NPS55-86-017
 Naval POSTGRADUATE SCHOOL Monterey, California

TECHNICAL REPORT

INTEGRAL IDENTITIES FOR RANDOM VARIABLES

EDWARD B. ROCKOWER

October 1986

Approved for public release; distribution unlimited.
Prepared for:
Commander, Space and Naval Warfare Systems Command 'Vashington, D.C. 20363

FedDocs
D 208.14/2
NPS-55-86-017

```
Rear Admiral R. C. Austin
Superintendent
D. A. Schrady
Provost
```

The work reported herein was supported in part by the Space and Naval Warfare Systems Command.

Reproduction of all or part of this report is authorized.
This report was prepared by:

Integral Identities for Random Variables

```
Edward B. Rockower
Nava! Postgradua*e Schoo:
Dept. Of Operations Research
Moniterey, CA. }3394
```


ABSTRACT

Usinig a general method for deriving identities for random variadies, i find a number of new results involving characteristic functions and generating functions. The muthou is simply to promote a parameter in an integre: relation to the status of a random variable and then take expected values of both sides of the equation. Results inciude formulas for calcuiating the characteristug functuns for $x^{2}, \sqrt{ } x, 1 / x, x^{2}+x, F^{2}=$ $x^{2}+f^{2}$, etc. Ir tamm of integral transforms of the character istic functure for x and: su) etc Gerieralzathons tormgher dimensions ar
 rombeta, Endt, aro alsu preseried, demanstratho the mothor

MTELCN

As is weli known, it is sometimes easier to study a process using "ransiorms of the relevant probabllitu distributwns. Such transiorms irciute: the characteristic fismotion, C(w), and the moment generatirn function, $M(\theta)$, for general random varlables, the probabilty generathat +unct:on, Ga, for integer valued fandom variatles, and the lad lace
 vaiued ranoum variacies. They often allow one to li simpity manipuiations invoiving convolutions of probabibity fistributions ar sing from surisiveration ut sumis of random variathes and more omph"atea
compound and branching processes, and 2) apply powerful methods from complex analysis and integral transiorm theory to the solution of fiferential-difference equations which arise in the study of probability and stochastic orocesses, and in the analysis of the analytic behavior of those solutions. The vaiue of techniques for manipulating such trantiorms and of "methoos for constructing new characteristic "Hnctions of glven ones" " s well vnown. In fact, the theory of arobabllity "cepends to a large extent on the method of characteristic finctions"2. The methods dresented here may further aid in the intarpretation of complicated cnaracteristic functions and facilitate the idertification of independent processes which contribute to the result see eg reference (3j). ADart from their usefulness in probabilistic adpicat ons, resuits also prowide another means of generating new irtegral iduntites from aid ores.
-y zumoring a Darameter in an integral expression to the status of a randrom variable ir.v. aric then takirig expected va!ues of buth sides of $r=a f u d t i n$ arumter of interesting relations involving characteristic senctions, jenerating functions, ptc. are found. In general. whlle there s no guar antee that the resulting integrals can be evaluated in closed Form for a particular distribution of interest, the expression may de helfiul in numerical work. An analogous technique ior generating Meritile rivaiving operators in Hilbert space, matrices, etc. has been sutully emploued in physics (eg. See the Appendix, below). In the Drooatility context similar methods have long been used to solve ir on ems dy averang conditional results over the conditioning variable.

A rumber of identities are presented in sections II－V demonstrating the methor of derivation．Some examples of calculat ons using these tentities are then carried out in section V！．Finally，in section vil we comment on the generallty of the method

1．Eeigions involung the suare ut fi． V
A Consider the well－k nowr integrai expreseing the normalleat on of a Mormal（ak a busssan）distribution，in which x is an artitrary constant．

$$
\int_{-\infty}^{\infty} \frac{\operatorname{pxp}\left(-(s-x)^{2} /\left(2 z^{2}\right)\right] d s}{f(2 \pi-2)}=1
$$

Enange vanables according to，$\varepsilon \quad-->/(2 x) .1 /\left(2 \sigma^{2}\right)-->$ ix．and がゴ，

Now oromote to de a real random variable and take expected ralues at ogtr．Sups ot the equation，assuming that the implicit interchange of

