

Monterey, California

PODEMS - A POINT DEFENSE MISSILE SIMULATION

Ъу

Michael H. Redlin

March 1973

Approved for Public Release; Distribution Unlimited

FEDDOCS D 208.14/2 NPS-57RP73031A FORDADA LODZ 112, NPS STRPTSTEIR - 3

)

DUDLEY KNOX LIBRARY WAVAL POSTGRADUATE SCHOOM MONTEREY CA 93943-5101

NAVAL POSTGRADUATE SCHOOL Monterey, California

Rear Admiral Mason Freeman, USN Superintendent

Milton U. Clauser Provost

ABSTRACT

A Point Defense Missile Simulation has been developed. This report describes the concept of such a missile, the basic features of the simulation program including the integration routine and the jet reaction controllers, and provides a FORTRAN coded source program.

TABLE OF CONTENTS

		PAGE
I.	INTRODUCTION	1
II.	COMPUTER PROGRAM EXPLANATIONS	
	A. Definitions of Coordinate Systems	3
	B. Missile Position and Orientation	3
	C. Quaterions	5
	D. Differential Equations for Rigid Body	7
	E. Definition of Relative Wind Orientation	8
	F. Aerodynamic Data	8
	G. Integration Routine	9
	H. Other Subroutines	10
	REFERENCES	24
	APPENDIX A - Computer Program Listing	
	APPENDIX B - Listing of Program Variables	
	INITIAL DISTRIBUTION LIST	64
	FORM DD 1473	65

LIST OF SYMBOLS

° _i	Corrector for state variables at time step i
c _l ,	Moment coefficients of baseline missile
C _m ,	expressed in proch axes
°n'	
°x'	Force coefficients of baseline missile expressed in pitch axes
Cy'	
z'	
a	Missile diameter, it
^e 0 ^{-e} 3	Quaterion parameters
h	Step size for fast integration speed, secs
h _s	Step size for slow integration speed, secs
I _x , I _y	Longitudinal and transverse moments of inertia, slugs-ft ²
K _m , K _n	Moment amplication factors due to JRC's
K _y , K _z	Force amplication factors due to JRC's
m	Missile mass, slugs
mi	Modified value of state variables at time step i
m'i	Derivatives of state variables evaluated with m
p,q,r	Missile angular rates about body axes, rad/sec
P _i	Predicted value of state variables at time step i
r _{mT}	Range from target to missile, ft
S	Reference area, ft ²
T11-T33	Elements of transformation matrix from inertial axes to body axes
Tr	Thrust of rocket, lbs
TJRC	Thrust of JRC's, lbs
u,v,w	Components of missile's inertial velocity in body axes, ft/sec

iii

^u T, ^v T, ^w T	Components of total relative wind velocity in body axes, ft/sec
u _w ,v _w ,w _w	Components of true wind velocity in body axes, ft/sec
V	Magnitude of relative wind velocity, ft/sec
х,у,z	Body axes coordinate system
x _{mT} ,y _{mT} ,z _{mT}	Target position relative to missile in body axes, ft
x',y',z'	Pitch axes coordinate system
Х,Ү,Ζ	Inertial axes coordinate system
x_{i}, y_{i}, HT	North-south, east-west, and height inertial position of missile, ft
X_{F}, Y_{F}, Z_{F}	Total forces along missile body axes, lbs
x_{M}, y_{M}, z_{M}	Total moments along missile body axes, lbs-ft
xt_1, xt_1, htt	North-south, east-west, and height inertial position of target, ft
xcg	Position of missile center of gravity, ft
^x JRC	Position of missile JRC thrusters, ft
ỹ _i , ĩ _i	Predicted values of state variables at time step i
α	Missile angle of attack, degrees
e	Quaterion orthogonality error
¢В	Angular error between gyro spin axis and target line of sight, rad
°С	Angular error between coil housing axis and target line of sight, rad
θ,Φ,Ψ	Standard missile Euler angles, deg
θμ	Angular error associated with seeker gimbal ring, rad
σ _A ,σ _B	Target elevation and azimuth angles relative to missile axes
₽l	Seeker roll angle, rad
ΦJ	Orientation of relative wind with respect to thruster axes, deg
Φ _w	Orientation of relative wind with respect to missile axes, deg
¥2	Seeker coil housing look angle, rad

iv

¥3	Angular error associated with seeker gimbal ring, rad
Ω _C	Angular rotation rate of coil housing, rad/sec
Ω _G y	Angular rotation rate of gyro spin axis about its y axis, rad/sec
$^{\Omega}G_{z}$	Angular rotation rate of gyro spin axis about its z axis,
Ω _Y	Angular rotation rate of seeker yoke, rad/sec

v

LIST OF FIGURES

		PAGE
1.	Definition of Missile Fixed Coordinate System	14
2.	Definition of Pitch Axes Coordinate System	1 ⁴
3.	Relative Wind Orientation	15
4.	Relative Wind Orientation With Respect to JRC Thruster Axis	16
5.	C_z , vs α for $\Phi_w = 0$, $\pi/4$, $\pi/2$	17
6.	C_{m} , vs α for $\Phi_{W} = 0$, $\pi/4$, $\pi/2$	18
7.	K_z vs α for $\Phi_J = 0$, $\pi/2$, π	19
8.	$K_{\rm m}$ vs α for $\Phi_{\rm J} = 0$, $\pi/2$, π	19
9.	Dual Speed Integration for One Large Step h_s .	20
10.	Definitions of JRC Orientations	21
11.	Definition of Target Azimuth and Elevation Angles	22
12.	Definition of Missile Parameters	23

INTRODUCTION

A POint DEfense Missile Simulation (PODEMS) program has been developed and this report offers a description of its basic features, structure, and requirements. Although rather straight forward in nature, this program provides the basic framework from which further simulations of increased complexity and sophistication can be easily implemented.

The concept of a point defense missile as defined by this effort can be best understood by analyzing a typical flight. The seeker of the missile initially acquires a low-altitude, high speed, incoming target. The surfaceto-air missile launches vertically, and then immediately performs a rapid pitch-over maneuver toward the target with a consequent altitude gain of less than 500 feet. The primary controllers for this phase of the flight are two pairs of diametrically opposed jets (jet reaction controllers-JRC) aligned perpendicular to both one another and the missile axis of symmetry. Upon attainment of an approximately horizontal flight path, the primary controller of the missile transfers to typical aerodynamic surfaces (CANARDS) which then guide the missile to intercept. The maneuvers of lift-off and pitch-over, for which the time frame is 1. - 1.5 secs, are of primary interest and therefore are the object of this simulation.

The important features of the simulation are: acceptance of a vertical launch configuration, implementation of JRC controlled maneuvers, a detailed simulation of a large-look angle seeker, and a dual speed integration routine.

The basis of the simulation is a dual speed integration routine using Hamming's predictor-modifier-corrector formulation for the recursion equations. The user has the option of specifying which state variables are integrated with the two different steps size h and h_s . Additionally, because of the singularities evident in the Euler angles, four quaterion parameters are

1

employed to uniquely represent the missile attitude for all possible orientations.

All of the missile parameters, including the aerodynamic data for both the baseline missile and the JRC's, are listed within the report. However, the reader is cautioned against the assumption that a particular missile is being simulated for the data are only representative of this type of missile.

The intention of this effort was to provide a general basic structural program capable of simulating a missile as a rigid body with the specific subroutines for the aerodynamic data, rigid body parameters, etc. to be supplied by the user as required.

COMPUTER PROGRAM EXPLANATIONS

A. Definitions of Coordinate Systems

1. Inertial Coordinate System

An inertially fixed coordinate system (X,Y,Z) is attached to the earth with the origin at ground zero, the X axis indicating north, the Y axis indicating east and the Z axis indicating the local vertical (positive downward).

2. Missile Fixed Coordinate System

A body fixed coordinate system (x,y,z) is located with its origin at the missile center of gravity, the x axis as the missile's axis of symmetry (positive pointing forward), the y axis rotated negative 45° from the righthand pitch canard, and the z axis rotated accordingly. See Figure 1.

3. Pitch Axis Coordinate System

The origin and the x' axis of the pitch axes coordinate system (x',y',z') are coincident with their counterparts in the missile fixed axes system, while the z' axis always coincides with the projection of the relative wind vector onto the y, z plane. The angle Φ_w indicates the relative rotation of (x',y',z') with respect to (x,y,z). See Figure 2.

B. Missile Position and Orientation

The coordinates X, Y, HT locate the missile center of gravity with respect to the inertial coordinate system in the north-south, east-west, and height above ground zero directions respectively.

The orientation of the missile axes with respect to the inertial system is monitored using the standard Euler angles¹ Ψ , θ , Φ (yaw, pitch, roll) with the order of rotation as given. The resulting transformation matrix from inertial coordinates to missile coordinates is

3

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} T11 & T12 & T13 \\ T21 & T22 & T23 \\ T31 & T32 & T33 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

where

T11 = $\cos \psi \cos \theta$ T12 = $\sin \psi \cos \theta$ T13 = $-\sin \theta$ T21 = $\cos \psi \sin \theta \sin \Phi - \sin \psi \cos \Phi$ T22 = $\sin \psi \sin \theta \sin \Phi + \cos \psi \cos \Phi$ T23 = $\cos \theta \sin \Phi$ T31 = $\cos \psi \sin \theta \cos \Phi + \sin \psi \sin \Phi$ T32 = $\sin \psi \sin \theta \cos \Phi - \cos \psi \sin \Phi$ T33 = $\cos \theta \cos \Phi$

In the actual simulation, the Euler angles are not employed because of their singularity at $\theta = \pm 90$.; however they are calculated and outputed to aid the program user in visualization of the missile orientation. The following equalities define the Euler angles when $\theta \neq \pm 90$.:

$$\theta = \sin^{-1}$$
 (-T13)
 $\Psi = \tan^{-1}$ (T12/T11) (4 quadrant \tan^{-1})
 $\Phi = \tan^{-1}$ (T23/T33) (4 quadrant \tan^{-1})

However, when $\theta = \pm 90.$, Ψ and Φ are undefined and the following convention is adopted

$$\Psi = 0$$

 $\Phi = \tan^{-1}$ (T21, T31) (4 quadrant \tan^{-1})

C. Quaterions²

To avoid the singularity of the Euler angles at $\theta = \pm 90$. the quaterion system of four coordinates is adopted. The introduction of an extra coordinate into the system removes the singularity but requires the addition of a constraint equation on the four parameters.

The four coordinates are e_0, e_1, e_2, e_3 with the constraint of $e_0^2 + e_1^2 + e_2^2 + e_3^2 = 1$ (orthogonality). The elements of the previously mentioned transformation matrix are functions of these coordinates.

 $T11 = e_0^2 + e_1^2 - e_2^2 - e_3^2$ $T12 = 2(e_1e_2 + e_0e_3)$ $T13 = 2(e_1e_3 - e_0e_2)$ $T21 = 2(e_1e_2 - e_0e_3)$ $T22 = e_0^2 + e_2^2 - e_1^2 - e_3^2$ $T23 = 2(e_2e_3 + e_0e_1)$ $T31 = 2(e_1e_3 + e_0e_2)$ $T32 = 2(e_2e_3 - e_0e_1)$ $T33 = e_0^2 + e_3^2 - e_1^2 - e_2^2$

The differential equations for the quaterion parameters as functions of the missile angular rates (p,q,r) are:

$$\dot{e}_{0} = -\frac{1}{2} (e_{1}p + e_{2}q + e_{3}r)$$
$$\dot{e}_{1} = \frac{1}{2} (e_{0}p - e_{3}q + e_{2}r)$$
$$\dot{e}_{2} = \frac{1}{2} (e_{3}p + e_{0}q - e_{1}r)$$
$$\dot{e}_{3} = \frac{1}{2} (-e_{2}p + e_{1}q + e_{0}r)$$

Mechanization of the constraint equation is achieved by defining an error

$$e = 1 - (e_0^2 + e_1^2 + e_2^2 + e_3^2)$$

which is a measure of the violation of the constraint and applying a correction factor to each differential equation which reduces the error. With a value of K = 1 the equations remain correctly constrained within $|\varepsilon| \le 10^{-6}$.

$$\dot{e}_{0} = -\frac{1}{2} (e_{1}p + e_{2}q + e_{3}r) + Ke_{0}\varepsilon$$

$$\dot{e}_{1} = \frac{1}{2} (e_{0}p - e_{3}q + e_{2}r) + Ke_{1}\varepsilon$$

$$\dot{e}_{2} = \frac{1}{2} (e_{3}p + e_{0}q - e_{1}r) + Ke_{2}\varepsilon$$

$$\dot{e}_{3} = \frac{1}{2} (-e_{2}p + e_{1}q + e_{0}r) + Ke_{3}\varepsilon$$

The required initial conditions on e_0 , e_1 , e_2 , e_3 are given as functions of the initial Ψ , θ , Φ by

$$\begin{aligned} \mathbf{e}_{0} &= \cos \left(\frac{\Psi}{2} \right) \cos \left(\frac{\theta}{2} \right) \cos \left(\frac{\Phi}{2} \right) + \sin \left(\frac{\Psi}{2} \right) \sin \left(\frac{\theta}{2} \right) \sin \left(\frac{\Phi}{2} \right) \\ \mathbf{e}_{1} &= \cos \left(\frac{\Psi}{2} \right) \cos \left(\frac{\theta}{2} \right) \sin \left(\frac{\Phi}{2} \right) - \sin \left(\frac{\Psi}{2} \right) \sin \left(\frac{\theta}{2} \right) \cos \left(\frac{\Phi}{2} \right) \\ \mathbf{e}_{2} &= \cos \left(\frac{\Psi}{2} \right) \sin \left(\frac{\theta}{2} \right) \cos \left(\frac{\Phi}{2} \right) + \sin \left(\frac{\Psi}{2} \right) \cos \left(\frac{\theta}{2} \right) \sin \left(\frac{\Phi}{2} \right) \\ \mathbf{e}_{3} &= -\cos \left(\frac{\Psi}{2} \right) \sin \left(\frac{\theta}{2} \right) \sin \left(\frac{\Phi}{2} \right) + \sin \left(\frac{\Psi}{2} \right) \cos \left(\frac{\theta}{2} \right) \cos \left(\frac{\Phi}{2} \right) \end{aligned}$$

D. Differential Equations for Rigid Body

With X_F , Y_F , Z_F defined as the total forces on the missile expressed in missile axes x,y,z respectively and X_M , Y_M , Z_M defined as the total moments about the missile center of gravity expressed in the same axis system, the differential equations of motion are:

$$\dot{u} = rv - qw + X_F/m$$

$$\dot{v} = pw - ru + Y_F/m$$

$$\dot{w} = qu - pv + Z_F/m$$

$$\dot{p} = \frac{X_M}{I_x}$$

$$\dot{q} = -\frac{pr (I_x - I_y) + Y_M}{I_y}$$

$$\dot{r} = +\frac{pq (I_x - I_y) + Z_M}{I_y}$$

$$\begin{bmatrix} \mathbf{\dot{x}}_{I} \\ \mathbf{\dot{y}}_{I} \\ \mathbf{\dot{H}}_{T} \end{bmatrix} = \begin{bmatrix} \mathbf{T}^{-1} \\ \mathbf{T}^{-1} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \\ \mathbf{w} \end{bmatrix}$$

 $\dot{e}_{0} = -\frac{1}{2} (e_{1}p + e_{2}q + e_{3}r) + Ke_{0}\varepsilon$ $\dot{e}_{2} = \frac{1}{2} (e_{0}p - e_{3}q + e_{2}r) + Ke_{1}\varepsilon$ $\dot{e}_{3} = \frac{1}{2} (e_{3}p + e_{0}q - e_{1}r) + Ke_{2}\varepsilon$ $\dot{e}_{4} = \frac{1}{2} (-e_{2}p + e_{1}q + e_{0}r) + Ke_{3}\varepsilon$

It is assumed that the missile is symmetric about the x axis, no cross products of inertia exist and $I_y = I_z$. $T^{-1} = T^T$ where T is the transformation matrix from (X,Y,Z) to (x,y,z).

E. Definition of the Relative Wind Orientation

Two angles α and ϕ_W define the orientation of the relative wind vector with respect to the missile axis system as shown in Figure 3, where u_T , v_T , w_T are the x,y,z components of the resultant wind and $V = (u_T^2 + v_T^2 + w_T^2)^{\frac{1}{2}}$. Along each axis the resultant wind component is the difference of the missile inertial velocity and the true wind for that axis.

 $u_{T} = u - u_{W}$ $v_{T} = v - v_{W}$ $w_{T} = w - w_{W}$

Additionally, Φ_J defines the orientation of the resultant wind with respect to each individual JRC (Jet Reaction Controller). Positive Φ_J is defined as shown in Figure 4.

