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SCHEDULING FLIGHTS AT HUB AIRPORTS

In a typical hub airport, incoming flights from many origins feed outgoing

flights to many destinations. If an incoming flight is late, outgoing flights

which are fed by it may also be delayed eventually. Alternately, planes may

leave before some feeding flights arrive, thereby incurring high misconnection

penalties. Clearly, if we plan for very long scheduled ground time between the

last incoming flight and the first outgoing one. we can reduce the risk of

unscheduled delays or misconnections. However, such a schedule may cost the

airline too much in terms of idle personnel and equipment and will not be

attractive to the passengers either. On the other hand, if we plan for very

short scheduled ground time, we run the risk of excessive unscheduled delays,

and/or misconnection penalties. In this paper we develop models designed to

optimize the scheduled ground time under two pure policies: (i) to wait as long

as necessary to ensure all connections, and (ii) not to wait at all (i.e.. pay

misconnection penalties rather than delay penalties). The models can also be

applied to similar problems such as express parcel deliveries and ground

transportation hubs.





Introduction:

Our concern in this paper is scheduling connections at a hub facility,

where the timing of arrivals and departures is subject to stochastic variation.

It is presented in terms of passenger air service, but can also be applied to

various other hub networks operations; e.g.. express parcel deliveries, central

warehouses break-bulk/consolidation operations etc.

The basic premise is that the arrivals at the hub feed the departures, and

hence the scheduling of the arrivals and of the departures has to be coordina-

ted. A complicating factor is that the arrivals may run behind schedule—an

issue which is usually not taken into account explicitely in airline scheduling

models. In fact, the arrival time is a stochastic variable influenced by a

multitude of conditions, both in and out of the airline's control. For

instance, weather conditions at the hub itself and in the other airports may

impact the on-time performance. Similarly, when many planes are scheduled to

land or take off within an interval of two or three minutes then even under

perfect weather conditions some stochastic queueing delays will certainly

result.

We present two basic models: (i) where all departures which need to be fed

by late arrivals wait as long as necessary—and thus may get delayed as well and

incur a lateness penalty, and (ii) where departures never wait, and instead

there is a misconnection penalty. The objective in both cases is to minimize

the total expected time and penalty expenditure.

In both cases we assume that the arrival time delays are independent of

each other. In reality, this assumption is not totally justifiable, since

conditions at the hub may impact all arrivals, and since the weather across

several airports may be correlated. However, we need the assumption to achieve

tractability. In practice, if we have adverse weather conditions at the hub. we
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may have to resort to a revised schedule which allows more time between flights,

and at the same time accept more misconnections. On the other hand, if the

problems at the hub are due to conjestion*- ' we may expect some degree of

dependence among the delays, but we do present a scheduling policy which tends

to minimize this effect by specifying gaps between adjacent arrivals or

departures.

The literature on airport scheduling to date is concerned mainly with

deterministic models, and is thus not directly relevant for us here. For

r o
1

instance, see Etschmaier and Mathaisel"--^-" . A stochastic model similar to ours

was presented by Hall'- . and is concerned mainly with transit passengers, where

several feeder lines serve a single train. The policy adopted is no-waiting,

assuming there will be a later train. The objective is to minimize the total

expected time in the system. The focus is on the exponential distribution, and

the results are in terms of this special case.

The first model in this paper—where we assume departures wait for all

connecting passengers—is an extension of a project purchase order scheduling

model developed by Ronen and Trietsch'- '
. which in turn is a generalization

of the classic newsboy problem. The project purchase order model is concerned

with ordering stochastic lead time project items just in time to minimize the

sum of their holding cost and the expected project lateness penalties incurred

if any items are late. The project items are analog to our feeder flights, and

the project lateness is analog to departure delays. However, in the project

problem we feed just one project, while in the hub connection problem we feed

several departures. In addition, there is no analog there to the conjest ion

issue. Thus the model requires considerable modification for our purpose.

In Section 1. we briefly describe the main results of [8]. as a basis for

our model here. Section 2 introduces our own first model formally. Section 3
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gives an approximate solution when the arrival and departure times (our decision

variables) are not constrained. This solution calls for almost simultaneous

departures (but not necessarily simultaneous arrivals). Since such a practice

would lead to certain queueing delays in the departures f its applicability is

questionable. Therefore i in Section 4 we present a solution for a case where

the arrivals and departures are constrained to be staggered by a specified

amount (say three minutes), and we look for the optimal scheduled ground time

between the last arrival and the first departure. Section 5 is devoted to the

second model where departures take place regardless of pending arrivals, and

late passengers are accommodated by other flights, at a fixed penalty cost. In

Section 6, the conclusion, we discuss the interaction of our models with other

operational decisions and with each other. Most of the issues in Section 6

require further research at this stage, but cannot go unmentioned here. Four of

the points we discuss are (i) how to use the results from the two pure models to

support a more balanced policy which prevents long waiting and excessive

misconnections at the same time; (ii) the mutual influence between the speed

choice of the aircraft and the scheduling problem; (iii) the impact of our

solution on the gate assignment problem; and (iv) how to assign aircraft to

flight segments in and out of the hub so as to minimize the expected misconnec-

tion penalties.
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1. The Generalized Newsboy Model:

Consider the following problem: The completion of a project hinges upon

receiving all the purchased components by the time they are scheduled to be

used. Ordering too soon will cause excessive inventory holding costst while

ordering too late is likely to delay the whole project, and thus incur the

project delay penalty cost. In order to minimize the total expected cost of the

project, each of the orders has to be scheduled optimally.

