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0. Introduction

This paper analyzes the decision to initially commit forces to battle. The

combat is modelled by deterministic Lanchester-type equations with two force-level

variables. Our results show that it is not always "best" to initially commit as much

as possible to battle but that the optimal decision for the initial commitment of

forces depends on a number of factors. The key factor in the victor's optimal

commitment of forces is how the trading of casualties depends on the victor's force

level and time. In contrast to all previous work, however, our results do not depend

on explicitly solving the Lanchester-type differential equations but rather on estab-

2
lishing certain properties for the instantaneous casualty-exchange ratio.

[9]
In his now classic 1914 paper F. W. Lanchester (1868-1946) sought to develop

3
a quantitative justification for the principle of concentration with an idealized

model of the combat process, and subsequently several other workers ( see references

1, 6, 21, 23, and 24) have considered whether or not concentration of forces is

"beneficial." The paper at hand extends previous work by Bach, Dolansky, and Stubbs

[211
and Taylor and Parry . Bach et al. considered a f ight-to-the-finish modelled by

Lanchester-type equations of "modern warfare" (see reference 19) with operational

losses. Using the overall casualty-exchange ratio as the decision criterion, they

showed by explicit computation how the optimal initial commitment of forces depends

on a certain parameter k that involves the operational loss rates and the unit

[211
effectivenesses. Taylor and Parry pointed out the wider applicability of the

model of Bach et al. and simplified their optimal decision rule. Moreover, Taylor

and Parry conjectured (but did not prove) that the optimal initial commitment of forces

could be determined by considering the instantaneous casualty-exchange ratio and

studied the variable-coefficient version of the model of Bach et al.

Thus, the purpose of this paper is to prove the conjecture made by Taylor and

[211
Parry that the optimal initial commitment of forces may be determined from how

the instantaneous casualty-exchange ratio varies with the victor's force level and



time. For general Lanchester-type equations of combat between two homogeneous forces,

the victor's decision as to how many forces should be initially committed is analyzed

as a one-sided combat optimization problem. The initial-commitment decision is

evaluated according to three different criteria (victor's losses, loss ratio, and loss

difference) and for two sets of battle-termination conditions (battle with fixed force-

level breakpoint and battle with fixed force-ratio breakpoint) , and results are com-

pared. In this work, partial derivatives of the decision criteria with respect to the

victor's initial force level are calculated without explicitly solving the Lanchester-

type equations. Each of the three decision criteria is shown to be a convex function

of the victor's initial force level under the appropriate convexity conditions on the

instantaneous casualty-exchange ratio so that circumstances of diminishing marginal

returns from committing additional forces may be identified.

1, Analysis of Decision to Initially Commit Forces

Let us consider combat between two homogeneous forces described by the following

4
deterministic Lanchester-type equations for x,y > [the first equation, for example.

becomes dx/dt for x = 0]

!dx/dt = -F(t,x,y) with x(t=0) = x ,

(1)

dy/dt = -G(t,x,y) with y(t=0) = yQ
,

where x(t) and y(t) denote the X and Y force levels at time t, and F and

G denote force-change rates (with a negative force-change rate signifying a net influx

of replacements). For simplicity we assume that there are no replacements and with-

drawals; and, in this case, F and G are simply casualty rates. To insure the

existence of partial derivatives needed in subsequent analysis, we assume that

F(t,x,y) and G(t,x,y) are twice continuously differentiable in each of their argu-

ments. The initial force levels at the beginning of battle at t = are denoted as

x» and yn
. Although (1) contains just two force-level variables, this general model

does apply to combat between two homogeneous forces with superimposed fire effects of

[21]
supporting weapons not subject to attrition ( see , for example, Taylor and Parry ).



Let us now consider the decision by the victor in the above battle as to how

many of his available forces he should initially commit to combat. This decision is

reflected in the model (1) as the victor's choice (within given force limitations) of

the value for his initial force level. Without loss of generality we may take X to

be the victor (i.e. assume that he has more than enough forces available to "win" the

battle). [In Section 7 below, we will briefly consider X's initial commitment

decision in the face of an enemy victory.] Let us consider the initial-commitment

decision by X as a one-sided combat optimization problem: we assume that the Y-force

commander has adopted a known course of action and consider X's initial commitment

decision in this light. This decision is to be made only once, before the battle

begins. In other words, we assume that yn is given and seek the "best" value of

x_ for X to choose. Thus, the decision variable for X in our combat optimization

problem is xn , the initial number of forces committed to battle.

It is convenient to consider that there are four fundamental aspects of the one-

sided combat optimization problem faced by the X-force commander: (1) decision cri-

terion, (2) battle dynamics, (3) battle-termination model, and (4) information structure,

In our investigation here let us not consider the inherent uncertainty in the decision

problem and assume that X has perfect knowledge about x_ and yn , the battle

dynamics [i.e. equations (1)] (assumed deterministic), and battle termination (also

assumed deterministic). Hence, we will not consider the information structure here

further, although it certainly will play a major role in actual real-world military

decisions. The purpose of this paper is to show how, in general, the battle dynamics

(i.e. the form of equations (1)) influence X's optimal decision.

We assume that the X-force commander bases his decision on a single criterion.

Chree possible criteria for evaluating his decision are: (CI) friendly losses,

-y = x
Q
-x

f
; (C2) loss ratio, R = (x~-x ) /(yn

~y
f ) ; and (C3) loss difference,

> " (Xg-x
f

) - (y -y ) ; where x, and y denote the final force levels at the end

»f battle at t = t
f

. The latter two criteria have been suggested by Pugh and



Mayberry , who state that the two criteria are "almost equivalent." A major result

of this paper is to show that the equivalance of such criteria depends on the battle

termination model. Although we are well aware that battle termination is a complex

random phenomenon for which it is by no means certain that force levels are the signi-

ficant variables, in our analysis here we will consider two types of battle-termination

conditions: (Tl) battle terminated by y(t) reaching its "breakpoint" force level,

y > 0, while x(t) has always been above its "breakpoint" force level, x^ > 0; and

(T2) battle terminated by u(t) = x(t)/y(t) reaching Y's "breakpoint" force ratio,

u > un - xn /yn . Analogous conditions may be stated for a Y victory.

