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Reliability in a Random Environment

Edward B. Rockower

Nava! Postgraduate School

Dept. of Operations Research

Monterey, CA. 93943

ABSTRACT

Correlations in the failures of subsystems or components may arise

when they share a common, random environment. We show that a natural

tool for calculating the reliability of such systems is the character^,'

functional of the random hazard rate, h(tj. Some general results for the

reliability of series and parallel systems in terms of the characteristic

functional of the hazard rate are derived and applied to a number of

models of random environments. The applications include random hazard

functions arising from I) non-fatal shocks of random amplitudes, 2) 3

Markovian, Gamma-marginal stochastic process, 3) system stress re ;

i

to un-' -pawed damage from incoming rounds, ana 4) impulsive and

ite ' heat stresses from a laser battle.

:. iNTRC DUG . ION

Consider a system whose components are subject to a random

n ent 1

, possibly including random shocks. In general, the i

r- f

component hazard rate, hj(0, may be written as the sum / * •• par t

r hp '-si (deterministic) part, \M. accounts 'or wearout and those

rand i I
i lures vf xcur independently ..mponent. The

second stochastic) part, g I 3nses from those environmental

lit ions which are shared by two or more components in the system.



we develoo a general formalism for calculating the reliability of a

system in a ranaom environment in terms of the characteristic

functional of the hazard rate. Various models of random environments

are then proposed and the corresponding expressions for the

characteristic functional 3re calculated. The reliability of systems in

such environments 3re then found using these characteristic functional.

The equivalent, deterministic hazard functions for single components in

some of these models arQ found not to be constant in time 2
.

in Section il the general formalism is introduced and illustrated for a

single component subject to an environment which includes non-fatal

shocks with random amplitudes. In Sections II! and IV the reliability of

series and parallel systems is presented in general terms and applied to

the non-fatal snock model. Section V presents a model for the hazard

- as a Markovian, Gamma-marginal stochastic process. Finally, in

--."
: . vve present three models in which the failure rate is

ropot tional to system stress. Each of these models can be applied to

j ti-component systems using the methods developed in the earlier

Sect

'.'.. One Component

~r:e simplest case is that of one component with hazard r3te h(l . a

negative stochastic process. The reliability of the component,

lect to a particular realization of the environment (hence, h(t) ) is

defined as,

Rh(0 = Pr[T > t]hl (!)



where T is the random variable (r.v.) equal to the time the component

fails and the subscript denotes a particular realization of the stochastic

process, h. Using the usual definition of the hazard rate 3
,
this is.

t

R
h =. exp[ -J'h(t')dt' ]. (2)

o

Hence, averaging oyer the random environments we have,

t

R(t) = E
h
[R

h ] = E{ exp[ -Jh(t')dt' I }
(3)'

o

or.

R(t) - Chh(0] l^^j ,

'\ h ere,

:
r ,

t
[T|()] = E{ exp[ !jT|(t')h(t')dt' j

i, (5)

o

defines the characteristic functional 4,5
of the hazar : ite. In other

words, this characteristic functional, evaluated for a particular value of

the test function, T[(t), yields directly the reliability of a component.

We will see below how this generalizes to multi-component systems in 3

random environment.

We can write the reliability of a component or system in terms of an

effective, deterministic hazard rate, h(t), using the usual definition of



hazard rate,

h(t) = - d/dt in { R('t) },

but wg must remember not to use this "hazard rate" to calculate

reliability of larger aggregations, unless such aggregations are composed

of components or subsystems not sharing a common, random environment.

Deter ministic hazard rate plus random shocks

If the environment gives rise to non-fatal random shocks with rate #(t),

then the hazard rate may be represented by a deterministic function,

'

, plus delta function spikes, possibly with random amplitudes. For

.enience we will sometimes replace X(t) or 25(t) with constants.

However, in all the reliability formulas derived here, Xt can always be

• ith fX(t')df for non-constant background hazard rate, and 2Jt

can be replaced with f<3(t')dt' for a non-homogeneous shock process.

Note
'

' may be really an effective hazard rate, obtained from the

preceding equation, when one portion of the random hazard rate is unique

.-.:" .idual component, i.e. not shared among separate components.