∞

$\sqrt{ }[i /(4 \pi \gamma)] \int \exp \left[-i \xi^{2} /(4 \gamma)\right] C_{x}(\xi) d \xi=C_{x}(\gamma)$
$-\infty$

aty
$\int\left\{\exp \left[-1 \varepsilon^{2} /(4 \gamma)+18 x-1 \varepsilon^{2} /(4 \delta)+1 \varepsilon y\right\} d \Omega \sigma \varepsilon=\exp \left[18 x^{2}+18 y^{2}\right\}\right.$.
$-\infty \quad[-14 \pi \sqrt{ }(88)\}$

Agarn consider x, y to be r.v.'s and take expected values of both sides, ∞
$i /[4 \pi \sqrt{ }(\gamma \delta)] \iint \operatorname{expl}\left[-i \xi^{2} /(4 \gamma)-i \epsilon^{2} /(4 \delta)\right] C_{x, y}(\xi, \epsilon) d \xi d \epsilon$
$-\infty$

$$
=C_{x^{2}, y^{2}}(\gamma, \delta) .
$$

t we now leto = a we have.
∞
$i /[4 \pi \gamma] \iint \exp \left[-i\left(\xi^{2}+\epsilon^{2}\right) /(4 \gamma)\right] C_{x, y}(\xi, \epsilon) d \xi d \epsilon$
$-\infty$

$$
=C_{R^{2}}(\gamma)
$$

$m \times H^{2}=x^{2}+r^{2}$. This can be generallzed further to 3 or morer.v.s in an analogous manner.

- Multiply Eq. (i) Dy exp (18x) and take expected values to odtain the characteristic function for $x^{2}+x$.
∞
$\sqrt{ }[i /(4 \pi \gamma)] \int \exp \left[-i \xi^{2} /(4 \gamma)\right] C_{x}(\xi+\gamma) d \xi=C_{x^{2}+x}(\gamma)$.
$-\infty$

Again, it is clear that this may be generallzed further.
III. Identities for $\sqrt{ } \mathrm{x}$ and $1 / x$

A Consider the definite integral (e.g. reference (6] p. 341),
∞
$\int \exp \left[-a / \varepsilon^{2}-b \varepsilon^{2}\right] d \varepsilon=\sqrt{ }[\pi /(4 b)] \exp [-2 \sqrt{ }(a b)!$
0
Let a $\cdots \cdots, b \cdots s^{2 / 4}$ to odtain the identity.
∞
$\int \exp \left|-x / \varepsilon^{2}-s^{2} \varepsilon^{2} / 4\right| d \xi=\sqrt{ }(\pi) / s \exp [-s \sqrt{ } x]$.
0
Now, promote x to be a non-negative r.v. and average over e, co otain the Laplace transform of the pof of \sqrt{x}.

$$
s / \sqrt{ } \pi \int_{0}^{\infty} \exp \left[-s^{2} \xi^{2} / 4\right] \mathscr{L}_{x}\left(1 / \xi^{2}\right) d \xi=\mathscr{L}_{x}(s)
$$

A Aternatively, a similar integral on p. 399 of reference [E] allows one to e.press $\mathscr{L}^{V_{x}(S)}$ in terms of the characteristic function, C_{x}
B. To ootain the Laplace transform of the pof for the ry $1 / x$, ie

里. Ax. given 电x, consider the integral ${ }^{10}$.

$$
\int \exp \{-a \xi] J_{0}(b \sqrt{ }) d \xi=1 / a \exp \left[-b^{2} /(4 a j)\right]
$$

 the latter a non-negative r.v., to obtain.

```
        \infty
    , E{x exp[-x{]}}\cdot\mp@subsup{J}{0}{}[2\sqrt{}{}(sq)]d{=E{\operatorname{exp}{-s/x}
    0
ir terms of the laplace transform, this is.
```