We assume that X has limited forces available (but more than enough to win)

.

Since all of the decision criteria are basically costs of engagement, he seeks to

minimize his adopted objective function by his choice of the value for the decision

variable x . Letting C denote one of the above three decision criteria (i.e. either

L„, R , or D ), we may state our combat optimization problem for the initial commit-
X c c

ment of X's forces as

minimize C, subject to: x 5 x < x , (2)

X

where x_ = x
n

+e » e > 0> and x_ denotes the value of the initial X force

level which leads to a draw for the given battle-termination conditions (i.e. either

8 *
(Tl) or (T2)). We denote the optimal value of x~ as x

n
.

The above nonlinear program (2) is trivial to solve after the partial derivative

3C/3x_ has been calculated. For example, 3C/3x_ < V x_ e [x
n

,x_ ] implies that

ic nicix
x_ = x ' so that X should initially commit as much as possible. The determination,

however, of 3C/3x
ft

requires further analysis. Considering (CI) through (C3) above,

we see that calculation of 3C/3x_ involves determining 3x
f
/3x., how X's final

force level varies with changes in his initial force level.



2. Dependence of Force Level on Initial Conditions

We usually take t as the independent variable or time parameter in (1) and

consider x = x(t), y y(t). For a battle won by X, the final Y force level, y f ,

has been driven to satisfy a given battle-termination condition so that the final X

force level depends on this yf
. Thus, in general we have

X
f

= x
f
(y

f
;x0* y ) and y

f
=
yf^O'V* (3)

Hence, for a battle won by X we are motivated to reparameterize the course of battle

in terms of y by inverting y = y(t). We must have dy/dt ^ V t e [0,t
f ] to be

able to do this, and it seems appropriate to take

dy/dt < for all te [0,t
f
]. (4)

Accordingly, we have then

t = t(y) = t(y;x
Q
,y ) and x = x(y) = x(y;x

Q ,y ). (5)

We next express x in terms of the instantaneous (or differential) casualty-

o
exchange ratio , dx/dy. It will sometimes be convenient to use the notation

A = dx/dy. (6)

In general, we have from (1)

dx/dy = A = A(t,x,y) = F(t,x,y)/G(t ,x,y)

.

(7)

When A is time-invariant (i.e. 3A/3t = for all t > 0) , we will say that the

Lanchester-type equations (1) are quasi-autonomous , since they may be transformed to

an autonomous system ( see p. 163 of Petrovski ) by a change of the time scale,

tfhen A depends on only t and the ratio x/y, we will say that Condition (R) holds.

Thus, we have

Condition (R) : dx/dy = A = q(t,u), where u = x/y. (8)

fe observe that (3A/3x) = (l/y)3q/3u so that 3A/3x and 3q/3u always have the
c »

y

same sign. Let us further observe that on a partial derivative such as (3A/3x) ,

t »y



the subscripts denote the variables being held constant. In terms of our

reparameterization (5) in terms of y, we have

A = A(t(y;x ,y ),x(y;x ,y ),y),

so that we may write

?0
x(y;x ,y ) = x

Q
- dx/dy^y^x^yg) ,x(y

1
;x

()
,y ) ,y

1
)dy

1
. (9)

y
idHolding y and y constant and differentiating with respect to xn , we obtain

3x/3x
Q

= 1- {(3t/3x )3A/3t + (3x/3x
Q
)3A/3x}dy , (10)

where 3x/3x rt denotes (3x/3xrt ) , etc.
y,y

*

The Volterra integral equation (10) may be solved by differentiating with

respect to y and integrating the resulting first order linear ordinary differential

equation. Setting y = y f , we obtain

3x
f
/3x

Q
= (3x

f
/3x )

yojyf
= exp[- (3A/3x)dy]

^0
(3t/3x

Q
)3A/3t • exp[- (3A/3x)d

yi
]dy. (11)

yf y
f

Equation (11) relates changes in the final X force level to variations in X's

initial strength. This result (11) is a key one and is used in the development of

most subsequent results in this paper.

3. Derivatives of Decision Criteria

For the solution of (2) we need to compute 3C/3x_ for C = L^, R , and D .

As a preliminary step in this computation we recall (3) and observe that

(3x^/3xn ) = (3x£ /3xn )
ro yn f o y ,y

f
f f xn ,y

+ (3x^/3y^)^ • (3y /3x ) ,

0' y y
(12)

where (3xc /3x_) . , /11N _ . /ns ..
f y.j, is given by (11). Setting y = y f

in (9) so that x = x_,

holding x
n

and y_ constant, and differentiating the result with respect to yf
,

we obtain



(3x /3y ) - (dx/dy) (13)
r r x

Q ,y r

where (dx/dy) denotes the final instantaneous casualty-exchange ratio for t = t ,

X X-i and y « y f
. Sometimes for convenience we will denote (dx/dy)

f
as A

[recall equation (6)]. From (12) and (13), we find that

Ox
f
/3xn ) = (3x /3x ) + (dx/dy) • (3y/3x) . (14)

1 u y y ,y
f

yo

Henceforth, we will omit denoting which variables are being held constant in such

partial derivatives and hope that this will be clear from context. When X wins, we

have via (3) that

3L
x
/3x

Q
- 1- 3x

f
/3x

Q
- (dx/dy)

f
3y

f
/3x

Q
, (15)

3R
c
/3x

Q
= {l-3x

f
/3x

Q
+ [R

c
- (dx/dy)

f
]3y

f
/3x }/(y -y

f
), (16)

3D
c
/3x

Q
» 1- 3x

f
/3x

Q
+ [1- (dx/dy)

f
]3y

f
/3x

Q
. (17)

?or the case of a fixed final force-level battle in which y f
- y is fixed beforehand,

the above partial derivatives, of course, simplify considerably.