The hazard rate for non-fatal shocks occurring at times t, is,

n

h(t') - a +
I ex; S(f - tj, (6)



where the pdf of the t is 2f(t)/n
, n = {#(t')dt\ and n is a

o

Poisson r.v. with mean n .

The characteristic functional of this process, derived in Appendix A,

t t

C
hit h(-)]

= exp{ ix h(t')dt' * j'3(r) [CJ Ti(r) )
- Hat']. (7)

o o

where C, is the ordinary characteristic function of the shock

amplitudes, o , In particular, if the shock amplitudes have an

exponential distribution (parameter 8) then,

Cju) = S/[S -
i a)], (8)

and,

t t

C
h t

[T](-;] = exp{ iX |Ti(t')dt' + ijff(t') T[(t')/[6 - iTj(t')] dt'j. (9)

o o

ce, setting r\(V) - i, the reliability is,

R(t) = exp{ -Xt - n /[6 + l] ). (10)

or, assuming a stationary environment (# - const.) and using ex
~ ' c

R(t) = exp{ -Xt - tft * /W +
ii )•

•

'

;



The effective hazard rate, hit), is constant for this model. Note that as

c* -> oo the rate of failure becomes X plus the rate, #, of occurrence of

• -"al) shocks (in fact. X could be a background rate of infinitely high

shocks).

ii!. Two different components in the same environment

if two or more components are in different, independent environments

the system reliability follows from the usual formulas 3 expressed in

terms of the individual reliabilities. We consider nere two different

components seeing the same environment. The reliability of two

components in series subject to a given realization of the environmental

conditions is,

R
h
(t) - P

h
[T > t] -- R

h]
(t) • R

h2
(t). (12)

If the components are in a parallel, redundant system the reliability is,

t) = l -[I -R
hl

(t)] [i -R
h (t)l (13)

- exDi -JhjCt )dt' ] * exp[ -Jh 2(t')dt' ]
- exp{ -J[h,(t') + h 2 (t')1 dt' },

ntegrals are -> t. Hence, averaging over realizations of the

ironment we have, using the definition of the characteristic

I t
' J :.

R(t) - (14)

c
h,^ a(

.,a ,

+ c
hith(-)] !, (

. )=1
- c

ni+h2ith(-)j | n(
. )=1

Clearly, the last term also represents the reliability of a series circuit



with the same two components. In the following it. will be understood

that all characteristic functional are for the processes over the

interval [0, t].

As an example, consider two components in series, seeing the same

shocks, but experiencing different amplitudes, ex, k$; where ex and £ ^Q

i.i.d. exponential r.v's. Then h, + h
2

is given by

r
'

h(t') = X, + X 2
+ Z (ex. + k3 ,) 6(f - t;). (15)

In this case Ca in Eq. (7) is replaced by the characteristic function of

the sum of two exponentials,

C\ (a)) - 8/[5 - io)] • S/[8 -
i co k ] , ( 16)

and X is replaced by X, + X 2 ,
yieic

Chi+h fTl(-)] = exp{ i(X^X 2 )fT|(t')dt' )
• (17)

2

t

exp{ |#(t')dt'[ 8/(8 - iT|(t')] • 8/[S - iT|(t')kj - I] \.

o

The reliability of the series system is then found by substituting

Ti(t') - i, yield

R5enGS (t) = expl -(X,*X 2 H - m 1
- 8

2
/[(8 + 1)(8 k)] ] }.

The parallel system reliability is given by,



R||(t) = R](t) + R 2 (t) - R
senes (t)

-

(19)

where R, :
are the same as Eq. (10) with S replaced with 8 and S/k,

respect^

if ex - 3 in the above, i.e. the amplitude of shocks seen by the two

components are proportional, then we have,

n

l

• h 2(t')
= X, + X 2

+ (1+k) 7 cxj S(t" - tj). (20.

This is the same as for a single component, except X -> X, + \ 2 and

o -> S/(l + k), hence.

C
hl+h,h(-)l

= exp{ i(X^X 2
){T](t')dt' }

• (21)

c
t

exp{ {W)dt'[ s/[8 - i-qCt') (k+ 1 )] - i] i,

o

the • e lability of a series circuit is,

Rsen es
(t) ~~ exp{ - (X, + X

2
)t - 2K [(k+l)/(S*k+1)] }. (22)

The reliabi it .

