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ABSTRACT

We investigate the small sample behavior and convergence properties of confidence interval

estimators (CIE's) for the mean of a stationary discrete process. We consider CIE's arising

from nonoverlapping batch means, overlapping batch means, and standardized time series,

all of which are commonly used in discrete-event simulation. For a specific CIE, the

performance measures of interest include the coverage probability, and the expected value

and variance of the half-length. We use both empirical and analytical methods to make
detailed comparisons regarding the behavior of the CIE's for a variety of stochastic

processes. All of the CIE's under study are asymptotically valid; however, they are usually

invalid for small sample sizes. We find that for small samples, the bias of the variance

parameter estimator figures significantly in CIE coverage performance - the less bias the

better. A secondary role is played by the marginal distribution of the stationary process. We
also point out that not all CIE's are equal - some require fewer observations before

manifesting the properties for CIE validity.
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This paper studies the small sample behavior and convergence properties of

a number of confidence interval estimators (CIE's) for the mean \i. of a

stationary process, X,

,

,X . These CIE's are typically of the form

Pr^ e \ *-
t
d,l-«/2

(?/n)
*

i * ' " «' (1)

where X = E.X./n, t , „ is the Y-quantile of the t-distribution with d decrees
n 1 r d,Y * b

of freedom (d.o.f.), and V estimates a = nVar(X ) (or the variance parameter\ / n v n r

2 2 2 2
a = lim a ) . A "good" estimator for a (or a ) is the cornerstone of a

n-«o n * n

valid CIE for fi. Many estimators have been studied in the context of discrete-

event simulation: nonover lapping batch means (NOBM) (Conway 1963, Schmeiser

1982, Kang 1984); independent replications; overlapping batch means (OBM)

(Meketon 1980, Meketon and Schmeiser 1984); standardized time series (STS)

(Schruben 1983, Goldsman 1984, Glynn and Iglehart 1990); spectral theory

(Fishman 1973,1978, Heidelberger and Welch 1981,1983); ARMA time series

modeling (Fishman 1973,1978, Schriber and Andrews 1984); and regeneration

(Crane and Iglehart 1975, Crane and Lemoine 1977, Fishman 1978).

There is considerable work which compares the various CIE methodologies.

The Monte Carlo (MC) work mainly deals with small sample CIE performance; see,

e.g., Law and Kelton (1984) and Goldsman, Kang, and Sargent (1986). Analytical

results are almost all asymptotic: Goldsman and Schruben (1984), Goldsman and

Meketon (1986), Damerdji (1987), Glynn and Iglehart (1990), and Schmeiser and

Song (1989) all compare various combinations of the CIE's.

In this paper we study finite sample behavior of CIE's from NOBM, OBM, and

STS. Section 1 gives background material. Section 2 reports on statistical

properties of various variance estimators. Section 3 presents analytical

results for some special cases and then summarizes a MC study of the CIE's. In

Part I of our MC work, we break the n observations into b batches, and we
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observe what happens as the batch size grows. For "small" b, NOBM performs the

best with respect to CIE coverage. For "large" b, both NOBM and OBM fare the

best. However, an STS method produces CIE's with smaller expected lengths.

Another comparison is carried out in Part II of our MC work, where we fix the

d.o.f. d and observe what happens as n grows; here, the NOBM, OBM, and STS

"combined" CIE's perform similarly. Section 4 discusses our findings, and

Section 5 summarizes. We conclude that the bias of V is the most important

factor in determining a CIE's validity; a secondary role is played by the

marginal distribution of the X.'s. We also find that a CIE having superior

large sample properties may have relatively poor small sample performance. We

offer practical and research recommendations.

1. BACKGROUND

We review the CIE's and stochastic processes under study. We assume the

stochastic processes satisfy certain moment and mixing conditions, as described

2 2
in the cited papers. We henceforth use the notation Nor(u,T ), X (d), X(d),

Exp(X), and t(d) to represent the normal, chi-square, chi, exponential, and t

distributions, each with the appropriate parameters.

1.1 NonoverlappinE Batch Means

Suppose we divide X
1

,— ,X into b > 1 adjacent, nonover lapping batches of

size m (assume n = bm) . The i-th batch mean, i = 1,— ,b, is X. =
v ' i,m

7. . X,. „>. ./m. In implementing the method of NOBM, we assume the X. 's areL)=l (i-l)m+j' r • 1>m

2 2
approximately i.i.d. Nor(ji,a /m) . The NOBM estimator for a is

V
N
=m l

h
. = 1

[ X.
>m

- Xj 2
/(b-l) 5 a

2
X
2
(b-l)/(b-l),

where " -* " denotes convergence in distribution as m + ®. The NOBM CIE for \i
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is given by (1) with d = b-1 and V = Vr

1.2 Overlapping Batch Means

Define the i-th overlapping batch mean, i = 1, . . . ,n-m+l, by X(i,m) =

y
m
~J X. ./m. The OBM estimator for a

2
is^=0 i+j'

V
Q

= nm J*I
m+1

(X(i,m) - lj 2
/[(n-m+l)(n-i»)] ,

and is almost identical to Bartlett's spectral estimator (see Priestley 1982).

The OBM CIE for \i is given by (1) with V = V_; its validity depends on V_ being

2 2
approximately a X (d)/d. Meketon and Schmeiser (1984) take d = 1.5*(b-l), where

b = n/m. Based on MC experimentation, Schmeiser (1986) recommends d =

1.5*(b—l)[l+(b-l) * ]; we shall use this value in our MC work.

