } \\
U(x, t)=\left\{\begin{array}{c}
\partial \\
u u \\
E
\end{array}\right\} \text { and } F(U)=\left\{\begin{array}{c}
\nu u^{2}+p \\
(E+p)_{n}
\end{array}\right\} \tag{1}
\end{gather*}
$$

Here E is the total energy per unit volume and may be expressed as (for a polytropic gas)

$$
\begin{aligned}
E=\nu \varepsilon+\frac{1}{2}, u^{2}, \quad \varepsilon & \triangleq \text { internal energy per unit mass } \\
& =\frac{1}{\gamma-1}\left(\frac{p}{\mu}\right)
\end{aligned}
$$

p is the density, p is pressure and u is velocity in the one space dimension being considered here. With initial data specified in the form

$$
U(x, 0)=\varphi(x),
$$

an initial value problem is defined for the Euler equations. The simplest initial value problem for which discontinuities appear is the Riemann problem: to find the gas flow resulting from an initial state in which the gas on the right of an 'origin' is in a constant state, and the gas on the left is in another constant state, i.e.,
with

$$
\begin{aligned}
& \psi(x)=\begin{array}{l}
U_{L}, \quad x<0 \\
U_{R}, \quad x>0 \\
U_{L, R}=\left\{\begin{array}{l}
p L_{L}, R \\
(\mu \mathrm{u})_{L}, \mathrm{R} \\
\mathrm{E}_{\mathrm{L}, \mathrm{R}}
\end{array}\right\}
\end{array} .
\end{aligned}
$$

where the subsripts L and R denote the left and right sides of the 'origin', here arbitrarily prescibed at 0 . That is, the Riemann problem consists of prescribing constant initial data on either side of an orisin where a jump discontinuity exists. As mentioned before, the solution of the problem constitutes a basic building block of the random choice method. A special case of the Riemann problem in which $u_{L}=u_{R}=0$ is often referred to as the shock tube problem. The answer to the problem is that there are four possible types of subsequent flow, depending on the inequalities in the left and right side data prescribed. Thus, in both directions from the origin, a shock or a centered rarefaction wave may propagate, giving rise to the above mentioned four different possibilities. Fig. (1) illustrates the special case of shock tube type flow and the evolution of the wave pattern. Fig. (2) shows the simple fixed Cartesian grid set up for the method. Let Δx be a spatial increment and Δt a time increment. The solution is to be evaluated at time $(n+1) \Delta t, n$ being a non-negative integer, at spatial increments $i \Delta x$, $i=1,2,3$, . . The initial data is prescribed for each time step at $n \Delta t$ in a piecewise constant manner i.e., it consists of intervals of length Δx where the data is constant, separated by jump discontinuities:

$$
U(x, n \Delta t)=U_{i}^{n},\left(i \frac{1}{2}\right) \Delta x<x<\left(i+\frac{1}{2}\right) \Delta x
$$

The solution at time $(n+1) \Delta t$ then is required to have the same property, i.e., it is piecewise constant over an interval Δx, and it serves as the initial data for the next time step:

$$
U(x,(n+1) \Delta t)=U_{i}^{n+1}, \quad\left(i-\frac{1}{2}\right) \Delta x<x<\left(i+\frac{1}{2}\right) \Delta x
$$

This procedure defines a sequence of local Riemann problems to be solved at each time level. On the grid shown in Fig. 2, for example, initial data would be specified at points $1,3,5 \ldots$, setting up a succession of Riemam problems defined by each pair of states $(1,3),(3,5),(5,7)$, with the discontinuities at the midpoint of each, i.e., at $2,4,6, \ldots$ etc. If the time step increment Δt is calculated such that

$$
\begin{gathered}
\Delta t<\sigma \cdot(\Delta x) \cdot \max _{1}\left(\left|u_{i}^{n}\right|+a_{i}^{n}\right) \text {, with } \\
0<\sigma<\frac{1}{2}
\end{gathered}
$$

then the waves generated at the discontinuities of adjacent Riemann problems will not interact, as shown schematically in Fig. 2.

Each of the local Riemann problems yields an exact andlytical solution, with the resulting wave structure a particular combination/variation of the general structure shown in Fig. 3.

In the x-t plane, the solution to a Riemann problem consists of essentially four regions connected by three waves. Thus states I and IV are the prescribed left and right states for the problem, and states II and III are the 'starred' middle states separated by a slip line or contact discontinuity $\frac{d x}{d t}=u^{*}$. The velocity, u, and pressure, p, are continuous across the contact, but γ in general is not. Thus $u_{L}{ }^{*}=u_{R}{ }^{*}$, $P_{L}{ }^{*}=P R^{*}$ and $P L^{*} \neq \mu R^{*} . S_{1, b}, S_{2, b}$ and $S_{l, f}, S_{2, f}$ represent respectively the backward and forward facing waves generated at the point of discontinuity and may be either shocks or rarefaction waves.

Still referring to Fig. 3, it is seen that at a time $n \Delta t<t<(n+1) \Delta t$, the exact solution of the local Riemann problem for the interval [(i-1) Δx, $i \Delta x]$ may actually consist of several distinct states. Consider now a
translation of each interval $[(i-1) \Delta x, i \Delta x]$ to $\left[-\frac{\Delta x}{2},+\frac{\Delta x}{2}\right]$ such that the discontinuity (i.e., the point from which the waves are generated) is centered at a zero origin. Let O be the value of a random variable, defined over the interval $\left[-\frac{1}{2},+\frac{1}{2}\right]$, and let

$$
\xi=O \Delta x \quad, \quad \text { i.e. }-\frac{\Delta x}{2}<\xi<+\frac{\Delta x}{2}
$$

Also, define $U_{\text {exact }}^{n+}(x, t), n \Delta t<t<(n+1) \Delta t$, to be the exact solution to each Riemann problem. Using the value of ξ to fix a point in the interval Δx of each Riemann problem, the exact solution at that point is determined and assigned to either the left or the right grid point, depending on whether ξ is \langle or $\rangle 0$. Thus, if the point fixed by ξ is P^{\prime} (Fig. 3), the exact solution to the Riemann problem at that sampled location is assigned to the grid point on the right and if the sampled point is $P^{\prime \prime}$, the solution at that location is assigned to the grid point on the left, l.e., for a lypical interval $[(i-1) \Delta x, i \Delta x]$,

$$
\begin{aligned}
\text { if } \dot{\zeta}<0, U_{i-1}^{n+1} & =U_{\text {exact }}^{n+} \quad(\xi, t) \\
\text { and if } \xi>0, U_{i}^{n+1} & =U_{\text {exact }}^{n+} \quad(\xi, t)
\end{aligned}
$$

It is seen immediately that although the solutions are computed on a grid in this method, it is not a differencing scheme. Also, instead of using a weighted average of the Riemann problem solution to arrive at the solution for a grid pointt, the RCM samples a particular value from an explicit wave
\rceil The Godunov method, for example implements

$$
U_{i}^{n+1}=\frac{1}{\Delta x} \int \begin{gathered}
\left(i+\frac{1}{2}\right) \Delta x \\
\left(1-\frac{1}{2}\right) \Delta x
\end{gathered} \quad U_{\text {exact }}^{n+} \quad(x, t) d x
$$

solution, thus eliminating the smoothing out of wave transport and interaction information inherent in averaging. This leads to the 'infinite' resolution of contact discontinuities and shocks that the scheme displays.

From the foregoing discussion, it is evident that the success of the scheme hinges, to a large extent, on the inexpensive and exact solution of Riemann problems and an appropriate sampling technique. Ref. (3) describes a modification to an iterative method due to Godunov (Ref. 5). Theoretical details for the Riemann problem solution are also given in Ref. (6).

The mathematical properties required in a sampling procedure applicable to this scheme are defined in Ref. (1). A brief description of the procedure is given below.

In previous computations using the RCM, random sampling with some variance reduction technique (stratified sampling), was used, i.e., the values were taken from the random number generator installed in the computer (Ref. 3). It was shown in Ref. (1) that a more accurate form of sampling is a technique due to van der Corput (Ref. 7). The sequence generdted is, strictly speaking, non-random, but has particular statistical properties that are suitable to the application. The sequence is referred to as quasirandom and is generated as follows:

The binary expansion of natural numbers may be expressed as (with $R=2$):

$$
\begin{aligned}
& n=A_{0} R^{0}+A_{1} R^{1}+A_{2} R^{2}+\ldots \ldots+A_{m} R^{m},\left(0 \leq A_{k}<R\right) \\
& \text { i.e. } n=\sum_{k=0}^{m} A_{k} \cdot 2^{k} \text {, with } A_{k}=0 \text { or } 1, n=1,2,3, \ldots
\end{aligned}
$$

Next, the digits of the binary numbers are reversed and a decimal point is put preceding the number; this gives the numbers

$$
\begin{gathered}
\phi_{n}=A_{0} R^{-1}+A_{1} R^{-2}+\ldots+A_{m} R^{-(m+1)} \\
\text { or, } \quad \phi_{n}=\sum_{k=0}^{m} A_{k} \cdot 2^{-(k+1)} \text {, again with } A_{k}=0 \text { or } 1
\end{gathered}
$$

Conversion to the decimal scale of these numbers yields the required sequence of quasirandom numbers defined over the interval [0, l], i.e.,

$$
\begin{aligned}
& \Phi_{n}(\text { decimal })=\sigma_{n}+\frac{1}{2} \\
\text { or } \quad O_{n} & =\phi_{n}(\text { decimal })-\frac{1}{2} \\
\text { and } \quad \xi_{n} & =O_{n} \cdot \Delta x \text { as defined earlier. }
\end{aligned}
$$

The first few elements of the sequence given below illustrate the construction $=$

The van der Corput sequence is 'equidistributed', and yields better results than those obtained using a 'stratified' random sampling technique.

The subroutine employed in the program to compute the random numbers is described in Appendix B.

2.2. Boundary Conditions

In general, the implementation of boundary conditions in the RCM is quite straightforward, but does require some thought. Referring to Fig. 2 , the b.c.'s are specified at points 1 and N for the left and right boundary
respectively. Note that if the sampled solution at $(n+1) \Delta t$ corresponds to a random number $\xi_{n}<0$, the solution is assigned to the grid point on the left. For the Riemann problem defined by points 1 and 3 , the sampled solution would then be assigned to grid point 1 at $(n+1) \Delta t$; however this is overridden by assigning the proper boundary condition at lagain, and there is no contradiction. A similar procedure is adopted at the right hand boundary when $\xi_{\mathrm{n}}>0$.

The subroutines for the boundary conditions are named in the format $B C x n$, $B C$ standing for Boundary Condition, x being either (for Left), or R (for Right boundary) and n being a number from 1 to 5 with the following designations:

```
    l - solid wall condition
    2 - outflow at constant static pressure
    3 - special formulation ('piston' inflow)
    4 - isentropic inflow from reservoir
    5 - special formulation (rarefaction wave cancellation)
```


2.2.1. Solid Wall Conditions

The solid wall boundary condition requires a zero normal velocity at the wall for inviscid flow computations. Due to the random sampling involved in the method and the lateral movement of the sampled solution $\frac{\Delta x}{2}$ to the left or right of the discontinuity, the condition is difficult to implement uniquely. However, the procedure adopted here is found to yield reasonably accurate results for the applications intended. (Note that the difficulty is not unique to this method only. The implementation of zero mass flux through a surface is difficult per se for the Euler equations).

Referring to Fig. 2, let the physical boundaries be at point 2 and
point ($\mathrm{N}-\mathrm{l}$) for the left and right sides respectively. However, the boundary conditions are specified at point l (point N) for the left (right) side as a fictitious 'mirror' state of the conditions at point 3 (point ($\mathrm{n}-2$)) respectively, but with the reverse sign taken for the velocity component. Thus, for the left hand boundary Riemann problem,

$$
\begin{aligned}
& p_{L}=p(3), p_{L}=\rho(3), u_{L}=-u(3) \\
& p_{R}=p(3), p_{R}=\rho(3), u_{R}=u(3)
\end{aligned}
$$

and, analogously, for the right hand boundary Riemann problem.

$$
\begin{aligned}
& P_{L}=p(N-2), \nu_{L}=p(N-2), u_{L}=u(N-2) \\
& P_{R}=p(N-2), \nu_{R}=\mu(N-2), u_{R}=-u(N-2)
\end{aligned}
$$

The solutions are then sampled in the manner outlined earlier.

