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DUDLEY KNOX L8SRARY
NAVAL POSTGRADUATE SCHOOL

USE OF THE TENSOR PRODUCT FOR NUMERICAL WEATHER 13-5101

PREDICTION BY THE FINITE ELEMENT METHOD - PART 2.

Introduction

This is the second installment of a report-pair concern-

ing implementation of tensor product factoring of coeffi-

cient matrices in applications of the finite element method

to numerical weather prediction. It was noted in Part 1

(Ref. 1) that these techniques were introduced in numerical

weather prediction by Staniforth and Mitchell (Ref. 2).

Discussed in Part 1 are applications in which the "mass"

matrix for a grid such as that shown in Fig. 1 is factored

as the tensor product of two matrices.
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Fig. 1. Node numbering and spacing.

One of these matrices (MA) depends solely upon the nodal

spacing in the east-west direction (a.) and the other (MB)

depends only on the north- south spacing (b-)« We began with

the set of simultaneous linear equations

M w = v, <1>

where M (the "mass" matrix) is symmetric, ne x ne , and w and

v are column vectors of height ne . M and v are input quan-

tities and w is sought. The tensor product representation

of M is

M = MB * MA, <2>

where MB and MA are tridiagonal, symmetric matrices, e x e

and n x n, respectively. (The tensor product and matrices

MA and MB are defined in Appendix A. ) This representation

allowed <1> to be rewritten as

MA W MB = V, <3>

where W is n x e and the successive columns are subvectors
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of w corresponding to the rows of Fig. 1. V is also n x e

and similarly derived from v. Boundary conditions consid-

ered were a cyclic condition in the east-west direction and

either homogeneous Neumann conditions (normal derivative

zero) or nonhomogeneous Dirichlet conditions (specified

nonzero values) on the northern and southern edges.

The present report discards the cyclic east-west boundary

condition and deals with two cases:

(1) Solutions of <3> with nonhomogeneous Dirichlet con-

ditions on all four edges;

(2) Solution of Poisson's equation for the same region

with nonhomogeneous Dirichlet conditions on all four

edges

.

Mass Matrix ^_ Dirichlet Boundary Conditions

Effects of the Dirichlet boundary conditions on the solu-

tion process are most readily understood by considering the

following partitioned form of <1>:

Dfeiftsiiyg-M '

<4>

In <4> the w vector has been rearranged so that all of the

boundary values are in the subvector wu and the interior

("center") values are in wc . A similar reordering has been

applied to v and M. If the boundary values of w are pre-

scribed, then w^ is known and only w c
remains to be found.

Expanding the lower partition of <4> and placing the known

terms on the right gives

M 22W C
= v c ~ M 2iWb» <5>

or, letting v ' = v - M21W, , we have° c c b

M 22w c
= v c

'

.

<5 f >

We consider now how the strategy just described can be

applied when the tensor product resolution of M has been

used to convert <1> into <3>. In the matrix W the pre-

scribed boundary values occupy the first and last columns

and the top and bottom rows. Denote this border matrix,

including an (n-2) x (e-2) null matrix inside, by WB

.



Calculate

VB = MA WB MB <6>

and now form

V = V - VB. <7>

Now define a set of submatrices MAI, MB1, Wl, and VI

obtained from MA, MB, W, and V', respectively, by removing

the first and last columns and the top and bottom rows. The

reduced problem becomes

MAI Wl MB1 = VI <8>

As described in Ref. 1, <8> may be solved by standard Gaus-

sian elimination procedures. A computer program (GAUSS4)

which carries out these calculations is listed in Appendix

B. The subroutines of GAUSS4 are designed for substitution

in the program devised by Hinsman (Ref. 5).

Poisson' s Equation -_ Dirichlet Boundary Conditions

As noted above, Staniforth
(

and Mitchell (Ref. 2) appear

to have been first in applying the tensor product resolution

to Poisson' s equation in a numerical weather prediction

problem using the finite element method. Additional detail

is given in earlier papers by Dorr (Ref. 3) and by Lynch,

Rice, and Thomas (Ref. 4).

Finite element discretization of Poisson' s equation for

the region of Fig. 1 results in a set of simultaneous linear

equations which may be written in matrix form as

K w = v, <9>

where vectors v and w are, respectively, given and unknown.

As for <1>, each has length ne and the coefficient matrix K

is ne x ne , symmetric, sparse, and block tridiagonal. K is

called the "stiffness" matrix in finite element parlance.

It is easily shown that K is expressible as the sum of

two tensor products as follows:

K = MB * SA + SB * MA. <10>

The new matrices SA and SB are symmetric, tridiagonal and

depend only on the a. and b., respectively. Explicit formu-

las for SA and SB are given in Appendix A.
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Using the definition of the tensor product and again con-

verting the vectors w and v into the n x e rectangular

matrices W and V, <9> may be written as

SA W MB + MA W SB = V. <11>

Before solving <11> we must first take account of the Diri-

chlet boundary conditions on the four edges of the region.