1.3 Standardized Time Series

Suppose X. ,— ,X is divided into b ;> 1 adjacent, nonover lapping batches

of size m. For i = l,— ,b, let A. = Jfv, [(m+l)/2 - jJXx.^ ... Schruben

(1983) assumes the A.'s are approximately i.i.d. normal, and proposes the area

2
and combined estimators for a :

V = « y
b

A
2 2 °ZxZ(b)

and V = ^lll^A $ ^(Zb-l)
V
A "

, 3 v. *-i=l i b
ana V

C " 2b-l 2b-l
(m -m)b

CIE's for \l are formed by substituting the appropriate V and d in (1). Schruben

2
also derives the so-called "maximum" estimator for a (see Subsection 4.2).

1.4 Some Time Series Processes of Interest

We will have occasion to use the following ARMA-type processes.

MA(1): X. = £. + 9£. „, where c. ~ i.i.d. Nor(0,l) and -1 < 6 < 1.
1 l l-l l

\ » /

MA'(l): X. = c. + ©c.^, where c. ~ i.i.d. Exp(l) and -1 < 9 < 1.

AR(1): X
i

= cpX
i:l

+ c., where c. ~ i.i.d. Nor(0,l-(p
2
) , -K(p<l.
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<pX.« w.p. <p where e. ~ i.i.d. Exp(l) and
EAR(l): X. =

j
»

X

(pX. + e. w.p. l-(p <, (p < 1 (see Lewis 1980).

We also consider other stationary normal processes as well as the waiting time

(delay) processes of M/M/l and E /M/l queues.

1.5 CIE Performance Criteria

Denote the NOBM, OBM, area, and combined CIE's by CIEM , CIE~, CIE., and
W U A

CIEp, resp. The half-length of a generic CIE is H = t . ,_ ,

2
(V/n) *. We use

the following CIE performance measures: coverage (Pr^ E I + Hf), E[H], and

Var(H). Among CIE's which achieve coverage 1 - a, we prefer that with the

smallest E[H], and then that with the smallest Var(H).

2. PROPERTIES OF VARIOUS VARIANCE ESTIMATORS

We give some results on the bias and variance of the NOBM, OBM, and STS

estimators, and on the asymptotic performance of the corresponding CIE's.

2.1 Bias of the Estimators

2 ~ 2 ~
The bias of V as an estimator for a is Bias(V) = a - E[V]. Goldsman and

Meketon (1986) show that lim m lim, Bias(V„) = lim m lim, Bias(V_) =
x ' m-*» b-Ko v N m-Ko b-»a>

lim m lim, Bias(V_)/2 = lim mBias(V.)/3. All of these estimators are

asymptotically unbiased as m + <», but for small m, these estimators can be

quite biased.

2
Example 1 : For the AR(1) and EAR(l), the Appendix gives a = (l+<p)/(l-<p) and

E[5] = a
2

- SSiSliL + m£±5ty -, c
2

- -*£-, for large . and b, (2)
" mb(l-cf>r m(b-l)(l-»)'

i
m(l-ip)
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m(b-l)(l- 1p)
3

mb -i . /A mw, mb-m+1

^ + is. + *«K*-<p Ilia L (3)
b^ -I m(b-l) (mb-m+1) (l-<p)

= a *—_ for large m and b.

m(l-(p)

24<p f -m +l-<p (m+1) <p-(m+l-m<p)<p 1 . 2 6<p ^
(m

3
-m)(l-(p)

2
L

4
(l-<p)

2
J m(l-<p)

2

x„m+l
E[V

A
] = </ +

E[V
f ] = a

2
+ .

C
(2b

for large m,

mb «i_ / , «\„IB « rt, r < / . < \ m-
2<p

[ lb ,

lV" 2b(m+2)<p
ffl

,

12b<p[l-(m+l-mcp)<p
ffl

;M
(5)

-l)m(l-(p)
2

L
b V-1

(m
2
-l)(l-(p)

2 J

= a *—s for large m and b.

m(l-(p)

If m and b are large, the bias results anticipated by Goldsman and Meketon are

attained. Table 1 contains exact E[V]'s for b = 2 and 16 and various m. For

small b, Bias(V
N
) < Bias(V ) < Bias(V

c
) < Bias(V); for large b, Bias(v\.) =

Bias(V-) < Bias(V
r ) < Bias(V.). The biases become negligible as m grows. ,,

2 2
Example 2 : For the MA(l) and MA'(l), the Appendix gives a = (1+0) and

E[V
N
] = a

2
- 29(b+l)/mb = a

2
- 29/m for large b. (6)

E^ = *
2

" irf^TJ Vir ~ mb^m+l] * °
2

" 2e/m for lar * e b - w
E[V

A
] = ct

2
- 69/m. (8)

E[V
C
] = a

2
- (4b+2)0/mb = a

2
- 40/m for large b. (9)

The conclusions from Example 1 again hold. , ,

Although Bias(V) is interesting in its own right, the bias directly

affects CIE performance. Consider the unrealistic case in which m is fixed and

b - co. For the estimators studied here, one can show that as b -» <o, V - E[V]

w.p.l, and so T = (1 -|i)/(V/n)* 2 Nor(0,a
2
/E[V]) . Falsely assuming T ~

Nor(0,l) as b -> co yields incorrect CIE coverage,
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2vX
Prill EMHi, 2*[ ZH/2 (E[V]/(J)

] " 1 (l0)

where *(•) and z
y

are the Nor(0,l) c.d.f. and Y-quantile. If E[V]/a
2

< [>] l,

then coverage < [>] 1 - a. (Coverage is quite sensitive to decreases in

* 2
E[V]/a .) So the less bias the better. As b -» », CIEM and CIE~ tend to

w u

achieve the desired coverage more quickly with respect to m than do CIE. and

CIE
C

; see Sargent, Kang, and Goldsman (1987) (S-K-G)

.