" a parallel circuit is again given by Eq. ( 19).

IV. m- Identical components

For m components in series, subject to a given realization of the

environment, the reliability is,

8



t

= exp{ -J(h, • • + hm )dt' }. (23)

o

Hence, averaging over the environment, the reliability is,

R« = W- [T1(
'

)] U»-

a) If all components respond to a given shock with independent

amplitudes we obtain,

R
a
(t) = exp{ -mX t + *t [8

m
/(S+l)

m
- 1] }, (25)

' the hazard rate is exactly the same for ail components,

t) = expl -mX t + VI [6/(S+m) - 1] }. (26)

The effective hazard rate, h(t), is again constant. Note that

i l+l/S)
m

= 1 + m/6 +
• • -,

hence

(M/S)m > 1
+ m/5,

or,

S
m /(S+l)m < 8/(5+m),

which implies that R
a

< R
b

. In other words, as expected, the reliability

of a series system is higher in the more highly correlated environment,

ising Eq. (19), it is clear that the reliability of a parallel system

r>e lower in a more highly correlated environment.



m-ldentical components in parallel

The reliability of m-identical components in a parallel redundant system

subject to a given realization of the environment is,

m t

R
h
(t) = 1 - TT[ 1

- exp{-Jh,(t')dt'} ]. (27)

i=i o

This can be expanded using binomial coefficients, C
m

, , as,

m

R
h
(t) = 1 -2H j Cm

j

!R
hi
(t)-R

hj
(t). (28)

j=0

Hence, averaging over the environment, we have,

m

RCtj =
:

- I ;-:
!

C
m

j

e~i x o l
exp{ 2ft [SJ/(S*!)i - 1) }, (29)

i=o

f ?r independent response to the shocks, and,

m

R(t) =
1

- 7 (-)i C
m

J

e"J x o
r
- ex p{ at [S/(8*j) - I]}, (30)

j=0

if rhere is exactly the S3me hazard rate for all components (each

component sees exactly the same amplitude shocks).

In general, for m identical components in parallel, all with the same

hazard rate, h(t) = X (t) + g(t) (where g(t) is random).



m

R(0 = 1 -K-)icm
j

. exp{ -j/X (t')dt'} C
g
[T

1 (0]| Tl(
.

)=j
.

1

(3D

j--0

From the foregoing it is clear how to generalize the formulas for

reliability in a random environment to more general configurations

containing components both in series and in parallel:

1) using the usual rules for probabilities, write the reliability of the

system in terms of the individual component hazard processes,

conditioned on a given realization of the environment, hence of the

{hj(t)}(cf. Eq. 27),

2) average over the environment, hence over the (h,(t)},

3) express the result in terms of the appropriate characteristic

functional (cf. Eq. 31), and finally,

4) obtain the effective component or system hazard rate, h(t).

v
1

. Exponential/Gamma Hazard rate

Consider an environment giving rise to a Markov hazard rate process with

-;rnma marginal 1,6,7 distribution which is common to ail components

in the system of interest. We show in Appendix B that tf e

characteristic functional for such a process is,

t t t"

C
q
[t\(-)] ~- exph dt

'

I

f

\ t' )exp< -] -

o f V



The correlation function for this process in the stationary case

(# const.) is p z e"^r . When u-l the process is exponent lai.

The reliability of a single component with hazard rate h(t) = X(t) + g(t)

is then,

F t) = exp{ -JX(t')dt') •C
g
[r

l
(-)]|

T1( . )=I
. (33)

carrying out the resulting integrations yields,

R(t) ~- (34)

expt -JX(t')dt' -u2K/(*S*1)} • {S5/TO+1 - e"
H

)}
u^8+2)/(25&+1)

.

The effective hazard rate, ri(t), is ciearly not constant for this model.

This can be generalized to multi-component systems with the methods

m the previous sections. For example, the reliability of m identical

components in series is obtained by replacing X -> mX and using

m-i in the characteristic functional. From Eq. (32) it is easily

seen that this leads to replacing S with 8/m in Eq. (34).