If there is only one purchased component, the optimal ordering time is

calculated by an almost direct application of the newsboy model, in such a

manner that the probability of delay multiplied by the delay penalty will equal

the complementary probability multiplied by the inventory holding cost of the

component per time unit. Vfiien more than one item is involved, the problem is

more complex. On one hand, it is enough that one item will be delayed to delay

the whole project, and thus incur the penalty cost in addition to the holding

cost of those items which did arrive in time. Intuitively, this may push us to

order even earlier than in the one item case. On the other hand, if several

items are late we should not penalize each of them with the full delay cost, but

rather have them "share" the burden. This in turn may push us to order later.

It becomes quite clear that intuition alone is not likely to produce a good

solution here. We introduce the following notation:

• P lateness penalty for the project ($/day)

• C^ holding cost for item i. i=1.....n ($/day)

• t project due date. (For simplicity we assume that this is also the due

date of the items. See [7. 8] for a more sophisticated version.)

• T^ time item i is ordered (our decision variable)

• Tj_ optimal value of T^
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• Fj^() cummulative distribution function (CDF) of item i's lead time. That

iSf Fj^(t - T^) = Pr{item i will arrive before time t}. Similarlyt

Fj^(t - T^) is the probability item i will arrive in time. F.() is

assumed stationary and independent of F^(); ¥• j d i

fj_() density function of item i's lead t ime

• F^ F^(t -T^), i.e.t the optimal probability item i will be in time

^
• F^ Upper bound on F^

• JE-i Lower bound on Fj^

• S P + X^i* (S is defined for convenience in presenting the results.)

Then in order to minimize the total expected holding costs and project

lateness penalty the following set of nonlinear equations must be satisfied by

Tj^ (i = 1 , . . . .n)

C^ = S / fj^(t-T^) ||Fj(t-Tj)dt ; i = l,.....n. (1.1)

^J j^i

We also have the following expressions for the bounds Z-i and F^

T^ = 1 - C^/S ; i = 1. ... , n, (1.2)

i^ = 1 - C^/Csjlilj) ; i = 1 n. (1.3)

As shown in [8], if we define A^ = C^/S and x = £.-; ; j = 1»...»n. then

Hi = X / (x + Aj^), (1.4)
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and (1.3) has a valid solution iff the polynomial

g(x) ='fj(x + A^) - x'^"'' = (1.5)
4=/

has a positive root x < 1. Thus the solution of the set of equations (1.3) is

reduced to a search over a single variable, x. Once x is found. (1.4) is used

to obtain F_^. If more than one such root exists, we pick the largest. Loosely

speaking we may say that the bound (1.3) exists for relatively low values of

C^/S. Furthermore, for such low C^/S values the upper bound and the lower bound

tend to be close to each other.

Since Fj^() is monotone, and assumed given, it is straightforward to compute

T^ given F^. Similarly, given Fj, we can easily find a lower bound for Tj^. and

given F^ an upper bound for T^.

2. The Hub Scheduling Model:

Suppose we have n+1 origin/destination points indexed by i=0.1.....n. where

is the index of the hub itself. V/e use the following notation

• c time unit value per average passenger

• p delay penalty per time unit per passenger (p > c)

• D^^^ average satisfied demand from origin i to destination j

• S^ scheduled arrival time for flight (i.O)—a decision variable

• T^ scheduled departure time for flight (O.j)—a decision variable

• S^ optimal S^^ value

• T^ optimal T^ value

• F^O CDF for delays in flight (i.O). Assumed independently distributed ¥ i

• FqO CDF for delays in takeoff for flight (O.j) n^t due to waiting for
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incoming flights. Assumed identically distributed and independent V- j

• Pj '^i=o,nPDi.j ; J='' "

• C. Zj,i,nCDi,j ; i=1....,n

• d(i) final destination of the aircraft assigned to (i,0)

• o(j) origin of the aircraft assigned to (0,j), i.e.. the inverse of d(i)

• b^ time unit value of the aircraft and crew assigned to the (i.O) sej^ment

(thus the value on the (O.j) segment is b^^^))

VJe assume that F^ is given, and that the departure of (i.O) from i is sche-

duled ahead of S^ by a prespecified period. A more sophisticated version is

discussed in Section 6. Our objective function is to minimize the total

scheduled time costs plus the total unscheduled delay penalties, i.e..

j=1 ^ -^ i=1 i = 1 j = 1 ^
-^

^"'j * t'o(J)'/ <^

Jjo''''"
-Sk''dt +^pDi,o/(l - Fi(t))dt <2.1)

s.t.