4. Results for Fixed Force-Level Breakpoint Battle

In this case 3y
f
/3x_ 0, and (15) through (17) simplify to

md

3L
x
/3x

Q
* 3D

c
/3x

Q
- l-3x

f
/3x , (18)

3R
c
/3x

Q
= (l-3x

f
/3xQ)/(y -y

f
). (19)

'hus, all three decision-criterion partial derivatives have the same sign. Consequently,

or a fixed force-level breakpoint battle, the X-force commander makes the same decision

egardless of which decision criterion he uses. It suffices, therefore, to consider

L /3x_ in subsequent developments in this section.

By (11) and (18), we have

(3A/3x)dy]

y

3L
x
/3x

Q
= 1 - exp[-

y
f

+ (3t/3x
Q
)3A/3t • exp[-

y
f

(3A/3x)d
yi

]dy. (20)



We assume that we always have

(3t/3x ) < 0. (21)
u y ' y

This assumption seems reasonable, since we would expect that higher x_ yields lower

y for fixed y_ and t. Consequently, we may conclude

THEOREM 1: If 3(dx/dy)/3x < and 3(dx/dy)/3t ^ for all te[0,t
f
],

then 3C/3x- < for C = LY , R , D .

X c c

Proof ; Immediate by (20) and (21). Q.E.D .

The following theorem shows that under its stated conditions when q(u) is

convex and 3C/3x
Q

< V x
Q

e [x^
111 ^™**], there are decreasing marginal returns from

initially committing additional forces to battle. The theorem generalizes results

given for a specific model by Bach et al. ( see p. 320 and p. 325 of reference 1).

THEOREM 2: Consider a battle with a fixed force-level breakpoint to be

won by X. Assume that Condition (R) holds and that the

Lanchester-type equations (1) are quasi-autonomous. If

dx/dy = q(u) is a strictly convex (concave) function of u

on [0,+°°), then the decision criterion C is a strictly

convex (concave) function of xrt for C = Lv , R , D .

U X c c

Proof ; Computing 3
2x

f
/3x 2 -exp[-

y y

(l/y)(3q/3u)dy] (l/y2 )(3 2q/3u 2
)

y
f y

l

exp[- (1/y )(3q/3u)dy ]dy, we see that 3
2q/3u2 > implies that 3

2x /3x2 < 0,

ywhence^the theorem follows from (18) and (19). Q.E.D .

Comment 1 ; For quasi-autonomous Lanchester-type models we have that 3 (dx/dy) /3x <

for all te [0,t
f

] implies 3C/3x
Q

< 0.

8



Comment 2 : From (20) and (21) we see that, in general, 3(dx/dy)/3x < for all

te [0,t
f

] may not always imply 3C/3x
n

< when 3(dx/dy)/3t < 0. In other words,

even though a higher X force level reduces the instantaneous casualty-exchange ratio

(i.e. the cost to X of reducing the Y force level a unit amount), it may not be

best for X to initially commit as many forces as possible when (for constant force

levels) the instantaneous casualty-exchange ratio decreases over time. The reason

for this result is that smaller x means that the battle (which X will win by

assumption) will last longer, and the longer the battle lasts, the better the instan-

taneous casualty-exchange ratio becomes for X. Let us give an example of this

phenomenon

.

Example of 3C/3X
Q

> even though 3(dx/dy)/3x < .

rgi
Let us consider Helmbold's modification of Lanchester's classic combat formu-

Lation to account for inefficiencies of scale for the larger force when force sizes

are grossly unequal. We have for time-varying fire effectivenesses ( see Taylor and

[19]
3rown for a discussion of modelling considerations regarding variable coefficients

and further references)

dx/dt = -a(t)(x/y)
C
y, dy/dt = -b(t) (y/x)

C
x, (22)

/here c is a parameter controlling the relative force-attrition capability. We observe

;hat c = corresponds to the usual Lanchester-type equations of modern warfare with

variable attrition-rate coefficients. We readily compute that

3(dx/dy)/3x = (l-d){a(t)/b(t)}(x/y)~
d
/y, (23)

/here d = 2(l-c). Note that d < 2 for c > 0. From (23) we see that 3(dx/dy)/3x <

:or d > 1. We will show by numerical counterexample that Theorem 1 is in general not

:rue if the assumption that 3(dx/dy)/3t > is omitted. This result, unfortunately,

[211
>hows that the conclusion drawn about concentration of forces by Taylor and Parry

lay not be true in general for variable attrition-rate coefficients. Theorem 1, however,

;ives sufficient conditions for 3C/3x_ < 0; and for certain battle dynamics, the



assumption about 9 (dx/dy) /9t may not be absolutely necessary for the theorem to be

true. In other cases, it may be possible to weaken this assumption, but we have not

investigated this matter further.

Let a(t) and b(t) be piecewise constant and denote

!a/b for as t < t ,

(24)
a/b for t ^ t ,

c

where t denotes the time at which the relative effectiveness of combatants changes.

We will consider the case in which a/b > a/b. This case may be regarded as an approxi

mation to that in which 3 (dx/dy) /9t < 0. For a battle terminated by a given force-

level "breakpoint" being reached, X wins when t f
^ t if and only if

(u
Q

)

d
> a(l-f*)/[b(l-f£)J,

where, for example, x^ = fyX
n

and x^ denotes the X "breakpoint" for a Y victor)

Analytic results that are required for this investigation are given in Table I. Numerj

cal results are shown in Table II. The X force "wins" all three battles. From Tablt

II we see that decreasing u- (i.e. decreasing xn for fixed y~) actually leads to

a more favorable casualty exchange ratio for X, even though 9 (dx/dy) /9x < 0. The

reason for this result is that reducing the initial force ratio extends the length

of battle, and the battle is then fought for t > t at greater relative effectivenesi

per man from X's standpoint (i.e. b/a > b/a) . For the classic equations of 'modern

warfare" (i.e. d = 2), we have not been able to find any such counterexample. We sti

feel, however, that for this case with variable attrition-rate coefficients Theorem 1

is probably false without the assumption that 9 (dx/dy) /9t ^ 0.