2.2.2. Outflow Conditions

For subsonic outflow, only the static pressure p is defined, with the continuation condition being applied to the rest of the variables. Thus, for the right hand boundary for example, the Riemann problem is defined as follows:

$$
\begin{gathered}
P_{L}=p(N-2), \mu_{L}=\rho(N-2), u_{L}=u(N-2) \\
P_{R}=P_{\text {out }}, \mu_{R}=\rho(N-2), u_{R}=-u(N-2)
\end{gathered}
$$

where Pout is the specified outlet pressure. If the flow going out is supersonic, there can be no propagation of disturbances upstream, and the continuation condition is implemented for all the variables, i.e., the Riemann problem now is the trivial case defined by

$$
\begin{aligned}
& P_{L}=p(N-2), p_{L}=\rho(N-2), u_{L}=u(N-2) \\
& P_{R}=p(N-2), p_{R}=\rho(N-2), u_{R}=-u(N-2)
\end{aligned}
$$

2.2.3. Special Formulation of 'Piston' Inflow

In general, for idealized wave rotor flows, hot combustion gases are
introduced into the rotor through nozzles angled such as to allow the flow to 'slip onto' the rotor, i.e., without incurring incidence or deviation angle losses. Also, in the ideal treatment, the air in the passages of a wave rotor is exposed to the hot gas at high pressure instantaneously. The idealizations allow for uniform conditions to be prescribed at the hot gas inlet port. Thus, a 'special' form of inflow boundary condition needs t b be specified here, namely, the static pressure, the velocity and the density of the incoming hot gas. Although equivalent to specifying the cotal pressure and temperature in the usual inflow boundary condition treatment, some thought is required in wave rotor type flows when specifying Pgas, rgas and ugas . This is because only a shock wave needs to be generated, with no waves travelling opposite to the direction of flow. The solution to the Riemamn problem would then consist of just two states connected by a single shock wave. The flow is equivalent to that generated when a piston is pushed instantaneously into a gas at rest. In general, the state of the air inside the rotor passage is known; explicit relations for two states connected through a shock wave are given in Ref. (6). These so-called transition functions help in specifying the boundary conditions for the incoming flow properly.

If we consider the left boundary for this inflow, the Riemann problem is set up as:

$$
\begin{gathered}
P_{L}=\text { Phot gas }, \mu L=\text { hot gas }, u_{L}=\text { uhot gas } \\
P_{R}=p(3), p R=\mu(3), u_{R}=u(3)
\end{gathered}
$$

with P_{L}, μ_{L} and u_{L} having been chosen in accordance with the considerations discussed above.

2.2.4. Isentropic Inflow From Reservoir

The induction of fresh charge or air onto the rotor usually corresponds to an isentropic inflow situation. The flow in the vicinity of the passage end can be treated as quasi-steady, with the assumption that no flow separation takes place when the flow enters. Two boundary conditions are required for this type of inflow; these are provided by the conservation of energy in the flow from the external region to the inlet (assumed to be steady), and by the prescibed entropy level of the gas in the external region.

The boundary conditions may thus be expressed as

$$
\begin{gathered}
u_{\text {in }}^{2}+\frac{2}{\gamma-1} a_{\text {in }}^{2}=\frac{2}{\gamma-1} a_{\text {tot }}^{2} \\
s_{\text {in }}=S_{\text {tot }}
\end{gathered}
$$

where the subscripts 'in' and 'tot' apply to conditions at the inlet of the passage and external reservoir respectively. The sonic velocity is denoted by a , and flow velocity by u. Note that knowledge of the Riemann variable arriving at the passage end from within the passage is required to be able to solve the energy equation above for $a_{i n}$ and $u_{i n}$. For the left end, for example,

$$
Q_{i n}=\frac{2}{\gamma-1} a_{i n}-u_{i n}
$$

which together with the energy equations yields

$$
a_{i n}=\frac{Q_{i n}+\sqrt{\frac{\gamma+1}{\gamma-1} a_{\text {tot }}^{2}-\frac{\gamma-1}{2} Q_{i n}^{2}}}{\frac{\gamma+1}{\gamma-1}}
$$

and subsequently the other variables.

The simple analytical treatment given above has to be modified somewhat if a contact discontinuity is formed when the inflow begins. This is due to the fact that the value of the arriving Riemann variable is changed across such a discontinuity, which thus leads to an additional unknown. Procedures for solving the inflow for these situations are given in Ref. (8). In the program developed here, reasonably good results are obtained by setting the velocity at the boundary point equal to the velocity at the point nearest the physical boundary. For the left end e.g., the variables for the left state of the Riemann problem are obtained as follows:

$$
u(1)=u(3)
$$

a reasonably accurate assumption just at the point of inlet opening. Then, from the 'energy ellipse',

$$
\begin{gathered}
a(1)=\sqrt{a_{\text {tot }}^{2}-\frac{\gamma-1}{2} u(1)^{2}} \\
M(1)=\frac{u(1)}{a(1)}, \text { incoming Mach number } \\
p(1)=\frac{p t o t}{\left[1+\frac{\gamma-1}{2} M(1)^{2}\right]} \gamma /(\gamma-1)
\end{gathered}
$$

with similar isentropic relations to compute other flow variables. Note that once the interface or contact discontinuity has moved a certain distance inside the passage, the simple analytical expressions given earlier in the section can be used, since now the value of the arriving Riemann variable would be known at the boundary.

2.2.5. Special Formulation for Rarefaction Wave Cancellation

The spreading of rarefaction fans leads to unwanted wave reflections
which occupy large zones in the passages of wave rotors. Fig. (4) shows a wave diagram proposed by Spectra Technology, Inc., which incorporates so-called 'wave management' or 'tuning' ports to ideally cancel (and otherwise attenuate) impinging rarefaction fans. The physical boundary conditions are thus dictated by the flow developing in the passage, i.e., the port has non-uniform flow conditions in it, which at each point match those of the flow at the end of the passage so as to disallow any reflections to take place. Numerically, this condition is achieved by implementing the continuity condition across the boundary for all the flow variables involved. For the left boundary, thus, the Riemann problem is defined by:

$$
\begin{array}{ll}
P_{L}=p(3) & , \quad \rho_{\mathrm{L}}=\rho(3), \\
P_{R}=p(3), & u_{\mathrm{L}}=u(3) \\
R(3), & u_{R}=u(3)
\end{array}
$$

and analogously for the right boundary. Note that these boundary conditions may involve either inflow or outflow.

2.3 Example Calculations

The listing of the program is included in Appendix A, and the various names for the variables are listed in Appendix B, along with some instructions on how to use the program. No effort as yet has been made to optimize the code either for storage requirements or for execution efficiency.

In this section, some sample calculations are carried out using the code, to illustrate its usefulness in constructing idealized design point wave diagrams which can serve as the starting configuration for detailed construction of diagrams incorporating real flow effects.
2.3.1. Test Case for 1-D, Inviscid, Unsteady, Compressible Flow

Fig. (1) illustrates the initial conditions in a shock tube, with the diaphragm at x_{0}. Sod (Ref. 9) suggested a test case for hyperbolic
conservation laws with the following conditions as initial states in the shock tube:

$$
\begin{gathered}
P_{1}=1.0, \quad p_{1}=1.0, \quad u_{1}=0.0 \\
P_{5}=0.1, \quad \mu_{5}=0.125, \quad u_{5}=0.0
\end{gathered}
$$

i.e., the gas on either side of the diaphragm is in a quiescent state initially. The ratio of specific heats is chosen to be $7 / 5$, and Δx is chosen to be 0.01 .

The solution (before any wave has reached either the left or fight end) is shown in Fig. (5). The squares shown at locations x_{1}, x_{2}, x_{3} and x_{4} in the density plot give the analytically calculated amplitude and location of the head - and tail waves of the left-running rarefaction, the contact surface moving to the right and the shock wave moving at supersonic velocity to the right respectively. The solid lines are the solutions obtained by the RCM at different time levels; the zero numerical diffusion feature of the method is evident in the 'infinite' resolution of the contact discontinuity and the shock, and the dispersion (phase error) is within one grid spacing. The constant states are perfectly realized.

It is these features of the method that make it very attractive for application to wave rotor type flows, since the successful design of the device is predicated on being able to accurately compute wave arrival times at the various ports.

2.3.2. Wave Turbine Experiment

Ref. (10) describes the wave rotor experimental set up at the Turbopropulsion Laboratory. Initial tests being carried out currently are with the wave rotor in a turbine mode, i.e., one side of the rotor is blocked off, and high pressure air is brought onto the rotor and taken off again from
the other side. The passages of the rotor being angled at 60° to the axis, the 180° reversal in the direction of the fluid flow creates an angular momentum change, in turn generating large turbomachinery work coefficients. Fig. (6) shows the wave diagram computed using the code. The movement of the rotor is from top to bottom. At $t=0$, the high pressure air is brought into contact with quiescent atmospheric air in the rotor passages, at point a. This corresponds to the 'piston' inflow boundary condition described in section 2.2.3.. A shock, S, is generated immediately, (idealized case of instantaneous cell opening), which travels from the right to the left, and strikes the solid wall at the left end. The reflection of the shock takes place at point b according to the solid wall boundary condition described in section 2.2.1.. Behind this shock, and moving at a slower velocity is the contact surface, I, which penetrates into the passage only a fractiond distance before encountering the reflected shock, RS, at point c. The reflected shock is transmitted through the contact surface, (bringing the flow to a near halt), and reaches the right side at point d, whereupon the inlet port is closed. The air trapped in the rotor passages is now at a high pressure and in a quiescent state. When this air is released dt point e to a low pressure region, a rarefaction wave is generated, R, which travels to the left, spreading out in the process. It interacts with the stationary contact surface, I, setting it into motion again, and reflects off the solid wall at the left as RR . The boundary condition imposed at point e is the outflow at constant static pressure condition described in section 2.2.2.. The outlet port is closed at a time when the exit velocity falls to about half its initial value.

This experiment embodies two fundamental processes in wave rotors: those of cell filling and cell emptying. Almost all the other processes
typical to wave rotors are combinations of the cell filling and cell emptying unit processes. Comparison of the ideal computed numbers obtained here with experimental data will provide information helpful in the identification and sources of losses.

The program is set up to start at $t=0$ in this case, with initial data provided along the entire passage, i.e., from $x=0$ to $x=0.1863 \mathrm{~m}$ (the actual length of the wave rotor being tested). Since the passages have quiescent atmospheric air in them at $t=0$, the initial data, of course, describes these conditions. Switches for the left and right boundaries describe what type of boundary conditions prevail and direct the program to the appropriate subroutines. These switches, designated SWL and SWR , for left and right respectively, are assigned integer number values which correspond to the numeric value of the particular boundary condition they represent. Thus, if the left boundary is a solid wall, SWL=1, corresponding to the boundary condition subroutine BCLI . In this example then, the initial switch settings at $t=0$ are $S W L=1$ and $S W R=3$, corresponding to a solid wall at the left and a 'piston' inflow at the right (which starts at $t=0$ at point a). At point d, the switches are reset to SWL=1 and $S W R=1$ due to the closure of the inlet port. At point e, the switches are $S W L=1$, $S W R=2$, signifying opening of the exhaust port with outflow at a constant static pressure. The whole wave diagram can thus be packaged into a 'module' subroutine and called from the main program with a single call statement. This type of modularity allows for wave diagrams of different 'families' to be developed by simply calling the right 'module' subroutine.

The next two examples illustrate this concept as they deal with two very different types of wave diagrams.

2.3.3. General Electric Wave Engine

Fig. (7) shows a schematic of the wave diagram constructed for the G.E. wave engine. Briefly, the device is configured for a gas generator mode of operation, with counterflow scavenging, and is capable of producing net shaft power. For a fuller description of the machine, see Ref. (ll). In this example, fresh charge (air) is induced into the rotor (from an external reservoir) through the wave action of the rarefaction fan originating at the exhaust port opening. The usefulness of the rotor is gauged by the net pressure rise across the machine, i.e., the ratio of the total exhaust pressure to total (fresh air) inlet pressure.

For performance estimation purposes, it is sufficient to investigate only the exhaust and induction processes as shown in Fig. (8). The initial data specified is as follows: the exhausting pressure ratio $\mathrm{Pe} / \mathrm{po}_{\mathrm{e}}$, the total pressure ratio across the rotor $p t e / p t a$ and an assumed total temperature ratio $\mathrm{T}_{\mathrm{te}} / \mathrm{T}_{\mathrm{ta}}$. In this particular cycle, the amount of fresh charge induced in is ideally equal to the gases exhansted out, i.e., $m_{i n}=m_{\text {Out }}$, and this mass balance is carried out after each computation to correct the assumed temperature ratio $T_{t e} / T_{t a}$ (which otherwise constitutes overspecification of the initial conditions).