F. Aerodynamic Data

The missile aerodynamics are divided into two distinct categories: (1) aerodynamic coefficients for the baseline missile (no JRC) and (2) amplification factors which represent the effect of the JRC thrusters. Both sets of data are functionally dependent on α and either Φ_{w} or Φ_{J} but not on Mach number.

The baseline aerodynamic coefficients C_x , C_y , C_z , C_l , C_m , C_n , are given as shown in Figures 5-6. For the present simulation C_x = C_y , = C_l = C_n , = 0.

The effects of the JRC thrusters are summarized by amplification factors as follows (y force and moment amplification factors are used as examples)

$$K_{y} = \frac{Y_{F}|_{JRC \text{ on }} - Y_{F}|_{JRC \text{ off}}}{T_{JRC}}$$

$$K_{m} = \frac{Y_{M}|_{JRC \text{ on }} - Y_{M}|_{JRC \text{ off}}}{T_{JRC} (x_{JRC})}$$

The specific values of K_y , K_z , K_m , K_n as programmed are shown in Figures 7-8. For this simulation $K_y = K_n = 0$. Additionally, the effects of the JRC jets are assumed to be independent.

G. Integration Routine³

Hamming's predictor, modifier, corrector set of recursion equations are used for the dual speed numerical integration of the problem state variables. The following is a brief explanation of the equations.

For a system of n ordinary differential equations

$$y' = f(x,y)$$

where

$$y' = dy/dx$$
,

a sequence of the solution variables

$$y_{i} = y(x_{i})$$
 $i = 1, 2, ...$

can be expressed as a function of previous y_i and y_i . With $h = x_{i+1} - x_i$ Hammings method is:

PREDICT:
$$p_{i+1} = y_{i-3} + \frac{4h}{3} (2y'_i - y'_{i-1} + 2y'_{i-2})$$

MODIFY:
$$m_{i+1} = p_{i+1} - \frac{112}{121} (p_i - c_i)$$

$$m_{i+1}^{i} = f(x_{i+1}^{i}, m_{i+1}^{i})$$

 $c_{i+1}^{i} = \frac{1}{8} [9y_{i}^{i} - y_{i-2}^{i} + 3h(m_{i+1}^{i})]$

CORRECT:

y,

FINAL VALUE:

$$+1 = c_{i+1} + \frac{9}{121} (p_{i+1} - c_{i+1})$$

Each advance of h in the independent variable x requires two evaluations of y', once for the predictor and once for the corrector. The method is numerically stable with truncation errors to the order of h^5 .

The values of y and y' from the past three intervals are necessary, thus a starting technique is required. The conventional application of a 4th order Runge-Kutta integration method on the first three steps was discarded in favor of calculating the required state variables by a Euler backstep. Specifically, for i = 0,

> $y_{-3} = y_0 - 3hy'_0$ $y_{-2} = y_0 - 2hy'_0$ $y_{-1} = y_0 - hy'_0$ $y'_{-2} = y'_{-1} = y'_0$

This method suffers from inaccuracy when y'_{-2} and y'_{-1} differ appreciably from y'_{0} . However, in this simulation, no variation in the solution was detected from the application of the less accurate Euler backstep when compared with a Runge-Kutta starter.

An additional complexity was introduced by the requirement of a dual speed integration algorithm because of computational time considerations.

$$y' = f(x,y,z)$$

z' = f(x,y,z)

with the z equations requiring smaller time steps than the y equations for the same accuracy criteria. With h and h defined as the smaller

10

and larger step sizes respectively, figure 9 depicts the sequencing of the algorithm for one step of h_s . A ratio of $h_s/h = 5$ is chosen for illustration although this is variable at the operator's option.

H. Other Subroutines

CONTROL SYSTEM

The JRC's were assumed to be the primary controlling elements for the initial missile trajectory and, therefore, the canard deflection are identically zero for this phase of the flight.

Two control equations govern the action of the JRC's, one for each pair of opposing jets. Figure 10 defines the jet numbers and orientations. For illustration the control of jets 1 and 3 is presented. A variable PRMTZ is defined as a function of missile-target relative position and rates. The exact specification for this equation is the operators responsibility. When PRMTZ > 0 jet 3 is on while jet 1 is off. If PRMTZ < 0 the reverse is true, and when PRMTZ = 0 both jets are off.

As an example of a possible control equation consider

$$PRMTZ = \sigma_A + K \dot{\sigma}_A$$

where σ_A is defined in Figure 11. SEEKER

This program incorporates a simulation of a large look angle version of a present day seeker. The simulation was supplied by the manufacturer and was only slightly modified to interface correctly. The system description will not be discussed here, only the inputs and outputs of the subroutine.

The following information is required by subroutine SEEKER: X_{I} , Y_{I} , HT, XT_{I} , YT_{I} , HTT, [T], p, q, r, p, q, r, p, q, r. The subroutine returns: Φ_{I} , Ψ_{2} , Ψ_{3} , Θ_{4} , ϵ_{B} , ϵ_{C} , $\dot{\Phi}_{I}$, $\dot{\Psi}_{2}$, Ω_{y} , Ω_{C} , $\Omega_{G_{y}}$, $\Omega_{G_{z}}$ for outputting if desired.

RIGID BODY PARAMETERS

All rigid body parameters (mass , I_x , I_y , C.G. position) are linearly interpolated between the initial values at lift-off and the final values when the missile thrust motor is expended. The instantaneous position of the center of gravity x_{cg} is defined relative to the reference point for the aerodynamic data as in Figure 12. The following table indicates the parameters as used in the program.

PARAMETER	LIFT OFF	BURN OUT	
m	6.742	4.710	slug
I _y	65.1	48.1	slug-ft ²
I _x	.420	.245	slug-ft ²
xcg	321	.406	ft

$$S = .13635 \text{ ft}^2$$

 $d = .4167 \text{ ft}^2$
 $x_{JRC} = 2.434 \text{ ft}^2$
 $f_{JRC} = 400.1bs$
 $T_r = 3000.1bs$

ATMOS PHERE

Both the density and acoustical velocity of air as functions of height are generated within ATMOS. A linear interpolation of these parameters is based on data from an ICAO Standard Atmosphere Table at heights of 0. and 1000. ft.

Additionally values for the X and Y components of surface winds maybe entered as constant or functions of altitude depending on the operator's preference.

TARGET

Subroutine target calculates the time history trajectory of the target as a function of its initial inertial position, constant inertial velocity components and time.

THRUST

Missile thrust is assumed to be a constant THR for a duration of burn TBURN, after which THR = 0.

Figure 1. Definition of Missile Fixed Coordinate System

End View Looking Forward

Figure 2. Definition of Pitch Axes Coordinate System

$$\alpha = \cos^{-1} (u_{T}/V)$$

$$\phi_{w} = \cos^{-1} (w_{T}/(v_{T}^{2} + w_{T}^{2})^{\frac{1}{2}})$$

If $\alpha = 0$, $\phi_{w} \equiv 0$

Figure 3. Relative Wind Orientation

End View Looking Forward

Figure 4. Relative Wind Orientation With Respect to the JRC Thruster Axis.

Figure 5. C_z , vs α for $\Phi_w = 0$, $\pi/4$, $\pi/2$.

Figure 6. C_{m} , vs α for $\phi_{W} = 0$, $\pi/4$, $\pi/2$.

Km

Figure 8. $K_m vs \alpha$ for $\Phi_J = 0$, $\pi/2$, π .

$$z_{i+2}$$
, z_{i+3} , ... until $x = x_{i+5}$.

4. Repeat steps (1) - (3) for successive increments of h_s .

Figure 9. Dual Speed Integration for One Large Step ${\rm h}_{\rm s}$.

End View Looking Forward

Figure 10. Definition of JRC Orientation.

$$\sigma_{A} = \tan^{-1} (z_{mT}/x_{mT})$$

 $\sigma_{B} = \tan^{-1} (y_{mT}/x_{mT})$

Figure 11. Definition of Target Azimuth and Elevation Angles.

Figure 12. Definition of Missile Parameters.

23

REFERENCES

- 1. Etkin, Bernard, Dynamics of Flight, John Wiley & Sons, Inc., 1959.
- Mitchell, E. E. L., and Rogers, A. E., "Quaterion Parameters in the Simulation of a Spinning Rigid Body," <u>Simulation</u>, Vol. 4, No. 6, June, 1965.
- 3. Ralston, A., and Wilf, H. (Editors), <u>Mathematical Methods for Digital</u> Computers, Vol, I, John Wiley & Sons, Inc., New York, 1967.
- 4. Dommasch, Daniel O., and others, <u>Airplane Aerodynamics</u>, Pitman Publishing Corporation, New York, 1967.
APPENDIX A

PROGRAM LISTING

The following is a FORTRAN listing of the simulation program designed for compatibility with the United Computing Service, Inc. time sharing system. A typical input/output listing is also included.

```
03/28/73 . 15.35.59
FAGE 1
          SXDF
00100
            PROGRAM SXDF(INPUT, OUTPUT, TAPE1, TAPE2, TAPE3)
00110
            COMMON Y( 9), DY( 9), X, H, WINDXB, WINDYB, WINDZB, RMACH
            , CPHIW, XFA, YFA, ZFA, THR, XCG, RMASS, FCAN, YCAN, XM, YM, ZM, XXI, YYI
00120+
00130+
            VSND, SPHIW, HTE, QUE, ALPHA, PHIW, XMAX, TBURN, RHO, VEL, FSI, THT,
00140 +
            FHI,Z(14),DZ(14)
00150
            COMMON NDIM, IFRINT, NSTEP, NPRINT, ICOUNT, IRATE, IRATIO, NDIMF
00160* COMMUNICATIONS BETWEEN SUBROUTINE CTLSYS, AROJRC
00170
             COMMON/CTLSYJ/ IJET(4)
00180* COMMUNICATIONS BETWEEN SUBROUTINES TRNSMT, TARGET, SEEKER
             COMMON/TRANS/T11, T12, T13, T21, T22, T23, T31, T32, T33
00190
00200* COMMUNICATIONS BETWEEN SUBROUTINES CTLSYS, SEEKER
00210
             COMMON/SEEKR/ EFB, SPHI1, CPHI1, EFBC
00220* EQUIVALENCING COMMON MISSILE TERMINOLOGY TO THE STATE VARIABLES
00230* Y(I) AND Z(I) AND THEIR RESPECTIVE DERIVATIVES DY(I) AND DZ(I)
00240
            EQUIVALENCE (U,Y(1)),(V,Y(2)),(W,Y(3)),(XI,Y(4)),(YI,Y(5)),
00250+
             (HT_{y}Y(6))_{y}(F_{y}Y(7))_{y}(Q_{y}Y(8))_{y}(R_{y}Y(9))_{y}
00260+
             (UD, DY(1)), (VD, DY(2)), (WD, DY(3)),
00270+
             (XID, DY(4)), (YID, DY(5)), (HTD, DY(6)), (PD, DY(7)), (QD, DY(8)),
             (RD, DY(9))
00280+
00290* EQUIVALENCING COMMON MISSILE TERMINOLOGY TO THE STATE VARIABLES
00300* Y(I) AND Z(I) AND THEIR RESPECTIVE DERIVATIVES DY(I) AND DZ(I).
             EQUIVALENCE (WYX, Z(3)), (PHI1, Z(4)), (WCZ, Z(5)), (FSI2, Z(6)),
00310
             (WGY,Z(7)),(WGZ,Z(8)),(PSI3,Z(9)),(THT4,Z(10)),
00320+
             (E0,Z(11)),(E1,Z(12)),(E2,Z(13)),(E3,Z(14)),(PHI1D,DZ(4)),
00330+
             (PSI2D, DZ(6)), (E0D, DZ(11)), (E1D, DZ(12)), (E2D, DZ(13)),
00340+
00350+
             (E3D, DZ(14))
             DATA CON4/57.29577951/, GRAV/32.2/
00360
00370 DATA CON1/1.0/
00380 RETRIEVE(CTLSYS)
00390 RETRIEVE(INIT)
00400 RETRIEVE(THRUST)
00410 RETRIEVE(AERO)
00420 RETRIEVE(TRNSMT)
00430 RETRIEVE(TARGET)
00440 RETRIEVE(RBPRMT)
00450 RETRIEVE(INTEG)
00460 RETRIEVE(AROBSE)
00470 RETRIEVE(SEEKEE)
00480 RETRIEVE(ATMOS)
00490 RETRIEVE(AROJRC)
00500 RETRIEVE(INTER2)
00510 HETRIEVE(OUTFUT1)
00520 REWIND 2
00530* INITIALIZE ALL FROGRAM VARIABLES
             CALL INIT
00540
00550* THE INTEGRATION ROUTINE REQUIRES TWO EVALUATIONS OF THE STATE
00560* VARIABLE DERIVATIVES FOR EACH TIME STEP. ADDITIONALLY, THE STATE
00570* VARIABLES ARE SEFARATED INTO TWO CATEGORIES; Z(I) FOR VARIABLES
00580* WHICH UPDATE AT EVERY TIME STEP H, AND Y(I) FOR VARIABLES WHICH
00590* UPDATE ONLY EVERY "IRATIO" TIME STEPS.
00600* CALCULATE THE NUMBER OF DERIVATIVE EVALUTIONS NECESSARY FOR
00610* "IRATIO" NUMBER OF TIME STEPS.
00620
             IRT2=2*IRATIO
00630
           3 DO 2 K=1, IET2
00640* THE START OF THE DERIVATIVE EVALUATION LOOF.
00650* CALCULATE THE TRANSFORMATION MATRIX BETWEEN THE INERTIAL AXIS
00660* SYSTEM AND THE MISSILE BODY FIXED AXIS SYSTEM.
00670
             CALL TRNSMT
00680* CALCULATE THE DERIVATIVES OF THE QUATERION VARIABLES.
                                     26
```

```
PAGE 2
          SXDF
                        03/28/73. 15.35.59
           EFS=1.+T11+T22+T33-4.*E0*E0
00690
           E0D = -.5*(E1*P+E2*Q+E3*R)+EPS*E0
00700
            E1D= •5*(E0*P+E2*R-E3*Q)+EFS*E1
00710
00720
            E2D= .5*(E0*0+E3*F-E1*R)+EPS*E2
           E3D= .5*(E0*R+E1*Q-E2*P)+EPS*E3
00730
00740* IT IS NOT NECESSARY TO REEVALUATE ALL OF THE DERIVATIVES WHEN
00750* ONLY THE Z(I), AND NOT THE Y(I), VARIABLES ARE BEING UPDATED.
00760* "IRATE" EQUALS 1 IN THIS SITUATION, OTHERWISE IT EQUALS 0.
00770* WHEN "IRATE" EQUALS 1, PORTIONS OF THE LOOP ARE BYPASSED TO
00780* FREVENT RECOMPUTATION OF NON-UPDATED VARIABLES.
00790
            IF (IRATE.EG.1) GO TO 20
00800* COMFUTE TARGET POSITION.
00810
            CALL TARGET
00820* COMPUTE MISSILE THRUST.
00830
            CALL THRUST
00840* COMPUTE THE INSTANTANEOUS VALUES OF THE RIGID BODY PARAMETERS.
00850
            CALL RBFEMT
00860* COMPUTE THE FERTINENT ATMOSPHERIC PARAMETERS.
00870
            CALL ATMOS
         20 CONTINUE
00880
00890* SIMULATE THE SEEKER DYNAMICS. THE SEEKER VARIABLES MUST BE
00900* INTEGRATED WITH THE SMALL TIME STEP TO AVOID COMPUTATIONAL
00910* INSTABILITIES, AND HENCE ARE EVALUATED DURING EACH PASS THROUGH
00920* THE LOOP.
            CALL SEEKER
00930
00940* BYFASS FORTIONS OF THE LOOF BASED ON "IRATE".
00950
            IF (IRATE • EC • 1) GO TO 30
00960* DETERMINE THE MISSILE CONTROL VARIABLES.
            CALL CTLSYS
00970
00980* ADD THE EFFECTS OF ATMOSPHERIC WINDS.
00990
            UT=U-WINDXB
01000
            VT=V-WINDYB
01010
            WT=W-WINDZB
01020* CALCULATE MISSILE VELOCITY, MACH NUMBER, AND DYNAMIC PRESSURE.
01030
            VEL2=UT*UT+VT*VT+WT*WT
01040
            VEL=SORT(VEL2)
01050
            VEL1=SQRT(VEL2-UT*UT)
01060
            GUE= • 5*RHO*VEL2
01070
           RMACH=VEL/VSND
01080* DETERMINE ALPHA AND FHI OF THE WIND. AT THE SINGULARITY OF
01090* ALPHA=0, PHI IS DEFINED AS =0.
01100
            PRMT=CON1
01110
            IF (VEL.GT.0.) PRMT=UT/VEL
            IF (ABS(PRMT).GE.1.0) PRMT=SIGN(CON1,PRMT)
01120
01130
            ALPHA=CON4*ACOS(PRMT)
01140
            PHIW=0.
01150
            SPHIW=0.
01160
            CPHIW=1.
01170
            IF (VEL1.EQ.0.) GO TO 10
01180
           SPHIW=VT/VEL1
01190
            CFHIW=WT/VEL1
            IF (ABS(SPHIW).GE.1.0) SPHIW=SIGN(CON1, SPHIW)
01200
01210
            IF (ABS(CFHIW).GE.1.0) CPHIW=SIGN(CON1,CPHIW)
01220
            PHIW=CON4*ACOS(CPHIW)
01230
            IF (SPHIW.LT.Ø.) PHIW=-PHIW
01240* DETERMINE THE AERODYNAMIC FORCES AND MOMENTS.
         10 CALL AERO
01250
01260* SUM THE AERO, THRUST, AND GRAVITY FORCES.
           XF=XFA+THR+T13*GRAV*RMASS
01270
```