5, Results for Fixed Force-Ratio Breakpoint Battle

12
For a battle terminated by u(t) reaching a given "breakpoint" force ratio w<

13
obtain using (3) that when X wins

9y
f
/9x

Q
= (9x

f
/3x )/(u£-A

f
), (25)

where A
f

denotes (dx/dy)
f

and we recall that ll. is a given constant. Observing

that ( see Taylor^
17

-')

Q



TABLE I.

ANALYTIC RESULTS FOR HELMBOLD'S MODEL USED IN EXAMPLE

1. For
11

t < t
r c

t
f

= [2/(d^bT]Jln{[/(u )
d
-(a/b)(l-fY)-f^

/2
/i7b]/[(u )

d/2
-/i7b]}

2. For t £ £ t
f c

R
c

= {u
Q
- [(u

Q
)

d
- (a/b)(l-f

d
)]

1/d
}/(l-f

Y
)

3. For t, > t
r c

R
c

= {u
Q
- [(u )

d
- (a/b){l- (y

c
/y )

d>- (a/b){ (y
c
/y )

d
- f

d
}]

1/d
}/(l-f

Y )

where

(y /yj
d

- {cosh(/ab"t d/2) - (O d/2
/b7I sinh(/ab"t d/2)}

2

c u c u c

4. For tc > t
f c

where

3R
c
/3x = (l-F

N
/F

D
)/[(l-f

Y )y ]

F = 1- (l/u
d/2

)/(y /yn )

d
b/a{(a/b) - (a/b)}sinh(/ab"t d/2)

N U C U C

F
D

= {l-[(a/b){l-(y
c
/y )

d
} + (a/b){(y

c
/y )

d -fd }]/u
d

}
(d-1)/d

Note: The above results hold for d ^ 0.

11



TABLE II.

NUMERICAL RESULTS WHICH SHOW THAT 3(dx/dy)/3x <

DOES NOT ALWAYS IMPLY THAT 3R /3x„ < 0.
c

Battle u
o

fc

f
t
c

y
c
/y R

c
3R /3xn

+

c

1 4.0 19.3 20.0 0.437

2 2.0 t < t-
c f

20.0 0.69 0.434 (0.0112)/y

3 1.0 t < t-
c f

20.0 0.82 0.420 (0.0122)/y
Q

Other parameter values (time expressed in the same units for a,

t r , and t ):
f c

d = 1.5, f - 0.5, a = 0.01, a/b = 1.0, a/b = 0.1

Computed using result 4 of Table I.

12



u- A = (du/dt)/{-(l/y)dy/dt>, (26)

we see by (4) that

ux~
A
f

> ° ** x wins# (27)

By (25) and (27) we see that 3x /3x_ and 3y /3x have the same sign when X wins.

Using (25), we find that (15) through (17) become

3L
x
/3x

Q
= l-{l/(l-A

f
/u£)}3x

f
/3x , (28)

3R
c
/3x

Q
= {1- [(u£-R

c
)/(u£-A

f
)]3x

f
/3x }/(y -y

f
), (29)

3D
c
/3x

Q
= l-{(u^-l)/(u^-A

f
)}3x

f
/3x , (30)

where we recall that 3x
f
/3x_ is given by (11). We observe that (28) through (30)

reduce to (18) and (19) for u^ = +», which is a "fight-to-the-finish." We will now

show that the three criteria do not all lead to the same initial-commitment decision.

Let us first consider the criterion of only the friendly losses. If

niay f «k TT13.X

x- £ yA uv , then clearly xn = xn and L = 0. Let us therefore, assume that
U X U U A

X
q

3X
< y.u* . Recalling (27), we see from (28) that 3L

x
/ 8x

o
< 1 - 3x

f
/3x

Q
so that

recalling (11) we have

THEOREM 3: Consider a battle with a fixed force-ratio breakpoint to be

won by X. If 3(dx/dy)/3x < and 3(dx/dy)/3t ^ for

all te [0,t
f
], then ZL

x
/dx

Q
< 0.

As seem from Theorem 3, it is advantageous for X to initially commit as many forces

as possible even for a quasi-autonomous "linear-law" attrition process for which

3A/3x = = 3A/3t. A numerical example of this phenomenon is shown in Table III. We

observe that for a fixed force-level breakpoint battle, there is no advantage to X

from initially committing additional forces over those required to win for this

attrition structure.

13



TABLE III.

EXAMPLE OF BENEFIT TO X FROM INITIALLY COMMITTING MORE FORCES

IN QUASI-AUTONOMOUS LINEAR-LAW BATTLE WITH FIXED FORCE-RATIO BREAKPOINT.

State Equation for Battle: b(x_-x) = a(y
Q
-y)

Battle x
o

• L
X

R
c

1 150.0 83.33 1.0

2 200.0 66.67 1.0

3 300.0 33.33 1.0

Other parameter values:

b/a = 1.0, u^ = 4.0, yQ
= 100.0

14



When the casualty-exchange ratio R is taken as the decision criterion, the

decision to initially commit forces is essentially independent of the battle-termina-

tion conditions. Before we formally state this result, it is convenient to define

the following condition:

Condition (G) : R
c

= R
c
(u£) > (dx/dy)

f
= A

f
(u^) for all u£ e (u

Q
,+»). (31)

We have then

THEOREM 4: Assume that Conditions (G) and (R) hold. If 3(dx/dy)/3x <

and 3(dx/dy)/3t ^ for all te [0,t-], then 3R /3xn < 0.
t c U

f f
Proof : Considering u^ - R = (u^-u

Q )/
(l-y

f
/y_) , we see that

u > R «» X wins. (32)

Now consider N(iO = N(u^, t
f
(u^) ,y

f
(O) for u^ < u

Q
si u^ < -H», where

N(u£) = l-{(u^-R
c
)/(u^-A

f
)}3x

f
/3x . (33)

We then have by (29)

3R
c
/3 X() = N(u£)/(y -y

f
). (34)

The theorem follows from (34) by showing that N(iO < for u_ < il< +». The

latter result will be proven by showing that (a) N(u^=u_) = 0, and (b) dN/du^ <

for u_ < u^ < +<*>.