∞

```
\((-) \int \mathscr{L}_{x}^{\prime}(\xi) \cdot J_{0}[2 \sqrt{ }(5 \xi)] d \xi=\mathscr{L}_{1 / x}(s)\).
0
```


ir. Identities for Non-standard Moments and Averages

A. Sonsider the elementary integral, where x is just a parameter.

$$
\infty
$$

$$
\left[s^{n-} \operatorname{Eap}:-x s\right] d s=(n-1) 1 / x^{n}
$$

13
Tigin primcte to be a non-negative r.v., whose pof falls off sufficiently in Jiy is i \cdots 3. (e.g. an Erlang(n+1)) and take expected values wrt in.
∞

$$
\begin{equation*}
1 /(n-1)!\int_{0} s^{n-1} \mathscr{L}_{x}(s) d s=E\left\{1 / x^{n}\right\} \tag{10a}
\end{equation*}
$$

$$
\|n-1\| \mid s^{n-1} \exp (-s A) \mathscr{L}(s) d s=E\left\{1 /(x+A)^{n}\right\}
$$

$$
\text { atting } x-->(x+A) \text { leads immedrateify to the dentity. }
$$

attin $x \rightarrow>(x+A)$ leads immedrateity to the dentity.
ifontites for the Ladiace trarisiorm could also be written in terms of
the moment generating function, wher it exists. Analogous results for the moment generating function were also derived in references [4], and [s] using metnods similar to the above -nose references also contain additional applications of this resu!t.
B. Consider, now, the integral.

$$
2 \int_{0}^{2} \exp \left[-a t^{2}\right] d t=\sqrt{ }(\pi / a)
$$

let a $\rightarrow>x$, a nori-negative r, v, and take expected values,
$\infty \quad \infty$
$2 / \sqrt{ } \pi \int C_{x}\left(\mathrm{it}^{2}\right) d \mathrm{t}=2 / \sqrt{ } \pi \int \mathscr{L}_{x}\left(\mathrm{t}^{2}\right) \mathrm{dt}=\mathrm{E}\{1 / \sqrt{x}\}$ 0

Making the change of variable $104=t^{2}$ in Eq.(12) resuits n.

$$
i / \sqrt{ } \pi \int y^{1 / 2-1} \mathscr{L}(y) d y=E\{\| / \sqrt{x}\}
$$

1)

This can de recognized as a fractiona! ntegration of ofer 1/2 af tha afiace transform (or MGF). Some of the other momerts in this section Cari also be written as fractionai integro-differentlations of moment gererat in iunctons or Lapiace transforms. This fact, as well as other skensions (anc related references) are discussed in yeforences (7 - 9) .
E. Multiply Eq. (11) by a, let $a^{-->}$; and averaçe, to obtan.
∞
$I / \sqrt{ } \pi \int_{0} E\left\{x \exp \left\{-x t^{2}\right\}\right\} d t=E\{\sqrt{ } x\}$.
or, Ewiliching to moment generating functions instead of Laplace
transforms for this result (either could be used here),
∞
$2 / \sqrt{ } \pi \int M_{x}\left(-t^{2}\right) d t=E\{\sqrt{ }\}$.
0
This car de generalized io odtann a formula for $\mathrm{E}\left\{\mathrm{x}^{m+1 / 2}\right\}$, with m an nteger. ? a straightforward manner
D. Consider Lipscnita's integralio for the ordinary Bessel function of zeroth jrder, jo.

$$
2 \cdot D[-a s] f_{0}(D s) d s=1 / v^{\prime}\left(a^{2}+b^{2}\right) .
$$

Fromote a - x x, a non-negative random variable and take expected B'山es of poth sides to obtain.
∞

$$
\int_{0} \mathscr{L}_{x}(s) J_{0}(b s) d s=E\left\{1 / \sqrt{ }\left(x^{2}+b^{2}\right)\right\} .
$$

Successively difierentiating this identity wrt the parameter b produces a amily of similar identities.
E. Consider one form of Bessel's integral for the $n^{\text {th }}$ order ordinary Bessel function io.

$$
\begin{gathered}
\pi \\
J_{n}(x)=1 /(2 \pi) \int \exp [-n 1 \theta+1 \cdot \sin \theta] d \theta
\end{gathered}
$$

$$
-\pi
$$

lei x be ar. and average over all \therefore to ottar,

π

$$
\begin{equation*}
E\left\{J_{n}(x)\right\}=1 /(2 \pi) \int \exp |-n i \theta| C_{x}(\sin \theta) d \theta \tag{15}
\end{equation*}
$$

Gearly, this result car. be generalized in many ways, and is somewhat reminiscent gi the well-i grown formula.

$$
E\left(H x ;=1 /(2 \pi): \tilde{\Pi}(\omega) \Gamma_{-x}(\omega) d \omega .\right.
$$

where Hic is tine Fourier transform of H(x). The latter equation can in the spar af this parer, be simply derived by taking expected values of x ' the representation of $H\left(\begin{array}{l}x \\ \text { ' as the Four ter Transform of } \tilde{H}(w)\end{array}\right.$

der t: for Probadilly Generate fig Funest ions

E- Gons!jer again the well-known integral used to define the gamma
Function, $-7+1$.