As in solving <3>, the given boundary values are in the

first and last columns and top and bottom rows of W. As

before, we let WB be an n x e matrix containing the given

boundary values, together with zeros at locations corre-

sponding to interior nodes. Calculate

VB = SA WB MB + MA WB SB, <12>

and then form

V = V - VB. <7>

The remaining step again parallels that used when applying

the Dirichlet boundary conditions to <3>. Specifically, we

introduce submatrices MAI, MB1, SA1 , SB1, Wl, and VI

obtained from MA, MB, SA, SB, W, and V', respectively, by

removing the first and last columns and the top and bottom

rows. The reduced problem becomes

SA1 Wl MB1 + MAI Wl SB1 = VI. <13>

To solve <13> we first need the complete solution of the

eigenproblem

SB1 p. = X
i

MB1 Pl ,
<14>

where p- is the ith eigenvector and \- is the corresponding

eigenvalue. We write the complete solution in the form

SB1 P = MB1 P A, <14'>

where P is the (e-2) x (e-2) modal matrix whose columns are

the p. and A is the (diagonal) spectral matrix whose ele-

ments are the X,* . We specify that the modal matrix is nor-

malized so that

PT MB1 P = I, <15>

where I is the identity matrix of order e-2 and PT is the

transpose of P. If both sides of <13> are postmultiplied by

P and <14'> is used to replace SB1 P, <13> becomes

SA1 Wl MB1 P + MAI Wl MB1 PA = VI P. <16>

Let X = Wl MB1 P and U = VI P, then <16> is equivalent to

(SA1 + X- MAI) x. = u., 1=1, e-2, <17>
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where x- and u- are, respectively, the ith columns of X and

U. Since the coefficient matrix in <17> is tridiagonal , the

Gsiussian elimination process, i.e., factoring, forward

reduction, and back- substitution, is computationally econom-

ical. The final step consists of a matrix multiplication to

obtain

Wl = X PT. <18>

Since Wl contains the w values at all interior nodes and the

boundary values were known in advance, the solution is com-

plete. A FORTRAN program (GAUSS5) which implements the ten-

sor product solution for Poisson's equation is given in

Appendix C.

Operation Counts and Storage Requirements 2. Poisson' s Equa -

tion

In Ref. 1 comparisons of floating point operation counts

and storage requirements were made for solutions of <1>.

Substitution of the boundary conditions considered here in

place of those considered in Ref. 1 has a negligible effect

on both operation counts and storage requirements. Accord-

ingly, no further comparison is given here for solutions of

<1>.

Solution of Poisson's equation (<9>) using the tensor

product resolution <10> of K is more costly in terms of com-

putation and storage than the previously studied applica-

tions to <1>. In Table 1 the number of floating point oper-

ations and the required number of coefficient matrix storage

locations are compared for three different solution methods.

These are SOR (successive over-relaxation), SKY (skyline

storage and Gauss elimination) , and TENSOR (the scheme

described above). A floating point operation is defined to

be one multiplication (or division) plus one addition (or

subtraction) . The exact operation counts would be polynomi-

als in n and e. Only the highest degree terms are given in

the table. Since it is not possible to predict the number

of iterations per solution using SOR, the operation count

given for that algorithm is for a single iteration . In
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Table 1 a storage location corresponds to 8 bytes,

comparison it is assumed that each floating point number

requires 8 bytes of storage and an integer requires 4 bytes.

The storage requirement given for SOR is based on the com-

pact storage scheme described by Franke and Salinas

(Ref. 6).

TABLE 1. Operation Counts and Storage Requirements.

ALGORITHM NUMBER OF OPERATIONS NUMBER OF STORAGE LOCATIONS

PER SOLUTION FOR COEFFICIENT MATRICES

SOR 10 en (1) 13 en

SKY 2 en 2 en 2

TENSOR 2 en 2 e 2

Note: 1. Number of operations per iteration .

It is perhaps surprising to note that the number of oper-

ations for TENSOR is no fewer than for SKY. Turning atten-

tion to storage requirements reveals that for a large prob-

lem (e = n = 100, say) the SKY storage requirement for the

stiffness matrix is 8 megabytes, compared with 1 megabyte

for SOR and 80 kilobytes for TENSOR. It is this comparison

which is the compelling reason for preferring TENSOR. It is

acknowledged that there is overhead associated with the one-

time solution of the eigenvalue problem <14>, but the tri-

diagonal form of matrices SB1 and MB1 makes the amount of

computation comparable with that required for a single solu-

tion of Poisson's equation. Since two solutions of Pois-

son's equation are required at each time step, the overhead

is clearly negligible.

It is not feasible to make a definitive comparison

between the number of operations required for SOR and those

required for the other two algorithms. If the number of

iterations is less than 0.2 e, then SOR will be more econom-

ical and the storage tradeoff would need to be weighed.