The calculation starts at $t=0$, with initial data consistent with the chosen pressure and temperature ratios specified along the passage length. Initial switch settings are $S W L=1$ and $S W R=2$ for the solid wall boundary at the left and the exhaust to a constant pressure at the right. As shown in the figure, a rarefaction fan is generated, propagating to the left and reflecting off the solid wall. At time $t^{=\tau} 1$, the pressure at the wall has been reduced to that outside the passage, P ta, which is when the inlet port is opened. The switches are now set to $S W L=4$ and $S W R=2$ for isentropic inflow
from an external reservoir at the left, and still outflow at a constant pressure at the right. The exhaust port is closed at time $t=\tau_{2}$ which corresponds to the exit velocity having dropped off to approximately half its steady state value at the beginning of the exhaust process. Now the switches are set to $S W L=4$ and $S W R=1$, for the solid wall condition at the right. The sudden closure of the exhaust port generates a 'hammer' shock travelling to the left, interacting with the incoming interface (shown by dashed line), and reaching the passage end at $t=\tau_{4}$ at which time the inlet port is closed, with the switches being reset to $S W L=1$ and $S W R=1$. Note the reflected shock travelling from left to right generated at the interaction of the contact surface and the hammer shock.

Once this solution is obtained, integration of the mass flux through the inlet and exhaust ports is carried out and if the two numbers do not match, the assumed temperature ratio $T_{t e} / T_{t a}$ is adjusted in the initial data, till such time as $m_{i n}=m_{\text {out }}$.

This calculation is sufficient for performance analyses: if the entire wave diagram has to be worked out, then at a time $t>13$, hot gas from the combustion chamber is brought onto the rotor (the boundary condition corresponding to 'piston' inflow) on the right hand side. This would generate the shock to compress the induced air and when this shock reached the left end, the transfer port (see Fig. 7) would be opened for such time it takes for the compressed air to be completely scavenged out of the rotor. Fig. (9) shows some performance curves obtained using the procedure outlined above. In Figs. (10a, b, c) are shown three sets of flow parameters at different time steps corresponding to the inlet port just opening, the exhaust port closing and the inlet port closing; the qualitative distributions of the flow parameters in the passage are immediately seen to be accurate when
compared with the wave diagram shown in Fig. (8). Of interest is the set of plots for the time step when the inlet port has just been closed. The flow between the end of the passage and the location of the interface is seen to be quite non-uniform in the density plot. At the same time, the shock reflected from the interface has reached the right side and reflected off the solid wall. These considerations help to decide optimum port opening and closing times. For example, Fig. (11) shows what happens if the inlet port is not closed at just the time the shock reaches the end, but rather at some short time later. The shock now sees an open boundary and reflects off as an expansion to match the high pressure behind it with the incoming total pressure which is at a lower value. This reflected expansion is manifested in the pressure, density and velocity plots of the figure.

The entire sequence of wave interactions of this example is computed by the RCM without the implementation of artificial viscosity or artificial compression methods, or tracking and capturing schemes. This 'hands off' feature of the method renders it eminently useful for fast preliminary evaluations of complex wave diagrams for the application at hand.

The next example computes an idealized wave diagram for the nine-port pressure exchanger concept proposed by Spectra Technology, Ref. (12).

2.3.4. Spectra Technology Pressure Exchanger

Fig. (4) shows the ideal wave diagram for the nine-port pressure exchanger. This configuration is a good case example to compute with the RCM because of the different types of boundary conditions that need to be dealt with in the evaluation of the cycle. The computation is started at $t=0$, at the point of high pressure hot gas inlet (driver gas inlet). In the manner described in the G.E. wave engine example, the initial data is prescribed for
the entire passage at this time step and the boundary condition switches are initially set at $S W L=1$ and $S W R=3$ for the solid wall at the left, and the 'piston' inflow at the right hand end. Since there is a multiplicity of types of boundary conditions, e.g., three outflow ports, an index, JCOUNT, is used to ensure proper sequencing of the switches. The following table is presented as an example of the settings of the switches to carry out calculations for one cycle. The inflow and outflow port conditions are those proposed by Spectra Technology for their idealized diagram.

TIME STEP, N	JCOUNT	SWL	SWR	REMARKS
0	0	1	3	CYCLE STARTS. HP GAS INLET PORT OPENS
500	1	2	3	HP AIR OUTLET PORT OPENS
1408	2	2	1	HP GAS INLET PORT CLOSES
1765	3	5	1	HP AIR OUTLET YORT CLOSES. TUNFIV PORT Ll OPENS
1816	4	2	1	TUNING PORT LA CLOSES. IP GAS UUTLET PORT OPENS (PORT E1)
2069	5	2	5	TUNING POR'T R1 OPENS
2261	6	2	1	TUNING PORT RI CIUOSES
2595	7	5	1	IP GAS OUTLET PORT CLISES. TUNIMG PORT L2 OPENS
2636	8	2	1	TUNING PORT L. 2 CLOSES. LP GAS OUTLET PORT OPENS (PORT E2)
3029	9	2	5	TUNING PORT R2 OPENS
3237	10	2	4	TUNING PORT R2 CLOSES. LP AIR INLET PORT OPENS
4961	11	1	4	LP GAS OUTLET PORT CLOSES
5529,0	0	1	3	LP AIR INLET PORT CLOSES. CYCLE COMPLETED

The total cycle time as calculated by the RCM is 3.0676 mseconds, which compares well with the time computed by Spectra Technology (using the FCT-SHASTA algorithm) of 3.07 mseconds. The execution time on an IBM 370-3033AP for the 5529 steps computed in the example above was 3 minutes 38 seconds, including the $1 / 0$ operations and the graphics.

Figs. (12a, b, c) show three sets of plots of the flow parameters for the following cases: a) the H.P. air outlet port opens on time, i.e., just as the shock reaches the left end of the passage, b) the port opens before the shock has reached the end, and c) the port opens after the shock has reached the end. The constant pressure and velocity states that prevail in the passage just after the shock has reached the left end (time 'section' line ${ }^{\tau} 1$ in wave diagram), are perfectly realized in Fig. (12a), while the contact surface is at the location shown by the sharp discontinuities in the density and entropy plots. Should the inlet port be opened earlier, e.g., at the time level shown by τ_{1-} in the wave diagram, what happens is as follows: the pressure in the passage is still at the pre-compressed level and this comes into contact with the pressure level in the port which is considerably higher, resulting in a shock propagating into the passage, colliding with the left moving shock and raising the overall pressure level to ~ 3.1 as shown in Fig. (12b). However, as soon as the left moving shock reaches the end, it now encounters an open boundary with conditions that do not match those behind the shock, resulting in a rarefaction fan being generated, which propagates to the right. This expansion fan, travelling at sonic velocity relative to the gas into which it is propagating, soon overtakes the right moving shock which is travelling at a subsonic velocity relative to the same gas. This interaction results in an attenuation of both the rarefaction as well as the shock wave. Note that the overall pressure and velocity levels behind the rarefaction are about the same as for case a), i.e., the effects of the mismatch are not very significant at the outlet port. However, should the right moving pressure perturbations of case b) not attenuate each other significantly before they reach the right hand end, the consequences could be severe for the overall wave diagram, since this will lead to further (unwanted) wave reflections.

Fig. (12c) shows what occurs if the outlet port is opened too late, corresponding to time level ${ }^{\tau} 1+$ on the wave diagram. Now the left travelling shock encounters a wall boundary condition on reaching the left end and reflects off as a shock, effectively doubling the pressure level behind it (>3.5 in pressure plot of Fig. (12c)). When the outlet port opens, there is again a mismatch of conditions in the port and in the passage, with the pressure level in the passage being considerably higher than that prescribed for the outlet port. A rarefaction wave is generated which propagates to the right and overtakes the reflected shock. The same criterion holds for this case too, i.e., the ensuing attenuation of these pressure pulses should occur before they reach the right hand end, preferably even before they reach the interface still propagating towards the left at the flow velocity.

The considerations above give a preview of the nature of decisions required in the successful design of a wave rotor device. It is clear that quite a few iterations are involved in the process of designing a viable wave diagram for a particular application, and each iteration entails calculating two or more complete cycles to ensure 'closure' or repeatability of the cycle. A fast solver like the $R C M$ allows reaching an idealized 'base' design quickly and inexpensively.

Appendix A is a listing of the program in its present development stage. As mentioned earlier, no attempt has been made to optimize the program, either for storage requirements or for execution.

Appendix B gives a description of the structure of the program, a listing of the important variables, the subroutines and the function subprograms. A step by step guide is also included to set up and run the program.

3. DISCUSSION AND RECOMPMENDATIONS

3.1. Discussion

For meeting the criteria listed in the Introduction, in one dimension, Glimm's method or the RCM appears to be superior to any difference method. For wave rotor type applications, where discontinuities need to be computed with sharpness, the 'infinite' resolution of such discontinuities inherent in the RCM make it a natural choice to carry out ideal flow calculations for preliminary design purposes. Boundary conditions can be implemented quite easily and do not require information from points outside the domain of dependance as is the case in some finite difference schemes. The van der Corput sampling technique results in the best possible representation of the wave propagation, which is essential for the correct representation of continuous waves, particularly those produced by nonlinear interactions.

The method, however, is not recommended to solve for flows with real effects such as friction, heat transfer and area change, or to be extended to multi-dimensional flows. Although considerable research is being done to rigorously extend the method to such flows, with some degree of success (see Refs. l, 4, 13), the present state of development is not mature enough to ensure a useful practical code as the outcome.

3.2. Recommendations

Many options are available for one wishing to develop either a 1 -D code with real effects andor a multi-dimensional code for wave rutor type applications. The author prefers to recommend numerical formulations which are dependent on the solution of Riemann problems, such as the Godunov method; the motivating reason for this preference is that a Riemann problem constitutes the solution of a discontinuity in the flow in terms of other
discontinuities (if any are, indeed, present), and the scheme is thus intrinsically suited for solving such flows; on the other hand, the other schemes, in general, require to be made aware of discontinuities in the flow through some external device, and then treat them through other artificial devices.

A second-order, quasi one-dimensional (variable cross-sectional area) scheme has recently been developed by Ben-Artzi and Falcovitz (Ref. 14). The method is based on the exact solution of 'generalized Riemann propblems', and has demonstrated very good results; it's least accurate approximation is equivalent to Godunov's first order method (Ref. 9). The resolution of shocks and other disconitinuities and singularities of the flow field is also high. Extension to more than one dimension appears to be straightforward throlgh the use of operator splitting techniques, but has as yet not been tried extensively.

1. Colella, P., "Glimm's Method for Gasdynamics," SIAM Journal for Scientific Statistical Computations, Vol. 3, No. 1, March 1982.
2. Glimm, J., "Solutions in the Large for Nonlinear, Hyperbolic Systems of Equations," Communications in Pure and Applied Mathematics, No. 18, pp. 167-715, 1965 .
3. Chorin, A. J., "Random Choice Solution of Hyperbolic Systems," Journal of Computational Physics, No. 22, pp. 517-533, 1976.
4. Chorin, A. J., "Random Choice Methods with Applications to Reacting Gas Flow," Journal of Computational Physics, No. 25, pp. 253-272, 1977.
5. Godunov, S. K., "A Finite Difference Method for the Numerical Computation and Discontinuous Solutions of the Equations of Fluid Dynamics," Mat. Sbornik, 47, pp. 357-393, 1959.
6. Courant, R. and Friedrichs, K. O., Supersonic Flow and Shock Naves, Interscience Publishers Inc., New York, 1948
7. Hammersley, J. M. and Handscomb, D. C., Monte Carlo Methods, John Wiley and Sons, Inc., New York, pp. 31-36, 1975.
8. Rudinger, G., Wave Diagrams for Nonstationary Flow in Ducts, Van Nostrand, 1955.
9. Sod, G. A., "A Survey of Several Finite Difference Methods for Systems of Non-linear Hyperbolic Conservation Laws," Journal of Computational Physics, No. 27, pp. 1-31, 1978.
10. Shreeve, R., Mathur, A., Eidelıan, S., and Erwin, J., Wave Rotor
Technology Status and Research Progress Report, NPS67-82-()14PR, Turbopropulsion Laboratory, Naval Postgraduate School, Monterey, California, Novermber 1982.
11. Klapproth, J. F., Supercharged Turbowave Engines, General Electric R62FPD171, General Electric Flight Propulsion Division, Everdale, Ohio, May 1962.
12. Taussig, R., "Wave Rotor Turbofan Engines for Aircraft," Mechanical Engineering, Vol. 106, No. 11, pp. 60-68, November 1984.
13. Gottlieb, J. J. and Igra, O., "Interaction of Rarefaction Waves with Area Reductions in Ducts," Journal of Fluid Mechanics, Vol. 137, pp. 285-305, 1983.
14. Ben Artzi, M. and Falcovil:z, J., "A Second-Order Godunov Type Scheme for Compressible Fluid Dynamics," Journal of Computational Physics, No. 55, pp. 1-32, 1984.

Fig. 3 : General Wave Structure Resulting From the Solution

Fig. 4 : Ideal Wave Dlagram for Pressure Exchanger (Spectra Technolosy). I.P.IP.HP: Low, Intermedlate. Hish Pressure

Wave Diagram Computed by 1-D Random Choice
Method. S--Shock; RS--Reflected Shock;
R--Rarefaction Fan; RR--Reflected Rarefaction; I--Interface;

Figure 6.