min{T^} >.Max{S^} ; i, j = l,.....n (2.2)

where Sg = T. ; V- j. Note that the first part of the objective function is a

deterministic cost associated with the scheduled gaps between arrivals and

departures, while the second part adds stochastic penalties for unscheduled

delays. In particular, there is no incentive to arrive ahead of schedule; such
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early arrivals would be recorded as arrivals on time as far as the objective

function is concerned. Also note that (2.2) implies that connections require

zero time. In reality, it is necessary to add an appropriate constant minimal

connection time to the model. A simple way to do so would be to redefine the

scheduled departures as the model's T^ plus the constant. To determine the

magnitude of this constant is a separate problem similar to our bigger model

—

we need to allow enough time so that the probability the connection will be

large enough to avoid a large expected misconnection penalty, yet not so large

that the cost of the allotted time itself will become excessive.

To continue, assuming that Z is differentiable, and using the Leibnitz

method, we obtain the following partial derivatives for (2.1)

^Z n f n

=y~[-cD. . + (p. + b_/ .^)/ f--(t-Si)TrFi,(t-Si^) dt] - b. ; Vti, (2.3)
hs^ f^^

''J J °^JW ' ' k=o ^ ^ '

tJ k^i

--- =^^°i.j - (Pj -^ ^o(j))(l "Jo^K^Tj-V) - ^(j) ; ^ J- <2.4)

Though we have 2n equations for 2n decision variables, it is clear by

observation of the objective function that if we add a constant to all the

variables, Z will not change. Therefore, we can fix one of the variables to our

convenience. Furthermore, due to (2.2), some Sj^ (or alternately T^) values may

have a binding constraint. In all other instances the partial derivatives

should be set to zero. This can only be done numerically. Though (2.3)

involves integrals, when we resort to numeric methods there is no conceptual

difficulty in representing them by appropriate sums and still achieve any

required degree of accuracy. (Of course it is much more convenient to avoid
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having to deal with integrals if possible. Indeed, the solution we present in

Section 4 does not involve direct computation of integrals.)

In the next two sections (3 and 4) we discuss two special cases, namely

(i) if it is possible to schedule many flights to take off at the same time—

a

clear impossibility (though one can still encounter timetables which look as if

this assumption was made); and (ii) when the schedule is constrained in such a

manner that planes are scheduled to arrive and leave at fixed intervals, and we

only need to determine the optimal interval between the last arrival and tne

first departure (above and beyond the minimal connection time).

3« Thg Ungapa<?itate<a Case—An ApprgxiTOtc solution;

Consider the (imaginary) case where the airport itself has an infinite

capacity to support any number of takeoffs/landings simultaneously. In this

case it makes perfect sense to schedule all departures (and/or all arrivals) at

the same time —if minimizing the objective function calls for it. We proceed

to show that for the departures this is approximately the case. For this

purpose we resort to a simplified case where the b^^ values are assumed to be

zero. The real expenses represented by b^ are assigned equally to all passen-

gers and thus become part of c and p. Rewriting (2.4) for this case and

rearranging the terms slightly we get

l"
=Pj[I^=t),,j/Pj - (1 -J]^F,(Tj - S,))] ; ^ j. (3.1)

Now observe the term ^cD^ ^/P^. By definition P^ = 2_i::0,nP^i. i
' ignoring

Dq^^, it can be approximated by ^^_-] ^j^pDj_ ^. But if we do this, then (3.1)

becomes
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^Z n— =Pj[c/p - (1 -TTFkCrj - \))] ;
y- j. (3.2)

DTj k=0

Since our objective is to find the value of T^ which drives (3.2) to zero, we

may observe now that the same value of T will solve (3.2) V- j. Furthermore t we

are allowed to set one variable arbitrarily, so we can state T^ = t ; V- j!

The latter approximation will not be significant if Dq V^j^_i ^D^
^

is

small V- j. Even if Dg, -j/Xi=i ,n'-'i, i
^^ "°^ small, but is approximately constant

^ j. we would just have to replace c/p with a smaller positive constant, and the

major result—namely that T^ = t V- j—will remain valid. Note also that (3.2)

has a solution only if Fj^(Tj - S^^) > ; V- k. i.e.. if constraint (2.2) is

satisfied.

To continue, if we substitute T^ = t ; V- j for T^ in (2.3). set bj^ = and

open the brackets we obtain

d Z n n / n

-cD. . +5~P. /f. (t - S.) TT Fi^(t - Si^) dt ; V i. (3.3)
as. jTl

''J
jTl \ ' ' k=0

^ ^

t-^ kii

And by the definition of C^^ and P. we can write it as

(3.4)

Note that if we substitute P by S (3.4) is almost identical to (1.1)—the

only difference being that in (3.4) we have to take account of FQ(t - t ) which

has no analog in (1.1). This implies that all the results stated in Section 1
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for the project case, hold approximately for the hub scheduling problem.

Indeed, once we set T^ = t ; V- j. we can speak of our proolem in terms of

a "project" which is to clear the departures at time t . The incoming flights

are analog to the purchased materials. The only difference is that even if all

incoming flights are in, it may still happen that some departures will be

delayed due to specific problems relevant to them. Therefore, the expected

penalty attributable to delays in incoming flights is slightly smaller—which is

where Fq comes in.