'/:. Failu re Rate Proportional to System Stress

' l
"

: :s section we will consider three related models of hazard rate

processes, in the first model we assume the rate of failure is

proportional to the number of customers using the system, for example

ite il wear on a highway nnay have a component which is

proportional to the number of automobiles, N(t), using the highway. In

the second model the failure rate of a major system (for example on a

battleship during combat) is increased proportional to the amount of

12



un-repaired damage (the number of hits not repaired is N(t), the amount

of damage/hit is some positive r.v.). Both of these models are related

to a generalized M/G/°o queue. Finally, we model the reliability of

electronic systems in a laser battle scenario. Failures may be caused by

impulsive stress caused by a laser hit, or by accumulated heat from the

laser hits. It is found that none of the models in this section lead to a

constant effective hazard rate.

Highway mode l

Consider a large multi-lane highway in wnich the traffic level is such

that cars do not interfere with each other. The number of cars on the

highway can be modeled as an M/G/oo queue. The rate of arrivals of cars

to the highway is 2>(t) and the pdf of the time spent on the highway

section of interest is biz) (the "service" distribution). The hazard rate

is modelled as h(t) = X(t) + $ N(t). We show in Appendix C that the

characteristic functional of the hazard rate can be written as,

t

C
h hl(-)1

~- exp{ -jX(t')Ti(t')dt'} • (35)

o
t oo t'+r

exp{ {#(t')dt'[l - Jdrb(r)exp[i{$Ti(s)ds] 1 \.

o o t'

For example, when the transit time is exponentially distributed,

parameter u, the reliability can be evaluated as,

R(t) = e~'
xt

exp{ -W/(u+£) #£/(}i +
S)

2 M - e~ (^ H
] }.

13



And when the transit time is equal to z with probability one, the

reliability is,

R(t) = e
_xt exp{ -tft - y/3 • [l - e"^ r ]

- ^(t-r)e"^ r }, (37)

when t > r, and

R(t) = e~
xt exp{ -Zt -*/$•[] - e"^] } ,

(33)

when t < r. These formulas generalize as shown above for components

in series and/or parallel systems.

Battle Damage Model

Assume that incoming rounds hit a ship according to a non-homogeneous

Poisson process, rate tf(t), during a battle. The amount of damage to the

snip per round (or, really, the increased system stress resulting from

each hit) is given by a random variable, 3, with some non-negative

distribution. Let the pdf of the time to repair the damage from each hit

be b(r). If the failure rate of the total system contains a term which

eases proportional to the amount of un-repaired damage (possibly

because of increased demands made on the rest of the system), then the

jrd r ate is,

n

X(t) k 2 a, (e(t - tj) - e(t - tj -r,)}. (39)

The stochastic portion of this corresponds, for example, to the total

weight of customers in a non-homogeneous M/G/°° queue, where each

14



customer has a random weight. £,. in Appendix C we derive the

characteristic functional for this process. Applying that result we have,

in general,

t t'
+ r

R(t) = e"
xt

exp{-Jdt'tf(t')[1 - Cp(/T|(s)ds)b(r)dr |}|
(

. )=I . (40)

o V

where Co is the ordinary characteristic function of f}. if 3 is a constant

this reduces to the previous model. Again, for m components in series

replace X with mX and evaluate the characteristic functional for

tj(-) = m-i. For parallel configurations Eq. (C4) can be used in

conjunction with Eq. (31).

One example that can be worked out in closed form is when £ is an

[
:nentia! random variable, parameter e, and the system cannot be

repaired during the battle, i.e. b(r) = Sir - <*>). The reliability of a

single component is easily calculated using Eq. (40) to be,

R(t) ~- e"^'
+X)t

•

{ (6 - t)/t- }

eZ
,

(4!)

for m identical components in series we obtain,

R(t) = e
~^+mX)t

.

( {€ + mt)/6 }

6#/m
(4;

Laser-Battle Model

We now mode! the failures of electronic systems in a laser battle as,

I) immediate failures resulting from impulsive thermal or kinetic

shocks, or 2) random failures brought about by the accumulated thermal

15



stress from repeated hits by laser beams. The background hazard rate is

again represented by X(t). Assuming an exponential cooling law, the

hazard rate resulting from laser hits at times {t,} is,

n

-- Ait) £fc*8(t-tj) + £ e(t - tj)e~x(M p }, (43)

1=1

where the second term represents the contribution to AT (increase in

the system temperature) resulting from the laser strike at time t;.