To show that

lim N(u£) = = N(u£=u ), (35)

Vu
o

we observe that lim y = y and
f

r

Vu
o

lim N(u£) =1- lim {u^-R
c
}/{u^-(dx/dy)

f
}. (36)

VU 4^0
yD

Using L'Hospital's rule, we readily compute lim R = lim { (dx/dy)dy}/ (y~-y
f
)

f
c

y ~*J
= (dx/dy) f , whence (35) follows from (36). V^O f ° y

f

15



We next show that dN/du^ < for u
Q

< u^ < +». First, we compute dN/duL.

from (33) to obtain

dN/du£ = {l/(u^-A
f
)}{-l+dR

c
/du^+(u^-R

c
)(l-dA

f
/du^)/(u^-A

f
)}(3x

f
/3x )

- [(u£-R
c
)/(u£-A

f
)]d(aXf /9x )/du£. (37)

14
Considering the definition of R , (3), and (26), one may show that

dR
c
/du

x
= -y

f(VV /{(y
o~y f

)(u
x-

A
f
)K (38)

Recalling that yf
= YfCuy)* we obtain from (11) that

d(3x
f
/3x )/du£ = {(8A

f
/3Xf )3Xf /3x + (3A

f
/3 tf)3t f

/3x
Q
}dy

f
/du£, (39)

f f f f
where dy

f
/du-. = '^f^^'^P

< °' B^ Condition (R) we have dA./du^ = 3A
f
/3u^ +

(3A /3t
<:
)dt f /duv . Observing that y, • (3A-/3x-) . =(3A,/3uv )

i.
, we may com-

r r r a r r r t_,y
£

r a t^,y^

bine (37) and (39) to obtain

dN/du£ = {l/(u^-A
f
)}{-l + dR

c
/du^+(u^-R

c
)/(u^-A

f
)}3x

f
/3x

+ $• (u^-R
c
)/(u^-A

f
)
2

, (40)

where * = {y • 3t
f
/3x - (dt/du )3x /3x }3A

f
/3t

f
. We observe that $ 5 0, since

3x
£
/3x > 0, du /dt > 0, and by assumption 3A /3t

f
> and 3t

f
/3x

Q
< [ see

(21) above]. It follows by (27), (32), (38), and (40) that for u
Q

< u
x

< -H=°

dN/du£* {-y (R
c
-A

f
)/[(u^-A

f
)
2
(y -y

f
)]}3x

f
/3x < 0,

the last inequality being a consequence of Condition (G)

.

Q.E.D

It may be difficult to determine, in general, whether Condition (G) holds.

However, it does hold for quasi-autonomous Lanchester-type equations when Condition (1

holds and 3A/3u < always. Thus, we have

LEMMA 1: When Condition (R) holds for quasi-autonomous Lanchester-type

equations, then 3A/3u < for all te [0,t
f

] implies R
c

> A
f

(i.e. Condition (G) holds).

16



Proof : By the assumptions, u < u implies A > A whence follows the lemma by
y X t

considering R
£
- A

f
= (A-A

f
)dy/ (yQ

-y
f
)

.

Q.E.D .

y
f

Then for quasi-autonomous Lanchester-type equations when Condition (R) holds and

the casualty-exchange ratio is taken as the decision criterion, the decision to ini-

tially commit forces is independent of the battle-termination conditions.

COROLLARY 4.1: Assume that Condition (R) holds for quasi-autonomous

Lanchester-type equations. For a battle with either a

fixed force-level breakpoint or a fixed force-ratio

breakpoint, if 3A/3x < for all te [0,t
f
], then

3R /3x„ < 0.
c u

Proof : By Theorem 1 the result is true for a battle with a fixed force-level break-

point. For a battle with a fixed force-ratio breakpoint, we know that Condition (G)

holds by Lemma 1 so that the corollary follows by observing that all the assumptions

of Theorem 4 are satisfied. Q.E.D .

Finally, we consider the loss difference D as the decision criterion for
c

initially committing forces. A general result, however, is only available when the

final differential casualty-exchange ratio is greater than one.

THEOREM 5: If 3(dx/dy)/3x < and 3 (dx/dy) /3t ^ for all te[0,t]

and (dx/dy). £ 1, then 3D /3x. < 0.
r c U

Proof : Recalling (11) and (21), we see that the assumptions of the theorem yield

3x /3xn > 0. Recalling (27) and (30), we then see that A. > 1 implies that
° yp

3D /3x- 5 1- exp{-
c

(3A/3x)dy} whence follows the theorem. Q.E.D.

y
f

If A
f

< 1, however, it does not follow by the other stated conditions of

Theorem 5 that 3D
c
/3x

Q
< so that x = *

maX
: it is possible for x to be an

interior point of the interval [x- ,x_ ] (i.e. D has an unconstrained global
U U c

minimum at x such that x_ < x < x
n ) . Before we give an example of this

17



occurrence, however, let us give results analogous to those of Theorem 2, which applies

for a fixed force-level breakpoint.