Conclusions

It has been demonstrated that Dirichlet boundary condi-

tions on all edges of the region are easily incorporated in

solution processes which use tensor product resolution of

the coefficient matrix. For very large problems the tensor

product algorithm uses much less core storage than alterna-

tive choices. The computational expense of a solution to

Poisson's equation is substantially the same for Gaussian

elimination and for the tensor product scheme. It is

expected that successive over-relaxation is almost always

more expensive.
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APPENDIX A - TENSOR PRODUCT AND MATRIX DEFINITIONS

Tensor Product The tensor product of matrices C and D

may be represented in block partition form as

C*D =

Cn D c 12 D Ci 3 D"

c 2 i D c 22 D c 2 3 D

.C31O c 32 D C33D

where the c-jj are the elements of C. Note that, if C and D

have dimensions r x s and t x u, respectively, the tensor

product has dimensions rt x su

.

Definitions for matrices MA and SA are given below. The

corresponding expressions for MB and SB may be obtained by

substituting "b" for "a" throughout and replacing n by e

.

(Symbols a-j and b
-j
are defined in Fig. 1.)

2a x 3 X

MA =i
ai 2(3i+3 2 ) 3 2

3 2 2(a 2 +3 3 ) a 3

n-4) 3 3 2s 3

1 I

ai
" a!

1 1 , 1 _1 /-\— + —

SA =
" a! ai a

:
> a 2

(n-4)
1

" a 2 a2 a3

1

1

"a 3

1

" a 3 a 3

1

10



APPENDIX B

PROGRAM to SOLVE M vr = V with DIRICHLET EOUNDARY CONDITIONS

Listing : GAUSS4 FORTRAN

C MAIN PROGRAM .MASS MATRIX USING TENSOR PRODUCT RESOLUTION
C
C THIS PROGRAM IS DESIGNED TO TEST THE SCHEME (TENSOR)
C WHICH RESOLVES THE MASS MATRIX INTO A TENSOR PRODUCT IN
C ORDER TO SOLVE THE SYSTEM OF EQUATIONS M w = v . IN
C THIS PROGRAM THERE ARE DIRICHLET BOUNDARY CONDITIONS ON
C ALL 4 EDGES OF THE REGION. THE PRESCRIBED BOUNDARY
C VALUES ARE GIVEN IN THE CORRESPONDING LOCATIONS IN V.
C THE SUBROUTINES MAY BE INSERTED IN THE PROGRAM DEVISED
C BY HINSMAN.
C

IMPLICIT REAL*8(A-H.O-Z)
COMMON/ CM1A/NLAT, NLONG
COMMON/ CM8/A(Z1KB7z1]
COMMON AG(ZB),BG(ZC) ,GAD(ZK) ,GBD(ZL) ,MA(ZM) ,MB(ZN)
DIMENSION V(ZP)
READ(5, *) NLONG, NLAT
LATX=NLAT+1
WRITE (6, 1000)

1000 FORMAT (//,' MASS MATRIX - TENSOR PRODUCT RESOLUTIONT I

s&TE ( 6 , 1 1 ) NLONG , NLAT
READ ( 5 *) A.

B

WRITE(6,500)A
WRITEI6.503)B

503 FORMAT?/,' B: ',(24F3.0))
500 FORMATf/,' A:

, ,[24F3.0))
1001 FORMAT (* NLONG = ,13,' NLAT = ',13 ,/J
C CONSTRUCT FACTORS, GAD AND GBD, OF MASS MATRIX

CALL AMTRX3
WRITE (6. 501) AG

501 FORMATf )' AG: ' ,(12F4.1))
WRITE(6;504)BG

504 FORMAT () ' BG : ',(12F4.1))
WRITE?6,l002)GAD

1002 FORMATS, ' GAD '

, / , ( 3X , 6F7 . 3 ) )

WRITE (6, 1004 )GBD
1004 FORMAT?//.' GBD' ,/ ,(3X,6F7.3))

WRITE(6,1006)MB
K=?NLAT-1) -NLONG
L= NLAT -NLONG
READ(5 *)V
WRITE? 6, 5 10 )V

C CORRECT RIGHT-HAND SIDE FOR DIRICHLET CONDITION
LONGM=NLONG-l
DO 2 J=2.LONGM
V ( J+NLONG ) =Y ( J+NLONG )

- (GAD ( 2*J- 1
) *V ( J- 1 ) +GAD (

2 -J- 2

)

l*V(Jl +GAD(2*M)*V(J+lh*GBD(3)
2 V(K+J)=V(K+J)-(GAD(2"J-1)"V(L+J-1)+GAD(2"J-2)"V(L+J)

l+GADi2*J+l)*V(L+J+I))*GBD(2*LATX-l)
CU=GBD(3)
CL=GBD(2"LATX-1)
GBD(3)=0.
GBDf2--LATX-l)=0.
DO 3 J =2, NLAT
Y((J-l)"NLONG+2)=V( (J-l)-NLONG+2)- (GBD(2"J-1)-V( (J-2)