2.2 Variance of the Estimators

4
Goldsman and Meketon report that as m and b become large, b*Var(V„) - 2a ,

b-Var(V ) - 4a
4
/3, b-Var(V

A
> -> 2a

4
, and b-Var(V

c
) - a

4
(cf. Damerdji 1987).

For i.i.d. X
1
,...,X

n>
Kang and Goldsman (1990) find Var(V

N
) and Var(V

A )

exactly, as do Song and Schmeiser (1989) for Var(V_). Exact results for other

processes and for Var(V
fl ) are tedious to derive. Of course, one can also

calculate the mean squared errors of the V's (cf. Schmeiser and Song 1989).

2.3 Asymptotic Properties of the CIE's

Schmeiser (1982) and Goldsman and Schruben (1984) note that as m -> ®,

(mb)
%
H 2 <rt

d>1 _a/2
X(d)Ald (11)

for CIE
N , CIE., and CIEp. An analogous approximate result holds for CIEn -

Under (11), the CIE's achieve coverage 1 - a as m * ». Further, if r(«) is the

gamma function, then

0»b)*E[H] + otdl.a/2
(2/d)

X r

%)lf) , and (13)

->V«(H) * chlW2 { . -
f [ Oj$HP f } . m

The right sides of (12) and (13) decrease in d and, hence, in b. So for large

m with fixed b, E[H
N
] > E[H

A
] > E[H

Q
] > E[H

C
] and Var(h*

N
) > Var(H

A
) > Var(H

Q
) >

Var(Hp), the subscripts havine the obvious meanings. Goldsman and Schruben
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(1984) and Meketon and Schmeiser (1984) let b -» « in (12) and (13) to get

1, H = h\
E[H] Var(H)

lim^ = 1, H = H
Q

, H
A

, H
c

, and lim^ =
i 2/3, H = Hn . (14)

m-K»
r

, *• "0'"A'"C> ^"varOn °
ELH

N J dh»
Var^V [l/2, H = H

C

A

Thus, as b also becomes large, all of the CIE's have about the same E[H]'s, but

CIE
f

has the smallest Var(H).

3. FINITE SAMPLE CONFIDENCE INTERVAL ESTIMATION

Small sample analysis of CIE's is difficult. We present a few exact

results, but most of the section is devoted to a MC study.

3.1 Some Analytical Results

Example 3 : Suppose Xj,...,! ~ i.i.d. Nor(fi,T
2
). Then V

N
~ T

2
X
2
(b-l)/(b-l)

,

y\ ~ T
2
X
2
(b)/b, and V„ - T

2
X
2
(2b-l)/(2b-l) . Further, I is independent of VM ,A L n IN

V., and Vn (see Appendix). So (1) holds exactly for CIEM , CIE., and CIEn . We
A L H A L

could not obtain such results for CIE or for nonnormal i.i.d. processes. ,,

Example 4 : We can derive exact results for CIE. when b = 1 (n = m) and X,,,...,X

is stationary normal. Then A, ~ Nor(0,E[A
2
]) , V. ~ E[V.]X (1), and 1 is

l l A A n

normal and independent of V. (see Appendix). So (X -ii)(nc/V.) * ~ t(l), where
A II A

c = E[V.]/cr . Hence, the coverage of CIE. is 2Pr$t(l)£t
4 4 /0>Jc£-l =An A 1,1~Of/*;

(2/n)Tan (t. « /?^ c )* (As *n (*0)» the coverage is sensitive to decreases

in c.) Similarly, E[H.] = t. « /

2
(2E[V.]/nn) . To illustrate, suppose the

X.'s are AR(l). Figure 1(a) uses Example 1 and (A-3) to plot coverage vs.

log
2
n for 1 - a = 0.90 and various <p. We see that for <p > [<] 0, the coverage

is < [>] 1 - a. As |<p| approaches or as n grows, Bias(V.) decreases, and the

coverage approaches 1 - a. Figure 1(b) has analogous plots of E[H.] vs.
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2 -x
log

2
n. If <p = 0.0, then E[V ] = a = 1, and so E[H.] decreases at rate n .

* 2 -X
If <p = -0.9, then E[V ] decreases to a = 1/19, and E[H.] decreases at rate n

(after initially decreasing faster). The ip = 0.9 plot for E[H.] increases and

* 2
tijen decreases as n grows. This occurs since E[V.] increases to a =19 as

n », while the -Jn in E[H.] r

s denominator becomes large. //

Example 5 : We give exact results for CIE
N

when b = 2 (n = 2m) and X
1

, ,X is

stationary normal. Then VM = mS.(X. -t )
2
/(b-l) = m(X\ -X )

2
/2; so VM ~

N ii,mn l ,m c ,m n
" 2 =

E[V
N
]X (1). Since X is normal and independent of V,. for b = 2 (see Appendix),

we have (X -u)(nc '/V«) * ~ t(l), where c' = E[V
N
]/o . The coverage is

(2A)Tan"
1
(t

1
^^c*), and E[H

N
] = ^ ^gCE^/Hm)*. K the X.'s are

2
AR(1), then (A-3) yields a , and (2) with b = 2 gives E[V„]; c', coverage, and

E[H
N ] then follow. These performance measures behave as in Example 4. , ,

It is difficult to generalize the above CIE results to b > 2, since we

2
would then have correlated X random variables. Thus, we only gave exact

results for simple cases. We resort to MC experimentation in the sequel.