THEOREM 6: Consider a battle with a fixed force-ratio breakpoint to be

won by X. Assume that Condition (R) holds and that the Lan-

chester-type equations (1) are quasi-autonomous. If dx/dy = q(u)

is a strictly convex (concave) function of u on [0,+°°) and

(3q/3u).- < (>0) , then L is a strictly convex (concave)
A

function of x_. The same is true for R if additionally

3R
c
/3x < V x

Q
e [xJJ^.xJJ**] , while it is true for D if

Proof : Computing 3
2x

f
/3x 2 = -

J

(1/y2 ) (3
2q/3u 2 )exp| (l/y^ (3q/3u)d

yi
dy

-(l/y
f
)(3q/3u)

f
/(u£-A

f )j
• expH-2

J

(1/y) (3q/3u)dyl ,

yf
concave (convex) function of x~ under the stated conditions. The theorem readily

follows after we compute S^/Sx2 = 1 - {l/(l-A
f
/u£) }3 2x

f
/3x2 , 3

2R /3x2 =

{2(3R
c
/3X() )3x

f
/3x - (u^-R

c
)3 2x

f
/3x2 }/{ (yQ

-y
f
) (u£-A

f
) } , and 3

2D
c
/3x

Q
=

l-{(u£-l)/(u£-A
f
)}3 2x

f
/3x2 . Q.E.D ,

y
f yf

y
(j

we see that x
f

is a strictly

We now give an example that an unconstrained optimal initial force level (for

fixed y_, equivalently , an unconstrained optimal initial force ratio u_) can occur

when D is the decision criterion. Let us first note that it is possible for
c r

3D
c
/3x

Q
= when 3A/3x < and 3A/3t £ for all te [0,t

f
] and A < 1. We

now assume that Condition (R) holds for quasi-autonomous Lanchester-type equations (1)

and that q(u) is convex in u on [0,+°°) with (3q/3u)- < and u > 1. Then
r x

by Theorem 6 D is convex in x and has a global minimum where 3D /3x_ = 0. This
c c

occurs, for example, for a classic "square-law" battle in which dx/dt = -ay and dy/dt

-bx so that q(u) = a/(bu). Moreover, a direct computation shows that D =

yQ
{(u -l) - (u£-l)[(u 2-a/b)/((u£) 2-a/b)]

1/2
}. For fixed yQ

, D
c

has a global minimum

* f f 1/2
at u

Q
= [(a/b){(u

x )
2-a/b}/{2u

x
- (1+a/b)}] '

. Numerical results are shown in Table IJ
18



TABLE IV.

NUMERICAL RESULTS WHICH SHOW UNCONSTRAINED MINIMUM OF D
c

FOR "SQUARE-LAW" BATTLE WITH FIXED FORCE-RATIO BREAKPOINT,

Battle u
o

x
o"

x
f Vy

f
D
c

R
c

1 1.2 50.08 77.89 -27.81 0.64

2 /2 36.01 66.67 -30.655 0.54

3 u* = 1.44262 34.66 65.34 -30.683 0.53

4 1.5 32.15 62.73 -30.583 0.51

5 /3 24.13 52.86 -28.73 0.46

6 2 17.43 42.26 -24.84 0.41

7 /5 12.79 33.33 -20.54 0.38

Other parameter values

:

b/a = 1.0, ul = /lO,
A.

yQ
= 100.0
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6. Results When the Sign of 3(dx/d y )/3x is Always the Same

Motivated by some Lanchester-type attrition processes that have appeared in

the literature for which the sign of 3(dx/dy)/3x is the same for all admissible

values of t, x, and y, we state

Condition (P) : the sign of 3(dx/dy)/3x is the same for all t,x,y «: 0. (41)

Condition (P) is satisfied, for example, for variable-coefficient Helmbold-type proces

(for which A = {a(t)/b(t) } (x/y) ) or constant-coefficient aimed-fire battles with

r 21

1

supporting fires not subject to attrition as studied by Taylor and Parry (for whic

A = (a+3u)/(a+bu)) . The above results may then be somewhat more strongly stated.

THEOREM 7: Assume that Condition (P) holds and that the Lanchester-type

equations (1) are quasi-autonomous. For a battle with a fixed

force-level breakpoint to be won by X, 3C/3x
n

< for C =

L, R , D if and only if 3(dx/dy)/3x < 0.
X c c

THEOREM 8: Assume that Conditions (P) and (R) hold and that the Lanchester-

type equations (1) are quasi-autonomous. For a battle with a

fixed force-ratio breakpoint to be won by X, 3R /3x~ < if

and only if 3A/3u = 3q/3u < 0. If dx/dy = q(u) is a strictly

convex (concave) function of u on [0,+°°) and 3q/3u < (>0),

Ti

then Ly and R are strictly convex (concave) functions of

f , |di

x_. The same is true for D if additionally il. > 1.

Theorem 7 follows from (11), (18), (19), and Condition (P) , since a (dx/dy) /3t = 0.

The statement about 3R /3xrt in Theorem 8 follows from (33), (34), and (35), since
c v

dN/du
f

< if and only if 3A/3u < 0. The latter inequality for dN/du
x

follows fr<

A.

3x /3x > and

dN/du* = {-y (R
c
-A

f
)/[(u^-A

f
)2

(yo
_
yf)]}9Xf/9Xo>

which holds by (40) with 3A/3t = 0, since R > A
f

if and only if 3A/3u < 0. The

proof of the last inequality follows along the lines of that for Lemma 1. The proof <

the convexity statements in Theorem 8 follows along the lines of that for Theorem 6.
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7. The Concentration Decision in the Face of an Enemy Victory

Let us now briefly consider battles to be won by the enemy (i.e. Y) . The above

inalysis must be entirely redone. In considering the initial-commitment decision,

*e will assume that X cannot turn the tide of battle (i.e. < x
n

£ x £ x =

c£
raW

-e, where e > 0)

.