01280 YF=YFA+T23*GRAV*RMASS 61296 ZF=ZFA+T33*GRAV*RMASS 01300* EVALUATE THE MISSILE STATE VARIABLE DERIVATIVES. 01310 UD=R*V-C*W+XF/RMASS 01320 VD=P*W-R*U+YF/RMASS 01330 WD=G*U-F*V+ZF/RMASS 01340 FD=XM/XXI 01350 PRMT=F*(XXI-YYI) 01360 OD=(-R*FRMT+YM)/YYI 01370 RD=(@*PRMT+ZM)/YYI 01380 XID=U*T11+V*T21+W*T31 01390 YID=U*T12+V*T22+W*T32 01400 HTD = -(U * T13 + V * T23 + W * T33)01410 30 CONTINUE ©1420* DETERMINE WHETHER OUTPUT IS DESIRED. "IFRINT"=Ø INDICATES 01430* THAT THE INTEGRATION ROUTINE HAS ONLY PREDICTED AND HAS NOT 01440* CORRECTED, THEREFORE THE OUTPUT IS MEANINGLESS. "IFRINT"=1 01450* INDICATES THAT OUTFUTING IS FOSSIBLE. IF (IFFINT.EC.Ø) GO TO 6 01460 01470* DETERMINE IF THE DESIRED OUTPUT INTERVAL IS SATISFIED. 01480 IF (MOD(NSTEF, NFEINT).GT.0) GO TO 6 01490* CONVERT THE CUATERIONS TO EULER ANGLES FOR OUTPUTING. AT THE 01500* SINGULARITY OF THETA=+-90, FSI IS DEFINED AS =0 AND PHI 01510* IS CALCULATED. 01520 IF (ABS(T13).GE.1.0) T13=SIGN(CON1,T13) 01530 THT=CON4*ASIN(-T13) 01540 IF (ABS(THT).EC.90.) GO TO 4 01550 PSI=CON4*ATAN2(T12,T11) PHI=CON4*ATAN2(T23,T33) 01560 01570 GO TO 5 01580 4 FSI=0. 01590 FHI=CON4*ATAN2(T21,T31) 01600 5 CONTINUE 01610* KEEF TRACK OF THE NUMBER OF TIMES OUTPUTING IS PERFORMED. 01620 I COUNT = I COUNT + 1 01630* CONVERT RADIANS TO DEGREES FOR OUTPUTING. 01640 PSI20=PSI2*CON4 01650 THT40=THT4*CON4 01660 FHI10=FHI1*CON4 01670 EPB0=EPB*CON4 FSI30=FSI3*CON4 01680 EFECO=EFEC*CON4 01690 01700* WRITE THE OUTPUT VARIABLES 01710 WRITE(2) X, U, V, W, XI, YI, HT, P, Q, R, PSI, THT, PHI, ALFHA, FHIW, FHI10, FSI20, FSI30, THT40, EPBO, EFBCO, 01720+ WYX, WCZ, WGY, WGZ, FHI1D, FSI2D, (IJET(I), I=1, 4)01730+ 01740* DETERMINE WHETHER OR NOT ALL VARIABLES ARE TO BE UPDATED 01750* DURING THE NEXT FASS THROUGH THE LOOP. ALL VARIABLES ARE 01760* EVALUATED ON THE FIRST AND SECOND PASSES AND ONLY THE Z(I) 01770* VARIABLES ARE EVALUATED ON ALL SUBSEQUENT FASSES UNTIL AN 01780* "IRATIO" NUMBER OF STEFS HAVE BEEN TAKEN. 6 IRATE=001790 01800 IF (K.GT.2) IRATE=1 01810* CALL THE INTEGRATION ROUTINE. 2 CALL INTEG 01820 @1830* STOF THE FROGRAM WHEN THE REQUIRED TIME HAS ELAPSED. IF (X.LT.(XMAX+H*IRATIO)) GO TO 3 01840 01850* CALL THE FROGRAM TO SORT AND SEQUENCE THE OUTPUT VARIABLES FOR 01860* FOR TTY COMPATIBILITY.

01870 REWIND 2 01880 CALL OUTPUT1 01890 END

•

10 SUBROUTINE INIT COMMON Y(9), DY(9), X, H, WINDXB, WINDYB, WINDZB, RMACH 20 30+ CPHIW,XFA,YFA,ZFA,THR,XCG,RMASS,PCAN,YCAN,XM,YM,ZM,XXI,YYI 40+ , VSND, SFHIW, HTE, OUE, ALPHA, PHIW, XMAX, TBURN, RHO, VEL, PSI, THT, 50+ PHI,Z(14),DZ(14) 60 COMMON NDIM, IPRINT, NSTEP, NPRINT, ICOUNT, IRATE, IRATIO, NDIMF 70* COMMUNICATIONS WITH SUBROUTINE TARGET. 80 COMMON/INITL/XT0,YT0,HTT0,XTD,YTD,HTTD EQUIVALENCE (E0,Z(11)),(E1,Z(12)),(E2,Z(13)),(E3,Z(14)) 90 100 100 FORMAT(*INFUT H, XMAX, NFRINT, IRATIO*) 110 110 FORMAT(*INFUT XT0,YT0,HTT0,XTD,YTD,HTTD*) 120* INITIALIZE INTEGRATION ROUTINE CONTROL VARIABLES. 130 IRATE=Ø 140 $ICOUNT = \emptyset$ 150 IPRINT=1 160* SET DIMENSIONS OF Y(I) AND Z(I) RESPECTIVELY. IF DIMENSIONS 170* ARE INCREASED ALSO INCREASE THE STORAGE LOCATION DIMENSIONS 180* SUBROUTINE INTEG. 190 NDIM=9 200 NDIMF = 14210 PRINT 100 220* READ FROM TTY THE STEP SIZE, RUN TIME, OUTPUT INTERVAL, STEP SIZE 230* RATIO. 240 READ , H,XMAX,NPRINT,IRATIO 250* READ FROM TTY THE TARGET POSITION AND VELOCITY. PRINT 260 110 270 READ ,XTØ,YTØ,HTTØ,XTD,YTD,HTTD 280* TIME=0. 290 NSTEP=0 300 $X = \emptyset$. 310* INITIALIZE ALL STATE VARIABLES TO Ø. DO 1 I=1,NDIM 320 330 $Y(I) = \emptyset$. 340 1 DY(I) = \emptyset . 350 DO 2 I=1,NDIMF 36Ø $Z(I) = \emptyset$. 2 DZ(I) = 0.370 380 HTE=6. 390 TBURN=4.5 400* INITIAL EULER ANGLES FOR VERTICAL ORIENTATION. 410 $PSI = \emptyset$. 420 THT=3.141592653/2. 430 PHI = 0. 440* COMPUTE INITIAL QUATERION VALUES FROM EULER ANGLES. E0=+COS(FSI/2.)*COS(THT/2.)*COS(PHI/2.)+SIN(PSI/2.)*SIN 45Ø 460+ (THT/2.)*SIN(PHI/2.) E1=+COS(FSI/2.)*COS(THT/2.)*SIN(PHI/2.)-SIN(PSI/2.)*SIN 470 48Ø+ (THT/2.)*COS(PHI/2.) E2=+COS(FSI/2.)*SIN(THT/2.)*COS(PHI/2.)+SIN(PSI/2.)*COS 490 500 +(THT/2.)*SIN(PHI/2.)510 E3=-COS(PSI/2.)*SIN(THT/2.)*SIN(PHI/2.)+SIN(PSI/2.)*COS 520+ (THT/2.)*COS(PHI/2.) 53Ø RETURN 540 END

.

10	SUBROUTINE TRNSMT
20	COMMON Y(9), DY(9), X, H, WINDXB, WINDYB, WINDZB, RMACH
3Ø+	, CPHIW, XFA, YFA, ZFA, THR, XCG, RMASS, PCAN, YCAN, XM, YM, ZM, XXI, YYI
40+	, VSND, SPHIW, HTE, QUE, ALPHA, PHIW, XMAX, TBURN, RHO, VEL, PSI, THT,
50+	PHI, Z(14), DZ(14)
60	COMMON NDIM, IPRINT, NSTEP, NPRINT, ICOUNT, IRATE, IRATIO, NDIMF
70	COMMON/TRANS/T11, T12, T13, T21, T22, T23, T31, T32, T33
80	EQUIVALENCE (E0,Z(11)),(E1,Z(12)),(E2,Z(13)),(E3,Z(14))
90*	CALCULATE THE ELEMENTS OF THE TRANSFORMATION MATRIX FROM THE
100	* QUATERNION VARIABLES.
110	T11 = E0 * E0 + E1 * E1 - E2 * E2 - E3 * E3
120	T12=2.*(E1*E2+E0*E3)
130	T13=2.*(E1*E3-E0*E2)
140	T21=T12-4.*EØ*E3
150	T22=T11-2.*(E1*E1-E2*E2)
160	T23=2.*(E2*E3+E0*E1)
170	T31=T13+4.*E0*E2
180	T32=T23-4.*E0*E1
190	T33=T11-2.*(E1*E1-E3*E3)
200	RETURN
210	END

• •

10 SUBROUTINE TARGET 20 COMMON Y(9), DY(9), X, H, WINDXB, WINDYB, WINDZB, RMACH 30 +CFHIW, XFA, YFA, ZFA, THR, XCG, RMASS, FCAN, YCAN, XM, YM, ZM, XXI, YYI 40+ VSND, SPHIW, HTE, QUE, ALPHA, PHIW, XMAX, TBURN, RHO, VEL, PSI, THT, 5Ø+ FHI,Z(14),DZ(14) COMMON NDIM, IFRINT, NSTEP, NPRINT, ICOUNT, IRATE, IRATIO, NDIMF 60 70 COMMON/TARG/XTI,YTI,HTTI 80* COMMUNICATIONS WITH SUBROUTINE INIT 90 COMMON/INITL/XT0,YT0,HTT0,XTD,YTD,HTTD 100 COMMON/TRANS/T11, T12, T13, T21, T22, T23, T31, T32, T33 110 COMMON/SEEKR1/SIGA, SIGB, SIGAD, SIGBD 120 EQUIVALENCE $(U_{3}Y(1))_{3}(V_{3}Y(2))_{3}(W_{3}Y(3))_{3}(XI_{3}Y(4))_{3}(YI_{3}Y(5))_{3}$ 130+ $(HT_{y}Y(6))_{y}(F_{y}Y(7))_{y}(Q_{y}Y(8))_{y}(R_{y}Y(9))$ 140 DATA CON1/57.29577951/ 150* COMPUTE THE INERTIAL POSITION OF THE TARGET 160 XTI = XT0 + X * XTD170 YTI = YT0 + X * YTD180 HTTI=HTTØ+X*HTTD 190* COMPUTE THE TARGET FOSITION RELATIVE TO THE MISSILE IN THE 200* INERTIAL AXIS SYSTEM. XIMT=XTI-XI 210 220 YIMT=YTI-YI 230 HTMT=HTTI-HT 240* TRANSFORM THIS INTO MISSILE BODY COORDINATES. 250 XMT=T11*XIMT+T12*YIMT-T13*HTMT YMT=T21*XIMT+T22*YIMT-T23*HTMT 260 270 ZMT=T31*XIMT+T32*YIMT-T33*HTMT 280* COMPUTE THE MOTION OF THE TARGET AS VIEWED FROM THE MISSILE 290* AXES USING THE VELOCITIES OF THE TARGET AND THE MISSILE AND 300* THE ROTATIONAL RATES OF THE MISSILE. XMTD=T11*XTD+T12*YTD-T13*HTTD-U-0*ZMT+R*YMT 310 320 YMTD=T21*XTD+T22*YTD-T23*HTTD-V-R*XMT+P*ZMT ZMTD=T31*XTD+T32*YTD-T33*HTTD-W-P*YMT+Q*XMT 330 340* COMFUTE THE AZIMUTH AND ELEVATION ANGLES OF THE TARGET AS 350* SEEN BY THE MISSILE AND THEIR RESPECTIVE RATES. SIGA=ATAN2(ZMT,XMT)*CON1 360 370 SIGB=ATAN2(YMT,XMT)*CON1 SIGAD=CON1*(XMT*ZMTD-XMTD*ZMT)/(XMT*XMT+ZMT*ZMT) 380 390 SIGED=CON1*(XMT*YMTD-XMTD*YMT)/(XMT*XMT+YMT*YMT) 400 RETURN 410 END

FAGE	1	THEUST	03/28/73 . 16.16.25	
1 FOL	-	1111001		

10	SUBROUTINE THRUST
20	COMMON Y(9), DY(9), X, H, WINDXB, WINDYB, WINDZB, RMACH
3Ø+	, CPHIW, XFA, YFA, ZFA, THR, XCG, RMASS, PCAN, YCAN, XM, YM, ZM, XXI, YYI
40+	, VSND, SPHIW, HTE, QUE, ALPHA, PHIW, XMAX, TBURN, RHO, VEL, PSI, THT,
50+	PHI,Z(14),DZ(14)
60	COMMON NDIM, IFRINT, NSTEP, NPRINT, ICOUNT, IRATE, IRATIO, NDIMF
7Ø	THR=3000.
80	IF (X.GT.TBURN) THR=0.
90	RETURN
100	END

10	SUBROUTINE REFRMT
20	COMMON Y(9), DY(9), X, H, WINDXB, WINDYB, WINDZB, RMACH
30+	, CPHIW, XFA, YFA, ZFA, THR, XCG, RMASS, PCAN, YCAN, XM, YM, ZM, XXI, YYI
40+	, VSND, SPHIW, HTE, QUE, ALPHA, PHIW, XMAX, TBURN, RHO, VEL, FSI, THT,
50+	PHI,Z(14),DZ(14)
60	COMMON NDIM, IPRINT, NSTEP, NFRINT, ICOUNT, IRATE, IRATIO, NDIMF
70	DATA RMASS0/6.742/,YYI0/65.1/,XXI0/.420/,XCG0/321/,
80+	RMASSD/-•4506/,YYID/-3•778/,XXID/-•03889/,XCGD/•16152/
90	IF (X.GT.TBURN) GO TO 1
100*	IF THE MAIN ROCKET IS STILL ON, THE MISSILE'S MASS, MOMENTS
110*	OF INERTIA AND CG POSITION ARE CALCULATED BASED ON THE INITIAL
120*	VALUE PLUS AN AVERAGE RATE OF CHANGE TIMES THE ELAPSED TIME.
130	RMASS=RMASSØ+X*RMÁSSD
140	XXI=XXIØ+X*XXID
150	YYI=YYIØ+X*YYID
160	XCG=XCGØ+X*XCGD
170	1 RETURN

.

.

180 END

~

-

10	SUBROUTINE ATMOS
20	COMMON Y(9), DY(9), X, H, WINDXB, WINDYB, WINDZB, RMACH
30+	, CPHIW, XFA, YFA, ZFA, THR, XCG, RMASS, PCAN, YCAN, XM, YM, ZM, XXI, YYI
40+	, VSND, SPHIW, HTE, QUE, ALPHA, PHIW, XMAX, TBURN, RHO, VEL, PSI, THT
50+	PHI,Z(14),DZ(14)
60	COMMON NDIM, IPRINT, NSTEP, NPRINT, ICOUNT, IRATE, IRATIO, NDIMF
7Ø	COMMON/TRANS/T11,T12,T13,T21,T22,T23,T31,T32,T33
8Ø	EQUIVALENCE (HT,Y(6))
90	RH0=•0023769-HT*•000000688
100	$VSND = 1116 \cdot 89 - HT * \cdot 00384$
110*	SET THE INERTIAL COMPONENTS OF THE WIND.
120	$WINDXI = \emptyset$.
130	$WINDYI = \emptyset$ •
140*	TRANSFORM INTO MISSILE AXES.
150	WINDXB=WINDXI*T11+WINDYI*T12
160	WINDYB=WINDXI*T21+WINDYI*T22
170	WINDZB=WINDXI*T3I+WINDYI*T32
180	RETURN

.