1 -NLONG + l) + GBD (
2 -J - 2 1*V ( (J- 1

) "NLONG + 1 ) + GBD (
2 -J + 1

)

2*vTj*NLONG+l)J*GAD(3)
3 V(J"NLONG-l)=V(J"NLONG-l)- (GBD(2"J-1)"V( (J-l)-NLONG)

1 + GBD ( 2 - J- 2 ) -V (
J -NLONG ) +GBD ( 2 - J+ 1

) *V ( ( J+ I
) -NLONG )

)

2*GADf2*NLONG-l)
GBD(3)=CU
GBD_f2"LATX-l>CL
WRITE (6, 5 10 )V

C PERFORM LDLT FACTORING OF GAD AND GBD
4 CALL FACT 1( GAD, NLONG)

CALL FACTlfGBD.LATX)
WRITE(6,10O2)GAD
WRITE (6, 1004 )GBD
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C PERFORM FORWARD REDUCTION AND BACK- SUBSTITUTION USING
C FACTORS OF GAD

CALL BACKA1(GAD,V)
WRITE(6,510)V
LFORM FORWARDC PERFORM FORWARD REDUCTION AND BACK- SUBSTITUTION USING

C FACTORS OF GBD
CALL BACKBl(GBD.V)

6 WRITeT6,510]V
510 FORMATf/,' V: ' ,5F8 . 2 . / ,

(4X,5F8 .2)

)

1003 FORMATf/,' MA: * , 2X ,3613

)

1006 FORMAT (/,' MB :

'
, 2X, 3613

)

STOP
END

SUBROUTINE FACT1(A,NN)
C
C SUBROUTINE FACT1 PERFORMS L*D*LT FACTORING ON A SUBMATRIX
C OF A SYMMETRIC TRIDIAGONAL MATRIX STORED IN SKYLINE FORM.
C THE SUBMATRIX IS FORMED BY OMITTING THE FIRST AND LAST
C COLUMNS AND ROWS OF THE INPUT MATRIX.
C . - - INPUT VARIABLES
C . A(NWK) = INPUT MATRIX STORED IN COMPACTED FORM
C . NN = NUMBER OF COLUMNS (OR ROWS) IN INPUT MATRIX
C . NWK = NUMBER OF ELEMENTS BELOW SKYLINE (2*NN - 1)
C . - - OUTPUT - -

C . A (NWK) = D AND L - FACTORS OF INPUT SUBMATRIX
C .

C .

IMPLICIT REAL*8(A-H,0-Z)
DIMENSION A(l)

C
C PERFORM L*D*LT FACTORIZATION OF STIFFNESS MATRIX
C

LONGMM=NN-2
A(3)=0.
DO 50 J=2,LONGMM

120
STOP

50 A?2*J+1)=TEMP
2000 FORMATf//, ' STOP MATRIX NOT POSITIVE DEFINITE' //,

1' NONPOSITIVE PIVOT FOR EQUATION ',14,//,' PIVOT = ',

2E20.12)
RETURN
END

,,,„,„,SyBRpyTJNE ,JA£l^nA,V^ ^ ^ , ^
C THIS SUBROUTINE PERFORMS THE FORWARD REDUCTION AND BACK-
C SUBSTITUTION USING THE FACTORS OF GAD
C

IMPLICIT REAL-8(A-H.O-Z)
COMMON/ CM1A/NLAT .NLONG
DIMENSION A(1),V(1)

C
C DEFINE LIMITS FOR DO-LOOPS
C

NTM=NLAT-1
LONGM=NLONG-l
LONGMM=NLONG-2

C
C REDUCE RIGHT-HAND- SIDE LOAD VECTOR
C

DO 100 K=1,NTM
DO 20 J=3,LONGM

20 V (K*NLONG+ J ) =V (K-NLONG+ J ) -V (K-NLONG+ J- 1
) *A( 2*J- 1

)

C DIVIDE BY DIAGONAL ELEMENTS
C

DO 40 J=l,LONGMM
40 V(K*NLONG+J+l)=V(K»NLONG+J+l)/A(2*J)

C BACK- SUBSTITUTE
C

12



DO 60 J=3,LONGM
L=(K+ll"NLONG-J+l
M= 2 "(NLONG -J) + 3

60 v{l)=v7l)-v(l+i)*a(m)
100 continue

PFTURN
END

C

C THIS SUBROUTINE PERFORMS THE FORWARD REDUCTION AND BACK-
C SUBSTITUTION USING THE FACTORS OF GBD

.