For a battle won by Y, we assume that dx/dt < for all te [0,t
f

] and

jarameterize the course of battle in terms of the X force level. Hence, we consider

r
f

= y
f

^

x
f
;x0' y0^

'

X
f

= x
f^

x ,y0^' t = t (x;x
o» yO^'

and y = y^x;x
o
,y
O^*

Writin8

-,»-?j = y(x;x
Q ,y ) » yQ

- dy/dx(t(x
1
;x

Q
,y ) ,x1> y(x1

;x ,y ))dx 1> we obtain analogous to

(10)
x
o

(8y/8x
O
) x,y

()

= 8y/S ' -(dy/dx>0
" {(3t/3x

Q
) • 3(dy/dx)/3t

+ (3y/3x
Q

) • 3(dy/dx)/3y}dX;L . (42)

iftien the equations (1) are quasi-autonomous, 3y /3x = -(1/A_)exp { (3(dy/dx) /3y)dx}

,

tfhich becomes when Condition (R) holds f

3y
f
/3x

Q
= -(l/q )exp{

j
(u/q) 2 (l/x) (3q/3u)dx}

.

(43)

X
f

Caking account of the functional dependencies of x
f

and y f , we see that the partial

lerivatives (15) through (17) of the decision criteria now take the form

3L
x
/3x

Q
= l-3x

f
/3x

Q
, (44)

3R
c
/3x

Q
- (1 + R

C
• 3y

f
/3x

Q
- (l-R

c
/A

f
)3x

f
/3 X() }/(y -y

f
), (45)

3D
c
/3x

Q
= 1- (l-l/A

f
)3x

f
/3x +3y

f
/3x . (46)

'or a battle with a fixed force-level breakpoint to be won by Y (i.e. x
f

= x„,

tfhere Xy. is a given quantity ), we have that 3x
f
/3xn £ so that the above become

SI^/SXq = 1, (47)
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3R
c
/3x

Q
= U + R.' Oy

f
/3x )}/(y -y

f
), (48)

3D
c
/3x = l+3y

f
/3x

Q
, (49)

From the above, we see that the initial-commitment decision for X is quite

different (at least for a fixed force-level breakpoint) when Y wins. If X conside

only his own losses L , then x_= x_ . Considering (43) and (49), one can show

that 3D /3x„ > when Condition (R) holds for quasi-autonomous Lanchester-type equa-l
c

tions, qQ
= (dx/dy) > 1, and 3q/3u < for all t [0,t

f
], since qQ

> 1 and

3q/3u < for all te [0,t
f

] imply that 3y /3x
Q

> -1 by (43). Further examination!

of the initial-commitment decision in the face of an enemy victory is beyond the scope

of our current investigation. By the above, however, it should be clear that results

differ from those for the case in which X wins.

8. Discussion

In this paper we have shown that under the appropriate conditions Taylor and

f 211
Parry's conjecture that the consequences from initially committing additional fore

to battle may be determined from how the instantaneous casualty-exchange ratio varies

with changes in the victor's force level and time is true. This determination does

not require that the Lanchester-type combat equations be solved. As the example consii

ered in Section 4 showed, temporal variations in the instantaneous casualty-exchange

ratio for constant force levels (i.e. 3(dx/dy)/3t) must be of a certain nature ( see ,

example, Theorem 1) for our results to hold. This important qualification was not

r 21

1

observed by Taylor and Parry . Not only do these results apply to most cases of

Lanchester-type combat between two homogeneous forces but also to such cases with

superimposed effects of supporting weapons not subject to attrition as treated by Tayl

and Parry. Furthermore, our new results may be extended to cases of continuous replac

ments and /or withdrawals.

Let us now apply our general results to the constant-coefficient model, dx/dt

-ay-Bx, dy/dt = -bx-ay, considered by Bach et al. and Taylor and Parry 1
. By

Theorems 7 and 8, when the overall casualty-exchange ratio R is the decision criter

22



the victor X should initially commit as many forces to battle as possible (i.e.

'k max
K
n

x_ ) if and only if ab > aB, regardless of which of the two battle-termination

nodels is used. For fixed force-level breakpoint battles, the initial-commitment deci-

sion does not depend on which of the three criteria is used. Moreover, as first shown

i>y Bach et al. , there are diminishing marginal returns from initially committing

additional forces to battle when this is the optimal action. Our new results provide

an explanation for these diminishing returns: the instantaneous casualty-exchange ratio

ix/dy = q(u) (a+Bu) / (ci+bu) is a convex function of u on [0,+<») when ab > ct£

( see Theorem 8)

.

rg
1

If the combat between primary systems follows a Helmbold-type attrition process

( see Section 4 above and Taylor ) in the above example, then the combat dynamics are

c c
>iven by dx/dt = -a • (x/y) y - Bx and dy/dt = -b • (y/x) x - ay . In this case we

lave dx/dy = q(u) = u(au~
d/2

+B) / (a+bu
d/2

) and 3q/3u = {aB-(d-l)ab +

(l-d/2)(aau~
d/2

+8bu
d/2

)}/(a+bu
d/2

)
2

, where d = 2(l-c). Hence, the victor X should

lever initially commit as many forces to battle as possible when d 5 1. The same con-

clusion holds for all d < 2 when aB > ab. For 1 < d < 2 and aB < ab, 3q/3u may

change sign over the course of battle, and then it is not possible to invoke our

theorems. This last example brings to mind an important aspect of our results: our

results (in particular, Theorems 1, 3, 4, and 5) provide sufficient conditions for the

Optimal course of action to be to initially commit as many forces as possible. Since

?e are dealing with sufficient conditions, it may still be optimal to initially commit

is much as possible even when such conditions are not satisfied.

All the above results show that with supporting fires present one should not

tilways commit as many primary forces as possible in aimed-fire battles, but one must

rade-off vulnerability to supporting fires against the increased fire effectiveness

rom massing primary systems. Military interpretations for various quantities such as

[211
.b are to be found in Taylor and Parry . Thus, this work shows that in our nuclear

.ge with supporting weapons of great effectiveness, merely commiting large numbers of

orces to battle may not always be the "best" thing to do.
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Our work here shows the importance of battle-termination conditions for combat

evaluations. We saw that different optimal initial-commitment actions were possible

in fixed force-level breakpoint battles and fixed force-ratio breakpoint battles. In

particular, the loss ratio and the loss difference may yield different initial-commit-

ment decisions for a fixed force-ratio breakpoint battle, although they yield the same

decision for a fixed force-level breakpoint battle. Similar results on the sensitivity

of optimal time-sequential fire-distribution policies to battle-termination conditions

have been pointed out by the author ' . Consequently, we feel that more scientific

work is required on modelling conflict termination ( see Taylor for references).