Fig. 7 : Ideal Wave Diagram for General Electric Wave Engine

Fig. 8 : Gas Exluast and Eresh Air Induction
Process in (i.E. Wave lingine

Fig. 9 : Weal Perfarmance Corves for G.E. Wave Rolor as Cas Comeratar

Fig. 10 a : Distribution of Flow Parameters in
Rotor Passage Just as Inlet Port Opens. $\mathrm{N}=793$.

Fig. 11 : Distribution of Flow Parameters in Rotor Passage When Inlet Port Closes Late, i.e. After Arrival of Shock. $N=1700$.

Fig. 10 c : Distribution of Flow Parameters in Rotor Passage Just as Inlet Port Closes. $N=1617$.

Fig. 12 a : Distribution of Flow Parameters in Rotor Passage when the H.P. Air Outlet Port Opens on Time.

c : H.P. Air Outlet Port Opens Late
Fig. 12 b,c : Distribution of Flow Parameters in Rotor Passage
for Two Conditions of Mismatch

Listing of Program RCM

PROGRAM RCM WITH VAN DER CORPUT SAMPLING AND SINGLE TIME STEP
INTEGER QPRINT, QSTOP, SWL, SWR
DIMENSION XX (6), YY (6)
DIMENSION XARRAY (100)
DIMENSION WNORM (12), IDIGT(12)
DIMENSION P (203), $\mathrm{R}(203), \mathrm{U}(203), \mathrm{A}(203), \mathrm{S}(203), \mathrm{X}(203)$
COMMON/SUBS / P, R, U, A, S, X
COMMON/GLIMM1/PGLIM, RGLIM, UGLIM, PL, RL, UL , PR, RR, UR , AL , AR , GL , GR , EPS COMMON/GLIMM2 / DT , DX, XI
COMMON/FUNI/G, PA, RA, UA, RB, RMU
COMMON / SAMPLE/WNORM, IDIGT
COMMON XARRAY,N1
CAILL COMPRS
CALL BLOWUP (0.5)
CALL PAGE (11.0,8.5)
CALL HWSCAL('SCREEN')
DATA K,SWL,SWR/500,1,3/
DATA N, CFLNUM, TTOTAL/0,0.60,0.0/
DATA PSEXIT,PSINL,PSINR,RINL,RINR/116954.,3770000.,3819952.50,6.8,
$\therefore 6.800 /$
DATA PSOUT1,PSOUT2, PSOUT3/3819952.5,2431800.0,1530007.5/
DATA PTOTIN,RTOTIN/1656663.8,7.486/
DATA PREF, RREF, XREF/1656663.8,7.486,0.1800/
$\mathrm{G}=1.4$
$\mathrm{GL}=1.4$
$\mathrm{GR}=1.4$
EPS=1.E-06
QSTOP $=20$
N1=0
JCOUNT $=0$
KCOUNT $=0$
UEXMAX=0.
DX=0.01
$\mathrm{AREF}=\mathrm{SQRT}$ (PREF/RREF)
TIMREF = XREF/AREF
$\mathrm{RMU}=\mathrm{SQRT}((\mathrm{G}-1) /.(\mathrm{G}+1)$.
$X(1)=-0.5 * D X$
ZETA=WDP (1)
$\mathrm{XII}=\mathrm{DX} *(\operatorname{WDP}(0)-0.5)$
DO $25 \mathrm{I}=2,203$
$X(I)=X(I-1)+0.5 * D X$
25 CONTINUE
DO $35 \mathrm{I}=1,100$
$\operatorname{XARRAY}(I)=X(I * 2+1)$
35 CONTINUE
INITIAL DATA
CALL INIT1
CALL INIT2L(PSEXIT)
CALL INIT2R(PSEXIT, PREF, RREF)
CALL INIT3L(PSINL, RINL)
CALL INIT3R(PSINR,RINR)
NONDIMENSIONALIZATION
DO $30 \mathrm{I}=1,203,2$
$P(I)=P(I) / P R E F$

RCMOOO30
RCM00040
RCMOOO 50
RCM00060
RCM00070
RCMOOO80
RCM00090
RCMOO 100
RCMOO 110
RCMOO 120
RCMOO130
RCMOO140
RCMOO150
RCMOO 160
RCMOO 170
RCMOO180
RCMOO 190
RCM00200
, RCM00210
RCMOO220
RCM00230
RCM00240
RCM00250
RCM00260
RCM00270
RCM00280
RCM00290
RCMOO 300
RCMOO310
RCMOO 320
RCMOO330
RCM00340
RCMOO 350
RCMOO 360
RCMOO370
RCMOO 380
RCM00 390
RCM00400
RCM00410
RCM00420
RCM00430
RCM00440
RCM00450
RCM00460
RCM00470
RCM00480
RCM00490
RCM00500
RCMOO510
RCMOO520
RCMOO 530
RCMOO540
RCMOO550
RCMO0560

```
    R(I)=R(I)/RREF
    U(I)=U(I)/AREF
    A(I)=A(I)/AREF
    S(I)=ALOG(P(I)/R(I)**GG)
    30 CONTINUE
    CALL PLOT1(K)
    DO 40 J=1,K
    N}=N+
    XII=DX*(WDP(0)-0.5)
    QPRINT=N/50
    DT=100.
    DO 50 I=1,203,2
    DTT=CFLNUM*DX/(2.*AMAX1(ABS (A(I)+U(I)),ABS(A(I)-U(I))))
    DT=AMIN1(DTT,DT)
5 0 ~ C O N T I N U E ~
    TTOTAL=TTOTAL+DT
    TIME=TTOTAL*TIMREF
    XI= - XII
    DO 60 I=1,201,2
    PL=P(I)
    RL=R(I)
    UL=U(I)
    PR=P(I+2)
    RR=R(I+2)
    UR=U(I+2)
    XITEMP=XI
    IF(I.EQ.1) XI=ABS(XI)
    IF((I.EQ.201).AND.(XI.GT.0.0)) XI=-XI
    CALL GLIMM(QSTOP,PSTAR,USTAR,ASTAR)
    XI=XITEMP
    P(I+1)=PGLIM
    R(I+1)=RGLIM
    U(I+1)=UGLIM
6 0 \text { CONTINUE}
    DO 70 I=1,201,2
    IF(XI.LT.0.) GOTO 80
    P(I+2)=P(I+1)
    R(I+2)=R(I+1)
    U(I+2)=U(I+1)
    A(I+2)=SQRT(G*P(I+2)/R(I+2))
    S(I+2)=ALOG(P(I+2)/R(I+2)**G)
    GOTO }7
80 P(I)=P(I+1)
    R(I)=R(I+I)
    U(I) =U(I+1)
    A(I)=SQRT(G*P(I)/R(I))
    S(I)=ALOG(P(I)/R(I)**GG)
70 CONTINUE
    CALL GE(SWL,SWR,N,TTOTAL,TIME,UEXMAX,PTOTIN,PREF)
C CALL DETON(SWL,SWR,N,QPRINT,TTOTAL,TIME)
    CALL SPCTRA(N,SWL,SWR,TIME,UEXMAX,PSEXIT,PSOUT1,PSOUT2,PSOUT3,J
    *COUNT,QPRINT,TTOTAL,KCOUNT)
    IF(SWL.EQ.1; CALL BCL1
    IF(SWL.EQ.2) CALL BCL2(PSEXIT,PREF)
```

F(SWL.EQ.3) CALL BCL3(PSINL, RINL, PREF, RREF)
IF (SWL.EQ.4) CALL BCL4 (PTOTIN,RTOTIN, PREF,RREF)
IF (SWL.EQ.5) CALL BCL5
IF (SWR.EQ.l) CALL BCR1
IF (SWR.EQ.2) CALL BCR2(PSEXIT,PREF)
IF (SWR.EQ.3) CALL BCR3(PSINR,RINR, PREF,RREF)
IF (SWR.EQ.4) CALL BCR4 (PTOTIN,RTOTIN, PREF,RREF)
IF (SWR.EQ.5) CALL BCR5
IF ((N.EQ. (50\%QPRINT)).AND.(N.GE.0)) CALL PLOT2 (N,K)
CALL ENDPL(0)
CALL DONEPL
STOP
END
SUBROUTINE GLIMM(QSTOP,PSTAR,USTAR,ASTAR)
INTEGER Q,QSTOP
REAL ML, MR,MLN,MRN
COMMON/GLIMM1/PGLIM, RGLIM, UGLIM, PL, RL, UL, PR, RR, UR , AL , AR , GL , GR , EPS COMMON/GLIMM2/DT, DX, XI
DATA Q,ML,MR/0,100.,100./
PSTAR $=0.5 \%(P L+P R)$
COEFL=SQRT (PL*RL)
COEFR $=$ SQRT $(P R * R R)$
$A L P H A=1$.
BEGIN GODUNOV ITERATION
Q ${ }^{+}+1$
IF (PSTAR.LT.EPS) PSTAR=EPS
COMPUTE NEXT ITERATION FOR ML AND MR
MLN = COEFL \because PHI (PSTAR, PL)
$M R N=C O E F R * P H I(P S T A R, P R)$
DIFML=ABS (MLN-ML)
DITMR = ABS (MRN-MR)
ML=MLN
$M R=M R N$
COMPUTE NEW PSTAR
PTIL=PSTAR
PSTAR = (UL-UR + PL/ML+PR/MR)/(1./ML+1./MR)
PSTAR = ALPHA $*$ PSTAR $+(1 .-A L P H A) * P T I L$
IF (Q.LE.QSTOP) GOTO 10
IF (ABS (PSTAR-PTIL).LT.EPS) GOTO 20
COMPUTE NEW ALPHA
ALPHA $=0.5 \%$ ALPHA
$\mathrm{Q}=0$
IF((1.-ALPHA).LT.EPS) GOTO 20
10 IF(DIFML.GE.EPS) GOTO 30
IF (DIFMR.GE.EPS) GOTO 30
END OF GODUNOV ITERATION; COMPUTE USTAR
20 USTAR $=(P L-P R+M L * U L+M R * U R) /(M L+M R)$
BEGIN SAMPLING PROCEDURE
IF (XI.LT.USTAR*DT) GO TO 40
RIGHT SIDE; SELECT CASE OF SHOCK OR EXPANSION
IF (PSTAR.LT.PR) GO TO 50
RIGHT WAVE IS A SHOCK WAVE
$W R=U R+M R / R R$
RCMO111C
RCMO112C
RCMO113C
RCM0114C
RCMO115C
RCMO116C
RCMO117C
RCMO118C
RCMO119C
RCMO 120 C
RCMO121C
RCMO 122C
RCMO 1230
RCMO 124 C
RCMO125C
RCMO 126 C
RCMO127C
RCMO 128 C
RCMO129C
RCM0130C
RCMO131C
RCMO132C
RCMO133C
RCMO134C
RCMO135C
RCMO136C
RCMO137C
RCMO1380
RCMO139C
RCMO140C
RCMO141C
RCMO1420
RCM0143C
RCMO1440
RCMO 1450
RCMO 1460
RCMO 147 C
RCMO148C
RCMO 149 C
RCM01500
RCMO151C
RCMO152C
RCMO 15 3C
RCMO154C
RCMO 155 C
RCMO 156 C
RCMO 157 C
RCMO 1580
RCMO 159 C
RCMO 160C
RCMO1610
RCM0162C
RCMO163C
RCMO 164C

IF (XI.LT.WR*DT) GO TO 60
C RIGHT OF RIGHT SHOCK CASE
RGLIM $=$ RR
PGLIM $=$ PR
UGLIM=UR
RETURN
C LEFT OF RIGHT SHOCK CASE
60 RGLIM $=-\mathrm{MR} /$ (USTAR-WR)
PGLIM=PSTAR
UGLIM=USTAR
RETURN
C RIGHT WAVE IS A RAREFACTION WAVE
50 CONST=PR/RR**GR
RSTAR $=($ PSTAR $/$ CONST $) * *(1 . / G R)$
ASTAR $=$ SQRT (GR*PSTAR/RSTAR)
$A R=S Q R T(G R * P R / R R)$
IF (XI.GE. (USTAR+ASTAR) $\%$ DT) GO TO 70
C LEFT OF RIGHT FAN CASE
RGLIM=RSTAR
UGLIM=USTAR
PGLIM $=$ PSTAR
RETURN
C SELECT RIGHT OF FAN OR IN FAN
70 IF (XI.GE. (UR + AR) *DT) GO TO 80
C IN RIGHT FAN CASE
UGLIM $=2 . /(G R+1) *.(X I / D T-A R+(G R-1) / .2 . * U R)$
RGLIM $=(((A R+(G R-1) / .2 . *(U G L I M-U R)) * * 2) /.(G R * C O N S T)) * *(1 . /(G R-1)$.
PGLIM $=$ CONST $*$ RGLIM $* * G R$
RETURN
C RIGHT OF RIGHT FAN CASE
80 RGLIM=RR
PGLIM $=P R$
UGLIM=UR
RETURN
C LEFT SIDE; SELECT CASE OF SHOCK OR RAREFACTION
40 IF (PSTAR.LT.PL) GO TO 90
C LEFT WAVE IS A SHOCK WAVE
WL=UL-ML/RL
IF (XI.GE.WL*DT) GO TO 100
C LEFT OF LEFT SHOCK CASE
RGLIM=RL
PGLIM $=$ PL
UGLIM=UL
RETURN
C RIGHT OF LEFT SHOCK CASE
100 RGLIM=ML/ (USTAR-WL)
PGLIM=PSTAR
UGLIM=USTAR
RETURN
LEFT WAVE IS A RAREFACTION WAVE
90 CONST $=$ PL/RL $* * G L$
RSTAR $=($ PSTAR $/$ CONST $) * *(1 . / G L)$
ASTAR $=$ SQRT (GL*PSTAR/RSTAR)
AL=SQRT (GL*PL/RL)