C
IMPLICIT REAL*8(A-H,0-Z)
COMMON/CM1A/ NLAT. NLONG
DIMENSION A(l) ,V(1)

C
C DEFINE NEEDED INDEX VARIABLES
C

LATX=NLAT+1
LONGM=NLONG-l

C
C REDUCE RIGHT-HAND- SIDE LOAD VECTOR
C

DO 100 K=2,LONGM
DO 20 J=3,NLAT

20 V(K + (J-l)-'NLONG)=V(K+ ( J- 1 ) -NLONG ) -V(K+ (J-2)*NL0NG)
1*A(2*J-1)

C
C DIVIDE BY DIAGONAL ELEMENTS
C

DO 40 J=2,NLAT

C BACK- SUBSTITUTE
C

DO 60 J=3,NLAT
60 V(K+ (LATX-j7*NLONG)=V(K+ (LATX- J)-NLONG)

1-V(K+(1+LATX-J)*NL0NG)*A(2*(LATX'-J) + 3)
100 CONTINUE

RETURN

C THIS SUBROUTINE FORMS THE MASS MATRIX IN THE FORM OF A
C TENSOR PRODUCT OF THE GBD MATRIX AND THE GAD MATRIX.
C THE FIRST OF THESE IS NLAT + 1 BY NLAT + 1, SYMMETRIC,
C AND TRIDIAGONAL. THE SECOND IS NLONG BY NLONG, SYMMET-
C RIC, AND TRIDIAGONAL. NOTE THAT THERE ISNO CYCLIC
C BOUNDARY CONDITION IN THE EAST-WEST DIRECTION. BOTH GBD
C AND GAD ARE STORED IN SKYLINE VECTOR FORM ?UPPER TRIANGLE
C WITH SPACE FOR FILL-IN). INTEGER ADDRESS VECTORS MB AND
C MA ARE ALSO GENERATED.
C

IMPLICIT REAL*8(A-H.O-Z)
COMMON/ CM 1A/ NLAT , NLONG
COMMON/ CM8/A(Z1) >B(Z1)
COMMON AG(ZB) .BGIZC) .GAD(ZK) , GBD(ZL) ,MA( ZM) ,MB(ZN)

C DIMENSION BG ( NLAT ), AG (NLONG ),GBD(2"NLAT-1),
C lGAD(3*NLONG-3) ,MA(nLONG+1) ,MB(NLAT+2)

LATX=NLAT+1
LONGM=NLONG-l

C FIND BG = [ELEMENT HEIGHT) /6.
LONGM=NLONG-l
DO 2 J=1,NLAT

2 BG(J)=B(l+LONGM*(J-l))/3.
C GENERATE GBD

GBD(1)=2.*BG(1)
DO 4 J=2,NLAT
K=2*(J-l)
GBD(K)=2.*(BG(J-1)+BG(J))

4 GBD(K+1)=BG(J-1)
GBD (

2 -NLAT ) = 2 . -BG (NLAT

)

13



GBD ( 2*NLAT+ L ) =BG (NLAT

)

C FIND AG = (ELEMENT WIDTH)/

6

DO 10 J= I, LONGM
10 AG(JI=A(JJ/3.
C GENERATE GAD

GAD(1)=2.*AG(1)
DO 12 J= 2, LONGM
K=2*(J-1)
GAD(K)=2. *(AG(J-1)+AG(J)

)

12 GAD K+1)=AG(J-1)
GAD ( 2*LONGM ) = 2*AG ( LONGM

)

GAD( 2*LONGM+ 1} =AG fLONGM)
C GENERATE DIRECTORY VECTORS

MB ( 1 ) = 1
DO 16 J=1,NLAT

16 MB(J+1)=2*J
NLAT+2)=2*(NLAT+1)
11=1
18 J=2,NLONG

MA(j}=2"(J-l)
MAXNLONG+ 1 ) = 2*NLONG
RETURN
END
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PROGRAM - POISSON'S
APPENDIX C
EOUATION with
CONDITIONS

DIRICHLET BOUNDAR"

Li sting : GAUSS 5 FORTRAN

C
C
c
c
c
c
c
c
c
c
c
c

MAIN PROGRAM STIFFNESS
RESOLUTION

MATRIX USING TENSOR PRODUCT

1000 STIFFNESS MATRIX TENSOR PRODUCT

503
500
1001
C
c

501

504

1002

1012

1004

1014
C

(24F3.0n

NLAT =' 13,/)
AND SA2 OF STIFFNESS

520
521
510

C
C
C

C
C

THIS PROGRAM IS DESIGNED TO TEST THE SCHEME WHICH
RESOLVES THE STIFFNESS MATRIX INTO A SUM OF TWO TENSOR
PRODUCTS IN ORDER TO SOLVE THE SYSTEM OF EQUATIONS
K W = V. THERE ARE DIRICHLET BOUNDARYCONDITIONS ON
ALL 4 EDGES OF THE REGION. THE PRESCRIBED BOUNDARY
VALUES ARE GIVEN IN THE CORRESPONDING LOCATIONS IN V.
THE SUBROUTINES MAY BE INSERTED IN THE PROGRAM DEVISED
BY HINSMAN.