•

• •

ł

190 END

-

PAGE 1 SEEKER Ø3/28/73. 16.33.16

10		
10		SUBROUTINE SEEKER
20		COMMON Y(9), DY(9), X, H, WINDXB, WINDYB, WINDZB, RMACH
201		CEHIN, YEA, YEA, ZEA, THE, YCG, PMACS, BCAN, YCAN, YM, YM, ZM, YYI, YYI
364		JCHIWJAFAJIFAJZFAJIMAJACGJAMASSJFCANJICANJAMJIMJZMJAAIJIII
40+		, VSND, SFHIW, HTE, QUE, ALPHA, PHIW, XMAX, TBURN, RHO, VEL, PSI, THT,
50+		PHI,Z(14),DZ(14)
60		COMMON NDIM, LEEINT, NSTER, NERINT, LCOUNT, LEATE, LEATIO, NDIME
00		
10		COMMON/TRANS/TTT, TT2, TT3, T21, T22, T23, T31, T32, T33
80		COMMON/TARG/XTI,YTI,HTTI
90		COMMON/SEEKB/EFB, SPHI1, CFHI1, FPBC
100		FOULDALENCE (FL $7(1)$) (FP $7(2)$) (UVY $7(2)$) (FUI 1 $7(4)$)
100		
110+		$(WCZ_{3}Z(5))_{3}(PS12_{3}Z(6))_{3}(WGY_{3}Z(7))_{3}(WGZ_{3}Z(8))_{3}(PS13_{3}Z(9))_{3}$
120+		(THT4,Z(10)),(ELD,DZ(1)),(ERD,DZ(2)),(WYXD,DZ(3)),(PHI1D,DZ
130+		(4), $(WCZD, DZ(5))$, $(PSI2D, DZ(6))$, $(WGYD, DZ(7))$, $(WGZD, DZ(8))$.
1 40 +		$(\mathbf{P} \mathbf{S} \mathbf{I} 2 \mathbf{D}, \mathbf{D} \mathbf{Z} \mathbf{G} \mathbf{A}) = (\mathbf{T} \mathbf{H} \mathbf{T} \mathbf{H} \mathbf{D}, \mathbf{D} \mathbf{Z} \mathbf{Z} \mathbf{I} \mathbf{G} \mathbf{A}) = (\mathbf{D}, \mathbf{Y} \mathbf{Z} \mathbf{A}) = (\mathbf{D}, \mathbf{Y} \mathbf{G} \mathbf{A})$
1401		
150+		(FD) D1 (A)) 3 (GD) D1 (B)) 3 (HD) D1 (A))
160		EQUIVALENCE $(XI_Y(4))_(YI_Y(5))_(HT_Y(6))$
170		DATA INIT/0/, T1PSI/.0125/, T2PSI/.0033/,
180+		DKECI /=060. / FECIDD /05. / DKDDCI / 0/6/, DN0/=1. / DECI/10.5/
1007		AAF 51/-700 0/3 EF 51 DB/25 0/3 AABF 51/ 0040/3 AN2/-1 0/3 AF 51/10 05/3
190+		RIPSIB/2.3/,RKTPSI/6.54/,T2PHI/.005/,T1PHI/.025/,RKPHI/300./
200+		, EFHIDB/25./, RKBPHI/.199/, RPHI/8.8/, RKTPHI/28.1/, RIFHIB/2.84
210+		/.RKTT/350./.RKETE/.2/.TGYEB/4./.TGZEB/4./.F1.F2.F3.F4/102
0.06		E E CELOL DELLA TUTAL A DE DI DIA CUETED CUETED
220+		• • • • • • • • • • • • • • • • • • •
230+		4/800.,400.,400.,400./,RIYX,RIYY,RIYZ/.25,.20,.10/,HS,RIGZ,RIGY,R
240+		KHG/3.5,.009,.009,.005/,RICX,RICY,RICZ/.04,.08,.08/,RIDPSI
250+		/.0007/.EKCU9/.8/.TYX9.TYX9.TY79/3*0./.TC73.TCY3.TCX3/3*0./.
0401		
200+		
270+		TRYU, TRZU, THXU, THYU, THZU, TGYU, TGZU, TGY5, TGZ5/16*0 ·/
280		DATA CON1/3.141592654/, CON2/6.283185308/
200		YMTI - YTI - YI
220		
300		Y [0] T I = Y T I + Y I
310		ZMTI = - (HTTI - HT)
320		RMT=SORT(XMTI +XMTI +YMTI +YMTI +ZMTI)
330		DNY I -YMTI /DMT
550		
340		RNY I = YM I I / RM I
350		RNZI=ZMTI/RMT
360		RNMX=T11*RNXI+T12*RNYI+T13*RNZI
370		RNMY=T21*RNXI+T22*RNYI+T23*RNZI
200		
386		RNMZ=131*RNA1+132*RN11+133*RNZ1
390		IF (INIT.EQ.1) GO TO 1
400		INIT=1
110		ISUSZ = 0
400		
420		SPSIZ=SURI(RIMITERIMITERIMIZ)
430		PSI2=ATAN2(SPSI2,RNMX)
440		$PHI1=\emptyset$ •
450		IF (SPSI2.NE.Ø.) PHI1=ATAN2(RNMZ,RNMY)
160	1	CONTINUE
400	1	
470		SPAIN=SIN(PAIN)
48Ø		CFHI1=COS(PHI1)
490		SPSI2=SIN(PSI2)
500		(DSI 2-(05(PSI 2)
500		
510		5r513=51W(r513)
520		CPSI3=COS(PSI3)
530		STHT4=SIN(THT4)
540		CTHT4=COS(THT4)
E E C		
550		
560		CPSIT=CPSI2*CPSI3-SPSI2*SPSI3
570		EPBPSI=-RNMX*SPSIT+RNMY*CPHI1*CPSIT+RNMZ*SPHI1*CPSIT
580		EPBTHT=-(RNMX*CPSIT*STHT4+RNMY*(CPHI1*STHT4*SPSIT-SPHI1*CTHT
590+		4)+RNMZ*(CPHI1*CTHT4+SPHI1*SPSIT*STHT4))
0.0.		

600		RNCY=-RNMX*SPSI2+RNMY*CPSI2*CPHI1+RNMZ*CPSI2*SFHI1
610		RNCZ=-RNMY*SPHI1+RNMZ*CPHI1
620		EFBC=SORT(RNCY*RNCY+RNCZ*RNCZ)
630		EPB=SQRT(EPBPSI * EPBPSI + EPBTHT*EPBTHT)
640		RLAMCG=S0RT(THT4*THT4+PSI3*PSI3)
650*	CALCU	JLATION OF GAIN COMPENSATION IN ROLL AXIS DRIVE
660		IF (ABS(PSI2).LT579) GO TO 10
67 Ø		VCCOMP=SIGN(1.0.PSI2)
680		GO TO 30
69Ø	10	IF (ABS(PSI2).LT174) GO TO 20
700		VCCOMP=SIGN(3.3,PSI2)
710		GO TO 30
720	20	VCCOMP=SIGN(10.5,PSI2)
730	3Ø	CONTINUE
740		THRESH= • 10
750		IF (ISWSZ.EG.1) THRESH=.05
760		IF (RLAMCG.GT.THRESH) GO TO 40
77Ø		IF (ABS(PSI2).GE.THRESH) GO TO 40
7 8Ø		EPSR=Ø.
790		I SWSZ=Ø
800		GO TO 50
810	40	EPSR=-THT4*VCCOMP
8 2 Ø		I SWSZ=1
830	50	CONTINUE
840*	ROLL	AXIS DRIVE TORQUE MOTOR
850		ERD=(EPSR-ER)/T2PHI
860		EPHID=(T1PHI*ERD+ER)*RKPHI
870		EFHIDL=BOUND(EPHIDB,EPHID)
88Ø		EPHNET=EPHIDL-PHI1D*RKBPHI
890		RIPHI=EPHNET/RPHI
900		TYXMOT=RKTPHI*BOUND(RIPHIB,RIPHI)
910*	OUTEF	R LOOK AXIS DRIVE TORQUE MOTOR
920		EPSL=PSI3
930		ELD=(EPSL-EL)/T2PSI
940		EPSID=(T1PSI*ELD+EL)*RKPSI
950		EPSIDL=BOUND(EPSIDB,EPSID)
960		EPSNET=EPSIDL-RKBPSI*RN2*PSI2D
970		RIPSI=EPSNET/RPSI
980		TCZMOT=RKTPSI*BOUND(RIPSIB,RIPSI)
990*	GYRO	TORQUE CONTROL EQUATIONS
1000		TGYENL=RKTT*EPBPSI-RKPTE*PSI3
1010		TGZENL=-RKTT*EPBTHT+RKPTE*THT4
1020		TGYE=BOUND(TGYEB, TGYENL)
1030		TGZE=BOUND(TGZEB, TGZENL)
1040*	SEEP	KER YOKE DYNAMICS
1050		WYY=0*CPHI1+R*SPHI1
1060		WYZ=-0*SPHI1+R*CPHI1
1070		WYYD=QD*CPHI1+RD*SPHI1-PHI1D*(Q*SPHI1-R*CPHI1)
1080		WYZD=-QD*SPHI1+RD*CPHI1-PHI1D*(Q*CPHI1+R*SPHI1)
1090		TYXF1=FRICT(F1,PHI1D)
1100		TYX1=TYXMOT+TYXF1
1110		TYX=TYX2+TYXU+TYX1
1120		TYY=RIYY*WYYD+WYZ*WYX*(RIYX-RIYZ)
1130		TYZ=RIYZ*WYZD+WYX*WYY*(RIYY-RIYX)
1140		TYY1=TYY-TYY2-TYYU
1150		TYZ1=TYZ-TYZ2-TYZU
1160		TMX 1 = -TYX 1
1170		TMY1 = -(TYY1 * CPHI1 - TYZ1 * SPHI1)
1180		$TMZ_{1=-}(TYY_{1*}SPHI_{1+}TYZ_{1*}CPHI_{1})$

PAGE	3	SEEKER	03/2	28/73.	16.33.1	6			
1190		RICC=RI	CX*CPHI1*(CPHI1+H	RICY*SPH	II1*SFHI	1		
1200		RIYXE=R	IYX+RICC						
1210		WYXD=(1	YX-WYY*WYY	C*(RIY)	(-RIYY))	THIYXE			
1220	CEEL	PHIID=W	IA-P HOUSING D	NAMIC	-				
1200+	JEEr	MCX-MXX	TOOSING D.	VYCDCI(5				
1240		WCX = -WY	X*CE210+M	VY*CDC	2				
1260		TCZE2=E	RICT(F2.P	5120)					
1270		TCZS2=S	TOPSCCKST	P2,PSI	PLIFSI2)				
1280		TCZ2=(1	CZMOT-(RN	2-1.)*1	RIDFSI*W	YZD)*RN	12+TCZF2	+TCZS2-R	KCU2*
1290+		PSI2							
1300		TCZ=TCZ	2+TCZU+TC	Z3+TCZI	E				
1310		WCZD=(1	CZ-WCX*WC	Y*(RIC)	(-RICX))	/(RICZ+	RN2*RN2	*RIDPSI)	
1320		PSI2D=W	CZ-WYZ						
1330		TCXLI=F	ICX*(WYYD	*SPSI2	-PSI2D*C	WYX*SPS	SI2-WYY*	CPSI2))+	WCY*WCZ
1340+		*(RICZ-	RICY)				_		
1350		TCYLI=F	ICY*(WYYD:	*CFSI2·	-FSI2D*C	WYX*CPS	512+WYY*	SPSI2))+	WCZ*WCX
1360+		*(RICX-	HICZ)						
1370		TCX2=10	XLI = IUX 3 = 1	IUXE-IU					
1300		TVY2(TCYOYCEST		* CD CT 2)				
1 100		TYY2==(TCX2*CFSI	2 - 1012. 2 + TCY 2:	*CPSI2)				
1410		TY72=-1	CZ2	2 1012	FUI 5127				
1420*	GYR	DYNAMI	S						
1430		TGY=TGY		YU					
1440		TGZ = TGZ	5+TGZE+TG	ZU				1	
1450		TGYEFF=	TGY-HS*WG	Z-CRKH	G/RIGZ)*	K(TGZ+HS	5*WGY)		
1460		TGZEFF=	TGZ+HS*WG	Y+(RKH)	G/RIGY)*	K TGY-HS	5*WGZ)		
1470		WGYD=TO	YEFF/CRIG	Y+RKHG	*RKHG/RI	(GZ)			
1480		WGZD=TO	ZEFF/(RIG	Z+RKHG	*RKHG/RI	(GY)			
1490*	GYRO) HOUSING	DYNAMICS						
1500		WHY=WGY							
1510		WHZ=WGZ			~				
1520		WRX=WCX	*CPSI3+WC	Y*SPSI	3				
1530		WRI = -WU	X*SPSI3+W		13				
1540		· DEI 2D-L		1477011	n 14				
1560			IHY - WRY						
1570		TRZE3=B	RICT(F3.P	SI 3D)					
1580		TRZ.53=9	TOPSCCKST	P3,PSI	3L,PSI3)			
1590		TRZ3=TF	RZS3+TRZF3						
1600		TRZ 4=-(TRZ3+TRZU)					
1610		THYF4=F	FRICT(F4,T	HT4D)					
1620		THYS4=S	STOPSCCKST	P4,THT	4L, THT4)			
1630		THX4 = -7	UXH						
1640		THY4=TH	IYF4+THYS4						
1650		THZ4 = -0	TRZ4+THX4	*STHT4)/CTHT4				
1660		THY 5=-0	THYU+THY4)					
1670		TH25=-0	THZ4+THZU)					
1680		1GID==.							
1700		TEX/	1 П Ц З 7 Т Ц Х И ¥ С Т Ц Т	ハナエドアハ	*5787/1)				
1710		TRY //=-1	THYA	4.11.64	-01114)				
1720		TRX3=-0	TRX4+TRXII)					
1730		TRY3=-0	TRY4+TRYU)					
1740		TCZ3=-	rrz3						
1750		TCX3=-0	TRX3*CPSI	3-TRY3	*SPSI3)				
1760		- TCY3=-	TRX3*SPSI	3+TRY 3	*CPSI3)				
1770		TCYE=-	IGYE						

PAGE 4 SEEKER

1780	TCZE = -TGZE
1790	RETURN
1800	END

PAGE	5	SEEKER
	9	د د سره د د سره سره کرو

1810*	FUNCTION ROUTINE FOR A LIMITER.	
1820	FUNCTION BOUND(XL,X)	
1830	BOUND=X	
1840	IF (ABS(X).GE.XL) BOUND=SIGN(XL,X)	
1850	RETURN	
1860	END	

-

-

-

1870*	FUNCT	I ON	ROU	ITL	NE	FOR	FRI	CTI	ON.
1880		FUN	CTIC	DN	FRI	CTCF	LJX)	
189Ø		IF	(X)	1,	2,3				
1900	1	\mathbf{FRI}	CT=F	۶L -					
1910		RET	URN						
1920	2	FRI	CT=0	3.					
1930		RET	URN						
1940	3	\mathbf{FRI}	CT = -	-FL					
1950		RET	URN						
1960		END							

.

.

FAGE	7	SEEKER	03/28/73.	16.33.16
1970*	FUNC	CTION ROUTIN	E FOR STOPS	WITH COMPLIANCE.
1980		FUNCTION S	TOPS(SLOPE,X'	T,X)
1990		STOPS=0.		
2000		DEL=ABS(X)	-XT	
2010		IF (DEL.GE	.0.) STOPS=SI	LOPE*SIGN(DEL,X)
2020		RETURN		

74

.