RCMO
RCMC
RCM(
RCMC
RCMC
RCMC

```
    IF (XI.LT.(USTAR-ASTAR)*DT) GO TO 110
    RIGHT OF LEFT FAN CASE
    RGLIM=RSTAR
    PGLIM=PSTAR
    UGLIM=USTAR
    RETURN
SELECT LEFT OF FAN OR IN FAN CASE
110 IF (XI.LT.(UL-AL)*DT) GO TO 120
    IN LEFT FAN CASE
    UGLIM=2./(GL+1.)*(AL+(GL-1.)/2.*UL+XI / DT )
    RGLIM= (((AL+(GL-1.)/2.*(UL-UGLIM))**2.)/(GL*CONST))}***(1./(GL-1.)
    PGLIM=CONST*RGLIM**GL
    RETURN
    LEFT OF LEFT FAN CASE
120 RGLIM=RL
    PGLIM=PL
    UGLIM=UL
    RETURN
    END
    FUNCTION PHI(Y,Z)
    REAL RMU
    COMMON / FUN / G , PA, RA,UA, RB , RMU
    EPS=1.E-06.
    PARAM=Y/Z
    IF (ABS(1.-PARAM).GE.EPS) GO TO 10
    PHI=SQRT(G)
    RETURN
10 IF (PARAM.GE.1.) GO TO 20
    PHI=(G-1.)/2.*(1.-PARAM)/(SQRT (G)*(1.-PARAM**((G-1.)/(2.*G))))
    RETURN
    20 PHI=SQRT ((G+1.)/2.*PARAM+(G-1.)/2.)
    RETURN
    END
    FUNCTION PHII(PB)
    REAL RMU
    COMMON/FUN1/G, PA, RA,UA,RB,RMU
    PHI 1 = (PB-PA)*SQRT((1.-RMU**2.)/(RA*(PB+RMU**2.*PA)))
    RETURN
    END
    FUNCTION PSI(PB)
    REAL RMU
    COMMON/FUN1/G,PA,RA,UA,RB,RMU
    PSI=SQRT(1. - RMU**4.)/RMU**2./SQRT(RA)*PA**(1./(2.*G))*(PB**((G-1.)RCMO2610
    */(2.*G))-PA**((G-1.)/(2.*GG)))
    RETURN
    END
    SUBROUTINE INITI
    DIMENSION P(203),R(203),U(203),A(203),S(203),X(203)
    COMMON/FUNI/G,PA,RA,UA,RB,RMU
    COMMON / SUBS / P, R,U,A,S , X
    DO 10 I= 1,9,2
    P(I)=810600.00
    R(I)=0.7132
    U(I)=644.4
```

RCMO2190
RCMO2200
RCM02210
RCMO 2220
RCM02230
RCM02240
RCMO2250
RCM02260
RCM0 2270
RCMO 2280
RCMO 2290
RCMO2 300
RCMO2310
RCMO 2320
RCMO2330
RCMO2340
RCMO2350
RCMO 2360
RCMO 2370
RCMO2380
RCMO2390
RCMO2400
RCMO 2410
RCM02420
RCMO2430
RCMO 2440
RCM02450
RCMO2460
RCM02470
RCM02480
RCM02490
RCMO 2500
RCM02510
RCMO2520
RCM02530
RCMO2540
RCMO2550
RCM02560
RCM02570
RCM02580
RCM02590
RCMO2600
RCM02610
RCM02620
RCMO2630
RCMO2640
RCMO 2650
RCMO2660
RCM02670
RCM02680
RCM02690
RCM02700
RCMO2710
RCM02720

```
    A(I)=SQRT(G*P(I)/R(I))
10 CONTINUE
    DO 20 I=11,203,2
    P(I )=101325.0
    R(I) = 1.22
    U(I)=0.0
    A(I)=SQRT(G*P(I)/R(I))
20 CONTINUE
    RETURN
    END
    SUBROUTINE INIT2R(PSEXIT,PREF,RREF)
    DIMENSION P(203),R(203),U(203),A(203),S(203),X(203)
    COMMON/FUN1/G,PA,RA,UA,RB,RMU
    COMMON/SUBS/P,R,U,A,S,X
    DO lO I=3,201,2
    P(I)=PREF
    R(I)=RREF
    U(I)=0.0
    A(I)=SQRT(P(I)*G/R(I))
10 CONTINUE
    P(1)=P(3)
    R(1)=R(3)
    U(1)=-U(3)
    A(1)=SQRT(G*P(1)/R(1))
    P(203)=PSEXIT
    R(203)=R(201)
    PA=P(201)
    RA=R(201)
    UA=U(201)
    PB}=P(203
    RB=R(203)
    IF(PA.GT.PB) GO TO 20
    U(203)=UA - PHII (PB)
    GO TO 30
20 U(203)=UA-PSI (PB)
30 A(203)=SQRT(G*P(203)/R(203))
    RETURN
    END
    SUBROUTINE INIT2L(PSEXIT)
    DIMENSION P(203),R(203),U(203),A(203),S(203),X(203)
    COMMON/FUN1/G, PA, RA,UA, RB,RMU
    COMMON / SUBS / P,R,U,A,S,X
    DO 10 I=3,201,2
    P(I)=285080.0
    R(I)=0.897
    U(I)=0.0
    A(I)=SQRT(G*P(I)/R(I))
10 CONTINUE
    RETURN
    END
    SUBROUTINE INIT3L(PSINL,RINL)
    DIMENSION P(203),R(203),U(203),A(203),S(203),X(203)
    COMMON/FUN1/G, PA, RA,UA, RB, RMU
    COMMON/SUBS / P, R,U,A,S,X
```

```
    DO 10 I= 3,201,2
    P(I)=2390000.0
    R(I)=9.787
    U(I)=0.0
    A(I) =SQRT(G*P(I)/R(I))
10 CONTINUE
    P(1)=PSINL
    R(1)=RINL
    PA= P(3)
    RA=R(3)
    UA=U (3)
    PB= P(1)
    U(1)=UA+PHII (PB)
    A(1) =SQRT(G*P(1)/R(1))
    P(203) = P(201)
    R(203)=R(201)
    U(203) = - U(201)
    A(203) =SQRT (G*P(203)/R(203))
    RETURN
    END
    SUBROUTINE INIT3R(PSINR,RINR)
    DIMENSION P(203),R(203),U(203),A(203),S(203),X(203)
    COMMON / SUBS / P , R,U,A,S , X
    COMMON / FUN / G , PA,RA,UA, RB,RMU
    DO 10 I=3,201,2
    P(I)=2421667.5
    R(I)=9.787
    U(I)=0.0
    A(I)=SQRT(G*P(I)/R(I))
1 0
    CONTINUE
    P(203)= PSINR
    PA= P(201)
    RA=R(201)
    UA=U(201)
    PB=P(203)
    U(203)=UA - PHII (PB)
    R(203)=RINR
    A(203)=SQRT(G*P(203)/R(203))
    P(1)= P (3)
    R(1)=R(3)
    U(1) = - U (3)
    A(1) = SQRT(G*P(1)/R(1))
    RETURN
    END
    SUBROUTINE BCL1
    DIMENSION P(203),R(203),U(203),A(203),S(203),X(203)
    COMMON / SUBS / P , R,U,A,S,X
    COMMON / FUN 1/G , PA, RA ,UA, RB , RMU
    P(1)=P(3)
    R(1)=R(3)
    U(1)=-U(3)
    A(1)=SQRT(G*P(1)/R(1))
    RETURN
    END
```

RCM03270
RCMO 3280
RCMO3290
RCMO 3300
RCMO3310
RCMO3320
RCMO3330
RCMO3340
RCMO3350
RCMO3360
RCM03370
RCM03380
RCMO3390
RCMO 3400
RCM03410
RCMO 3420
RCMO3430
RCMO3440
RCM03450
RCM03460
RCM03470
RCMO3480
RCM03490
RCMO 3500
RCM03510
RCMO3520
RCMO 3530
RCMO 3540
RCMO 3550
RCM03560
RCM03570
RCM03580
RCMO 3590
RCM03600
RCM03610
RCM03620
RCMO3630
RCM03640
RCM03650
RCM03660
RCM03670
RCM03680
RCM03690
RCM03700
RCMO 3710
RCMO 3720
RCMO 3730
RCMO3740
RCMO3750
RCMO 3760
RCM03770
RCM03780
RCM03790
RCMO3800

```
    SUBROUTINE BCR1
    DIMENSION P(203),R(203),U(203),A(203),S(203),X(203)
    COMMON/SUBS / P,R,U,A,S,X
    COMMON/FUN / G , PA, RA,UA, RB, RMU
    P(203) = P(201)
    R(203)=R(201)
    U(203) = - U(201)
    A(203)=SQRT(G*P(203)/R(203))
    RETURN
    END
    SUBROUTINE BCL2(PSEXIT,PREF)
    DIMENSION P(203),R(203),U(203),A(203),S(203),X(203)
    COMMON/SUBS / P , R,U,A,S,X
    COMMON / FUN / G , PA, RA,UA, RB , RMU
    P(1)= PSEXIT/PREF
    R(1)=R(3)
    U(1)=U(3).
    A(1)=SQRT(G*P(1)/R(1))
    RETURN
    END
    SUBROUTINE BCR2(PSEXIT,PREF)
    DIMENSION P(203),R(203),U(203),A(203),S(203),X(203)
    COMMON/SUBS / P , R,U,A,S,X
    COMMON / FUN I/G, PA,RA,UA, RB , RMU
    P(203) = PSEXIT/PREF
    R(203)=R(201)
    PA=P(201)
    RA=R(201)
    UA=U(201)
    PB=P(203)
    RB=R(203)
    IF(PA.GT.PB) GO TO 10
    U(203)=UA - PHI 1 (PB)
    GO TO 20
10 U(203)=UA-PSI (PB)
20 A(203)=SQRT(G*P(203)/R(203))
RETURN
END
SUBROUTINE BCL3(PSINL,RINI,, PREF,RREF)
DIMENSION P(203),R(203),U(203),A(203),S(203),X(203)
COMMON/SUBS / P, R,U,A,S,X
COMMON/FUN / /G,PA,RA,UA, RB, RMU
P(1)= PSINL/PREF
R(1)=RINL/RREF
PA=P(3)
RA=R(3)
UA=U(3)
PB=P(1)
U(1)=UA+PHII (PB)
A(1)=SQRT(G*P(1)/R(1))
RETURN
END
SUBROUTINE BCR3(PSINR,RINR,PREF,RREF)
DIMENSION P(203),R(203),U(203),A(203),S(203),X(203)
```