3.2 Desi£n of the Monte Carlo Study

Our goal was to assess CIE performance over a variety of stochastic

processes and choices of number of observations n, batch size m, d.o.f. d, and

desired coverage 1 - a. We simulated the following processes: AR(l) with

<p = 0.0, +0.1, +0.5, ±0.9; EAR(l) with (p = 0.0,0.1,0.5,0.9; MA(1) and MA'(l) with

e = +0.1, +0.9; 11/11/ 1 with traffic intensity p = 0.6,0.8 (service rate = 1.0);

and E„/M/l with p = 0.6 (service rate = 1.0). Each run was initialized from the

appropriate steady state distribution. All uniform [normal] variates were

generated from algorithm UNIF [TRPNRM] in Bratley, Fox, and Schrage (1987);

exponentials used inversion.
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For ease of exposition, we divided the study into two parts. In Part I we

fixed 1 - a and b, and then charted CIE coverage as a function of m. Roughly

speaking, we wanted to know which CIE first achieved acceptable coverage as id

increased with fixed b. Further, which CIE's had the best E[H] and (to a

lesser extent) Var(H)? For the stochastic processes discussed above, we

conducted at least 1000 independent runs of 16384 observations; these runs were

used to calculate CIEM , CIE,., CIE., and CIE,-, and the resulting performance
N U A L

characteristics for all choices of m = 2 , k = 0,1,— ,10, b = 1,2,4,8,16, and

1 - a = 0.80,0.90,0.95,0.99.

In Part II, we set 1 - a = 0.90 and d = 3 and 15, and then charted

coverage as a function of n. For d = 3 [d = 15], CIE
N

uses b = 4 [b = 16],

CIE,. uses b = 2 [b = 11], CIE. uses b = 3 [b = 15], and CIEn uses b = 2
U A L

[b = 8]. We conducted our experiments on a number of stochastic processes,

each of which used 2000 runs of 16384 observations to calculate the CIE's for

all n = 2
k

, k = 4,..., 14, and d = 3 and 15. Since d is fixed, (ll)-(13)

suggest that all of the CIE's will perform about the same for large m; however,

we suspected that they would exhibit different small sample performance because

the variance estimators incorporated in the CIE's operate under different

assumptions. We first discuss the underlying assumptions for Vv , V., and V_
W A L

since these estimators require independence between batches (\L does not). The

estimator V., [V. assumes that the X. 's [A.'s] are i.i.d. normal; the
N L A J i,m L

l
J

combined estimator V_ must satisfy both assumptions. For fixed d and n, V„ and

V. use roughly half the batch size of V-; hence, the assumption of i.i.d.

X. 's [A.'s] is harder to achieve for V„ [V.'l than for V_. On the other hand,i,mi IN A C

V 's assumption of normality of the X. 's is easier to satisfy than V 's
N ' i,m ' A

assumption of normality of the A.'s which relies on a more restrictive

functional central limit theorem. The normality question for V„ vs. V- is not
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as clear since V,. uses half of V 's batch size. CIEn appeals to spectral

2 2
theory to directly assume that V« is o X (d)/d; this supposition is not true

for nonnormal processes or for finite batch sizes.

3.3 Results from Part I of the Monte Carlo Study

3.3.1 Representative results

We discuss typical results from Part I. Figures 2, 3, and 4 illustrate

CIE performance when X 1> ...,X are AR(l) (<p = 0.9), EAR(l) (<p = 0.9), and M/M/l

(p = 0.8), resp., and 1 - a = 0.90. The AR(l) and EAR(l) have the same

covariance function, but the AR(1) has normal marginals while the EAR(l)'s are

exponential. The M/M/l 's joint distribution is more complicated. We only

consider the cases b = 2 and 16 since CIE
N , CIE~, and CIEp require b ;> 2, and

since one can argue that b = 16 is "large" (at least for the "usual" choices

of a). Each of Figures 2, 3, and 4 has four graphs: (a),(b) are for b = 2, and

(c),(d) are for b = 16. In (a) and (c), we plot the sample coverage (CVG) vs.

log
2
m; (b) and (d) plot the sample E[H] (EHL) vs. log

2
m. The standard error of

any CVG is about [CVG-Cl-CVO/lOOO]*.

Figure 2 is for the AR(l) with <p = 0.9. All CVG's are poor for small m,

but approach 1 - a = 0.90 as m increases. For b = 2, the CVG of CIE
N

is

closest to 0.90; for b = 16, both CIE
N

and CIE
Q
yield the best CVG's. This

makes sense since V
N

(for b = 2 and 16) and V- (for b = 16) are less biased

than V. and V_ (Example 1 and Table 1). A related consequence is that CIE
N

and

CIE
ft

produce larger EHL's than those of CIE^. Note that the EHL's in Figure 2

increase and then decrease as m increases - the same bias-related pattern as for

the exact E[H.] in Figure 1. The EHL's for b = 16 and m £ 128 from Figure 2(d)

are more or less in agreement with the limiting E[H]/E[H
N ] = 1 ratios in (14);

this is one reason why we regard b = 16 as "large."
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Table 2 has CVG's for the AR(1) with b = 16, 1 - a = 0.90, and various

m and <p. These roughly agree with the b + 00 results from (10). We see that

CVG < [>] 0.90 when <p > [<] 0.0. For any <p and fixed m, Table 2 shows that the

CVG's of CIE
N

and CIE
Q

are closer to 1 - a than those of CIE. and CIE^.

Results for the EAR(l) process with <p = 0.9 are found in Figure 3, whose

plots bear a striking resemblance to those of the AR(1) in Figure 2. The only

notable difference between the two figures is that, for fixed m, the EAR(l) has

smaller CVG's (see Table 1). Since the AR(1) and EAR(l) have the same

covariance structure, the EAR(l)'s poorer CVG's are probably due to its

exponential marginals. It seems that the effect of Bias(V) on coverage is more

significant than that of the marginals of the X.'s.