In particular, we may write the following analogs to the bounds (1.2) and

(1.3) respectively

F^ = 1 - C^/P ; i = 1 n, (3.5)

F.^ = 1 - C^/(p'[j£.j) ; i = 1, n, j = 0,1 n. (3.6)

Though we have the term Fq as part of (3.6). the solution is exactly as

described in Section 1. with A^ = C^/P and x defined with j = ,n (instead

of j = 1 . . . . . ,n)

.

The results in this section are approximate due to the fact that we

allocate the aircraft's time value to the passengers, and ignore the fact that

the fraction of passengers bound to the hub itself may be significantly

different for some origins. However, since the basic assumption of infinite

capacity is such a strong assumption, we do not require an exact solution for

this case anyway. The major contribution of this section is the insight that

the departures are likely to be close to each other in the uncapacitated case.

Since this is a super-optimal solution, we can conclude that the gap between

adjacent departures should be kept as low as possible.
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^L The Capacitated Case:

Needless to say. airports do have limitations on their capacities. There-

fore, the approximation presented in Section 3 cannot be seriously recommended.

Still, some airlines tend to schedule many departures at practically the same

time (e.g.. 15 flights between 6:00PM to 6:05PM). It seems that the reason they

do this is in order to list attractive departure times (i.e.. departures which

are likely to appear on the first screen monitored by travel agents). The

results are long queueing delays, and an obvious decrease in the total system

utility.

Fortunately there are indications that this practice will be curtailed in

the near future. Indeed, airports today start to crack down on practices such

as moving the plane a few feet from the gate to create an "on-time" departure

even before the plane is allowed to taxi; they also do not allow planes to taxi

when too many other planes are in line ahead. Such policies will force airlines

which insist on scheduling under the infinite capacity assumption to have to

report many late departures. Also, some airlines may realize that passengers

spending 25 minutes or so in a takeoff queue, and observing that 90% of the

planes in line are operated by their own carrier, cannot help but blame it for

the delay, thus they are likely to avoid such practices even if they are not

forced to do so officially.

A general finite capacity model for our problem might incorporate (2.1) and

(2.2) as before, plus an additional set of constraints such as

>^i
- \\ >-/\

p, ; y-k ^ i, (4.1)
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where /\ ^ and /\ p specify minimal scheduled gaps between arrivals and depar-

tures respectively (we do not assume /\ ^ = '^ D^* Unfortunately f such a model

would be very difficult to implement i due to the large number of constraints.

Therefore we proceed to look for simpler models. VJe propose a basic model which

is very simple to computet and an improvement based on it which requires more

computation but is still quite tractable.

In both the bacic and the improved models we assume that the sequence of

the arrivals and the sequence of the departures are determined separately (we'll

discuss how in Section 6). This reduces the number of constraints considerably,

and makes them simpler as well (no need to deal with absolute values). In the

basic model we also assume that the scheduled gap between adjacent flights in

each sequence is set to a constant; e.g.. if flight (k.O) inmediately precedes

flight (i.O) then Sj^ - Sj^ = /\ ^, and if flight (O.k) immediately precedes

flight (O.j) then T — Tj^ = /\ p. The result is that we only have to find the

optimal gap between MaxfS^} and minlTJ. and all the other variables will be

determined.

Note that the actual arrivals and departures will still be stochastic

variables, distributed "around" the scheduled times. Also note that the actual

sequence will not necessarily be identical to the planned sequence, especially

if /\ is small relative to the standard deviation of the actual arrivals/

departures. Incidentally, if /\ is indeed small relative to this standard

deviation, the actual process will be approximately Poisson. The scheduled gap.

/X. determines the rate of the process, and should be chosen in such a manner

that when summed over all operators in the airport the queue will not become

excessive. This can be controlled by using basic queueing formulas (or see

[9]). Note that for a particular airline /\ may be smaller during off-peak

hours, while during peak hours it will have to be larger. In the future, it may
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become necessary for airports to assign /\ to each airline, especially during

peak time. Such an assignment could perhaps be based on the number of gates

each airline operates, or by bidding. (See [1, 6, 9] for other approaches to

this issue, including dynamic control as a function of the weather conditions at

the hub.

)

To continue with the basic model, we can still set one arrival or departure

time arbitrarily, and in this case it is most convenient to set Max{Sj^} = S^.^^^^.

In effect this reduces our problem to a search over a single variable, namely

min{T^}. Note now that if we increase (decrease) min{T^} by a small increment.

all the other T values are increased (decreased) by the same increment.