As is always the case, however, the insights gained into combat dynamics from such

Lanchester-type models are no more valid than the models themselves.

Notes

1. It was the author's good fortune to be awarded (jointly with S. Parry) the 1975

MAS Prize by the Military Applications Section of ORSA for the three papers Taylor and

Parry , Taylor , and the paper at hand. The MAS Prize is awarded annually for

the best paper on military operations research that is submitted in response to a

solicitation.

2. The instantaneous (or differential) casualty-exchange ratio is given by dx/dy =

F(t,x,y)/G(t,x,y) for the model (1) with no replacements and withdrawals. We may

think of it as the ratio of each side's casualties that occur in a short interval of

time dt.

3. One of the half dozen or so principles of war ( see references 5, 12, and 22) is the

principle of concentration (or mass) , which would have a commander concentrate as many

men and means for battle as possible at the decisive point. The exact number of prin-

ciples of war varies from author to author.

4. See references 16, 17, 19, and 21 for further information about such models.

5. Extension to cases with replacements and/or withdrawals is outlined in Note 16 belo
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[41
6. As Borch has emphasized, it will not make much sense to study decisions under

uncertainty unless we know how to make decisions under full certainty.

7. As pointed out in reference 21, the entire topic of modelling battle termination is

a problem area in contemporary defense planning studies, and there is far from universal

r 14"]
agreement on this topic. For further references see Taylor

8. For our idealized deterministic model, e > may be taken to be arbitrarily small.

In the real world with its various uncertainties, a larger value would be desirable as

a "hedge" against uncertainty ( see reference 21 and p. 322 of reference 1).

9. Quasi-autonomous Lanchester-type equations of modern warfare have, for example, been

[2] [131
considered by Bonder and Farrell and Taylor ( see also Note 4 of reference 19).

10. Piecewise-constant attrition-rate coefficients may be reagrded as a limiting case

of twice continuously differentiable coefficients. The former are certainly much more

convenient to use for this counterexample.

11. The first equation of Table I may be obtained in the following manner. First, we

1-c 1-c
observe that the substitution p = x and q = y transforms the nonlinear equa-

tions (22) into the following linear system

dp/dt = -(l-c)a(t)q, dq/dt = -(l-c)b(t)p.

f 181
[This important transformation was apparently first noted in Taylor for a more general

model.] Next, we consider the case in which the above model has constant attrition-rate

coefficients. When X wins, the time for Y to reach his breakpoint, t
f

, then

follows from well-known constant-coefficient results ( see , for example, equation (8) of

Taylor and Comstock ).

12. See , for instance, Farrell and Freedman for an example of the use of such battle-

termination conditions in contemporary defense analysis.

L3. Equation (25) is developed in the following manner. From (3) and the definition

af u.., we have
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X
f
(y

f
(x

O'
yO

);x
O'

y
O

}
= u

x" yf
(x

o'yo ) '

Since, u is a given constant, differentiation with respect to x_ yields
A U

which yields the desired result via (13)

.

14. Since xn and y_ are fixed in this development, we have that x
f

is a function

of only yf so that

R
c

= (V^^f^^o"7^-

For a fixed force-ratio breakpoint battle, we may consider that y f
is a function of

Uy. Differentiation of the above expression for R with respect to u.. yields the

desired result (38) by use of the identity dy
f
/du = -y /(u -A ), which follows from

(26). I

15. Thus, one assumes that the X force is effective only for x > x^. In other words

one is assuming that by the time the X force level reaches x^, the unit has suffered

so many casualties (and also lost key personnel) that it ceases to be an effective

f X X
fighting force. One normally writes that Xy. = f_p x

n , where f__ denotes a

given fraction of X's initial strength (for further details, see Section 2 of Taylor

r 20

1

X
and Comstock ). The breakpoint fraction f^- is usually assumed to depend on the

Br

tactical posture of the unit, unit size, its morale and training, etc. A typical value

X
(frequently used in defense analyses) for f^- is 0.7 for a company-sized unit in

DC

the attack.

16. The extension of these results to cases of continuous replacements and/or with-

drawals becomes quite complex, however. We will now briefly examine such an extension.

Let ^(t) denote the net rate of influx of replacements for X, and similarly for

ny (t). Then, denoting X's casualties as x , we have

x
c

= x
Q
-x

f
+ N

x ,
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c
f

where N = n (s)ds, and similarly for y . It follows that
A C

3x
c
/3x

Q
= l-3x

f
/3x + n

x
(t

f
){(dt/dy)

f
• 3y

f
/3x + 3t

f
/3x },

and

3y
c
/3x

Q
= -3y

f
/3x

()

+ n
Y
(t

f
){(dt/dy)

f
• 3y

f
/3x

Q
+ 3t

f
/3x

Q
}

,

where (dt/dy) denotes the final value for l/(dy/dt). Recalling that L^ = x ,

R » x /y , and D = x -y , we have for a fixed force-level breakpoint battle (in
c c c c c c

which yf
= constant)

3L
x
/3x = l-3x

f
/3x + n

x
(t

f
).3t

f
/3x ,

3D
c
/3x

Q
= l-3x

f
/3x + {n

x
(t

f
)-nv (t

f
)}3t

f
/3x ,

and

3R
c
/3x

Q
= {l-3x

f
/3x +[n

x
(t

f
)-R

c
-n
Y
(t

f
)]3t

f
/3x

()
}/(y

f
-y ).

The above partial derivatives should be compared with the analogous ones (15) through

(17) for the case of no replacements and withdrawals. Further examination of such an

extension is beyond the scope of our current investigation.

17. Here we mean that more effort should be spent on developing scientifically valid

models of conflict termination because of the sensitivity of analysis results to such

models.
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