RCMO

COMMON / SUBS / P, R, U, A , S, X
COMMON/FUN / / , PA, RA , UA , RB, RMU
P (203) = PSINR $/$ PREF
R(203) =RINR/RREF
$P A=P(201)$
$R A=R(201)$
$\mathrm{UA}=\mathrm{U}(201)$
$\mathrm{PB}=\mathrm{P}(203)$
U(203) $=\mathrm{UA}-$ PHI 1 (PB)
$A(203)=S Q R T(G * P(203) / R(203))$
RETURN
END
SUBROUTINE BCL4 (PTOTIN,RTOTIN, PREF,RREF)
INTEGER QOUT
DIMENSION $\mathrm{P}(203), \mathrm{R}(203), \mathrm{U}(203), \mathrm{A}(203), \mathrm{S}(203), \mathrm{X}(203)$
DIMENSION XARRAY(100)
COMMON / SUBS / P, R, U, A, S, X
COMMON / FUN I/G, PA, RA, UA , RB, RMU
COMMON XARRAY,NI
$\mathrm{Nl}=\mathrm{Nl}+1$
QOUT $=$ N1/5
PTOT = PTOTIN / PREF
RTOT=RTOTIN/RREF
ATOT $=$ SQRT (G*PTOT/RTOT)
STOT $=$ ALOG (PTOT / RTOT $* * G$)
$U(1)=U(3)$
$\mathrm{A}(1)=\operatorname{SQRT}(\operatorname{ATOT} * * 2 .-(G-1) / .2 . * \operatorname{ABS}(\mathrm{U}(1)) * * 2$.
$\mathrm{AMACH}=\mathrm{U}(1) / \mathrm{A}(1)$
IF (AMACH.LT.O.O) GO TO 60
$\mathrm{P}(1)=\mathrm{PTOT} /(1 .+(\mathrm{G}-1) / .2 . * \operatorname{AMACH} * * 2) * *.(\mathrm{G} /(\mathrm{G}-1)$.
$R(1)=$ RTOT $/(1 .+(G-1) / .2 . * A M A C H * * 2) * *.(1 . /(G-1)$.
$S(1)=\operatorname{ALOG}(P(1) / R(1) * * G)$
GO TO 50
$60 \mathrm{P}(1)=\operatorname{PTOT} /(1 .+(\mathrm{G}-1) / .2 . * \operatorname{ABS}(\mathrm{AMACH}) * * 2) * *.(\mathrm{G} /(\mathrm{G}-1)$.
$R(1)=\operatorname{RTOT} /(1 .+(G-1) / .2 . * \operatorname{ABS}(A M A C H) * * 2) * *.(1 . /(G-1)$.
$S(1)=\operatorname{ALOG}(P(1) / R(1) * * G)$
50 RETURN
END
SUBROUTINE BCR4 (PTOTIN,RTOTIN, PREF,RREF)
INTEGER QOUT
DIMENSION $\mathrm{P}(203), \mathrm{R}(203), \mathrm{U}(203), \mathrm{A}(203), \mathrm{S}(203), \mathrm{X}(203)$
DIMENSION XARRAY (100)
COMMON/SUBS/P,R,U,A,S,X
COMMON / FUN / G , PA , RA, UA , RB , RMU
COMMON XARRAY,N1
$\mathrm{N} 1=\mathrm{N} 1+1$
QOUT $=$ N1/25
PTOT=PTOTIN / PREF
RTOT=RTOTIN/RREF
ATOT $=$ SQRT (G*PTOT/RTOT)
STOT $=$ ALOG (PTOT /RTOT $* * G$)
$U(203)=U(201)$
$A(203)=\operatorname{SQRT}(\operatorname{ATOT} * * 2 .-(G-1) / .2 . * \operatorname{ABS}(U(203)) * * 2$.
$\mathrm{AMACH}=\mathrm{U}(203) / \mathrm{A}(203)$

RCM04350
RCM04360
RCM04370
RCM04380
RCM04390
RCM04400
RCM04410
RCM04420
RCM04430
RCM04440
RCM04450
RCM04460
RCM04470
RCMO4480
RCM04490
RCM04500
RCM04510
RCM04520
RCM04530
RCM04540
RCM04550
RCM04560
RCM04570
RCM04580
RCM04590
RCM04600
RCM04610
RCM04620
RCM04630
RCM04640
RCM04650
RCM04660
RCM04670
RCM04680
RCM04690
RCM04700
RCMO4710
RCM04720
RCM04730
RCM04740
RCM04750
RCM04760
RCM04770
RCM04780
RCM04790
RCM04800
RCM04810
RCM04820
RCM048.30
RCM04840
RCM04850
RCM04860
RCM04870
RCM04880

```
    IF(AMACH.LT.O.0) GO TO 60
    P(203)=PTOT/(1.+(G-1.)/2.*AMACH**2.)**(G/(G-1.))
    R(203)=RTOT/(1.+(G-1.)/2.*AMACH**2.)**(1./(G-1.))
    S (203)=ALOG (P(203)/R(203)**GG)
    GO TO 50
60 P(203)=PTOT/(1.+(G-1.)/2.*ABS (AMACH)**2.)**(G/(G-1.))
    R(203)=RTOT/(1.+(G-1.)/2.*ABS (AMACH)**2.)**(1./(G-1.))
    S (203) =ALOG (P(203)/R(203)***G)
50 RETURN
    END
    SUBROUTINE BCL5
    DIMENSION P(203),R(203),U(203),A(203),S(203),X(203)
    COMMON / SUBS / P,R,U,A,S,X
    P(1)=P(3)
    R(1)=R(3)
    U(1)=U(3)
    A(1)=A(3)
    RETURN
    END
    SUBROUTINE BCR5
    DIMENSION P(203),R(203),U(203),A(203),S(203),X(203)
    COMMON/SUBS/P,R,U,A,S,X
    P(203)=P(201)
    R(203) =R(201)
    U(203)=U(201)
    A(203)=A(201)
    RETURN
    END
    FUNCTION WDP(II)
    DIMENSION WNORM(12),IDIGT(12)
    COMMON/SAMPLE/WNORM,IDIGT
    IF (II.EQ.O) GO TO 10
    Ll=2
    L2=1
    DO 20 JJ=1,12
    IDIGT(JJ)=0
    WNORM(JJ)=1./FLOAT (L1**JJ)
20 CONTINUE
    WDP=0.
    RETURN
1 0 ~ D O ~ 4 0 ~ J J = 1 , 1 2
    L1=2
    L2=1
    KJ0=IDIGT(JJ)
    KJN=MOD((KJO+1),L1)
    IDIGT(JJ)=KJN
    IF (KJO.LT.KJN) GO TO 50
40 CONTINUE
50 SUM=0.
    DO 60 JJ=1,12
    KNEW=MOD(IDIGT(JJ)*L2,L1)
    SUM=SUM+FLOAT (KNEW)*WNORM(JJ)
6 0 \text { CONTINUE}
    WDP=SUM
```

RCMO
RCMO!
RCMO
RCMO!
RCMO!
RCMO!
RCMO.
RCMO!
RCMO
RCMO
RCMO
RCMO
RCMO
RCMO
RCMO.
RCMO.
RCMO.
RCMO
RCMO.
RCMO
RCMO
RCMO
RCMO
RCMO
RCMO.
RCMO

RETURN RCM05430
END \quad SUBROUTINE PLOT1(K)
DIMENSION XORG(4), YORG(4), YMAX (4), YMIN(4)
DATA XORG/0.5,4.75,0.5,4.75/
DATA YORG/0.5,0.5,4.75,4.75/
DATA YMAX/3.50,3.0,0.5,2.0/
DATA YMIN/0.5,0.0,-0.5,-2.0/
DO $10 \mathrm{I}=1,4$
CALL PHYSOR (XORG (I), YORG(I))
CALL AREA2D (3.5,3.5)
CALL FRAME
CALL GRAF(0.,'SCALE', 1.0,YMIN(I),'SCALE', YMAX(I))
CALL ENDGR (0)
CALL PHYSOR (8.5,0.5)
CALL AREA2D (2.25,7.75)
CALL FRAME
CALL GRAF (0.,'SCALE', 1., 0, 'SCALE', K)
CALL ENDGR (0)
RETURN
END
SUBROUTINE - PLOT2 (N, K)
DIMENSION XORG (4), YORG(4), YMAX (4), YMIN (4), KNT (4), IYNAM(10)
DIMENSION PARRAY (100), RARRAY (100) , UARRAY (100), SARRAY (100) , XARRAY (
*00)
DIMENSION $\mathrm{P}(203), \mathrm{R}(203), \mathrm{U}(203), \mathrm{A}(203), \mathrm{S}(203), \mathrm{X}(203)$
COMMON / SUBS / P, R, U, A, S, X
COMMON XARRAY
DATA XORG/0.5,4.75,0.5,4.75/
DATA YORG/0.5,0.5,4.75,4.75/
DATA YMAX/3.50,3.0,0.5,2.0/
DATA YMIN/0.5,0.0,-0.5,-2.0/
DATA KNT/ $1,4,6,9 /$
DATA IYNAM/'PRES','SURE','\$ ','DENS','ITY\$','VELO','CITY','\$
*, 'ENTR', 'OPY\$'/
DO $200 \mathrm{I}=1,100$
PARRAY (I) $=P(I * 2+1)$
$\operatorname{RARRAY}(I)=R(I * 2+1)$
$\operatorname{UARRAY}(I)=U(I * 2+1)$
$\operatorname{SARRAY}(I)=S(I * 2+1)$
200
CONTINUE
DO $300 \mathrm{I}=1,4$
CALL PHYSOR (XORG(I), YORG(I))
CALL AREA2D (3.5,3.5)
CALL XNAME ('X', 1)
CALL YNAME (IYNAM (KNT(I)), 100)
CALL GRAF(0.,'SCALE',1.0,YMIN(I),'SCALE', YMAX(I))
IF (I.EQ.I) CALL SETCLR('YELLOW')
IF (I.EQ.2) CALL SETCLR('CYAN')
IF (I.EQ.3) CALL SETCLR('RED')
IF (I.EQ.4) CALL SETCLR('MAGENTA')
IF (N.EQ.K) CALL SETCLR('WHITE')
IF (I.EQ.1) CALL CURVE (XARRAY, PARRAY, 100,0)

RCMO 5440
RCMO5450
RCMO5460
RCMO5470
RCMO5480
RCMO5490
RCMO5500
RCMO55 10
RCMO 5520
RCMO 5530
RCMO5540
RCMO 5550
RCMO 5560
RCMO 5570
RCMO5580
RCMO5590
RCMO 5600
RCMO5610
RCMO 5620
RCMO5630
RCMO 5640
R.CMO5650

RCMO 5660
1RCM05670
RCMO 5680
RCMO 5690
RCMO5700
RCMO5710
RCM05720
RCMO5730
RCMO5740
RCMO 5750
RCM05760
' RCM05770
RCMO 5780
RCMO 5790
RCMO5800
RCMO 5810
RCMO 5820
RCMO 5830
RCMO5840
RCMO 5850
RCMO 5860
RCMO 5870
RCM05880
RCMO5890
RCM05900
RCM05910
RCMO5920
RCMO5930
RCMO5940
RCMO5950
RCMO5960

```
            IF(I.EQ.2) CALL CURVE (XARRAY,RARRAY,100,0)
            IF(I.EQ.3) CALL CURVE (XARPAY,UARRAY,100,0)
            IF(I.EQ.4) CALL CURVE (XARRAY,SARRAY,100,0)
            CALL ENDGR(0)
    300 CONTINUE
            RETURN
            END
            SUBROUTINE GE(SWL,SWR,N,TTOTAL,TIME,UEXMAX,PTOTIN,PREF)
            INTEGER SWL,SWR
                            DIMENSION P(203),R(203),U(203),A(203),S(203),X(203)
                            COMMON / SUBS / P , R,U,A,S,X
C**CALCULATION STARTS AT EXHAUST PORT OPENING. SUBROUTINE STRUCTURED
C**ACCORDINGLY.
                            IF((SWL.EQ.1).AND.(SWR.EQ.2)) GO TO 10
                            IF((SWL.EQ.4).AND.(SWR.EQ.2)) GO TO }3
                            IF((SWL.EQ.4).AND.(SWR.EQ.1)) GO TO }5
                            IF((SWL.EQ.I).AND.(SWR.EQ.1)) RETURN
10 PWALL=P(2)
    IF(PWALL.LE.(PTOTIN/PREF)) GO TO 20
    RETURN
20 SWL=4
    WRITE (6, 74)
    WRITE (6,75) N,TTOTAL,TIME
    RETURN
30 UEXIT=U(202)
    IF(UEXMAX.LT.UEXIT) UEXMAX=UEXIT
    IF(UEXIT.LT.UEXMAX/2.) GO TO 40
    RETURN
    40 SWR=1
    WRITE (6,76)
    WRITE (6,75) N,TTOTAL,TIME
    RETURN
50 PlSHOK=P(2)
    IF(PISHOK.GT.PTOTIN/PREF) GO TO 60
    RETURN
    6 0 ~ S W L = 1
    WRITE (6,77)
    WRITE (6,75) N,TTOTAL,TIME
    74 FORMAT(5X,'INLET PORT OPENS AT:')
    75 FORMAT (5X,I4,5X,2F14.7)
    76 FORMAT (5X,'EXHAUST PORT CLOSES AT:')
    7 7 \text { FORMAT(5X,'INLET PORT CLOSES AT:')}
    RETURN
    END
    SUBROUTINE SPCTRA(N,SWL,SWR,TIME,UEXMAX, PSEXIT,PSOUT 1, PSOUT2, PSOUTRCM(
    *3,JCOUNT,QPRINT,TTOTAL,KCOUNT )
        INTEGER SWL,SWR,QPRINT
        DIMENSION P(203),R(203),U(203),A(203),S(203),X(203)
        COMMON / SUBS / P,R,U,A,S,X
C*CALCULATION STARTS AT HP GAS IN PORT. JCOUNT IS NUMBERED ACCORDINGLY**RCMO
    IF((SWL.EQ.1).AND.(SWR.EQ.3)) GO TO }1
    IF((SWL.EQ.2).AND.(SWR.EQ.3)) GO TO }2
    IF((SWL.EQ.2).AND.(SWR.EQ.1)) GO TO }3
    IF((SWL.EQ.5).AND.(SWR.EQ.1)) GO TO }4
```

```
    IF((SWL.EQ.2).AND.(SWR.EQ.5)) GO TO 50
    IF((SWL.EQ.2).AND.(SWR.EQ.4)) GO TO 60
    IF((SWL.EQ.1).AND.(SWR.EQ.4)) GO TO 70
10 IF(U(3).LT.0.0) GO TO ll
    RETURN
11 JCOUNT=JCOUNT+1
    PSEXIT=PSOUT1
    SWL=2
    WRITE (6,12)
    WRITE(6,13)N,TIME,SWL,SWR,JCOUNT
12 FORMAT(5X,'H.P. AIR OUT PORT OPENS AT')
13 FORMAT(5X,I4, 5X, F9.7,5X, 3I3)
    RETURN
    20 DO 26 I=5,199,2
    IF((R(I)-R(I+2)).GT.0.1) GO TO 22
    GO TO 26
22 XCNTCT=X(I)
    UCNTCT=U(I)
    TCNTCT=XCNTCT / ABS (UCNTCT)
    AHEAD=A(199)
    THEAD=1.0/A(199)
    IF(TCNTCT.LE.THEAD) GO TO 23
    RETURN
23 JCOUNT=JCOUNT+1
    SWR=1
    WRITE (6, 24)
    WRITE (6,25)N,TIME,SWL,SWR,JCOUNT
24 FORMAT(5X,'H.P. GAS IN PORT CLOSES AT')
25 FORMAT(5X,I4, 5X,F9.7,5X,3I3)
    RETURN
26 CONTINUE
30 IF(JCOUNT.EQ.4) GO TO 80
    IF(JCOUNT.EQ.6) GO TO 90
    IF(JCOUNT.EQ.8) GO TO 100
    IF((R(2)-R(4)).GT.0.1) GO TO 31
    RETURN
    31 JCOUNT=JCOUNT+1
    SWL=5
    WRITE (6,32)
    WRITE (6, 33)N,TIME,SWL,SWR,JCOUNT
    32 FORMAT(5X,'HP AIR OUT PORT CLOSES AND TUNING PORT Ll OPENS AT')
    33 FORMAT(5X,I4,5X,F9.7,5X,3I3)
    RETURN
    40 IF(JCOUNT.EQ.7) GO TO 110
    IF(U(3).GE.0.0) GO TO 41
    RETURN
41 JCOUNT=JCOUNT+1
    PSEXIT=PSOUT2
    SWL=2
    WRITE (6,42)
    WRITE (6,43)N,TIME,SWL,SWR,JCOUNT
    42 FORMAT(5X,'TUNING PORT Ll CLOSES AND EXHAUST PORT El OPENS AT')
    43 FORMAT(5X,I4,5X,F9.7,5X,3I3)
    RETURN
```