Therefore, the derivative dZ/dmin{T^} is obtained by summing (2.4) V- j. i.e.

dZ

=E ZlcDi.j . Z:t)o(j) - t-iPj - b^(j))(1 -tt/k^Tj - S^,)). (4.3)
dmin{Tj} j=l i=1 " j=1 " j=l " " k=0

After setting all Sj^ and T^ values as per their respective sequences and the

assumed min{T^} value. (4.3) lends itself to a very easy search to find the

min{T-:} value which drives it to zero. The constraint (2.2) is easily taken

care of by restricting the search to the appropriate domain. That is. if the

derivative for minlTJ = Sj^^j^^^ is positive, the solution is at this point (recall

that we add a constant to take care of the connection time); otherwise. minCTJ

will be positive. As it happens, this more realistic version of the problem is

much easier to solve numerically than the one discussed in the previous section

—a welcome fringe benefit indeed.

It is interesting to note that had we chosen to set min{Tj} = T^^^^^ (instead

of setting Sj^^^^). we would then have to evaluate the derivative dZ/dMax{S^}

instead of dZ/dmin{TJ. If we would proceed to do that by summing (2.3); V- i.

- 14 -



analog to our procedure above, the resulting expression would be much more

cumbersome to evaluate than (U.3). due to the integrals involved. Of course.

(4.3) could still be used instead, since when evaluated for the same value of

min{T-} - Max{S^) the two derivatives sum to zero.

To complete the description of the basic model it remains to discuss how to

set /\ ^ and /\ q. As for /\ p. it makes sense to set it as low as possible, to

better approximate the unconstrained solution—which sets /\, d
= 0. However, it

may happen that by setting /\ ^ to a small value we actually increase the value

of the objective function.

Assume we set /\ p to the lowest feasible value, and we now wish to search

for the optimal value /\ a*
If" it would be easy to evaluate Z for different

values of /\ y^. then a simple search could be performed in order to choose the

value which minimizes it. Unfortunately. Z is quite cumbersome, due to the

integrals involved. Therefore we may want to minimize an alternative objective

function which is likely to move in the same direction as Z and is simpler to

compute. A viable candidate for this is the sum of squares of the values of

(2.4) computed for the S and T values associated with each value of /\ ^. The

solution for each A. a value ensures that the sum of the (2.4) values— i.e..

(4.3)—will be zero, but in the uncapacitated solution the sum of their squared

values is zero as well. Thus our alternative objective function tends to strive

to this unconstrained optimum criterion. The search should be conducted for

feasible values of /\ ^ only, i.e., at least the minimal value allowed.

The method described above to search for /\ ^ can now be extended and

provide us with an improved model which does not specify an equal gap between

adjacent arrivals or departures (/\ ;^
or /\[))» but rather specifies minimal

gaps and allows larger gaps where appropriate. We still assume the same

sequences, and strive to minimize the squared sum of (2.4) instead of minimizing
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Z directly. Formally we should perhaps add the squared sum of (2.3) to the new

objective function, since we allow the gaps between departures to vary as well

as the gaps between arrivals. However, there are two reasons why not to do

this: (i) (2.3) is much more difficult to compute than (2.M), and (ii) as

discussed above, it is quite likely that the gaps between departures will assume

the minimal /\ ^ values, so their respective partial derivative values are less

relevant. Denoting the index of the k^" arrival by i(k) and the index of the

k^" departure by j(k). the model is:

min2I( ^Z/c)T.)^ (4.4)

J = 1 ^

s.t.

(Tj(1) -Si(,)):^(>Z/dTj) =0 (4.5)

.1=1

^Kk+D - ^Kk) > /X A ; ^ ^ = " '"-'' ^^-^^

Tj(k-Hi) -'rj(k) ^^D ;
^'^ = "I' "-''• (4.7)

Tj(1) >Si(n). (^.8)

{oZ/^Tj.) is as per (2.4). This model can be solved by standard NLP

search programs. Note that if (4.8)—which is equivalent to (2.2)—is strictly

positive, then (4.5) can only be satisfied by setting (4.3) to zero. The basic

model becomes a special case by setting (4.6) and (4.7) as equalities and

searching for the optimal A ^ and possibly A ^ values.
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5. The No-Waiting Case:

So far we have assumed that all departures wait if necessary for any number

of passengers who have to make connections and whose arrivals have been delayed.

In practice some airlines accommodate such passengers differently, by assigning

them to alternative flights—including flights offered by competitors—and/or

have them stay overnight at the airline's expense. Virtually every airline

would do so if a flight is so late that to wait for it would disrupt the sche-

dule beyond some acceptable level; especially since sometimes such delays have a

domino effect in other airports where passengers may still have to make further

connections. In this section we introduce a model for this policy. We will

consider a pure no-waiting policy, where departures do not wait even for a

single minute, and the penalty per misconnection is a given constant, denoted by

p (representing the average additional cost involved plus the imputed value of

the passenger's dissatisfaction). We will consider the finite capacity case

only, following the general assumptions and approach of Section 4.

Even though our policy is not to wait, all the passengers whose final

destination is d(i) will still be delayed if flight (O.i) arrives after T^(j_).

and thus the penalty P(j(j^) + b^ will have to be borne. In addition, delay

penalties may be incurred due to Fq. but these need not be considered here

because they are not influenced by our decision variables. However. Fq also has

a beneficial effect on the expected number of misconnections which we have to

take into account.