2030 END

10 SUBROUTINE SEEKER 1810* FUNCTION ROUTINE FOR A LIMITER. 1870* FUNCTION ROUTINE FOR FRICTION. 1970* FUNCTION ROUTINE FOR STOPS WITH COMPLIANCE.

```
10
        SUBROUTINE CTLSYS
20
        COMMON Y( 9), DY( 9), X, H, WINDXB, WINDYB, WINDZB, RMACH
30+
         CPHIWaXFAaYFAaZFAaTHRaXCGaRMASSaPCANaYCANaXMayMaZMaXXIaYYI
40+
         JVSND, SPHIW, HTE, GUE, ALPHA, PHIW, XMAX, TBURN, RHO, VEL, PSI, THT,
         FHI,Z(14),DZ(14)
50+
60
         COMMON NDIM, IFRINT, NSTEP, NFRINT, ICOUNT, IRATE, IRATIO, NDIMF
70
         COMMON/CTLSYJ/ IJET(4)
80
         COMMON/SEEKR/EPB, SPHI1, CPHI1, EPBC
90* COMMUNICATIONS WITH SUBROUTINE TARGET
100
         COMMON/SEEKR1/SIGA, SIGB, SIGAD, SIGBD
110
          EGUIVALENCE (HT,Y(6)),(PSI2,Z(6)),(PSI2D,DZ(6))
115
          EQUIVALENCE (PHI1D, DZ(4))
120
          DATA TBJRC/1.2/
130
         DATA CON1/.18/
140* ENABLE THE CONTROL SYSTEM AT THE ENABLE HEIGHT.
         IF (HT-HTE) 1,2,2
150
        1 I JRC=\emptyset
160
170
          TSJRC=X
          GO TO 3
180
190
        2 I JRC=1
200* DETERMINE WHETHER THE JRC BURN TIME HAS BEEN EXCEDED, AND IF
210* SO, DISENABLE THE JRC'S.
         IF ((X-TSJRC).GT.TBJRC) IJRC=0
220
        3 IF (IJRC) 4,4,5
230
240
        4 IJET(1)=\emptyset
          IJET(2)=0
250
          IJET(3)=0
260
270
          IJET(4) = 0
         GO TO 6
280
290* DETERMINE THE JRC STATES BASED ON THE CONTROL LAW.
300* PRMTY CONTROLS THE JETS ON THE Y AXIS WHILE PRMTZ CONTROLS
310* THE JETS ON THE Z AXIS. "IJET(1)"=1 SIGNIFIES THAT JET 1 IS ON.
320
        5 PRMTY=SIGB+CON1*SIGBD
330
         PRMTZ=SIGA+CON1*SIGAD
          IF (FRMTZ) 7,8,9
340
350
        7 IJET(1)=1
         IJET(3)=\emptyset
360
370
         GO TO 10
        8 IJET(1)=0
380
390
          IJET(3)=0
400
          GO TO 10
       9 IJET(1)=\emptyset
410
420
          IJET(3)=1
      10 IF (PRMTY) 11,12,13
430
440
      11 IJET(2)=1
450
          IJET(4) = \emptyset
          GO TO 6
460
470
       12 IJET(2) = 0
480
          IJET(4)=0
490
          GO TO 6
500
       13 IJET(2)=0
          IJET(4)=1
510
520
       6 CONTINUE
530* THE CANARD DEFLECTIONS ARE SET TO ZERO
540
          PCAN=Ø.
550
          YCAN=0.
560
          RETURN
570
          END
```

SUBROUTINE AERO 10 20 COMMON Y(9), DY(9), X, H, WINDXB, WINDZB, RMACH 30+ , CPHIW, XFA, YFA, ZFA, THR, XCG, RMASS, PCAN, YCAN, XM, YM, ZM, XXI, YYI 40+ , VSND, SPHIW, HTE, QUE, ALPHA, PHIW, XMAX, TBURN, RHO, VEL, PSI, THT, 50+ FH1,Z(14),DZ(14) COMMON NDIM, IPRINT, NSTEP, NPRINT, ICOUNT, IRATE, IRATIO, NDIMF 60 70* COMMUNICATION WITH AROBSE COMMON/AROB/XFB,YFB,ZFB,XMB,YMB,ZMB 80 90* COMMUNICATION WITH AROJEC 100 COMMON/AROJ/YFJ,ZFJ,YMJ,ZMJ 110* DETERMINE BASELINE AERODYNAMIC FORCES AND MOMENTS. 120 CALL AROBSE 130* DETERMINE FORCES AND MOMENTS DUE TO THE JRC. CALL AROJRC 140 150* SUM THE FORCES. 160 XFA=XFB 170 YFA=YFB+YFJ ZFA=ZFB+ZFJ 180 190* SUM THE MOMENTS AND TRANSFER REFERENCE POINT TO THE 200* MISSILE CG. XM=XMB 210 220 YM=YMB+YMJ+ZFA*XCG 230 ZM=ZMB+ZMJ-YFA*XCG 240 RETURN 250 END

10	SUBROUTINE AROBSE
20	COMMON Y(9), DY(9), X, H, WINDXB, WINDYB, WINDZB, RMACH
30+	, CPHIW, XFA, YFA, ZFA, THR, XCG, RMASS, PCAN, YCAN, XM, YM, ZM, XXI, YY
40+	,VSND, SPHIW, HTE, GUE, ALFHA, FHIW, XMAX, TBURN, RHO, VEL, PSI, THT,
50+	FHI,Z(14),DZ(14)
50	COMMON NDIM, IFRINT, NSTEP, NPRINT, ICOUNT, IRATE, IRATIO, NDIMF
70	COMMON/AERO1/DPHI, DALPHA
30	COMMON/AROB/XFB,YFB,ZFB,XMB,YMB,ZMB
96	DIMENSION CXB(25.3).CYPB(25.3).C7PB(25.3).CIB(25.3).
100+	CMEB(25.3) • CNPB(25.3)
110	DATA CXB $/75*\%$
190	DATA CYDR/75*0./
120	
130	
140+	
150+	
160+	-46.0,-45.0,-45.0,-45.0,-45.0,
170+	$0 \cdot j - 2 \cdot j - 4 \cdot 5 j - 8 \cdot 0 j - 12 \cdot 0 j - 16 \cdot 0 j - 20 \cdot 5 j - 25 \cdot 0 j - 29 \cdot 5 j - 34 \cdot 5 j$
180+	$-39 \cdot 0_{9} - 43 \cdot 0_{9} - 47 \cdot 0_{9} - 50 \cdot 0_{9} - 52 \cdot 5_{9} - 52 \cdot 5_{9} - 48 \cdot 0_{9} - 45 \cdot 0_{9} - 49 \cdot 0_{9}$
190+	-51.09-52.09-53.59-54.59-55.59-55.59
200+	$0 \cdot j - 2 \cdot j - 4 \cdot 0 j - 6 \cdot 5 j - 10 \cdot 0 j - 13 \cdot 0 j - 17 \cdot 0 j - 21 \cdot 0 j - 25 \cdot 0 j - 29 \cdot 5 j$
210+	-34.0,-38.0,-42.0,-45.0,-48.0,-51.0,-52.5,-52.5,-51.0,
220+	-46.0,-45.0,-45.0,-45.0,-45.0,-45.0/
230	DATA CLB /75*0./
240	DATA CMPB/
250+	0.,-8.,-16.,-26.,-40.,-60.,-80.,-100.,-124.,-142.,
260+	-164.,-186.,-210.,-230.,-256.,-278.,-290.,-290.,-266.,
270+	-206 • • - 178 • • - 166 • • - 160 • • - 158 • • - 158 • •
280+	0 • • -8 • • - 20 • • - 36 • • - 56 • • - 76 • • - 100 • • - 128 • • - 158 • • - 184 • •
290+	-214.,-238.,-264.,-282.,-300.,-286.,-250.,-200.,-214.,
300+	-218 . , -218 . , -218 . , -218 . , -220 . , -220 . ,
310+	0 • • - 8 • • - 16 • • - 26 • • - 40 • • - 60 • • - 80 • • - 100 • • - 124 • • - 142 • •
320+	-164.,-186.,-210.,-230.,-256.,-278.,-290.,-290.,-266.,
330+	-206178166160158158/
340	DATA CNEB/75*0./
350	DATA $CON1/45 \cdot CON2/2 \cdot 5/ \cdot CON3/90 \cdot /$
360	DATA DIA/./166666667/.5/.1363538470/
370	EHIMT = AMOD(ABS(EHIM), CON3)
380	DHIMTE-CHIMT/CON1+1.0
300	I D-DHIMTE
100	DEVI-DUINTE_ID
400	
410	
420	IR-ADFARE
430	
446	DALFHARALPHAE TA
450	CALL INTERSCORD (IA)IP) CAB (IA+I)IP) CAB (IA)IP+I)
466+	UAB (IATI)IPTI)JUA J GALL INTERDOLOURIULA IEN OVERLAND IEN OVERLA IENN
470	UALL INTERZ(UIPB(IA)IP))UIPB(IA+I)IP))UIPB(IA)IP+I))
480+	CYPB(IA+I)IP+I)JCYP)
490	CALL INTER2(CZPB(IA,IP),CZPB(IA+I,IP),CZPB(IA,IP+I),
500+	CZPB(IA+I,IF+I),CZP)
510	CALL INTERS(CLB (IA, IP), CLB (IA+I, IP), CLB (IA, IP+I),
520+	CLB (IA+1, IF+1), CL)
530	CALL INTER2(CMPB(IA, IP), CMPB(IA+1, IP), CMPB(IA, IP+1),
540+	CMFB(IA+1,IF+1),CMP)
550	CALL INTER2(CNPB(IA, IF), CNPB(IA+1, IP), CNPB(IA, IP+1),
560+	CNPB(IA+1, IP+1), CNP)
570	CY=CYF*CPHIW+CZF*SPHIW
580	CZ=-CYP*SPHIW+CZP*CPHIW
590	CM=CMF*CFHIW+CNF*SPHIW

600	CN=-CMP*SPHIW+CNP*CPHIW
610	XFB=QUE*S*CX
620	YFB=QUE*S*CY
630	ZFB=QUE*S*CZ
640	XMB=QUE*S*DIA*CL
650	YMB=QUE*S*DIA*CM
660	ZMB=OUE*S*DIA*CN
670	RETURN
680	END

 $\mathbf{x} \geq \mathbf{x}$

X

~

```
PAGE 1 AROJEC 03/28/73.16.10.39
```

```
10
          SUBFOUTINE AROJRC
20
          COMMON Y( 9), DY( 9), X, H, WINDXB, WINDYB, WINDZB, RMACH
30+
          CPHIWaXFAaYFAaZFAaTHRaXCGaRMASSaPCANaYCANaXMaYMaZMaXXIaYYI
40 +
          , VSND, SFHIW, HTE, CUE, ALFHA, PHIW, XMAX, TBURN, RHO, VEL, FSI, THT,
50+
          FHI,Z(14),DZ(14)
60
          COMMON NDIM, IPRINT, NSTEP, NFRINT, ICOUNT, IRATE, IRATIO, NDIMF
70
          COMMON/AEPO1/DPH1, DALPHA
80
          COMMON/CTLSYJ/ IJET(4)
          COMMON/AFOJ/YFJ,ZFJ,YMJ,ZMJ
90
100
           DIMENSION RKYB(25,3), RKZB(25,3), RKMB(25,3), RKNB(25,3)
110
           DIMENSION CFE(4), SFE(4)
120
           DATA RKYB/75*0./
130
           DATA RKZB/
           -1.0,-1.0,-1.0,-1.0,-1.0,-.99,-.97,-.92,
140+
150 +
           - • 88 - • 86 - • 81 - • 76 - • 70 - • 62 - • 58 - • 53 -
           -.52, -.53, -.58, -.66, -.72, -.78, -.80, -.82, -.82,
160 +
170 +
           50*-1.0/
           DATA RKMB/
180
190 +
           1.0,1.0,1.0,1.0,1.0,1.0,1.03,1.06,1.10,
200+
           1.16,1.22,1.29,1.38,1.47,1.54,1.60,1.63,
210 +
           1.65,1.60,1.48,1.30,1.18,1.08,1.04,1.04,1.04,
220+
           50*1.0/
230
           DATA EKNB/75*0./
           DATA TJRC/450 ./. XJET/2 .434/
240
250
           DATA CON1/90 ./, CON2/2.5/, CON3/180./
           DATA FHIE1/0./
260
           DATA CFE/1.,0.,-1.,0./,SFE/0.,1.,0.,-1./
270
           ALPHAE=ALPHA/CON2+1.0
28C
290
           IA=ALFHAE
300
           IF (IA.GE.25) IA=24
310
           DALPHA=ALPHAE-IA
           RKY = \emptyset.
320
330
           RKZ = 0.
340
           RKM = 0.
           EKN=0.
350
360
           DO 1 I = 1, 4
370
           IF (IJET(I).EQ.0) GO TO 1
380
           PHI J=PHIW-PHIE1-CON1*(I-1.)
390
           CF=CPE(I)
400
           SP = SPE(I)
           IF (ABS(PHIJ).GT.180.) PHIJ=PHIJ-SIGN(360.,PHIJ)
410
420
           FHIJT=ABS(FHIJ)
430
           FHIJTE=FHIJT/CON1+1.0
           IF=FHIJTE
440
           IF (IF.GE.3) IP=2
450
           DFHI=FHIJTE-IF
460
           CALL INTER2(RKYB(IA, IF), RKYB(IA+1, IF), RKYB(IA, IF+1),
470
           EKYB(IA+1, IF+1), EKYJ)
480+
           CALL INTER2(RKZB(IA, IF), RKZB(IA+1, IF), RKZB(IA, IF+1),
490
           RKZB(IA+1,IF+1),RKZJ)
500+
           CALL INTER2(RKMB(IA, IF), RKMB(IA+1, IF), RKMB(IA, IF+1),
510
           RKMB(IA+1,IF+1),EKMJ)
520+
           CALL INTER2(RKNB(IA, IF), RKNB(IA+1, IP), RKNB(IA, IF+1),
530
540+
           RKNB(IA+1, IF+1), RKNJ)
550
           IF (PHIJ.GE.0.) GO TO 2
560
           RKY J=-RKY J
           RKNJ=-RKNJ
565
         2 RKY=RKY+RKYJ*CP +RKZJ*SP
570
           RKZ=RKZ-RKYJ*SP +RKZJ*CF
58Ø
```

8

59Ø		RKM=RKM+RKMJ*CP	+RKNJ*SP
600		RKN=RKN-RKMJ*SP	+RKNJ*CP
610	1	CONTINUE	
620		YFJ=RKY*TJRC	
630		ZFJ=RKZ*TJRC	
640		YMJ=RKM*TJRC*XJE	T
650		ZMJ=RKN*TJRC*XJE	T
660		RETURN	
670		END	1.0

```
PAGE 1 OUTPUT1 Ø3/28/73. 16.57.36
```

```
SUBROUTINE OUTPUT1
00100
00110
             COMMON Y( 9), DY( 9), X, H, WINDXB, WINDYB, WINDZB, RMACH
             , CPHIW, XFA, YFA, ZFA, THR, XCG, RMASS, PCAN, YCAN, XM, YM, ZM, XXI, YYI
00120+
00130+
            JVSND, SPHIW, HTE, QUE, ALPHA, PHIW, XMAX, TBURN, RHO, VEL, PSI, THT,
00140+
            PHI,Z(14),DZ(14)
00150
             COMMON NDIM, IPRINT, NSTEP, NPRINT, ICOUNT, IRATE, IRATIO, NDIMF
00160
             DIMENSION OUT(40,30), IOUT(40,4)
00170
        100 FORMAT(F6.3.6F8.2)
00180
        101 FORMAT(F6.3,3F8.2,3F7.2)
00190
        102 FORMAT(F6.3,8F7.2)
        103 FORMAT(//,2X,*TIME*,5X,*U*,7X,*V*,7X,*W*,7X,*XI*,6X,
00200
00210+
             *YI*,6X,*HT*)
00220
        104 FORMAT(//, 2X, *TIME*, 5X, *P*, 7X, *Q*, 7X, *R*, 5X, *FSI*, 4X, *THT*,
00230+
             4X,*PHI*)
        105 FORMAT(//,2X,*TIME*,2X,*ALPHA*,3X,*PHIW*,3X,*PHI1*,
00240
00250+
             3X,*PSI2*,2X,* PSI3*,2X,* THT4*,4X,*EPB*,3X,*EPBC*)
        106 FORMAT(F6.3,4(5X,11))
00260
00270
        107 FORMAT(//,*JET STATES. 1=0N, 0=OFF*,/)
00280
          108 FORMAT(//,2X,*TIME*,2X,*WYOKE*,2X,*WCOIL*,4X,*WGY*,
00290+
             4X,*WGZ*,2X,*PHI1D*,2X,*PSI2D*)
00300
        200 FORMAT(//,*STEP SIZE=*,F6.4,2X,*IRATIO=*,I2)
             DO 10 I=1,ICOUNT
00310
00320* READ ALL THE OUTPUTED VARIABLES.
          10 READ(2,) (OUT(I,J), J=1,27), (IOUT(I,J), J=1,4)
00330
00340* OUTPUT THESE VARIABLES TO THE TTY IN APPROPRIATE COLUMNS WITH
00350* HEADINGS.
             PRINT
00360
                     103
00370
             DO 1 I=1,ICOUNT
                     100, (OUT(I,J),J=1,7)
00380
           1 PRINT
00390
             PRINT
                      104
00400
             DO 2 I=1.ICOUNT
           2 PRINT
                     101, OUT(I,1),(OUT(I,J),J=8,13)
00410
             PRINT
                      105
00420
             DO 3 I=1,ICOUNT
00430
00440
           3 PRINT
                     102, OUT(I,1),(OUT(I,J),J=14,21)
00450
             PRINT
                      108
             DO 5 I = 1 \cdot I COUNT
00460
                     102, OUT(I,1),(OUT(I,J),J=22,27)
00470
           5 PRINT
                     107
             PRINT
00480
             DO 4 I=1,ICOUNT
00490 .
00500
           4 PRINT
                     106, OUT(I,1),(IOUT(I,J),J=1,4)
                      200, H, IRATIO
00510
             PRINT
00520
             STOP
00530
             END
```

```
FAGE 1 INTEG
```