Figure 4 concerns the M/M/l process with p = 0.8. Again, the patterns in

the figure are not much different than those of the AR(1) and EAR(l). The

M/M/l simply requires more observations to attain valid coverage. The positive

serial correlation of the M/M/l causes the estimators for a to be biased too

low; so poor coverage results for small m.

3.3.2 Additional Part I results

In S—K-G, we also give detailed discussions on (among other things):

- CIE performance for the MA(1) as 6 varies. We find that the CIE's

qualitatively perform about the same as those for the AR(1).

- The sample -JVar(H) (SHL) performance measure. For small m, the SHL's exhibit

the same general behavior as the EHL's; as m and b become large, the SHL's

behave as in (14). Even though the ratios from (14) are manifested, the

differences between SHL's from competing methods are typically very small.
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- The consequences of changing 1 - a. The CIE's qualitatively perform the same

as we vary 1 - a. Coverage is sensitive to decreases in 1 - a. For example,

consider CIE.. for the AR(1) with <p = 0.9, b = 2, and m = 16; for 1 - a = 0.99,

0.90, and 0.80, Example 5 gives coverages of 0.985, 0.852, and 0.713, resp.

3.3.3 Summary of Part I

For small m, improper CVG's were usually the rule. For small m and b,

CIE,. has better CVG's than the other CIE's, while for small m and large b, both

CIE
N

and CIEn fared the best. For fixed m, high CVG was most often accompanied

by high EHL and SHL. The CIE's performed as expected by asymptotic theory when

m and/or b became large. For large m and small b, all achieved the desired

coverage, and the EHL's and SHL's tended to decrease with increasing d.o.f., as

per Subsection 2.3. For large m and b, the ratios from (14) took effect.

3.4 Results from Part II of the Monte Carlo Study

We considered the MA(1) (9 = -0.9), AR(1) (<p = 0.9), EAR(l) (<p = 0.9), and

M/M/l (p = 0.8), with 1 - a = 0.90 and d.o.f. d = 3 and 15. Table 3 gives CVG's

as a function of the sample size n. For d = 3, CIE
N , CIE , and CIE

r
perform

about the same in terms of CVG; CIE. fares poorly for small n. For d = 15 and

small n, CIE.. does a bit better than the others in terms of CVG; CIE. is not
U A

competitive. However, the performance of CIEn is "more variable" than the

other CIE's over the range of stochastic processes, d, and n under study. For

instance, the CVG of CIEn sometimes significantly overshoots 1 - a, especially

for small d (though this is understandable since 0BM was designed for

large b). As n grows (for d = 3 or 15), it appears that CIE.., CIE , and CIEp

achieve CVG = 0.90 at about the same n.
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4. DISCUSSION

We first discuss the causes of improper CIE coverage; why are some CIE's

better than others? We then consider the question of which CIE is "best?"

4.1 Causes of Improper Coverage

A CIE of the form in (1) will attain perfect coverage if its associated

pivot T = (I - ii)/(V/n)* ~ t(d); this requires (i) I ~ Nor(>i,a
2
/n) , (ii) V ~

op = **

a X (d)/d, and (iii) independence of X and V. Requirement (i) is satisfied if

the marginal distribution of the X.'s is normal. If the X.'s are not symmetric,

then T may be skewed for small n. But in most cases, a central limit theorem

asserts that (i) approximately holds as n grows. We believe that (ii) is the

key requirement. At a minimum, V must be approximately unbiased as an

2 2
estimator of a (or a ). In fact, since variance directly affects the CIE's

length, we claim that Bias(V) is often the main cause of improper coverage (at

least for small m) ; see below. Concerning (iii), Glynn (1982) and Kang and

Goldsman (1990) demonstrate that asymmetry in coverage is directly related to

dependence between 1 and V. However, Kang and Goldsman give examples which

show that actual coverage is not necessarily affected by such dependence. We do

not view dependence between X and V as a direct cause of improper coverage.

We first analyze the effect of Bias(V) on requirement (ii) by examining V s

<j V/E[V] instead of V; note that E[V] = a . To illustrate, we shall use the

NOBM estimator on the AR(1) and EAR(l) processes with <p = 0.9. For the AR(1)

t% p p
with b = 2, Example 5 says that V„ ~ E[V„]X (1), and so V„ ~ a X (1); for this

case, correction for bias results in precisely the desired distribution.

p p
Empirical p.d.f.'s of V

N
/a and V„/a (based on 100000 independent runs) are

plotted in Figure 5 for the AR(l) and EAR(l) with b = 8 and various m. For the

2 2
AR(1), the sample p.d.f.'s of V

N
/a approach the X (7) p.d.f. as m increases;
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p p
the corrected V

N
/c is nearly (but not quite) X (7) (Figures 5(a) and 5(b)).

The empirical p.d.f.'s for the EAR(l) exhibit similar behavior, except that the

convergence to the X (7) is slower (Figures 5(c) and 5(d)). Thus, for these

examples, correction for bias mitigates the violation of (ii). Comparing the

AR(1) results with the EAR(l)'s, we conclude that the effect of Bias(V) is

greater than that of the marginal distribution.

We will next show for the stochastic processes investigated that

correcting for Bias(V) results in good CIE's. The notation CCVG in Table 1 is

the exact (from Example 5) or sample coverage obtained for the AR(l) and EAR(l)

models with <p = 0.9 and b = 2 and 16. For the AR(1) with b = 2 and any m, the

corrected NOBM pivot (f
R
- ji)/(V

N
/n)* ~ t(l). So the CCVG's for CIE

N
are

exactly 1 — or = 0.90; thus, for this example, Bias(V„) is the sole cause of

improper coverage. The corresponding MC CCVG improvements for the EAR(l) with

b = 2 are significant but not as good as those for the AR(l), this indicating

that a secondary marginal distributional effect is present. This conclusion is

illustrated yet again by Figure 6. (The EAR(l)'s empirical p.d.f.'s are

somewhat skewed for small m as explained earlier.) The results from Table 1

and Figures 5 and 6 suggest that, for small m, there are also tertiary

contributors to improper coverage, perhaps inter-batch correlation.