To that end. let F^(T^ - S^) denote the probability that the connection

will be made if (O.i) is scheduled to arrive at S^ and (O.j) is scheduled to

leave at T-:. Also let fi(T^ - S^) be the density function associated with

Fj^d^ - Sj_). Given F^ and Fq. we obtain
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Fj^(z) = F^(z) + Fj^Cz + t)(1 - Fo(t))dt ; V z > 0. (5.1)

Recall that under our assumptions Fg is identically distributed for all

departures I hence Fj^^T^ - S^) is also identically distributed to F^d^^ ~
^i^ »

V-k ;^ j, k /^ d(i). Therefore the single index i is sufficient to identify F.

Our objective function. Z, includes the value of the scheduled passengers'

time, the expected number of misconnections multiplied by p. and the appropriate

delay penalties for late departures. As mentioned above, the expected delays

due to problems at the hub itself are not included. Also, the time value of

passengers whose final destination is is not taken into account—since it is

not influenced by our decision variables. Note that passengers going to d(i)

are not subject to misconnections. Thus

t^ XDi.j [c (Tj > S^) . p (1 - Fi(Tj - S^))] . il^o(j)h -Z =

1=1

j^d(i)

oo

2_biS^ + 2_[Pd(i) -^
"^i^

m - F^(t - S^)]dt. (5. 2)

i=1 i=1

^dCi)'

Taking the partial derivative of Z by T^ we obtain

™=f:Di,j tc-pfi(Tj-Si)l>b„j, -

^ iio(j)

[Pj *b„(j,][1 -F„(j)(Tj -S„,j,)l ; Vj. (5.3)

To complete the model, all that remains is to plug (5.3) into (4.4) and

(4.5) instead of (2.4).
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6. Related Issues:

In this section we discuss several related issues, which should be tai<en

into account while implementing scheduling methods such as the ones described

above. Some of these issues merit further research, and a thorough treatment is

beyond the scope of this paper.

In particular we'll discuss (i) the optimal speed choice for a plane as a

function of its expected lateness; (ii) how to determine the sequences of

arrivals and departures (which we have assumed given above)—an issue which

turns out to be connected with the speed choice policy; (iii) how to devise a

method comprising both delay penalties and misconnection penalties—where we

wait only if the wait is expected to be short enough; (iv) how does the model

impact the gate assignment problem; (v) how to assign the aircraft to the flight

segments so as to minimize the number of passengers who have to change planes in

the hub; and (vi) how to determine the scheduled duration of the flights, i.e.,

if flight (i,0) is scheduled to arrive at Sj_, when should it leave i.

Th^ Opt4PiaI ?p^g<j a? 9 Fvngti'Pn pf E^pgctgc;! L^at^n^s?

Delays in flights are generally due to problems at the origin and at the

destination. At the origin such delays may be the result of weather conditions,

queueing, problems in processing all boarding passengers in time (especially if

stand-by passengers are involved), problems in preparing the plane for takeoff

(fueling, loading, mechanical problems), etc. At the destination, delays may be

caused by weather conditions or by queueing. Assume now that a flight has

departed behind schedule, and has a considerable distance to go toward the

destination—then it may be possible to recapture some of the delay by utilizing

a higher speed. The question is whether or not this is economically justifi-

able, and how much to increase the speed if so. Note that in this case, the CDF
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of the arrival time given the speed choice is a lot tighter then the original

CDF, since all the variability in departure time has already been realized.

Thus it may become possible to specify a fairly tight updated ETA for the flight

as a function of the average airspeed we choose.

The average speed and the variable operating costs for a particular flight

are determined by the flight trajectory, which can be viewed as a trajectory in

a three dimensional space comprising distance from origin, altitude, and time.

This trajectory has to be optimized afresh for each distance/airtime combina-

tion, and is also influenced by the pay load and by weather conditions. In this

paper we ignore the weather and payload factors, and we will assume that for

each flight we have a function which yields the variable cost associated with

any possible value of the flight duration. This function is conceptually

obtained by optimizing the trajectory for each value of the argument. The

domain of the function is restricted from above by the slowest economical speed

(i.e.. the speed which maximizes the range), and from below by the maximal

speed. Obviously, this is a monotone decreasing function, and we will assume

that it is convex over its domain. Our main concern is with flights into the

hub. and we'll denote the function for flight (i.O) by gj^(t).

Denote the value of each time unit for flight (i.O) by Sj^. This includes

—

but is not restricted to—the value of the passengers' time and b^. The optimal

time allotted to the flight should minimize the total cost for the flight—^TC^

TC^ = s^t + gi(t). (6.1)

By taking the derivative of TC^ by t. we obtain the following first order

condition for the optimal time
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d[gi(t)]/dt = -s^, (6.2)

If d[g^(t)]/dt < -Sj^; V- t in the domairit we choose the minimal speed; and if

d[g^(t)]/dt > -Sj^; V- t in the domain, we choose the maximal speed. Otherwise,

under our convexity assumption, there is exactly one solution for (6.2).

strictly within the domain. It is easy to see that if we increase s^, we should

also increase the speed, unless we were already using the maximal speed.