IMPLICIT REAL*8(A-H.O-Z)
COMMON / CM1A/ NLAT , NLONG
COMMON/ CM8 /A ( Z 1 ). B[Z 1]
COMMON AG(ZB],BG(ZC).GA1(ZK) ,SAl[ZK) .GBl(ZL) ,SB1(ZL)
DIMENSION V(ZP],Wl(z6) ,P(ZR) ,D(ZS) ,u(ZT)
READ(5, *) NLONG NLAT
LATX=NLAT+1
WRITE (6, 1000)
FORMAT?/ 7,

'

1RESOLUTION' ,/)
WRITE? 6 , 100 1) NLONG , NLAT
READ? 5. -O A. B
WRITE (6, 5 00)

A

WRITEX6.503)B
FORMAT?/,' B.
FORMAT (/,' A: ' {24F3.0
FORMAT ( NLONG = ,13,

'

CONSTRUCT FACTORS, GAl, GB1, SAl
MATRIX

CALL AMTRX4
WRITE (6, 501) AGV AG: '

504)BG
BG '

'

1002)GA1
3 GAl',/,
l012)SAl
,' SAl',/,
i004)GBl
/.* GB1',/
1614)SB1

FORMAT (//,' SB1' /
LOAD BORDER VECTOR Wl

READ(5.-)V
CALL BORDER (W1,V)
WRITE(6.510)V
Ll=4"NLONG
L2=L1+1
L3=L1+4*LATX
WRITE(6,520)(W1(L) ,L=1.L1)
WRITEX6,521)(W1(L) ,L=L^.L3)
FORMAT^/, W1 V

,/ (3X,^F8.2))
FORMAT (3X5F8. 2)

wi(L
W1(L

v>
v,s

FORMAT
WRITE?
FORMAT
WRITE?
FORMAT
WRITE?
FORMAT
WRITE?
FORMAT
WRITE(6,

(12F4.1))

.(12F4.1))

(3X.6F7.3))

(3X,6F7.3))

(3X,6F7

(3X,6F7

3))

3))

CALL MU
WRITE (6
WRITE
WRITE
CALL
WRITE
WRITE
CALL
WRITE
WRITE
WRITE
READ(

520
6;521
6,510
ORDER
6,520
6,521
ULT1H
6,510
6,520
6,521

5))

^L2,L3)

,L=1.

l,GBl)

h
tt

JL

530

)P

W
lJ!l=L2,L3)

WRITE(6,530)P
FORMAT(/, T

P: '
, / ,

( 6X , 3F12 . 4)

)
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READC5 *)D
WRITE?6,531)D

531 FORMAT (/,' D: \3F12.4)
C
C FORM U = VINT*P
C

LONGM=NLONG-l
LONGMM=NLONG-2
NLATM=NLAT-1
DO 30 L=1.NLATM
JP1=(L-1)-NLATM
KUl=CL-lj*(NL0NG-2)-l
DO 29 K=2,LONGM
TEMP=0.
DO 28 J=1,NLATM
JV=J-NLONG+K
JP=JP1+J

28 TEMP=TEMP+V(JV)*P(JP)
29 U(KU1+K)=TEMP
30 CONTINUE

WRITE(6,532)U
532 FORMAT??, 1 U: '

,
/' (6X, 4F12 . 4)

)

CALL FFFDB(U,D,GA1,SA1)
WRITE(6,532)U

C
C PUT FINAL RESULT IN V
C

DO 40 L=1,NLATM
DO 3 9 K=l,LONGMM
TEMP=0.
DO 38 J=1,NLATM

38 TEMP = TEMP + P((J-l)'vNLATM+L)'vU((J-l)»LONGMM+K)
39 v7l*NLONG+K+1)=TEMP
40 CONTINUE

WRITE (6, 5 10 )V
STOP
END

C
C***********^**************^^

SUBROUTINE BORDER (Wl.V)

C
C THIS SUBROUTINE CLEARS THE BORDER VECTOR Wl AND
C SUBSTITUTES THE BOUNDARY VALUES FROM V.
C

IMPLICIT REAL*8(A-H.O-Z)
COMMON/ CM1A/NLAT,NL0NG
DIMENSION W1(ZQ),V(ZP)
LATX=NLAT+1
NC=4*NLONG
NR=4*LATX
NB=NC+NR
DO 4 J=1,NB

4 W1(J)=0.
DO 6 J=l,NLONG

6 Wl(J)=vfj)
DO 8 J=l,NLONG
L=3"NLONG+J
K=NLAT*NLONG+J

8 W1(L}=V(K)
DO 10 J=1,LATX
L=NC+J
K=(J-l)*NLONG+l

10 W1(L) = V(K)
DO 12 J=1,LATX
L=NC+3*LATX+J
K=J-NLONG

12 W1?L)=V(K)
RETURN
END

SUBROUTINE AMTRX4

C THIS SUBROUTINE FORMS THE MATRICES GA1, GB1, SA1, AND SB1
C THAT ARE FACTORS IN THE TENSOR PRODUCTS USED TO FORM THE
C COEFFICIENT MATRIX ("STIFFNESS" MATRIX) FOR THE POISSON