Using the same methods as in the Appendices it can be shown that the

characteristic functional for the stochastic part of this process is,

t t

C[T}t-)3 = exp{{dt'tf(t') [ exp[Jds T](s) r(s - t'J] - 1] }, (44)

o V

A/here,

r(s - f) = oc S(s-t') * eis - V) e"
K(s-t

'

j
. (45)

Hence, the reliability is,

F • = e"
xt

exp{j'dt'2(t') [ exp[ -ex - 3/x-(1 - e"^ 1-1 ')
)]

- l] ). (46)

For m identical components in series, seeing exactly the same

environment, Eg. (44) is modified by multiplying X, o< and £ by rn. The

non-constant effective hazard rate, h(t), can be read directly from

Eq (46), e.g. for m identical components in series it is,

16



h(t) = mX(t) * V(i) { exp[ -mc< - m3/x-(l - e" K(l
"r)

)]
-

1 }. (46)

Note that "5 is not multiplied by m. All components see exactly the same

shocks from laser strikes.

More generally, we could model different types of laser weapons, ranges,

atmospheric propagation, etc. by taking a and £ as (correlated) random

variables. The above equations can also be generalized if the

components are not identical but have different vulnerabilities, thermai

conductivities, etc.

VI I. Conclusion

We have presented a genera! formalism for calculating the reliability of

mu It
i -component systems subject to a random environment. The

correlation in failures of different components can be accounted for by

calculating the system reliability in terms of appropriate combinations

oi the characteristic functional of the random hazard rate, evaluated for

t\{-) - i* J (j=l. n; i =/(-!)}. We have shown how the method may be

used in different circumstances by applying it to a number of different

models f or the random environment. Our results include non-constant

effective hazard rates for some of the random environment models.

intuitively reasonable result that the reliability of series (parallel)

systems is greater (less) in a correlated environment than when the

components see independent environments has been demonstrated for

some of our models. Although we have only considered series or parallel

systems, the application to more complicated systems containing

components both in series and in parallel is straightforward.
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Technometrics 5, No. 2, pp. 21 1-226 (1963). The processes

considered there have independent increments (e.g. the Gamma
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3. See for example, R. E. Barlow and F. Proschan, Statistical Theory of

Reli ab ility and Life Testing. (To Begin With Press. Silver Spring, flD)

19P 1
' .

4. M. S. Bartlett. An Introduction to Stochastic Processes. 2nd edition,

(Cambridge University Press) 1966.
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p. 366 ff., can be seen to be equivalent to the M/G/«> queue.

Appendi x A. Derivation of the Characteristic Functional for Impulses '

We now derive the characteristic functional for the hazard rate resulting

from random delta function impulses. Unless otherwise noted, we define

the characteristic functional for the process oyQr the interval C -> t.

First, the random part of the hazard rate, g(t), is defined more explicitly

as,

n

g(t') = lex. s(r - tj), (ai)

where n has a non-homogeneous Poisson distribution, pn , with mean,

n -
f
2(t)dt, (A2)

o

the t, nave pdf given by tf(t')/ n (as is appropriate for a



non-homogeneous Poisson process), and o<; have an arbitrary distribution,

flex,), with ordinary characteristic function. C^. The characteristic

functional for g(t') is,

t

C
g
h(-)1

= E{ exp[ iJ-qCt) g(t) dt] }, (A3)

or, 00

2Pn { n [JJ<Kj3(tj)/n d«j '(«j) e
j

°<j ^p ] }.

n=0 )=1

where the integration over t, is -> t the integration over ex, is -> oo.