RCM065 1C
RCM0652C
RCM0653C
RCM0654C
RCM0655C
RCM0656C
RCM0657C
RCM0658C
RCM0659C
RCM0660C
RCM0661C
RCM06620
RCM06630
RCM06640
RCM06650
RCM06660
RCM06670
RCM06680
RCM06690
RCM06 700
RCM06710
RCM06720
RCM06 730
RCM06740
RCM06750
RCM0 6760
RCM06770
RCM0 6780
RCM06790
RCM06800
RCM06810
RCM06820
RCM06830
RCM06840
RCM06850
RCM06860
RCM06870
RCM06880
RCM06890
RCM06900
RCM06910
RCM06920
RCM06930
RCM06940
RCM06950
RCM06960
RCM06970
RCM06980
RCM06990
RCM07000
RCM07010
RCM07020
RCM07030
RCM07040

```
80 IF(ABS(U(201)).GT..0001) GO TO 81
    RETURN
81 JCOUNT=JCOUNT+1
    SWR=5
    WRITE (6,82)
    WRITE (6,83)N,TIME,SWL,SWR,JCOUNT
82 FORMAT(5X,'TUNING PORT R1 OPENS AT')
83 FORMAT(5X,I4, 5X, F9.7,5X, 3I3)
    RETURN
50 IF(JCOUNT.EQ.9) GO TO 120
    IF(ABS(U(201)-U(3)).LE.0.001) GO TO 51
    RETURN
51 JCOUNT=JCOUNT+1
    SWR=1
    WRITE (6,52)
    WRITE(6,53)N,TIME,SWL,SWR,JCOUNT
52 FORMAT(5X,'TUNING PORT R1 CLOSES AT')
53 FORMAT(5X,I4, 5X,F9.7,5X,3I3)
    RETURN
90 THEAD1=X(201)/(ABS(U(3))+A(3))
    KCOUNT=KCOUNT+1
    IF(KCOUNT.EQ.1) TTOT1=TTOTAL
    IF(TTOTAL.GE.(TTOT1+THEAD1)) GO TO 91
    RETURN
91 JCOUNT=JCOUNT+1
    SWL=5
    WRITE (6,92)
    WRITE(6,93)N,TIME,SWL,SWR,JCOUNT
92 FORMAT(5X,'EXHAUST PORT El CLOSES AND TUNING PORT L2 OPENS AT')
93 FORMAT(5X,I4,5X,F9.7,5X,3I3)
    RETURN
110 IF(U(3).GE.0.0) GO TO 111
    RETURN
111 JCOUNT=JCOUNT+1
    PSEXIT=PSOUT3
    SWL=2
    WRITE (6,112)
    WRITE(6,113)N,TIME,SWL,SWR,JCOUNT
112 FORMAT(5X,'TUNING PORT L2 CLOSES AND EXHAUST PORT E2 OPENS AT')
113 FORMAT(5X,I4,5X,F9.7,5X,3I3)
    RETURN
100 IF(ABS(U(201)).GT..0001) GO TO 101
    RETURN
101 JCOUNT=JCOUNT+1
    SWR=5
    WRITE (6,102)
    WRITE(6,103)N,TIME,SWL,SWR,JCOUNT
102 FORMAT(5X,'TUNING PORT R2 OPENS AT')
103 FORMAT(5X,I4,5X,F9.7,5X,3I3)
    RETURN
120 IF(ABS(U(201)-U(3)).LE.0.0001) GO TO 121
    RETURN
121 JCOUNT=JCJUNT+1
    SWR=4
RCMO7
RCMO7
RCMO7
RCMO7
RCMO7
RCMO 7
RCMO7:
RCMO 7
RCMO
RCMO 7
RCMO7:
RCMO7:
RCM07
RCMO7
RCMO 7
RCMO7:
RCM07:
RCMO7:
RCMO7:
RCMO7:
RCM07:
RCMO7:
RCMO7:
RCMO7:
RCMO7
RCMO7
RCMO
RCMO
RCMO 7
RCMO 7
RCMO 7
RCMO 7
RCMO 7
RCMO 7
RCMO7
RCM07
RCM07
RCMO7
RCM07
RCM07
RCM07
RCMO 7
RCMO7
101 JCOUNT = JCOUNT+1
SWR \(=5\)
WRITE (6,102)
RCM07
RCM07
RCM07
RCM07
102 FORMAT (5X,' TUNING PORT R2 OPENS AT')
103 FORMAT (5X,I4,5X,F9.7,5X,3I3)
RETURN
\(120 \operatorname{IF}(\operatorname{ABS}(\mathrm{U}(201)-\mathrm{U}(3)) . \mathrm{LE} .0 .0001)\) GO TO 121
RETURN
RCM07
RCM07
RCM07
121 JCOUNT=JCJUNT+1
SWR \(=4\)
```

RCM07
RCMO7
RCMO7
RCM07
$\operatorname{WRITE}(6,122)$
RCMO7590
WRITE $(6,123) N, T I M E, S W L, S W R, J C O U N T$
122 FORMAT (5X,'TUNING PORT R2 CLOSES AND L.P. AIR INLET OPENS AT')
123 FORMAT (5X,I4,5X,F9.7,5X,3I3)
RETURN
60 IF ((R(4)-R(2)).GT.0.1) GO TO 61 RETURN
61 JCOUNT=JCOUNT+1
SWL $=1$
$\operatorname{WRITE}(6,62)$
WRITE (6,63)N,TIME, SWL, SWR, JCOUNT
62 FORMAT (5X,'EXHAUST PORT E2 CLOSES AT')
63 FORMAT(5X,I4,5X,F9.7,5X,3I3)
RETURN
70 IF (U(201).GE.0.0) GO TO 71
RETURN
71 JCOUNT=0
SWR $=1$
$\operatorname{WRITE}(6,72)$
WRITE (6,73)N, TIME, SWL, SWR, JCOUNT
72 FORMAT (5X,'CYCLE COMPLETED.')
73 FORMAT(5X,I4,5X,F9.7,5X,3I3)
RETURN
END

RCM07600
RCM07610
RCMO 7620
RCM07630
RCM07640
RCMO7650
RCMO7660
RCM07670
RCM07680
RCM07690
RCMO7700
RCM07710
RCM07720
RCM07730
RCMO7740
RCMO7750
RCM07760
RCMO7770
RCM07780
RCM07790
RCM07800
RCM07810
RCMO 7820

B.1. Program Description

B.1.1. Computational Grid

The computational region is divided into 100 cells; the solution grid points are odd numbered, e.g., 3, 5, 7 ..., 201 with 1 and 203 being the points where the boundary conditions are specified. The even numbered points, 2, 4, 6, 202 are intermediate locations where solutions are stored before being assigned to the solution grid points. See Fig. (2).

B.1.2. Data Input

Data for various ports (exhaust, inlet, etc.) is specified in dimensional form in S.I. units (Pascal $\left(\mathrm{N} / \mathrm{m}^{2}\right)$ for pressure, $\mathrm{kg} / \mathrm{m}^{3}$ for densit.y, m / s for velocity etc.). Reference values are also specified in like manner. See lines RCM00210 through 00250.

Initial data is specified through a call to an appropriate subroutine, depending on where the calculation is started for a particular wave diagram. For the example given in section II on the Spectra Technology wave diagram, the computation is started at the point when the high pressure gas inlet port just opens. The call for initial data is made to subroutine INIT3R, which prescribes data consistent with a solid wall houndary at the left and a 'piston' inflow boundary at the right.
B.1.3. Non-dimensionalization

Non-dimensionalization is carried out in lines 00540 through 00610 with entropy defined as

$$
S=\ln \left(\frac{p}{\mu}\right)
$$

Note that velocities are all referred to a reference sonic velocity defined by

$$
a_{\text {ref }}=\frac{P_{\text {ref }}}{\rho_{\text {ref }}}
$$

B.1.4. Structure

The main program loop starts at line 00630, for the number of time steps specified. The time step is computed according to the appropriate CFL condition for the method, and a random number for the time step is generated by a call to the function subroutine WDP.

A secondary loop to define the sequence of local Riemann problems for the time step is set up at line 00750. For each Riemann problem defined, a call is made to subroutine GLIMM which i) solves the Riemann problem, and ii) samples the solution using the random number generated. The subroutine then returns the sampled solution as the parameters PGLIM, RGLIM, UGLIM for the pressure, density and velocity respectively. These solutions are initially stored in the even numbered intermediate locations on the grid, and are then assigned to either the left or the right solution grid point depending on whether the random number was in the negative or the positive half of the interval respertively.

A call is then made to one of the modular subroutines structured for particular types of wave diagrams, lines 01050-01080, and the others are commented out.

Boundary conditions are invoked after the call to the modular subroutines which return the proper values of the switches SWL and SWR. The structure of the boundary condition subroutines is described in section II. This sequence completes one pass through the main loop and the process is repeated for the number of time steps specified.

B.2. Example Use of Program RCM

The program is set up in the following steps:
i) Line 00150 - output device designation. See B. 3.
ii) Line 00190 - specify the number of time steps, k, and the switches SWL and SWR consistent with where the computation is to be started.
iii) Lines 00210 - prescribe flow data for various ports in through 00250 dimensional form. See list of variables for explanation of variable names.
iv) Lines 00490 - invoke the proper initial data subroutine and through 00530 comment out the rest. See list of subroutines for explanation of subroutine, function subprogram names.
v) Line 00660 - set the interval for number of time steps at which a plot of the flow parameters is required.
vi) Lines 01050 - user supplied modular subroutine for particular through 01080 wave diagram to be computed. Conment out the rest.
vii) Line 01190 - call to plotting routine should be consistent with interval specified in line 0660.
viii) Lines 02650 through 03700
identify proper subroutine to prescribe initial data (consistent with iv), and specify the data in the subroutine in dimensional form.
ix) Lines 05470 - specify plotting parameters, viz., origins of through 05990 plots, scales, number of points to be plotted, color of plots, etc. Facility dependent.

The subroutines PLOT1 and PLOT2 given in the listing are structured for DISSPLA software installed in the facility at NPGS.
x) Lines 06040 - user supplied modular subroutine for wave diagram through 07820 to be computed.