4.2 Which is the Best CIE?

The question of which CIE is the "best" depends on the criteria being

used. A CIE is first judged by the validity of its coverage. But the MC work

showed that a CIE with good coverage might produce relatively wide half-

lengths; so the E[H] and Var(H) measures can not be ignored. Since coverage,

E[H], and Var(H) are functions of the stochastic process, the CIE in use, the

number of batches b, the batch size m, and the level a, we can see that the
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determination of the "best" CIE is not straightforward.

Results (12) and (13) say that E[H] and Var(H) decrease in the d.o.f. d as

m becomes large with fixed b; so the more d.o.f. the better (although Schmeiser

1982 finds that there is little to be gained by taking d > 30). Nevertheless,

it would be incorrect to conclude that CIE
r

(which has the largest d.o.f. of

those CIE's under study) is always the best. The Part I MC results showed that

for small b, CIE
N

required the smallest value of m to achieve valid coverage

(for large b, CIE,. and CIE required the smallest m); if coverage were the only

criterion for CIE comparison, CIE„ would be declared the best - not CIE^. This

shows that large sample superiority does not necessarily extend to the small

sample case. Indeed, we did not include the STS "NOBM+maximum" CIE from

Schruben (1983), which has 4b-l d.o.f. (and hence superior asymptotic

properties), since it exhibited poor small sample performance compared to the

other CIE's (including CIE.). For instance, for the AR(1) with <p = 0.9, 1 - a =

0.90, b = 2, and m = 16, 64, and 256, the NOBM+max CIE attained CVG's (based on

1000 independent simulation runs) of 0.397, 0.606, and 0.776, resp.; CIE.

achieved CVG's of 0.684, 0.849, and 0.895, resp. (Table 1).

Another basis for comparison among CIE's is to determine which requires

the smallest sample size n to achieve valid coverage for some fixed d.o.f. d.

This was the aim of Part II of the MC study, where CIE
N>

CIE
Q

, and CIEp fared

more or less the same; CIE. was not competitive. So there was no clear winner
A

using the criterion of coverage under fixed d.o.f.

We can still make some recommendations (for fixed sample size

procedures). All of the CIE's studied here are easy to use. Batch means is

the simplest method to understand. All are asymptotically valid as the batch

size m grows; but it "never hurts too much" to use CIE
N

(in comparison to the

other CIE's) in case m is not "large enough." The price to be paid when m is
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small is that E[H
N ] and Var(H

N ) are larger than their competitors, particularly

when b is also small. If the user is somehow confident that the batch sizes

are large enough to achieve valid coverage, then the user should fix the d.o.f.

(perhaps between 15 and 30 for the "usual" a values) and select from among

CIE
N , CIE , and CIE^. However, one of the most difficult open questions in

simulation output analysis is the determination of "sufficient batch size" (cf.

Fishman 1978 and Schmeiser and Song 1989).

5. SUMMARY AND CONCLUSIONS

We studied the behavior of different CIE's with special emphasis placed on

small sample size performance for various stationary stochastic processes. If

the achieved coverages are at the desired levels, and if the total number of

observations n is fixed, the ranking of the CIE's with respect to E[H] and

Var(H) is determined by the d.o.f. each CIE has. In this case, the CIE with

the largest d.o.f. has the smallest mean and most stable confidence interval

length.

Perhaps our most important finding was that, in small sample settings, a

CIE with more d.o.f. may not actually be "better" than a competing CIE; some

CIE's may require more observations than others before the asymptotics

necessary for CIE validity manifest themselves. Quite often, the CIE's with

the highest d.o.f. 's performed the most poorly in terms of coverage!

2 2
The bias of V as an estimator of a (or a ) plays a significant role in

CIE performance - the less bias the better. For instance, when m and b are

fixed, the relative performance of the CIE's with respect to coverage is

directly related to Bias(V). A secondary factor in CIE performance concerns

the underlying marginal distribution of the X.'s. Further, with fixed m (and
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even more so with fixed n) , coverage often deteriorates as b or a increase;

this is partially due to the fact that, in these cases, t, . /0 decreases.
d,l-oc/<j

Which CIE should one use in practice? If the sample size n is "large

enough," we could probably argue successfully for CIE
N , CIE

ft
, or CIEp with

common d.o.f., 15 < d < 30. In comparison to the other methods, CIE,. is

probably the "safest" small sample method. There are several interesting

research lines. We would like to see more emphasis on small sample results,

including sequential procedures (which were not investigated here). Another

question concerns the fact that for fixed d.o.f., CIE
N , CIE , and CIEp

achieve approximately valid coverage for about the same sample size.