Suppose now we operate under the first policy, and our ETA given the regu-

lar speed for the flight is such that some departures are going to be delayed

waiting for flight (i.O). then the time value for the flight should be increased

and include the time of all delayed passengers at the penalty rate p. as well as

the time value of the waiting planes and crews. If several planes are waiting,

it is quite likely that we'll have to use the maximal speed. Similarly, under

the second model, by increasing the speed of an already delayed flight we may

reduce the expected number of misconnections. and should choose a higher speed.

The details of the exact speed choice model under expected lateness require

further research, but it is clear even at this stage that the amount of time

which can be recaptured economically (and technologically) is higher for long

flights than for short ones. This implies that long flights are less likely to

be excessively late in practice than short ones, but they may also incur higher

operating costs than our model accounts for.

Sequencing the Flight s In and Out of the Hub

The sequencing problem exists in the capacitated cases only, since in the

infinite capacity case the sequences are determined by the solution itself. The

problem is nontrivial because of the stochastic elements. To wit. if we ignore

these we get the following simplistic version of the sequencing problem
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n n n n

min{^T.[b„(.) + cXIOi i] -IIs,[b. + c;^D.- .]}. (6.3)
jTl

J °^J^
iTi

^'^
iTl ' ' jTl

''J

(6.3) lends itself to decomposition, and is optimized by minimizing the sum

involving T^ and maximizing the sum involving Sj^. The values within the brac-

kets measure the time value of each flight, and are easy to calculate. All that

remains is to sort the flights by these time unit value measures. In the case

of arrivals, they should be sequenced in ascending order, while the departures

should be sequenced in descending order. This solution can be easily adapted to

cases where the value of time unit per passenger is a function of the origin/

destination pair, in which case the time unit measures will include weighted

values of D,- ^.

When we do take the stochastic elements into account, the solution above

may be far from optimal. Indeed, looking into the uncapacitated versions of the

problem may give us some insight to that effect. Recall that the departures

take place at the same time. but. since we do not assume identical CDFs for all

flights, we may expect the optimal solution of the arrival times to define

sequences which have more to do with the variances of the delays in the origin

airports than with the number of passengers or the time unit value of the air-

craft. It is quite likely that this order will be better than the one suggested

above. Similarly, under the no-waiting policy, the order suggested by the

sorting tends to increase the number of misconnections. since flights with many

passengers tend to have high time unit values, and are sequenced with less

ground time.

Solving the sequencing problem optimally may require actually comparing all

the possible sequences in terms of the resulting objective function values.

Even if we resort to simpler alternative objective functions such as (4.4) this
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is a tall order, since the number of sequences is exponential. Therefore, we

suggest a heuristic approach based on the discussion above. Ue describe the

heuristic in terms of the waiting model (Section ^) , but the same idea will also

work for the no-waiting policy. 17e start with the uncapacitated solution, which

defines a sequence for the arrivals. In order to avoid having to solve (2.3)

for all i, we suggest here to use the bound (3.5) instead. Next, fixing the

scheduled arrivals as per this sequence, at intervals of /\ a'
^^ solve for each

T^ separately so as to drive (2.4) to zero. This will define a sequence for the

departures.

As discussed above, flights from afar can compensate for delays by a higher

speed. This implies that it may be expedient to schedule these flights to

arrive later than flights from nearer origins. Likewise, we may wish to sche-

dule flights to farther destinations to depart earlier than the others. Such a

policy constitutes a second heuristic approach to the sequencing problem.

Looking at this second heuristic, the order it defines may be completely

different than the one implied by the first heuristic. Indeed, this heuristic

ignores the differences in the original CDFs completely. The question is, can

we take both into account at the same time? One method to do that is to "cheat"

the first heuristic by using inflated values for the time unit values on long

segments. That is, we increase the value of C^ in (3.5) for the longer

segments, and similarly decrease the value of P^ in (2.4) for longer segments.

This will cause the first heuristic to shift in the direction of the second one.

Combining Delay and Misconnection Penalties

It is easy to devise examples where the waiting policy will cause hundreds

of passengers to wait unbounded periods for a few delayed passengers. On the

other hand, the no-waiting policy may imply that a plane leaves one minute
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before a large group of passengers could board. Therefore, neither of the pure

policies we examined should be followed too religiously. We need to devise a

combined policy, where we wait, but not indefinitely. That is. if an incoming

flight is late, we have to decide which outbound flights should wait for it.

This decision should be based on the late flight's ETA and revised CDF. and may

have to be updated dynamically.

Theoretically, the fact that the final decision about waiting is not based

on a predetermined pure policy, makes the model very complex to optimize analy-

tically. V/e propose a very simple heuristic approach instead:

(i) Compare the two pure methods in terms of the objective functiont

(ii) schedule the flights as per the pure method which costs less, and

(iii) improve the actual performance by local optimization in case of delays.

Note that step (i) also determines the sequencing of the arrivals and of

the departures.

The immediate decisions outlined in step (iii) may justify the development

of a decision support system (DSS). since they have to be made in a short time.