16



C EQUATION. ALL OF THESE MATRICES ARE SYMMETRIC AND
C TRIDIAGONAL.
C

IMPLICIT REAL*8(A-H.O-Z)
COMMON/ CM1A/NLAT , NLONG
COMMON / CM^ / A < Z

1

N
< B ( Z 1

)

COMMON AG(ZBl,B6lzC),GAl(ZK) , SAl(ZK) , GB1(;
DIMENSION BG(NLAT) , AG (NLONG) , GB1 (2*NLAT-

I

C
C lGAl(3*NLONG-3)
C

LATX=NLAT+1
LONGM= NLONG -1

C FIND BG = (ELEMENT HEIGHT) /6
NM= NLONG -1
DO 2 J=1,NLAT

2 BG(J)=B(i+NM*(J-l))/3.
C GENERATE GB1 AND 6*SBi

GBlfl)=2.*BG(l"
SBlf 1) = 1- /BGU
DO 4 J=2,NLAT
K=2*(J-l)
GB1(K)=2.*(BG(J-1)+BG(J))
GB1 K+1)=BG(J-1)
SB1(K)=1./BG(J-1)+1./BG(J)

4 SB1(K+1)=-1./BG(J-1)
gb i ( 2*nlat ) = 2 . *bg ( nlat

)

gbi(2"Nlat+i)=bg7nlat)
sb1(2*nlat)=1. /bg(nlat)
SBlf2*NLAT+l)=-l. /BG(NLAT)
J2=2*NLAT+1
DO 6 J=1,J2

6 SBl(J)=SBl(J)/6.
C FIND AG = (ELEMENT WIDTH) /6.

DO 10 J=l, LONGM
10 AG(J)=A(j)/3.
C GENERATE GA1 AND 6-SAl

GA1(1)=2.*AG(1)
SAlfl)=l./AG(l)
DO 12 J= 2, LONGM
K=2*(J-1)

" (K) = 2

C T! "* f 1 T \

GAl(K)=2.*iAG(J-l)+AG(J))
GA1(K+1)=AG(J-1)
SA1(K)=1./AG(J-1)+1./AG(J)
GA1(K+1)=AG(J-1)
SA1(K)=1./AG(J-1)+1.

12 SAlfK+lt=-l./AG(J-l)
GA1 (

2 -L0NGM ) = 2 -AG (LONGM

)

GA1 f
2*LONGM+

1

) =AG (LONGM

)

SA1(2'vL0NGM) = 1./AG7L0NGM)
SA1 f 2--LONGM+ 1 ) = - SAI (

2 -LONGM)
J2=2*NLONG-l
DO 14 J=1,J2

14 SAl(J)=SAi(J)/6.
RETURN
END

C******** ** ** ** >. * * ****** -** ***•

SUBROUTINE MULT1 (Wl , V , A,B)

C SUBROUTINE PREMULTIPLIES Wl MATRIX BY TRUNCATED A MATRIX
C (FIRST AND LAST ROWS OMITTED) , POSTMULTIPLIES PRODUCT BY
C TRUNCATED B MATRIX 7FIRST AND LAST COLUMNS OMITTED}, AND
C SUBTRACTS INTERIOR ELEMENTS OF Wl FROM CORRESPONDING
C ELEMENTS OF V.

C
IMPLICIT REAL*8(A-H.O-Z)
COMMON/CM LA/ NLAT, NLONG
DIMENSION Wl(ZQ) ,V(ZP) ,A(1) ,B(1)
LATX=NLAT+1
LONGM=NLONG-l
FCU=W1(1)
RCU=W1(3-NL0NG+1)
L1=4*NL0NG
L2=L1+1
L3=L1+4*LATX
DO 2 J= 2, LONGM
K=2*(J-l)
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L=3*NL0NG+J
FCC = A(K+ 1

) *FCU + A (K ) *W1 ( J ) +A (K+ 3 ) *W1 ( J+ 1

)

RCC=A (K- 1
) *RCU+A (K ) *W1 (L ) + A (K + 3

) *W1 (L+ 1

)

FCU=WI(J
X

RCU=W1(L
W1(J)=FCC

2 W1CL)=RCC
LASTA=2*NL0NG-1
DO 4 J=2,NLAT
L=4*NL0NG+J
LL=L+LATX
K=L+3*LATX
KK=K-LATX
Wl(LL)=AC3)*Wl(L)

4 Wl(KK)=AiLASTAj"Wl(K)
C WRITE 6,520)(Wl(L),L=l.Ll)
C WRITEI6.521)(W1(LJ ;l=L2,L3)
520 FORMAT?//, ' INTERMEDIATE RESULT, Wl

' , / ,
( 3X , 5F8 . 2 )

)

521 FORMAT (3X6F8. 2)
LASTB=2*LATX-1
NC=4*NL0NG
Wl (NLONG+ 2) =B ( 3

) -Wl ( 2 ) +B (2 ) *W1 (NC+LATX+2 ) +B (5

)