00010 SUBROUTINE INTEG 00020 COMMON Y(9), DY(9), X, H, WINDXB, WINDYB, WINDZB, RMACH 00030+ CPHIW,XFA,YFA,ZFA,THR,XCG,RMASS,PCAN,YCAN,XM,YM,ZM,XXI,YYI , VSND, SPHIW, HTE, QUE, ALPHA, PHIW, XMAX, TBURN, RHO, VEL, FSI, THT, 00040+ 00050+ FHI,Z(14),DZ(14) 00060 COMMON NDIM, IPRINT, NSTEP, NPRINT, ICOUNT, IRATE, IRATIO, NDIMF 00070* STORAGE LOCATIONS FOR THE REQUIRED PAST STATE VARIABLES AND 00080* THEIR DERIVATIVES. "AUX" FOR Y(I) AND "BUX" FOR Z(I). DIMENSION AUX1(9), AUX2(9), AUX3(9), AUX4(9), AUX5(9), 00090 AUX6(9),AUX7(9),AUX8(9),BUX1(14),BUX2(14),BUX3(14), 00100+ BUX4(14),BUX5(14),BUX6(14),BUX7(14),BUX8(14) 00110+ 00120 DATA IENTR/1/, IENTRF/2/ 00140 IF (IRATE.EQ.1) GO TO 100 00150* DECIDE WHETHER TO 1) PREDICT REQUIRED STARTING VALUES BY 00160* AN EULER BACKSTEP METHOD, 2) PERFORM PREDICTION OF THE Y(I) 00170* VARIABLES DURING INTEGRATION, OR 3) CORRECT THE Y(I) VARIABLES 00180* DURING INTEGRATION. 00190 IF (IENTR-2) 20,21,22 00200* DETERMINE REQUIRED STARTING VALUES USING AN EULER BACKSTEP, AND 00210* STORE INTO AFPROPRIATE LOCATIONS. 00220 20 HS=IRATIO*H 00230 H1=3.*HS H3=4./3.*HS 00240 $G1 = 3 \cdot H$ 00250 G3=4•/3•*H 00260 C1=112./121. 00270 C2=9./121. 00280 DO 16 I=1,NDIM 00290 00300 AUX2(I)=Y(I)-HS*DY(I)AUX3(I)=Y(I)-2.*HS*DY(I)00310 AUX4(I)=Y(I)-3.*HS*DY(I)00320 AUX6(I)=DY(I)00330 AUX7(I)=DY(I)00340 16 AUX8(I)=0. 00350 DO 26 I=1,NDIMF 00360 BUX2(I)=Z(I)-H*DZ(I)00370 BUX3(I)=Z(I)-2.*H*DZ(I)00380 00390 BUX4(I)=Z(I)-3*H*DZ(I)BUX6(I)=DZ(I)00400 00410 BUX7(I)=DZ(I)26 BUX8(I)=0. 00420 00430* PREDICT THE Y(I) VARIABLES. 21 DO 17 I=1,NDIM 00440 AUX1(I)=Y(I)00450 AUX5(I)=DY(I)00460 DELT=AUX4(I)+H3*(AUX5(I)+AUX5(I)-AUX6(I)+AUX7(I)+AUX7(I)) 00470 00480 Y(I) = DELT - C1 * AUX8(I)17 AUX8(I)=DELT 00490 00500 IENTR=3 GO TO 100 00510 00520* CORRECT THE Y(I) VARIABLES. 00530 22 DO 18 I=1,NDIM DELT= • 125*(9 • * AUX1(I) - AUX3(I) + H1*(DY(I) + AUX5(I) + AUX5(I) 00540 00550+ -AUX6(I))) AUX8(I) = AUX8(I) - DELT00560 00570 18 Y(I) = DELT + C2 * AUX8(I)00580 DO 19 I=1,NDIM 00590 AUX7(I) = AUX6(I)AUX6(I) = AUX5(I)00600

03/28/73 15.52.58

00610	AUX	(4(I)=AUX3(I)
00620	AUX	(3(I)=AUX2(I)
00630	19 AUX	(2(I)=AUX1(I)
00640	IEN	ITR=2
00650*	NOW TO F	EPEAT FOR THE Z(I) VARIABLES.
00660*	DETERMIN	NE WHETHER TO PREDICT OR CORRECT THE Z(I) VARIABLES.
00670	100 IF	(IENTRF.EG.3) GO TO 32
00680*	PREDICT	THE Z(I) VARIABLES.
00690	DO	27 I=1,NDIMF
00700	BUX	(1(I)=Z(I))
00710	BUX	(5(I)=DZ(I)
00720	DEL	T=BUX4(I)+G3*(BUX5(I)+BUX5(I)-BUX6(I)+BUX7(I)+BUX7(I))
00730	ZCI)=DELT-C1*BUX8(I)
00740	27 BUX	$(8(I) = DELT_{\sim})$
00750*	UPDATE 1	THE VARIABLE TIME BY "H" AFTER, EACH PREDICTION.
00760	NST	TEP=NSTEP+1
00770	M = X	ISTEF *H
00780	IPF	RINT=Ø .
00790	I El	JTRF=3
00800	REI	ſURN
00810*	CORRECT	THE Z(I) VARIABLES.
00820	32 DO	28 I=1,NDIMF
00830	DEI	T = .125 * (9 . *BUX1(I) - BUX3(I) + G1 * (DZ(I) + BUX5(I) + BUX5(I))
00840+	-BI	JX6(I)))
00850	BU	(8(I)=BUX8(I)-DELT
00860	28 Z (]	i)=DELT+C2*BUX8(I)
00870	DO	29 I=1,NDIMF
00880	BUX	(7(I)=BUX6(I)
00890	BU	(6(I)=BUX5(I)
00900	BUX	(4(I)=BUX3(I)
00910	BU	(3(I)=BUX2(I)
00920	29 BU	(2(I)=BUX1(I)
00930	IEI	NTRF=2
00940	IPH	RINT=1
00950	RE	FURN
00960	ENI)

```
SUBROUTINE INTER2(C00,C10,C01,C11,CB)
10
20* PERFORMS A TWO DIMENSIONAL INTERPOLATION BETWEEN THE FOUR CORNERS
30* OF THE SQUARE COO-C11 AND RETURNS THE ANSWER BY CB.
40* COMMUNICATIONS WITH SUBROUTINE AERO WHICH CALLS INTER2.
50* DPHI AND DALPHA ARE THE INTERPOLATION INCREMENTS.
60
         COMMON/AERO1/DPHI, DALPHA
70
         C1 = C00 + DALPHA * (C10 - C00)
80
         C2=C01+DALPHA*(C11-C01)
         CB=C1+DPHI*(C2-C1)
90
100
         RETURN
110
          END
```

READY. FORTRAN, OLD, SXDF

READY • RUN•M=11000

03/28/73• 17•05•04 PROGRAM SXDF

```
INFUT H,XMAX,NPRINT,IRATIO
? .0005,2.,200,10
INFUT XT0,YT0,HTT0,XTD,YTD,HTTD
? 9000,3000,100,0,0
```

TIME	U	V	W	XI	YI	HT
0.	Ø.	ø.	Ø.	Ø.	ø.	Ø•
·100	41.41	0.	•00	•00	Ø.	2.07
.200	83.14	1.29	1.29	•02	•02	8.29
.300	124.61	-9.71	-7.74	•61	•55	18.68
.400	157.77	-18.84	-47.56	2.57	1.36	33.11
.500	166.45	-20.10	-114.34	7.15	2.96	50.89
.600	175.92	-36.26	-150.15	15.35	5.63	71.00
.700	196.31	-47.88	-166.24	27.98	9.39	91.98
.800	227.44	-52.29	-169.56	45.23	14.44	112.76
.900	266.06	-51.83	-162.85	67.10	20.97	132.50
1.000	308.77	-49.27	-150.62	93.59	29.04	150.66
1.100	353.54	-45.26	-136.15	124.68	38.69	166.91
1.200	400.89	-39.66	-118.95	160.36	49.92	181.18
1.300	449.40	-34.79	-100.35	200.65	62.74	193.53
1.400	498.01	-30.25	-86.66	245.59	77.18	204.17
1.500	552.44	-14.23	-36.64	295.19	93.24	213.61
1.600	601.57	11.12	37.54	349 • 48	110.87	222.88
1.700	645.79	27.02	80.41	408.31	129.98	233.29
1.800	698.37	16.60	45.12	471.48	150.43	245.71
1.900	749.20	-10.08	-34.29	539.20	172.30	259.58
2.000	796.43	-23.79	-70.56	611.76	195.74	273.45