B.3. Execution

The program is run in an interactive mode and is invoked through a call to DISSPLA, available on most mainframes. After compiling the program
(FORTRAN H Extended compiler), the following command executes it:

DISSPLA filename

If working at stations equipped with dual screens, the command on line 150 can be of the type

CALL TEK618 \rightarrow Tektronix screen

If working on a non-graphics terminal, or a single screen station, this
should be changed to
CALL COMPRS
which generates a 'DISSPLA METAFILE' to be routed later to either a screen or a plotter, e.g., VRSTEC, IBM79, TEK618, etc. Once generated, the metafile can be accessed and routed by the command

DISSPOP device designation
These are facility dependent commands and should be modified accordingly.
B.4. List of Important Variables (In Alphabetical Order)

A	- sonic velocity
AHEAD	- sonic speed of head wave of rarefaction fan
AMACH	- Mach number
AL	- left side sonic speed value for RP
AR	- right side sonic speed value for RP
AREF	- reference speed of sound
ASTAR	- speed of sound in 'starred' state of RP solution (see Fig. 3)
CFLNUM	- CFL number for time step determination
DT	- time step
DX	- grid cell width
EPS	- small number for pressure iteration in RP solver
G	- ratio of specific heats, Y
IDIGT	- see WNORM
II	- argument used in function subprogram PHI equal to either 0 or 1
JCOUNT	- counter
K	- number of time steps
KCOUNT	- counter
N	- counter for time steps
N1	- counter

P	- pressure
PA	- flow parameter describing 'a' state in transition functions
PGLIM	- pressure value returned by subroutine GLIMM
PL	left side pressure value for RP
PR	- right side pressure value for RP
PREF	- reference pressure
PSEXIT	- static pressure at exit or outlet port
PSINL	- static pressure for incoming 'piston' flow on left side
PSINR	- static pressure for incoming 'piston' flow on right side
PSOUTn	- $n=1,2,3$ - exit static pressures for cycles with more than one exhaust port
PSTAR	- pressure in 'starred' state of RP solution (see Fig. 3)
PTOTIN	- total pressure for isentropic inflow
QPRINT	- specification of interval size for output
QSTOP	- maximum number of iterations for solution of Riemann problem, (RP)
R	- density
RA, RB	- flow parameters describing 'a' and 'b' states in transition functions
RGLIM	- density returned by subroutine GLIMM
RINL	- static density for incoming 'piston' flow on left side
RINR	- static density for incoming 'piston' flow on right side
RL	- left side density for RP
RMU	- function of γ
RR	- right side density for RP
RREF	- reference density
RTOTIN	- total density for isentropic inflow
S	- entropy
SWL	- switch for left boundary
SWR	- switch for right boundary
TCNTCT	- time taken by contact surface to travel a certain distance
THEAD	- time taken by head wave of expansion to travel a certain distance
TIME	- real time in seconds
TIMEREF	- reference time
TTOTAL	- cumulative non-dimensional time for number of time steps
U	- velocity
UA	- flow parameter for 'a' state in transition functions
UCNTCT	- velocity of contact surface
UEXMAX	- maximum velocity occurring at an outflow boundary
UGL IM	- velocity returned by subroutine GLIMM
UL	- left side velocity for RP
UR	- right side velocity for RP
USTAR	- velocity in 'starred' state of RP solution (see Fig. 3)
WDP	- value returned by random number generator subprogram
WL	- left shock wave velocity
WR	- right shock wave velocity
WNORM	- variable used in random number generator subprogram
X	- space dimension
XCNTCT	- location of contact surface
XI, XII	- random numbers scaled to grid cell

```
XREF - reference length
Y - argument used in function subprogram PHI equal to PSTAR
Z - argument used in function subprogram PHI equal to either
                PL or PR
ZETA - dummy variable (for initialization purposes in random
                        number generator)
```


B.5. List of Subroutines, Function Subprograms

B.5.1. Subroutines

INITl - prescribes initial data corresponding to $S W L=1, S W R=1$; e.g., shock-tube problem

INIT2L - prescribes initial data corresponding to $S W L=2, S W R=1$
LNIT2R - prescribes initial data corresponding to $S W L=1, S W R=2$
INIT3L - prescribes initial data corresponding to $S W L=3, S W R=1$
INIT3R - prescribes initial data corresponding to $S W L=1, S W R=3$
PLOT1,2 - graphics subroutines
GLIMM - solves the Riemann problem, samples the solution and returns values for flow parameters

GE - modular user supplied subroutine to simulate wave diagram of General Electric Wave Engine

DETON - modular user supplied subroutine to simulate evacuation of detonation chamber

SPCTRA - modular user supplied subroutine to simulate wave diagram of Spectra Technology's Pressure Exchanger

BCLI - prescribes boundary conditions (BC's) corresponding to SWL=l, i.e., solid wall on left side

BCL2 - prescribes BC's corresponding to SWL=2, i.e., outflow at constant static pressure on left side

BCL3 - prescribes $B C$'s corresponding to SWL=3, i.e., 'piston' inflow on left side

BCL4 - prescribes BC's corresponding to SWL=4, i.e., isentropic inflow from reservoir on left side

BCL5 - prescribes $B C ' s$ corresponding to SWL=5, i.e., wave 'tuning' on left side

BCR1, BCR2, BCR3, BCR4, BCR5 - prescribe BC's corresponding to SWR $=1,2,3,4,5$ respectively on right side
B.5.2. Function Subprograms

```
PHI(y,z) - required in iteration procedure for solution of RP
PHIl(PB) - describes shock transition function, }\mp@subsup{\psi}{a}{}(\mp@subsup{p}{b}{})\mathrm{ , for
                                    two states a and b connected by a shock wave (see
                            Ref. 6, Ch. III)
PSI(PB) - describes rarefaction transition function, }\mp@subsup{\psi}{\textrm{a}}{(
    for two states a and b connected by a rarefaction wave
    (see Ref. 6, Ch. III)
WDP(II) - generates a random number in a van der Corput sequence
    each time it is invoked. Note that it needs to be called
    once from outside the main loop by specifying an argument
    II=1 to initialize IDIGT and WNORM, returning a value
    of 0 for the dummy variable ZETA, and then a second time
    from within the main loop with an argument II=0 to return
    a value which is the random number.
```

1. Commander
Naval Air Systems Command
Washington, DC 20361
Attention: Code AIR 931 1
Code AIR 931E 1
Code AIR 932D 1
Code AIR 530 1
Code AIR 536 1
Code AIR 00D 14
Code AIR 93D 1
2. Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217
Atterition: Dr. A. D. Wood 1
Dr. M. K. Ellingsworth 1
3. Commanding Officer
Naval Air Propulsion Center
Trentōn, NJ 08628
Attention: G. Mangano, PE-31 1
4. Commanding Officer 1
Naval Air Development Center
Warminster, PA 19112
Attention: AVTD
5. Library 1
Army Aviation Material Laboratories
Department of the Army
Fort Eustis, VA 23604
6. Dr. Arthur J. Wennerstrom 1
AFWAL/POTX
Wright-Patterson AFB
Dayton, OH 45433
7. Air Force Office of Scientific Research 1 AFOSR/NA
Bolling Air Force Base
Washington, DC 20332
Attention: Mr. James Wilson
8. National Aeronautics \& Space Administration
Lewis Research Center
21000 Brookpark Road
Cleveland, OH 44135
Attention: Chief, Internal Fluid Mechanics Division 3
Library 1
9. Library 1
General Electric Company
Aircraft Engine Technology Division DTO Mail Drop H43
Cincinnati, OH 45215
10. Library 1
Pratt \& Whitney Aircraft Group
Post Office Box 2691
West Palm Beach, FL 33402
11. Library 1
Pratt-Whitney Aircraft Group
East Hartford, CT 06108
12. Library 1
Curtis Wright Corporation
Woodridge, NJ 07075
13. Library 1
AVCO/Lycoming
550 S. Main Street
Stratford, CT 06497
14. Library 1
Teledyne CAE, Turbine Engines
1330 Laskey Road
Toledo, OH 43612
15. Library 1
Williams International
P. O. Box 200
Walled Lake, MI 48088
16. Library 1
Detroit Diesel Allison Division G.M.C.

- Box 89
Indianapolis, IN 46202

17. Library 1
Garrett Turbine Engine Company
lll S. 34th Street P. O. Box 5217
Phoenix, AZ 850108. Professor J. P. GostelowSchool of Mechanical EngineeringThe New South Wales Institute of TechnologyNew South WalesAUSTRALIA
18. Dr. G. J. Walker 1
Civil and Mechanical Engineering Department
The University of Tasmania Box 252C
GPO Hobart, Tasmania 7110
AUSTRALIA
19. Professor F. A. E. Breugelmans 1Institut von Karman de la Dynamiquedes Fluides
72 Chausee de Waterloo
1640 Rhode-St. Genese
BELGIUM
20. Professor Ch. Hirsch1
Vrije Universiteit Brussel
Pleinlaan 2
1050 Brussels
BELGIUM
21. Director 1Gas Turbine Establishment
P. O. Box 305
Jiangyou CountySichuan ProvinceCHINA
22. Professor C. H. Wu 1P. O. Box 2706
Beijing 100080
CHINA
23. Director, Whittle Laboratory
Department of Engineering Cambridge University
ENGLAND1
24. Professor Jacques Chauvin 1Universite d'Aix-Marseille1 Rue Honnorat
Marseille
FRANCE
25. Mr. Jean Fabri 1
ONERA
29, Ave. de la Division Leclerc 92 Chatillon
FRANCE
26. Professor D. Adler 1
Technion Israel Institute of Technology Department of Mechanical Engineering Haifa 32000 ISRAEL
27. Dr. P. A. Paranjpe
Head, Propulsion Division National Aeronautics Laboratory Post Bag 1700

Bangalore - 17

INDIA
28. Dr. W. Schlachter 1 Brown, Boveri Company Ltd. Dept. T-T P. O. Box CH-5401 Baden SWITZERLAND
29. Professor Leonhard Fottner 1 Department of Aeronautics and Astronautics German Armed Forces University Hochschule des Bundeswehr Werner Heisenbergweg 39 8014 Neubiberg near Munich WEST GERMANY
30. Professor Dr. Ing. Heinz E. Gallus 1 Lehrstuhl und Institut feur Strahlantiebe und Turbourbeitsmashinen Rhein.-Westf. Techn. Hochschule Aachen Templergraben 55
5100 Aachen
WEST GERMANY
31. Dr. Ing. Hans-J. Heinemann 1 DFVLR-AVA
Bunsenstrasse 10
3400 Geottingen
WEST GERMANY
32. Dr. H. Weyer 1
DFVLR
Linder Hohe 505 Porz-Wahn WEST GERMANY
33. Dr. Robert P. Dring 1
United Technologies Research Center
East Hartford, CT 06108
34. Chairman 1
Aeronautics and Astronautics Department 31-265 Massachusetts Institute of Technology
Cambridge, Massachusetts 02139
35. Dr. B. Lakshminarayana 1
Professor of Aerospace Engineering
The Pennsylvania State University 233 Hammond Building University Park, Pennsylvania 16802
36. Mr. R. A. Langworthy 1
Army Aviation Material Laboratories Department of the Army Fort Eustis, VA 23604
37. Professor Gordon C. Oates 1
Department of Aeronautics and Astronautics University of Washington Seattle, Washington 98105
38. Mechanical Engineering DepartmentVirginia Polytechnic Institute andState University
Blacksburg, VA 24061
Attn: Professor W. O'Brian 1
Professor H. Moses 1
39. Professor T. H. Okiishi 1
Professor of Mechanical Engineering 208 Mechanical Engineering Building Iowa State University Ames, Iowa 50011
40. Dr. Fernando Sisto 1
Professor and Head of Mechanical Engineering Department
Stevens Institute of Technology
Castle Point
Hoboken, NJ 07030
41. Dr. Leroy H. Smith, Jr. 1
Manager, Compressor and Fan Technology Operation General Electric Company Aircraft Engine Technology Division DTO Mail Drop H43
Cincinnati, OH 45215
42. Dr. W. Tabakoff 1
Professor, Department of Aerospace Engineering University of Cincinnati Cincinnati, OH 45221
43. Mr. P. Tramm 1
Manager, Research Labs Detroit Diesel Allison Division Genteral Motors P. O. Box 894 Indianapolis, IN 46206
44. Mr. P. F. Yaggy 1
Director
U. S. Army Aeronautical Research Laboratory AMES Research Center Moffett Field, CA 94035
45. Library 1
Code 1424
Naval Postgraduate School
Monterey, CA 93943
46. Office of Research Administration 1
Code 012 Naval Postgraduate School Monterey, CA 93943
47. Defense Technical Information Center 2
Cameron Station Alexandria, VA 22314
48. Naval Postgraduate School Monterey, CA 93943 Attn: Professor M. F. Platzer (67PL) 1 10Turbopropulsion Laboratory (67Sf)