We have made use of the Dirac delta function to perform the integration

over V. The product o\/er j
now reduces simply to the expression in the

ire brackets raised to the n^
n power because of the independence of

each term in the shot noise-like process. Performing the average over n

(yielding the standard result for the generating function of a Poisson

1
'

' n) and the integration over ex; (yielding the characteristic

ction for the amplitude distribution) and taking the limit T --> <»,

u It s in,

t t

L
[T|(-)] = exp{ iX jT](t')dt' * J3(t') IC^ -q(f) )

- l]dt'}, (A4)

where we have included the (independent) characteristic functional for

the deterministic portion of the hazard rate.
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Appendix B. The Characteristic Functional of the Gamma Process 8

Using the results of Appendix A, Eq. (A4), the characteristic functional

of random delta function impulses (rate utf(t) ) with exponential

amplitudes (parameter 6), is,

00

C
g
h](-)] r exp { i

J dt utf(t) Ti(t) / [6 - i-q(t) ] }. (Bi)

-00

If this shot noise is fed into a first-order linear filter (decay parameter

tf(t) ), the resulting process, x, satisfies,

x + #x = g. (B2)

Now, to find the characteristic functional for the process, x(t), subject

to the initial condition, x(0) = x , use the solution of the stochastic

differential equation, (letting tf be constant to make it easier to follow

the derivation) in the definition,

00

nr

C
X
[T](-)1 - E(exp[ i|T)(t) x(t) dt] }, (B3)

o

; exp[ix {dt T)(t)e
_2a

] expdj'dt T|(t)e"
2ft

Jdt'e^
t '

9(t-t) g(t ' '.

where we have used the properties of the Heaviside unit step function,

e(t-t'), so that all the integrations are over -> ~, thus making it

easier to interchange the order of integration to give,
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C
x
[T|(-j]

~- (B4)

exp[ix Jdt T](t)e"
m

]
• expiijdt' g(t') [/dte"^ 1

'
1

'

5 e(t-t') T](t)] }.

The second exponential term is now of exactly the same form as the

characteristic functional for g(t), with the expression in square brackets

replacing Ti(t'). Hence, making use of Eq. (B1) we have,

00

.-2t
C y.[Tj(-)]

'- exp[ix j'dt T](t)e"
01

]
« (B5)

o

CO OO CO

exp li/dt' otf [Jdt e"^(l
" r)

T[(t)] / [8 -
i

[
Jdte"^^" 1 '^ (t)] ] },

o t' f

where we have used the properties of the step function.

To determine the marginal distribution of this process use

T\(t) = T| 8(t-t ), which recovers the ordinary characteristic function

x(t ). A straightforward calculation yields,

.

•

o)
[r. ]

= exp[iTl0x e"^o] •

{ [8 - \t\ q e"
M o] / [S - \t\ q ) }

l
\ (B6)

"his is the characteristic function of a r.v. that, with probability

•-• - e~ , has the value x e~^ , and with probability (1 -ex) is the sum of

<r;e~
d

- and a r.v. with exponential distribution of parameter 8.

Now, taking t Q
--> *> Eq. (B6) yields the marginal distribution of the

22



steady state process,

C
x( oo)h ] = (S/ [8 - iti ]}

u
. (B7)

i.e. the characteristic function of a Gamma distribution, as promised.

Appendix C. The Characteristic Functional of an M/G/qq Queue, and

Extensions

The h/G/<» queue may be modeled as shot noise impulses of unit

magnitude 8
( "customers" arrive with rate #(t), n is again Poisson ),

n

g(t) - 2 s(t - tj), (ci)

which have been filtered through a linear system with a random response

function given by,

r(t - tj) ~- e(t - t;) - e(t - tj - rj), (C2)

i.e. a unit height pulse with random duration, r. (the random "service"

time). Hence, f or 3 - 1, the number in the system at time t is,

n

N(t) = 7 3i (Q(t - tj) - e(t - tj -rj)}. (C3)

we have included the factor, 3.. so that we can allow the system

2
7



response to also have a random height, corresponding to a random weight

(or damage, system stress, pollution, etc.) of each customer. Using the

definition of the characteristic functional and following the same steps

as in the previous Appendices, we obtain.

oo n co

2 pn
(TT[ JJ7dtj3(tj)/ndflj f(3j) dr

J

b(r
J

)exp[i3 jjds-n(s) 0(s,tp;)l },

n^O j=l o

where 8(s,t.,r,) - G(t - t.) - 0(t - t, -r,). Again using the

independence of each term in the product, and the fact that they are all

the same, we can perform the summation over pn
(Poisson), and the

average over £ (obtaining the ordinary characteristic function, Co ).

Finally, the characteristic functional may be written,

t t'
+ r

:[ti(-)1 = exp{ -Jdt'W) [1 - C^(jT|(s)ds)b(r)dr ]}. (C4)

o f
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