TIME	P	Q	1	R	PSI	Th	IT PI	HI	
Ø.	Ø•	Ø.	Ø	•	Ø.	.90	00 Ø	•	
.100	Ø.	ø.	Ø	•	Ø.	90.	00 0	•	
•200	Ø.	-•5	52	•52	45.00	89.	32 45	•00	
• 300	ø.	-2.4	13 1	•31	41.34	1 77.	76 41	.40	
• 400	Ø.	-4.2	- 4	•16	18.61	59	74 20	•22	
• 500	Ø.	-3.2	25 1	.12	11.62	2 35 •	64 14	•61	
•600	Ø.	-1.8	Ø 1	•Ø3	14.15	5 20	65 1.5	•77	
•700	Ø.	-1.0	Ø	•64	16.17	11.	83 16	• 32	
.800	Ø•	- • 5	53	•19	17.03	3 6.	90 16	•46	
.900	Ø.	-•2	25	•23	17.59	4.	18 16	•52	•
1.000	Ø.	2	3	•Ø3	17.90	2.	58 16	•54	
1.100	· Ø.	-+1	5	•11	18.13	3 1.	45 16	•55	
1.200	Ø.	+ 1	. 1	•09	18.23	3 1.	12 16	•55	
1.300	Ø.	- • 1	Ø	.07	18.40) 1.	03 16	• 55	
1.400	.Ø•	•2	- 6	•06	18.39	· ·	92 16	• 55	
1.500	Ø.	1 • 1	6 -	• 39	18.30	5	.77 16	•54	
1.600	Ø.	1 • 1	.5 -	• 40	17.99	13.	.22 16	• 49	
1.700	0.	• 1	.7 -	.09	17.68	5 17	.58 16	• 41	
1.800	Ø.	9	8	•31	17.66	5 14	•66 16	•40	
1.900	Ø.	-1.0	7	• 37	17.90	7	.83 16	• 45	
2.000	ø.	•Ø	12	•01	18.12	2 4	.35 16	•47	
TIME		D111.1	DUT	5	61.0	5610			
TIME	ALPHA	PHIW	PHI1	P	SI 2	PSI3	THT4	EPE	B EPBC
TIME Ø.	ALPHA Ø•	PHIW Ø•	PHI1 71.57	P 89	SI 2 • 40	PSI3 Ø.	THT4 Ø•	EPE •00	B EPBC
TIME 0. .100	ALPHA Ø. Ø.	PHIW Ø• Ø•	PHI1 71.57 71.54	P 89 89	SI 2 • 40 • 28	PSI3 Ø. .13	THT4 Ø• •ØØ	EPE •00 •03	B EPBC •ØØ •13
TIME 0. .100 .200	ALPHA Ø. 1.25	PHIW Ø. Ø. 45.00	PHI1 71.57 71.54 71.57	P 89 89 88	SI 2 • 4Ø • 28 • 88	PSI3 Ø. .13 02	TH T 4 0. .00 04	EPE •ØØ •Ø3	B EPBC • 00 • 13 • 04
TIME 0. .100 .200 .300	ALPHA Ø. 1.25 5.69-1	PHIW Ø. 45.00 28.55	PHI1 71.57 71.54 71.57 71.86	P 89 89 88 78	SI 2 •40 •28 •88 •33	PSI3 Ø. .13 02 10	TH T 4 0 • • 0 0 • • 0 4 • • 1 7	EPE •00 •03 •05	B EPBC •ØØ •13 •Ø4 •18
TIME 0. .100 .200 .300 .400	ALPHA Ø. 1.25 5.69-1 17.96-1	PHIW Ø. 45.00 128.55 158.39	PHI1 71.57 71.54 71.57 71.86 70.92	P 89 89 88 78 59	SI 2 •40 •28 •88 •33 •40	PSI3 0. .13 02 10 10	THT4 0. .00 04 17 .80	EPE •00 •03 •05 •03 •03	B EPBC •00 •13 •04 •18 •81 •81
TIME 0 • • 100 • 200 • 300 • 400 • 500	ALPHA Ø. 0. 1.25 5.69-1 17.96-1 34.90-3	PHIW Ø • 45 • Ø Ø 128 • 55 158 • 39 170 • Ø 3	PHI1 71.57 71.54 71.57 71.86 70.92 64.24	P 89 89 88 78 59 36	SI 2 •40 •28 •88 •33 •40 •08	PSI3 Ø. .13 02 10 10 16	THT4 Ø• •Ø0 •04 •17 •80 •32	EPE •00 •00 •00 •00 •00	B EPBC •ØØ •13 •Ø4 •18 •81 •81 •35
TIME 0 • • 100 • 200 • 300 • 400 • 500 • 600	ALPHA Ø. 0. 1.25 5.69-1 17.96-1 34.90-1 41.28-1	PHIW Ø. 45.00 128.55 158.39 170.03 166.42	PHI1 71.57 71.54 71.57 71.86 70.92 64.24 62.46	P 89 89 88 78 59 36 21	SI 2 •40 •28 •88 •33 •40 •08 •07	PSI3 Ø. .13 02 10 10 16 18	THT4 0. -004 -17 -80 -32 -09	EPE •00 •05 •05 •05 •05 •05 •05	B EPBC 0 00 0 13 0 04 0 18 0 18 0 18 0 18 0 18 0 2 0 21 0 21
TIME 0. .200 .200 .300 .400 .500 .600 .700	ALPHA Ø. 0. 1.25 5.69-1 17.96-1 34.90-1 41.28-1 41.39-1	PHIW Ø. 45.00 128.55 158.39 170.03 166.42 163.93	PHI1 71.57 71.54 71.57 71.86 70.92 64.24 62.46 62.35	P 89 88 78 59 36 21 12	SI 2 •40 •28 •88 •33 •40 •08 •07 •18	PSI3 Ø. .13 02 10 10 16 18 19	THT4 0. -004 -04 -17 -80 -32 -09 -10	EPE •00 •00 •00 •00 •00 •00 •00	B EPBC 0 00 0 13 0 04 0 18 0 18 0 18 0 18 0 18 0 21 0 20 0 20 0 0 20 0 20 0 0 20 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0
TIME 0. 100 200 300 400 500 600 700 800	ALPHA Ø. 0. 1.25 5.69-1 17.96-1 34.90-3 41.28-3 41.39-3 37.96-3	PHIW Ø. 45.00 128.55 158.39 170.03 166.42 163.93 162.86	PHI1 71.57 71.54 71.57 71.86 70.92 64.24 62.46 62.35 62.43	P 89 88 78 59 36 21 12 7	SI 2 •40 •28 •88 •33 •40 •08 •07 •18 •30	PSI3 Ø. .13 02 10 10 16 18 19 20	THT4 0. -04 -04 -17 -80 -32 -09 -10 -02	EPE •00 •00 •00 •00 •00 •00 •00 •00 •00	B EPBC •ØØ •13 •Ø4 •18 •81 •35 •21 •20 •19
TIME 0 • • 100 • 200 • 300 • 400 • 500 • 600 • 700 • 800 • 900	ALPHA Ø. 0. 1.25 5.69-1 17.96-1 34.90-1 41.28-1 41.28-1 37.96-1 32.71-1	PHIW Ø. 45.00 128.55 158.39 170.03 166.42 163.93 162.86 162.35	PHI1 71.57 71.54 71.57 71.86 70.92 64.24 62.46 62.35 62.43 61.75	P 89 88 78 59 36 21 12 7 4	SI 2 • 40 • 28 • 88 • 33 • 40 • 08 • 07 • 18 • 30 • 64	PSI3 Ø. -13 -02 -10 -10 -16 -18 -19 -20 -16	THT4 Ø • •ØØ •04 •17 •80 •32 •Ø9 •10 •02 •04	EPE •00 •00 •00 •00 •00 •00 •00 •0	B EPBC •ØØ •13 •Ø4 •18 •81 •35 •21 •20 •19 •19
TIME 0 • • 100 • 200 • 300 • 400 • 500 • 600 • 700 • 800 • 900 1 • 000	ALPHA Ø. 0. 1.25 5.69-1 17.96-1 34.90-1 41.28-1 41.28-1 37.96-1 32.71-1 27.17-1	PHIW Ø • 45 • Ø Ø 128 • 55 158 • 39 170 • Ø 3 166 • 42 163 • 93 162 • 86 162 • 35 161 • 89	PHI1 71.57 71.54 71.57 71.86 70.92 64.24 62.46 62.35 62.43 61.75 62.99	P 89 88 78 59 36 21 12 7 4	SI 2 •40 •28 •88 •33 •40 •08 •07 •18 •30 •64 •10	PSI3 0. .13 02 10 10 16 18 19 20 16 17	THT4 Ø • •Ø0 -•Ø4 -•17 •80 •32 •Ø9 -•10 •02 -•Ø4 •02	EPE •00 •00 •00 •00 •00 •00 •00 •0	B EPBC 0 00 0 13 0 4 18 0 4 18 0 4 18 0 4 18 0 4 18 0 4 18 0 4 18 0 4 18 0 4 18 0 4 0 4 18 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4
TIME 0. 100 200 300 400 500 600 700 800 900 1.000 1.100	ALPHA Ø. 0. 1.25 5.69-1 17.96-1 34.90-1 34.90-1 41.28-1 41.39-1 37.96-1 32.71-1 27.17-1 22.09-1	PHIW Ø. 45.00 128.55 158.39 170.03 166.42 163.93 162.86 162.35 161.89 161.61	PHI1 71.57 71.54 71.57 71.86 70.92 64.24 62.46 62.35 62.43 61.75 62.99 62.93	P 89 88 78 36 21 12 7 4 32	SI 2 •40 •28 •88 •33 •40 •08 •07 •18 •30 •64 •10 •03	PSI3 Ø. .13 02 10 10 16 18 19 20 16 17 16	THT4 0. 00 04 17 .80 .32 .09 10 .02 04 .02 02	EPE • 0 0 • 0	B EPBC 0 00 0 13 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4
TIME 0. 100 200 300 400 500 600 700 800 900 1.000 1.200	ALPHA Ø. Ø. 1.25 5.69-1 17.96-1 34.90-1 34.90-1 41.28-1 41.39-1 37.96-1 32.71-1 22.09-1 17.37-1	PHIW Ø. 45.00 128.55 158.39 170.03 166.42 163.93 162.86 162.35 161.89 161.61 161.56	PHI1 71.57 71.54 71.57 71.86 70.92 64.24 62.46 62.35 62.43 61.75 62.99 62.93 62.97	P 89 88 78 59 36 21 12 7 4 3 2 1	SI 2 •40 •28 •88 •33 •40 •08 •07 •18 •30 •64 •10 •03 •59	PSI3 Ø. .13 02 10 10 16 18 19 20 16 17 16 .06	THT4 0 0 0 0 0 0 0 0 0 0 0 0 0	EPE • 0 0 • 0	B EPBC 0 00 0 13 0 04 18 0 18 0 18 0 18 0 18 0 20 0 20 19 19 16 15 4 08
TIME 0. 100 200 300 400 500 600 700 800 1000 1.000 1.100 1.200 1.300	ALPHA Ø. Ø. 1.25 5.69-1 17.96-1 34.90-3 41.28-3 41.39-3 37.96-3 32.71-3 27.17-3 22.09-3 17.37-1 13.30-3	PHIW Ø. 0. 45.00 128.55 158.39 170.03 166.42 163.93 162.86 162.35 161.89 161.61 161.56 160.88	PHI1 71.57 71.54 71.57 71.86 70.92 64.24 62.46 62.35 62.43 61.75 62.99 62.93 62.97 63.01	P 89 88 78 59 36 21 12 7 4 32 1	SI 2 •40 •28 •88 •33 •40 •08 •07 •18 •30 •64 •10 •03 •59 •67	PSI3 Ø. -13 -02 -10 -10 -16 -18 -19 -20 -16 -17 -16 -06 -10	THT4 0 00 004 -004 -004 -004 002 -004 002 -004 -005 -26	EPE • 0 2 • 0 3 • 0 4 • 0 3 • 0 4 • 0 5 • 0	B EPBC 0 00 0 13 0 04 0 18 0 18 0 18 0 18 0 18 0 21 0 20 19 0 10 19 0 16 15 4 08 0 25
TIME 0. 100 200 300 400 500 600 700 800 1000 1.000 1.100 1.200 1.300 1.400	ALPHA Ø. 0. 1.25 5.69-1 17.96-1 34.90-2 41.28-2 41.28-2 37.96-2 32.71-2 27.17-2 22.09-2 17.37-1 13.30-1 10.44-2	PHIW Ø. 45.00 128.55 158.39 170.03 166.42 163.93 162.86 162.35 161.89 161.61 161.56 160.88 160.75	PHI1 71.57 71.54 71.57 71.86 70.92 64.24 62.46 62.35 62.43 61.75 62.99 62.93 62.97 63.01 63.05	P 89 88 78 59 36 21 12 7 4 3 2 1 1	SI 2 •40 •28 •88 •33 •40 •08 •07 •18 •30 •64 •10 •03 •59 •67 •51	PSI3 Ø. 13 02 10 10 10 16 18 19 20 16 17 16 .06 10 .06	THT4 0 00 00 04 04 02 02 04 02 02 04 02 02 02 02 02 02 02 02 02 02	EPE • 0 2 • 0 3 • 0 4 • 0 3 • 0 4 • 0 5 •	B EPBC 0 00 0 13 0 04 0 18 0 4 0 18 0 18 0 18 0 21 0 20 0 19 0 19 0 19 0 16 0 15 0 25 0 22
TIME 0 • • 100 • 200 • 300 • 400 • 500 • 600 • 700 • 800 • 900 1 • 000 1 • 100 1 • 200 1 • 300 1 • 400 1 • 500	ALPHA Ø. 0. 1.25 5.69-1 17.96-1 34.90-1 41.28-1 41.28-1 37.96-1 32.71-1 27.17-1 22.09-1 17.37-1 13.30-1 10.44-1 4.07-1	PHIW Ø. 45.00 128.55 158.39 170.03 166.42 163.93 162.86 162.35 161.89 161.61 161.56 160.88 160.75 158.77	PHI1 71.57 71.54 71.57 71.86 70.92 64.24 62.46 62.35 62.43 61.75 62.99 62.93 62.97 63.01 63.05 63.43	P 89 88 78 59 36 21 12 7 4 3 2 1 1 1 1	SI 2 •40 •28 •88 •33 •40 •08 •07 •18 •30 •64 •10 •03 •59 •67 •51 •23	PSI3 Ø. .13 02 10 10 10 16 19 20 16 17 16 .06 10 .06 .20	THT4 Ø 00 004 04 04 04 02 09 -10 02 -04 02 -04 02 -02 -05 -26 -19 -97	EPE •00 •00 •00 •00 •00 •00 •00 •0	EPBC 0 00 0 13 0 4 18 0 4 18 0 4 18 0 4 18 0 4 18 0 4 18 0 4 0 4 18 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4
TIME 0 • • 100 • 200 • 300 • 400 • 500 • 600 • 700 • 800 • 900 1 • 000 1 • 100 1 • 200 1 • 300 1 • 400 1 • 500 1 • 600	ALPHA Ø. Ø. 1.25 5.69-1 17.96-1 34.90-1 41.28-1 41.39-1 37.96-1 32.71-1 22.09-1 17.37-1 13.30-1 10.44-1 4.07-1 3.72	PHIW Ø. 45.00 128.55 158.39 170.03 166.42 163.93 162.86 162.35 161.69 161.61 161.56 160.88 160.75 158.77 16.50	PHI1 71.57 71.54 71.57 71.86 70.92 64.24 62.46 62.35 62.43 61.75 62.99 62.93 62.97 63.01 63.05 63.43 71.49	P 89 88 78 59 36 21 12 7 4 3 2 1 1 1 1 1 1 3	SI 2 •40 •28 •88 •33 •40 •08 •07 •18 •30 •64 •10 •03 •59 •67 •51 •23 •76	PSI3 Ø. .13 02 10 10 10 16 18 19 20 16 17 16 .06 10 .20 .23	THT4 Ø 00 004 -04 -17 80 32 09 -10 02 -04 02 -04 02 -02 -02 -02 -05 -26 -19 -97 02	EPE •00 •00 •00 •00 •00 •00 •00 •0	EPBC 0 00 0 13 0 04 18 0 18 0 18 0 18 0 18 0 18 0 21 0 20 19 16 15 0 16 15 0 25 0 22 0 28 0 25 0 22 0 28 0 24 0 25 0 24 0 25 0 25 0 22 0 28 0 24 0 20 0 21 0 20 0 20 0 0 20 0 20 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0
TIME 0. 100 200 300 400 500 600 700 800 1000 1.000 1.200 1.200 1.300 1.400 1.500 1.600 1.700	ALPHA Ø. Ø. 1.25 5.69-1 17.96-1 34.90-1 41.28-1 41.39-1 37.96-1 32.71-1 22.09-1 17.37-1 13.30-1 10.44-1 4.07-1 3.72 7.48	PHIW Ø. 45.00 128.55 158.39 170.03 166.42 163.93 162.86 162.35 161.61 161.56 160.88 160.75 158.77 16.50 18.57	PHI1 71.57 71.54 71.57 71.86 70.92 64.24 62.46 62.35 62.43 61.75 62.99 62.93 62.93 62.97 63.01 63.05 63.43 71.49 71.23	P 89 88 78 59 36 21 12 7 4 32 1 1 1 1 13 13	SI 2 •40 •28 •88 •33 •40 •08 •07 •18 •30 •64 •10 •03 •59 •67 •51 •23 •76 •22	PSI3 Ø. -13 -02 -10 -10 -16 -18 -19 -20 -16 -17 -16 -06 -10 -20 -23 -21	THT4 0. 00 -04 -17 .80 .32 .09 -10 .02 -04 .02 -04 .02 -04 .02 -04 .02 -04 .02 -04 .02 -04 .02 -04 .02 -04 .09 -10 .02 -04 .09 -10 .02 -04 .09 -10 .02 -04 .02 -04 .02 -04 .02 -04 .02 -04 .02 .02 .02 .02 .02 .02 .04 .02 .02 .02 .02 .02 .02 .02 .02	EPE • 0 0 • 0	EPBC 0 00 0 13 0 04 18 0 18 0 18 0 18 0 18 0 18 0 21 2 020 19 19 16 15 0 08 0 25 0 22 0 28 0 298 0 24 0 25 0 24 0 25 0 24 0 25 0 24 0 25 0 26 0
TIME 0. 100 200 300 400 500 600 700 800 1.000 1.000 1.200 1.200 1.200 1.200 1.200 1.500 1.600 1.500 1.600 1.800	ALPHA Ø. Ø. 1.25 5.69-1 17.96-1 34.90-1 41.28-1 41.39-1 37.96-1 32.71-1 22.09-1 17.37-1 13.30-1 10.44-1 4.07-1 3.72 7.48 3.94	PHIW Ø. 45.00 128.55 158.39 170.03 166.42 163.93 162.86 162.35 161.69 161.61 161.56 160.88 160.75 158.77 16.50 18.57 20.20	PHI1 71.57 71.54 71.57 71.86 70.92 64.24 62.46 62.35 62.43 61.75 62.99 62.93 62.97 63.01 63.05 63.43 71.49 71.23 70.80	P 89 88 78 59 36 21 12 7 4 32 1 1 1 1 1 13 18 15	SI 2 •40 •28 •88 •33 •40 •08 •07 •18 •30 •64 •10 •03 •59 •67 •51 •23 •76 •22 •76	PSI3 Ø. .13 .02 .10 .10 .10 .10 .10 .10 .10 .10	THT4 0 0 0 0 0 0 0 0 0 0 0 0 0	EPE • 0 2 • 0 3 • 0 4 • 0	EPBC 0 00 0 13 0 04 18 0 18 0 18 0 18 0 18 0 18 0 20 19 19 10 10 10 10 10 10 10 10 10 10
TIME 0. 100 200 300 400 500 600 700 800 1.000 1.000 1.000 1.200 1.200 1.200 1.200 1.200 1.500 1.600 1.500 1.600 1.500 1.600 1.500 1.600 1.5000 1.5000 1.500	ALPHA Ø. Ø. 1.25 5.69-1 17.96-1 34.90-2 41.28-2 41.39-2 37.96-2 32.71-2 22.09-2 17.37-1 13.30-2 10.44-2 4.07-2 3.72 7.48 3.94 2.73-2	PHIW Ø. 45.00 128.55 158.39 170.03 166.42 163.93 162.86 162.35 161.69 161.61 161.56 160.88 160.75 158.77 16.50 18.57 20.20 163.62	PHI1 71.57 71.54 71.57 71.86 70.92 64.24 62.46 62.35 62.43 61.75 62.99 62.93 62.97 63.01 63.05 63.43 71.49 71.23 70.80 69.92	P 89 88 78 59 36 21 12 7 4 32 1 1 1 1 13 18 15 9	SI 2 •40 •28 •88 •33 •40 •08 •07 •18 •30 •64 •10 •03 •59 •67 •51 •23 •76 •22 •76 •06	PSI3 Ø. 13 02 10 10 10 16 19 20 16 17 16 .06 10 .20 .23 .21 16 17	THT4 0 00 004 -004 -004 -004 002 -004 002 -004 -005 -26 -19 -97 002 009 -004	EPE • 0 2 • 0 3 • 0 4 • 0	B EPBC 0 00 0 13 0 04 18 0 18 0 18 0 18 0 18 0 18 0 20 19 19 10 10 10 10 10 10 10 10 10 10

TIME	WYOKE	WCOIL	WGY	WGZ	PHIID	PSI2D
0.	Ø.	Ø.	Ø.	Ø.	ø.	Ø.
.100	02	•03	•02	•03	02	.03
.200	•00	•19	06	01	•00	48
• 300	•1Ø	02	•Ø1	02	•10	-2.73
.400	81	.06	03	.02	81	-3.90
•500	70	.02	•Ø1	•Ø4	 7Ø	-3.39
•600	03	•03	•01	.03	03	-2.04
.700	•20	01	•Ø1	01	•20	-1.20
.800	03	01	04	02	03	-•57
•900	•21	•06	- • 1Ø	.04	•21	27
1.000	16	•Ø3	09	.00	16	19
1.100	01	.00	•Ø1	•Ø1	-•Ø1	18
1.200	01	04	04	01	-•Ø1	.02
1.300	01	01	•02	•01	01	13
1.400	-•Ø1	07	04	•Ø3	01	.20
1.500	1.60	•00	01	03	1.60	1.22
1.600	08	02	03	•Ø5	08	1.20
1.700	03	00	04	02	03	•19
1.800	07	.02	06	.01	07	-1.01
1.900	54	•05	03	.05	54	-1.08
2.000	14	07	03	•05	14	05

JET STATES. 1=0N, Ø=OFF

Ø.	Ø	Ø	Ø	Ø
.100	Ø	Ø	Ø	Ø
.200	Ø	Ø	1	1
• 300	Ø	1	1	Ø
• 400	Ø	Ø	1	1
•500	1	Ø	Ø	1
.600	·Ø	1	1	Ø
•700	Ø	1	1	Ø
.800	Ø	Ø	1	1
•900	Ø	1	1	Ø
1.000	Ø	Ø	1	1
1.100	Ø	1	1	Ø
1.200	Ø	1	1	Ø
1.300	Ø	1	1	Ø
1.400	Ø	Ø	Ø	Ø
1.500	Ø	Ø	Ø	Ø
1.600	Ø	Ø	Ø	Ø
1.700	Ø	Ø	Ø	Ø
1.800	Ø	Ø	Ø	Ø
1.900	Ø	Ø	Ø	Ø
2.000	Ø	Ø	Ø	Ø

STEF SIZE= .0005 IRATIO=10 STOP.