Such a DSS is not likely to require much in terms of computing power and will

use data readily available on the network. Thus it should not be too difficult

to implement.

Implications for the Gate Assignment Problem

The existing literature on gate assignment strives to minimize the total

r? '^l
walking distance for all passengers'- ••

. While this is a reasonable objec-

tive, one must also consider the time allotted for making a connection when

calculating the cost involved. Clearly, if your flight is about to leave, it is

more important for you that it be at a nearby gate than otherwise. This estab-

lishes a link between the gate assignment problem and the scheduling problem.
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An obvious heuristic suggested by this consideration, is to assign the

latest arrivals to the more central gates, and if possible at the same time to

assign the first departures to the more central gates. This approach, however,

does not take into account the traditional objective function (total walking

distance) at all.

An alternative approach may be, again, to "cheat" the regular gate assign-

ment algorithms in such a manner that they will favor the tight connections.

Given the schedule, this can perhaps be done by dividing D^^ . (a required input

for the regular algorithms) by the probability of connection (one minus the

probability of misconnection) raised to some power not less than one (e.g.,

squared). V/hen the probability of connection is close to one, D. • will not be

altered by much, but when the probability is low, D^^^ will be significantly

inflated.

In our uncapacitated model, the probability of connection is likely to be

roughly equal across all connections, and hence it is not likely to influence

the gate assignment by much. However, in the capacitated model, some connec-

tions are forced to assume lower probabilities of connection, while others are

forced to longer waits instead. In this environment, the gate assignment is

likely to be significantly different. Note also that we may choose to change

the assignment dynamically; e.g., if a plane is known to be late, and its

original gate is not favorable, we may arrange a better gate for it to reduce

the expected penalty.

Finally, when determining the minimal connection time which should be added

to all departures, we can use a lower value if we know that the tight

connections are going to be made from favorable (central) gates. In this way

the gate assignment problem may influence the exact scheduling—as well as the

scheduling influencing the gate assignment.
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Assigning Flight Segments to Aircraft

As discussed in Section 5. the final destination of the (i,0) aircraft

(V- i) is an important factor vis a vis the expected number of misconnections.

It also impacts the gate assignment problem, since the (i.d(i)) passengers enjoy

zero walking distance to their departure. So far we have assumed that the

assignment of aircraft to flight segments is given. Let us now discuss how this

assignment may be carried out.

Our approach to the problem is by minimizing the number of passengers who

have to change planes, subject to constraints on the allowed pairs. The const-

raints may be used to promote good load levelling among the planes.

VJe assume all aircraft are of the same type and capabilities. In practice

this is not likely. However, if we assign the aircraft type to each segment in

advance—as a function of the total number of passengers and the distance

involved—we can solve the segment assignment problem for each aircraft type and

the origin/destination airports associated with it separately. Therefore this

assumption is not restrictive.

We proceed by creating a square matrix where the element in the i row and

j column is Ylu.^'pitU. ^i«®*' ^^^ number of passengers who will have to change

planes if we choose d(i) = j). Next, if certain pairs have a total distance

which is too low or too high we can prevent them by adding large penalties to

their entries. Now, we can use the Hungarian method to assign the destinations

to the origins.

A major problem with this solution is that it may take up to n days for a

plane to return to its original origin. In practice the policy may be to have

symmetry, i.e., d(d(i)) = i; V-i. This policy ensures that each plane will

return to its home base every other day (assuming one flight per day per plane

from i to d(i) through 0). V/e can optimize the assignment under this policy by
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comparing the n(n-1)/2 combinations explicitely. This is possible only for an

even n; if n is odd we have to choose one flight which returns to its origin, or

select three flights which rotate on a three days basis. If we choose to have

one flight return, then exhaustive enumeration requires comparing n(n-1 ) (n-2)/2

alternatives, and if we choose to select three flights to rotate every tnree

days the number increases to n!/( 12(n-5) !
)—which is 0(n ). In these cases we

may wish to reformulate the problem as an ILP model. Though formally the worst

case perfomance of such an ILP model can be worse than 0(n ), it may oe better

on average.

Scheduling the Durations of Flights

In the main body of the paper, we assumed that the duration of each flight

is predetermined. Thus if flight (i,0) is scheduled to arrive at S-, then in

order to schedule its departure from i we simply subtract this duration from S^^.

We also assumed above that F^ is given V- i. Note now that if we allow more time

without changing the speed choice, we can shift F^ to the left, thus increasing

the probability of arrival, and vice versa. Some reflection reveals that any

such change in the assigned duration would cause either of our models to change

Sj_ in such a manner that the probability of connection will remain exactly the

same, i.e., Sj^ is shifted by the same amount. Note that only the D^^^g passen-

gers would be impacted by such a change—their time value increases to p if the

flight is delayed beyond S^ as per the last element of (2.1); the other

participants only care if subsequent departures are impacted. Therefore we have

to optimize the assigned duration in terms of the D^^q passengers only. This is

achieved by setting the probability of delay times p equal to the complementary

probability times t, as per the nevjsboy model. The same method should be used

to determine the nominal durations of the (0,j) flight segments.
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