Further, a good batch size estimation procedure would be of tremendous

import.
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APPENDIX

Proof of (2)-(5) : We will use the following facts:

l\-i »' 2irP - lli 'p
1

-
p[1

' (k+1^y i]

• ca-1)11 1 P 1_1
(1-p)

For a covariance stationary process \X.\ with Y = Cov(X.,X. .),

a
2

= n-Vard ) = Yn + -7n"J (n-i)Y.. (A-2)
n v n 7 n^i=l v 7

l
v 7

For the AR(1), Y
fc

= <pl
k

l, and so

2 l+(p 2<p(l-(p
n
) . 2 .. 2 1+$ (k xa = -r—z "

—

3—% and a = lim a = -r—1- . (A-3)
n 1_<p

n(l-<p^
2 n"MD n 1_(p
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Since

— E[VM ] = y
b

.EpC
2 ]-bE[X2

] = b^E[X
2
]-E[X

2
]^ = b[Var(X )-Var(X )], (A-4)

m L N J £,
j = l j,m J L n J * L m J L n J * L m v n J v 7

result (2) follows by (A-3) and simplification (see Moran 1975)
//

We also have
(™+l)(™)

E [Vj = f
"™+1

E[(X(i,m) - X )
2
]nm L J ^1=1 l\ v » / n / j

= (n-m+l)[Var(y + Var^)] - 2^+1
E[X(i,m)X

n ] (A-5)

Since |i = 0, mnE[X(i,m)X
n
] = j£j ^ E[X

i+
.X
k ] =

j^J"
1 Z^ Y

j-k U"6 )

= r.m+i-1 ryj j-k yn k-j-> ym+i-1 1 + y -
y
j - y""^ 1

ij = i lik=l v ^k=j+l v * ^j = i 1-tp

= m
l+(p • < mw i n-m+2 -\\,, A

\i.—1 - (i-y )(<p + <p ip )/(l-(p) (A-7)

We obtain (3) by substituting (A-3) and (A-7) into (A-5).
//

(4) follows from (A. 5-15) of Goldsman (1984); (5) follows from (2) and (4)
//

Proof of (6)-(9) : The MA(l) has covariance function Y = 1 + 6 , Y = 9, and

Y = 0, otherwise. By (A-2)

,

c
2

= (1+e)
2

- 29/n and a
2

= lim a
2

= (1+e)
2

.

n v ' ' n-KD n v 7 (A-8)

Result (6) then follows from (A-4) and (A-8).
//

Note that

yn
M<=1 j-1

(1+e) if 1 < j < n

2
(1+e) -e if j = 1 or n
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So by (A-6),

f m(l+e)'
mnE[X(i,m)X ] = «

if 1 < i < n-m+1

>

m(l+e) -e if j = 1 or n-m+1
(A-9)

We obtain (7) by substituting (A-8) and (A-9) into (A-5)

.

//

(8) follows from (A. 5-23) of Goldsman (1984); (9) follows from (6) and (8).
//

Proof of independence in Examples 3, 4, and 5 : Let X' = (X
t
,...,X ), where the

X.'s are stationary normal with covariance matrix E. Suppose G is an nxn

symmetric matrix and V = X'GX. Problem 1.22 of Muirhead (1982) says that V and

X are independent iff l'SG =0', where 1' [0
r

] is a lxn vector of l's [0's].

Song and Schmeiser (1989) note that VM = X'GMX and V. = X'G.X, where6 /
N ~ N~ A ~ A~

G
N

= r j -ji
.-j jJ

for b = 2, and G. = (h.h.) for b = 1,
A i J

where J is an n/2 x n/2 matrix consisting of l's, and h. = (n+l)/2 - i,

i=l,...,n. Then G„ and G. both meet Muirhead's condition for any Z. /,
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Tabled - Some^Results for the AR(l) and EAR(l) Models with <p = 0.9. All
entries for E[V] are exact. Results for CVG and CCVG are

2
exact(*) or are based

on 2000 independent simulation runs. For these models, a = 19.

E[V] AR(1) EAR(l)

(or <x
n ) b = 2 b = 16 b = 2 b = 16

b=2 b=16 CVG CCVG CVG CCVG CVG CCVG CVG CCVG

m = 4

NOBM 0.86 2.68 0.744* 0.900* 0.479 0.866 0.625 0.798 0.465 0.810
OBM 0.58 2.64 0.453 0.840 0.466 0.859 0.337 0.673 0.446 0.804
Area 0.31 0.31 0.418 0.907 0.183 0.888 0.296 0.701 0.164 0.799
Comb 0.49 1.46 0.432 0.878 0.365 0.862 0.321 0.683 0.337 0.806

(a
n

6.19 16.19)

m = 16

NOBM 6.10 9.27 0.852* 0.900* 0.756 0.896 0.791 0.850 0.742 0.872
OBM 4.22 9.23 0.673 0.864 0.750 0.890 0.609 0.773 0.733 0.866
Area 2.85 2.85 0.684 0.896 0.491 0.891 0.615 0.800 0.480 0.866
Comb 3.94 5.96 0.689 0.884 0.651 0.893 0.625 0.795 0.646 0.868

( 2
(CT

n
13.57 18.30)

m = 64
NOBM 14.79 16.02 0.891* 0.900* 0.874 0.904 0.881 0.889 0.869 0.892
OBM 12.84 16.00 0.841 0.883 0.862 0.894 0.810 0.841 0.867 0.888
Area 11.29 11.29 0.849 0.897 0.801 0.894 0.822 0.866 0.803 0.884
Comb 12.45 13.58 0.852 0.895 0.840 0.898 0.819 0.858 0.841 0.888

( 2
(a

n
17.59 18.82)

m = 256
NOBM 17.95 18.25 0.898* 0.900* 0.899 0.905 0.900 0.902 0.886 0.890
OBM 17.30 18.25 0.895 0.904 0.902 0.905 0.900 0.909 0.890 0.897
Area 16.90 16.90 0.895 0.902 0.886 0.903 0.888 0.895 0.878 0.896
Comb 17.25 17.56 0.890 0.901 0.897 0.908 0.896 0.902 0.880 0.892

( 2
(CT
n

18.65 18.96)

m = 1024
NOBM 18.74 18.81 0.900* 0.900* 0.897 0.899 0.883 0.883 0.909 0.910
OBM 18.56 18.81 0.905 0.907 0.897 0.898 0.915 0.918 0.902 0.903
Area 18.47 18.47 0.901 0.905 0.893 0.897 0.893 0.895 0.898 0.901
Comb 18.56 18.64 0.892 0.896 0.900 0.902 0.895 0.897 0.899 0.903

( 2
18.91 18.99)
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Table 2 - CVG Results for the AR(1) Process, b = 16, 1 - a = 0.90.