1*WICNC+LATX+3J
Wl (

2 -NLONG- 1) =B ( 3
) *W1 (NLONG - 1 ) +B ( 2

) *W1 (NC + 2*LATX+ 2

)

l+B(5)*Wl(NC+2*LATX+3)
WlC2"NLONG+25=BfLASTB-2)*Wl(NC+2"LATX-2)+B(LASTB-3)
1*WI7nC+2*LATX- 1 ] +B(LASTB ) -Wl ( 3 -'NLONG + 2]
Wlf3 v-NLONG-l)=B(LASTB-2)"Wl(NC+3"LATX-2)+B(LASTB-3)
1*WI (NC+3*LATX- 1 ) +B (LASTB ) *WI (NC- 1

)

J2=NLONG-2
DO 6 J=3,J2
W1(J +NL0NG>B(3)*W1(J)

6 Wl ( J + 2*NLONG ) =B f LASTB ) -Wl ( J+ 3*NLONG

)

URL=Wl(NC+LATX+2)
BRL=W1 [NC+2 "LATX+ 2

)

J2=LATX-2
DO 8 J=3,J2
ND=2-(J-i)
NCU=NC+LATX+J
URC = B(ND+lV-vURL + B(ND)*Wl(NCU)+B(NDO)*Wl(NCU+l)
BRC=B(ND+12"BRL+B(ND)"W1(NCU+LATX)+B(ND+3)
1*W1(NCU+LATX+1)
URL=W1(NCU)
BRL=W1(NCU+LATX)
W1(NCU)=URC

8 W1(NCU+LATX}=BRC
Wl ( NC +LATX+2 ) = W1 (NLONG + 2

)

Wl(NC+2"LATX-l)=Wl(2"NLONG+2)
Wl C NC + 2 -LATX+ 2 1 =W1 (

2 "NLONG - 1

1

Wl (NC+ 3*LATX- 1 ) =W1 (
3 -NLONG- 1

)

C
C CORRECT V
C

NLATM=NLAT-1
DO 10 J=3,NLATM
L=NC+LATX+J
K=(J-l)"NLONG+2
V(fc)=V(K)-Wl(L)
L=LATX+L
K=J*NLONG-l

10 winm?1™
DO 12 J=2,J2
L=NLONG+J
V(L)=VTL)-W1(L)
L=2-NL0NG+J
K= (NLAT-l)*NLONG+J

12 Y($)=V(K)-W1(L)
RETURN
END

SUBROUTINE FFFDB (X , E , GA, SA)
C
C THIS SUBROUTINE SOLVES A SUCCESSION OF ONE-DIMENSIONSAL
C PROBLEMS. THE RELEVANT COEFFICIENT MATRIX C IS FIRST
C FORMED, THEN FACTORED, FOLLOWED BY FORWARD REDUCTION,
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C DIVISION BY THE DIAGONAL ELEMENTS, AND BACK SUBSTITUTION.
C THE PROCESS IS CARRIED OUT NLATM TIMES.
C

IMPLICIT REAL*8(A-H.O-Z)
COMMON/ CMIA / NLAT . NLONG
DIMENSION X(l) .E(l) ,GA(1) ,SA(1) ,C(ZU)
NLATM = NLAT -t
LONGM= NLONG -1
LONGMM=NLONG-2
DO 50 L=l, NLATM

C
C FORM COEFFICIENT* MATRIX C
C

D1=E(L)
C?1)=SA(2)+D1*GA(2)
J2=2*NLONG-5
DO 2 J=2,J2

2 C(J)=SA(J+2)+Dl*GA(J+2)
C
C FACTOR C
C

TEMP=C(3)/C(1)
C(2)=C(2i-TEMP*
IF(C(2))7,7,3
C?3)=TEMP
J2=LONGMM-I
DO 5 J=2,J2
TEMP=C(2-J+1)/C(2*(J-1))
C1 2 *J ) = C (

2 *J ) - TEMP"C ( 2*J+ 1

)

If7c(2*J))7,7
Cf2*J+l)=TEMP

7 WRITE(6,1000)J.C(2*J)
1000 FORMATHZ j.' STOP - MATRIX NOT POSITIVE DEFINITE' //,

1
T NONPOSITIVE PIVOT FOR EQUATION ',13,//,' PIVOT = ',

2D20.12)
STOP

C
C PERFORM FORWARD REDUCTION
C
8 J2=(L-l)"LONGMM

DO 10 J=2.LONGMM
10 X(J2+J)=x(j2+J)-X(J2+J-l)*C(2*(J-l)+l)
C
C DIVIDE BY DIAGONAL ELEMENTS
C

X(J2+1)=X(J2+1)/C(1)
do 12 j=2:longmm

12 x(j2+j)=x(j2+j)/c(2*(j-1))
C
C BACK- SUBSTITUTE
C

DO 14 J=2,LONGMM
JB=J2+LONGM-J

14 X( JB ) =x7JB ) -X ( JB+ 1
) *C (

2
~ (LONGM- J ) + 1

)

50 CONTINUE
RETURN
END
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