APPENDIX B

PROGRAM VARIABLES

The following is an alphabetical listing of the computer program variables except for the variables in subroutine SEEKER.

ALPHA	Missile angle of attack
ALPHAE	Angle of attack entry argument for coefficient table lookup
AUX 1	Storage locations for integration routine used for HS.
AUX 8	Y _i , Y _{i-1} , Y _{i-2} , Y _{i-3} , DY _i , DY _{i-1} , DY _{i-2} , truncation corrector respectively
BUX 1 BUX 8	Storage locations for integration routine used for H. Z _i , Z _{i-1} , Z _{i-2} , Z _{i-3} , DZ _i , DZ _{i-1} , DZ _{i-2} , truncation corrector respectively
C1, C2	Intermediate answers for 2-D coefficient lookup
COO, C10 CO1, C11	Entry points for 2-D coefficient lookup
СВ	Coefficient value return by 2-D coefficient lookup
CL	Aerodynamic total rolling moment coefficient in body fixed axes
СМ	Aerodynamic total pitching moment coefficient in body fixed axes
CMP	Aerodynamic total pitching moment coefficient in pitch axes
CMPB	Array of pitching moment coefficient for baseline missile (no JRC) vs α and $\Phi_{_{\rm W}}$
CN	Aerodynamic total yawing moment coefficient in body fixed axes
CNP	Aerodynamic total yawing moment coefficient in pitch axes
CNPB	Array of yawing moment coefficient for baseline missile (no JRC) vs α and $\Phi_{_{\rm W}}$
CONL	Program constants
CON4	
CP	Dummy variable
CPE	Vector of cosines of $\Phi_{\rm E}$ for each engine
CPHIL	$\cos \left(\Phi_{1} \right)$
CPHIW	$\cos(\Phi_{W})$
CX	Aerodynamic total X force coefficient in body fixed axes
CXB	Array of X force coefficient for baseline missile (no JRC) vs α and $\Phi_{_{W}}$
CY	Aerodynamic total Y force coefficient in pitch axes

CYP	Aerodynamic total Y force coefficient in body fixed axes
CYPB	Array of Y force coefficients for baseline missile (no JRC) vs α and Φ_{W}
CZ	Aerodynamic total Z force coefficient in body fixed axes
CZP	Aerodynamic total Z force coefficient in pitch
CZPB	Array of Z force coefficients for baseline missile (no JRC) vs α and Φ_{W}
DALPHA	The residule of a required for 2-D coefficient lookup
DELT	Intermediate variable in integration routine
DIA	Missile diameter
DPHI	The residule of Φ_{w} required for 2-D coefficient lookup
DY	Vector of derivatives of Y
DZ	Vector of derivatives of Z
EO	Quaterion variables
E3	
EOD	Derivatives of EO-E3
E3D	
9-	
EPB	Angular error between gyro spin axis and target line of sight in radians
EPB EPBC	Angular error between gyro spin axis and target line of sight in radians Angular error between coil housing axis and target line of sight in radians
EPB EPBC EPBCO	Angular error between gyro spin axis and target line of sight in radians Angular error between coil housing axis and target line of sight in radians EPBC in degrees for outputting
EPBC EPBCO EPS	Angular error between gyro spin axis and target line of sight in radians Angular error between coil housing axis and target line of sight in radians EPBC in degrees for outputting Error due to non-orthogonality of EO-E3
EFB EFBC EFBCO EFS Gl, G3	Angular error between gyro spin axis and target line of sight in radians Angular error between coil housing axis and target line of sight in radians EPBC in degrees for outputting Error due to non-orthogonality of EO-E3 Internal constants for integration routine
EFB EFBC EFBCO EFS Gl, G3 GRAV	Angular error between gyro spin axis and target line of sight in radians Angular error between coil housing axis and target line of sight in radians EPEC in degrees for outputting Error due to non-orthogonality of EO-E3 Internal constants for integration routine Gravity in ft/sec ²
EFB EFBCO EFS Gl, G3 GRAV HL, H3	Angular error between gyro spin axis and target line of sight in radians Angular error between coil housing axis and target line of sight in radians EPBC in degrees for outputting Error due to non-orthogonality of EO-E3 Internal constants for integration routine Gravity in ft/sec ² Internal constants for integration routine
EPBC EPBCO EPS Gl, G3 GRAV HL, H3 H	Angular error between gyro spin axis and target line of sight in radians Angular error between coil housing axis and target line of sight in radians EPBC in degrees for outputting Error due to non-orthogonality of EO-E3 Internal constants for integration routine Gravity in ft/sec ² Internal constants for integration routine Step size for fast integration routine
EPB EPBC EPBCO EPS Gl, G3 GRAV Hl, H3 H HS	Angular error between gyro spin axis and target line of sight in radians Angular error between coil housing axis and target line of sight in radians EPBC in degrees for outputting Error due to non-orthogonality of EO-E3 Internal constants for integration routine Gravity in ft/sec ² Internal constants for integration routine Step size for fast integration routine Step size for slow integration routine
EFB EFBC EFBCO EFS Gl, G3 GRAV HL, H3 H HS HT	Angular error between gyro spin axis and target line of sight in radians Angular error between coil housing axis and target line of sight in radians EPBC in degrees for outputting Error due to non-orthogonality of EO-E3 Internal constants for integration routine Gravity in ft/sec ² Internal constants for integration routine Step size for fast integration routine Step size for slow integration routine Altitude of missile
EPB EPBC EPBCO EPS Gl, G3 GRAV HL, H3 H HS HT HTD	Angular error between gyro spin axis and target line of sight in radians Angular error between coil housing axis and target line of sight in radians EPBC in degrees for outputting Error due to non-orthogonality of EO-E3 Internal constants for integration routine Gravity in ft/sec ² Internal constants for integration routine Step size for fast integration routine Step size for slow integration routine Altitude of missile Derivative of HT
EPB EPBCO EPS Gl, G3 GRAV HL, H3 H HS HT HTD HTD HTMT	Angular error between gyro spin axis and target line of sight in radians Angular error between coil housing axis and target line of sight in radians EFBC in degrees for outputting Error due to non-orthogonality of EO-E3 Internal constants for integration routine Gravity in ft/sec ² Internal constants for integration routine Step size for fast integration routine Step size for slow integration routine Altitude of missile Derivative of HT Altitude difference between missile and target
EPB EPBC EPBCO EPS Gl, G3 GRAV HL, H3 H HS HT HTD HTTD HTTD	Angular error between gyro spin axis and target line of sight in radians Angular error between coil housing axis and target line of sight in radians EPBC in degrees for outputting Error due to non-orthogonality of EO-E3 Internal constants for integration routine Gravity in ft/sec ² Internal constants for integration routine Step size for fast integration routine Step size for slow integration routine Altitude of missile Derivative of HT Altitude difference between missile and target Initial height of target
EFB EFBC EFBCO EFS Gl, G3 GRAV HL, H3 H HS HT HTD HTTD HTTD HTTTO HTTD	Angular error between gyro spin axis and target line of sight in radians Angular error between coil housing axis and target line of sight in radians EPBC in degrees for outputting Error due to non-orthogonality of EO-E3 Internal constants for integration routine Gravity in ft/sec ² Internal constants for integration routine Step size for fast integration routine Step size for slow integration routine Altitude of missile Derivative of HT Altitude difference between missile and target Initial height of target Target climb rate
EPB EPBCO EPS Gl, G3 GRAV Hl, H3 H HS HT HTD HTTD HTTD HTTTO HTTTD HTTTD	Angular error between gyro spin axis and target line of sight in radians Angular error between coil housing axis and target line of sight in radians EFBC in degrees for outputting Error due to non-orthogonality of EO-E3 Internal constants for integration routine Gravity in ft/sec ² Internal constants for integration routine Step size for fast integration routine Step size for slow integration routine Altitude of missile Derivative of HT Altitude difference between missile and target Initial height of target Target climb rate Altitude of target

ICOUNT	Number of times outputting is performed
IENTR	1Calculate required starting values, 2Predict $Y(I)$ for integration, 3Correct $Y(I)$ for integration
IENTRF	2Predict Z(1) for integration, 3Correct Z(I) for integration
IJET	Array for each jet; 0off, 1on
IOUT	Array for outputting interger variables
IP	Entry location on Φ_w for 2-D coefficient lookup
IPRINT	0No outputting permitted, 1Outputting permitted
IRATE	Controls integration routine; OIntegrate both Y and Z, lIntegrate only Z
IRATIO	HS/H
IRT2	2* IRATIO
NDIM	Dimension of Y(I)
NDIMF	Dimension of Z(I)
NPRINT	Outputting interval = NPRINT*H
NSTEP	Counter for number of H integration steps
OUT	Array for outputting real variables
P	Missile roll rate in body axes in rad/sec
PCAN	Pitch canard deflection
PD	Derivative of P
PHI	₫ in degrees
PHIL	Φ_{1} in radians
PHILO	PHIL in degrees for outputting
PHILD	Derivative of PHIL
PHIEL	$\Phi_{\rm E}$ for thruster number 1
PHIJ	Φ_{J} for thruster in degrees
PHIW	$\Phi_{\rm w}$ in degrees
PHIWT	$\Phi_{\rm W}$ reduced to a range of 0 - 90 degrees
PHIWTE	Φ_w entry argument for coefficient table lookup
PRMT	Dummy variable
PRMTY	Control function for JRC's aligned with missile Y axis
PRMTZ	Control function for JRC's aligned with missile Z axis
PSI	Ψ in degrees
PSI2	^Y 2 in radians
PSI20	Y ₂ in degrees for outputting
PSI2D	Derivative of PSI2
PSI3	Ψ ₃ in radians

PSI30	Y ₃ in degrees for outputting
PSI3D	Derivative of PSI3
Q	Missile pitch rate in body axes in rad/sec
QD	Derivative of Q
QUE	Dynamic pressure $\frac{1}{2}\rho V^2$ in lbs/ft ²
R	Missile yaw rate in body axes in rad/sec
RD	Derivative of R
RHO	ρ in slugs/ft ³
RKM	Total moment amplification factor along missile Y axis
RKMB	Array of moment amplification factor vs α and Φ_{J}
RKN	Total moment amplification factor along missile Z axis
RKNB	Array of moment amplification factor vs α and Φ_{J}
RKY	Total force amplification factor along missile Y axis
RKYB	Array of forces amplification factor vs α and Φ_{J}
RKZ	Total force amplification factor along missile Z axis
RKZB	Array of forces amplification factor vs α and Φ_J
RMACH	Mach number of missile
RMASS	Instantaneous missile mass
RMASSO	Initial missile mass
RMASSD	Derivative or RMASS
S	Missile reference area = $\frac{\pi d}{4}$
SIGA	σ_{A} in degrees
SIGAD	Derivative of SIGA
SIGB	σ _B in degrees
SIGBD	Derivative of SIGB
SP	Dummy variable
SPE	Vector of sines of $\Phi_{\rm E}$ for each engine
SPHIL	$Sin(\Phi_1)$
SPHIW	$Sin(\Phi_w)$
T11 :	Elements of matrix transformation from body to inertial axes
Т33	
TBJRC	Burn time of JRC's
TBURN	Burn time of missile main thruster
THT	0 in degrees
THT4	$\theta_{l_{4}}$ in radians
THR	Main thruster thrust
-----------	--
THT40	$\theta_{l_{4}}$ in degrees for outputting
THT4D	Derivative of THT4
TJRC	Thrust of one JRC
TSJRC	Enable time for JRC's
U	U velocity of missile
UD	Derivative of U
UT	U _m
v	V velocity of missile
VD	Derivative of V
VEL	Total missile velocity
VELL	Dummy variable
VEL2	Dummy variable
VSND	Velocity of sound
VT	Vm
W	W velocity of missile
WCZ	Ω of seeker cage along Z axis
WGY	Ω of seeker gyro along Y axis
WGZ	Ω of seeker gyro along Z axis
WINDXB	Components of wind along missile body axes
•	
WINDZB	
WINDXI	Components of wind along inertial axes
WINDZI	
	W
x 	"Т Піте
XCC	Desition of miggile ((relative to peredumentic reference reint
XCCO	Tritial VCC
XCCD	Denimitive of VCC
VT	Metal former along V oute
VEV	Total force along A axis
VTD	Total aerodynamic force along X axis
NFD VT	Theretical V regition of miggile
XTD	Derivative of VI
X TMT	Incritative OF AI
V TEM	Position of TPCIs from porodypamic reference reint
VOLT	rosteron of and a from derodynamic reference point

XM	Total moment along X axis
XMAX	Total run time
XMB	Total moment along X axis for baseline missile (no JRC)
XMT	X position of target relative to missile in body axes
XMTD	Derivative of XMT
XTO	Initial XTI
XTD	Derivative of XTI
XTI	Inertial X position of target
XXI	LXX
XXIO	Initial XXI
XXID	Derivative of XXI
Y	Vector of slow integration state variables
YCAN	Deflection of yaw canard
YF	Total along Y axis
YFA	Total aerodynamic force along Y axis
YFB	Total aerodynamic force along Y axis for baseline missile (no JRC
YFJ	Total force along Y axis due to JRC's
ΥI	Inertial Y position of missile
YID	Derivative of YI
YIMT	Inertial Y position of target relative to missile
ΥМ	Total moment along Y axis
YMB	Total moment along Y axis for baseline missile (no JRC)
YMJ	Total moment along Y axis due to JRC's
YMT	Y position of target relative to missile in body axes
YMTD	Derivative of YMT
YTO	Initial YTI
YTD	Derivative of YTI
TTT	Inertial Y position of target
YYI	I _{YY}
YYIO	Initial YYI
YYID	Derivative of YYI
Z	Vector of fast integration state variables
ZF	Total along Z axis
ZFA	Total aerodynamic force along Z axis

ZFB	Total aerodynamic force along Z axis for baseline missile (no JRC)
ZFJ	Total force along Z axis due to JRC's
ZM	Total moment along Z axis
ZMB	Total moment along Z axis for baseline missile (no JRC)
ZMJ	Total moment along Z axis due to JRC's
ZMT	Z position of target relative to missile in body axes
ZMTD	Derivative of ZMT

DISTRIBUTION LIST

		No.	of Copies
l.	Defense Documentation Center Cameron Station Alexandria, Virginia 22314		20
2.	Library Naval Postgraduate School Monterey, California 93940		2
3.	Dean of Research Naval Postgraduate School Monterey, California 93940		2
4.	Chairman, Department of Aeronautics Naval Postgraduate School Monterey, California 93940		l
5.	Dr. W. H. Clark Code 30102 Naval Weapons Center China Lake, California 93555		10
6.	Assistant Professor Michael H. Redlin Department of Aeronautics Naval Postgraduate School Monterey, California 93940		5

UNCLASS IF IED	
Security Classification	
DOCUMENT CONTR	ROL DATA - R & D
Security classification of title, body of abstract and indexing a	nnotation must be entered when the overall report is sela sified.
GINATING ACTIVITY (Corporate author)	24. REPORT SECURITY CLASSIFICATION
aval Postgraduate School	UNCLASSIFIED
onterey, California 93940	2h. GROUP
· · · · · · · · · · · · · · · · · · ·	
ONT TITLE	
odems - A Point Defense Missile Simulatio	n
CONTRACTOR (The classed and inclusive data)	
schnical Report. March 1973	
THOR(S) (First name, middle initial, last name)	
ichael H. Redlin	
PORT DATE	78. TOTAL NO. OF PAGES 76. NO OF REFS
arch, 1973	66 4
ON TRACT OR GRANT NO.	98. ORIGINATOR'S REPORT NUMBER(S)
ROJECT NO.	NPS-57RP73031A
	9b. OTHER REPORT NO(S) (Any other numbers that may be assigned
STRIBUTION STATEMENT	
Approved for Public Release; Distribut	ion Unlimited
JPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY
	Naval Weapons Center
	China Lake, California 93555
BSTRACT	
A Point Defense Missile Simulation has	been developed. This report describes the
cept of such a missile, the basic feature	s of the simulation program including the
egration routine and the jet reaction con	trollers, and provides a FORTRAN coded
rce program.	, -
10 1 10 million	
· · · · · · · · · · · · · · · · · · ·	
FORM 4470 (DACE 1)	

UNCLASSIFIED Security Classification

KEY WORDS (LINK A		LINKB		LINF C	
	ROLE	wτ	ROLE	ΨT	ROLE	≁ T	
Point Defense Missile							
Missile Simulation							
Missile Guidance							
Advanced Seeker Simulation							
			•				
	_						
DD FORM 1473 (BACK)	τ	INCLASS	SIFIED	-			

•