All entries are based on at least 1000 independent simulation runs.

(p -0.9 -0.5 0.0 0.5 0.9

m = 4

NOBM 0.962 0.945 0.913 0.823 0.479
0BM 0.966 0.949 0.908 0.816 0.466
Area 1.000 0.974 0.898 0.677 0.183
Comb 0.998 0.971 0.900 0.755 0.365

m = 16

NOBM 0.951 0.915 0.905 0.887 0.756
0BM 0.958 0.922 0.906 0.895 0.750
Area 0.988 0.942 0.908 0.860 0.491
Comb 0.981 0.926 0.910 0.880 0.651

m = 64

NOBM 0.918 0.904 0.903 0.901 0.874
0BM 0.929 0.916 0.910 0.908 0.862
Area 0.943 0.901 0.885 0.885 0.801
Comb 0.931 0.900 0.896 0.894 0.840

m = 256
NOBM 0.915 0.903 0.904 0.900 0.899
0BM 0.915 0.911 0.909 0.909 0.902
Area 0.931 0.914 0.918 0.917 0.886
Comb 0.921 0.918 0.916 0.915 0.897

m = 1024
NOBM 0.906 0.901 0.899 0.899 0.897
0BM 0.903 0.899 0.897 0.897 0.897
Area 0.907 0.904 0.906 0.904 0.893
Comb 0.909 0.906 0.902 0.900 0.900
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Table 3 - CVG Results for Variance Estimators with Common d.o.f.
All entries are based on 2000 independent simulation runs •

n = 32 64 128 256 512 1024 2048 4096 8192

ARCl).
NOBM

to = 0.9
0.688

. d = 3

0.787

I

0.848 0.880 0.889 0.899 0.896 0.902 0.905
OBM 0.692 0.792 0.834 0.874 0.896 0.910 0.903 0.923 0.920
Area 0.505 0.674 0.795 0.858 0.880 0.900 0.895 0.889 0.912
Comb 0.701 0.799 0.847 0.886 0.883 0.903 0.895 0.905 0.908

EARCD
NOBM

. to = 0.

0.622
9. d =

0.736
3

0.826 0.862 0.887 0.900 0.896 0.903 0.896
OBM 0.631 0.725 0.820 0.864 0.887 0.906 0.917 0.912 0.916
Area 0.426 0.630 0.771 0.844 0.868 0.886 0.893 0.893 0.893
Comb 0.636 0.740 0.822 0.863 0.881 0.898 0.894 0.902 0.896

M/M/l,
NOBM

o = 0.8
0.437

. d = 3

0.541 0.632 0.707 0.768 0.804 0.836 0.862 0.877
OBM 0.432 0.540 0.627 0.704 0.752 0.799 0.842 0.867 0.886
Area 0.290 0.420 0.533 0.624 0.708 0.769 0.817 0.835 0.855
Comb 0.442 0.548 0.634 0.701 0.758 0.806 0.838 0.860 0.871

MA(l),
NOBM

e = -0.

0.985
9. d =

0.981
3

0.986 0.975 0.953 0.932 0.931 0.920 0.911
OBM 1.000 1.000 1.000 1.000 0.998 0.986 0.971 0.959 0.944
Area 0.994 0.993 0.989 0.980 0.967 0.955 0.947 0.933 0.918
Comb 0.994 0.992 0.989 0.976 0.963 0.932 0.933 0.919 0.908

AR(1).
NOBM

tp = 0.9
0.381

, d = 15

0.485 0.642 0.749 0.830 0.877 0.890 0.900 0.908
OBM 0.377 0.515 0.684 0.793 0.847 0.880 0.893 0.897 0.910
Area 0.126 0.189 0.318 0.513 0.695 0.809 0.871 0.891 0.903
Comb 0.385 0.491 0.649 0.755 0.834 0.876 0.894 0.903 0.907

EAR(l)
NOBM

, to = 0.

0.324
9. d =

0.470
15

0.607 0.749 0.811 0.876 0.903 0.897 0.897
OBM 0.319 0.505 0.660 0.786 0.833 0.877 0.899 0.891 0.902
Area 0.076 0.173 0.303 0.496 0.670 0.802 0.868 0.882 0.887
Comb 0.326 0.479 0.615 0.754 0.814 0.879 0.893 0.894 0.898

M/M/l.
NOBM

= 0.8
0.227

. d = 15

0.318 0.386 0.490 0.618 0.701 0.773 0.819 0.857
OBM 0.226 0.342 0.425 0.525 0.653 0.725 0.779 0.820 0.858
Area 0.055 0.091 0.144 0.228 0.369 0.520 0.647 0.757 0.806
Comb 0.229 0.319 0.392 0.498 0.624 0.706 0.778 0.823 0.850

MA(l).
NOBM

e = -O.i
1.000

I. d = 15

1.000 1.000 1.000 0.999 0.993 0.983 0.961 0.948
OBM 1.000 1.000 1.000 1.000 1.000 0.997 0.983 0.962 0.952
Area 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.990 0.978
Comb 1.000 1.000 1.000 1.000 0.998 0.992 0.980 0.963 0.950
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Figure 1: AR(l) Process Performance Measures for AREA CIE, b = 1
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