20

0

This time let n be a non-negative integer valued rancom variable and average over n.
∞
$\int G(z) \exp [-s z] d z=E\left\{n!/ s^{n+1}\right\}$.
0
In paricular, when $s=1$, this ylelds $E\left\{n^{\prime}\right\}$, when it exists, i.e. the Ladiace transform of the probabllity generating function, evaluated at $s=:$ is lust $E\{n i\}(o f$. the factorial moments $E\{n(n-1) \cdots(n-k+1)\}=$ $\left.\left.(d / g)^{k} G(z)\right|_{z=1}\right)$. For non-integer r.v.'s we can obtain a corresponding expression for $E\{\Gamma(x)\}$.
E. Consider the integral.

```
    z
```

Hive no de a non-negative integer valued r.v. and averace.
1
$\int G(7) d z=E\{1 /(n+1)\}$.
0
which also follows easily from the power series definition of $G(z)$ and is sirectly analogous to the usual resuli for $E\{n\}$.

- - -ansider the integral expressing the standard result for the even mustients of the Norma! distribution.

```
        \(\infty\)
    \(\int z^{2 n} \exp \left[-z^{2} /\left(2 \sigma^{2}\right)\right] d z=(2 n-1) 11 \sigma^{2 n}\).
    \(-\infty \quad \sqrt{\left.(2 \pi)^{2}\right)}\)
```

where the double factorial symbol means，e．g． $511=5 \cdot 3 \cdot 1$ ．Again take averages over n on both sides of the equality．
∞
$\int G\left(z^{2}\right) \exp \left[-z^{2} /\left(2 \sigma^{2}\right) 1 d z=E\left\{(2 n-1)!!\sigma^{2 n}\right\}\right.$. $\sqrt{ }\left(2 \pi \sigma^{2}\right)$
and when $\sigma=1$ we have $E\{(2 n-1) \| ⿻ 肀 ⿲ 丶 丶 丶$

D．Consider the two integrals，found on p ． 3 ge of reference ［b］．
$\pi / 2$
$\left.i \sin ^{2} \theta\right)^{m} \theta \theta=\pi / 2 \cdot(2 m-1) \mu /(2 m)^{\prime \prime}$.
arn．

$$
\pi / 2
$$

$\int \sin \theta\left(\sin ^{2} \theta\right)^{m} d \theta=(2 m) 11 /(2 m+1 i l l$.
0
attirgm oe ar．v．and averaging over all values of m on each side of the above equations，we obtain，
$\pi / 2$
$2 / \pi \int G\left(\sin ^{2} \theta\right) d \theta=E\{(2 m-1)!!/(2 m)!!\}$ ． 0
and，

```
    \pi/2
    \int\operatorname{sin}0G(\mp@subsup{\operatorname{sin}}{}{2}0)d0=E{(2m)!!/(2m+1)!!}.
    0
rescectivoly.
```

vi. Some Appilcations of the identities
A. If s has a Normal distribution with zero mean then

$$
C_{x}(\xi)=\exp \left\{-\xi^{2} \sigma^{2} / 2\right\}
$$

Putting this in Eq. (2) and performing the integration, we have.

$$
\begin{align*}
C_{x} 2(\gamma) & =\sqrt{[1 /(4 \pi \gamma)]} \int_{-\infty} \exp \left[-i \varepsilon^{2} /(4 \gamma)-\varepsilon^{2} \sigma^{2} / 2\right] d \xi \\
& =1 / \sqrt{ }\left(1-210^{2} \gamma\right) .
\end{align*}
$$

This is. indeed, recognized as the characteristic function for the x^{2} alstribution with one degree of freedom. (Similariy, if x, y have rceoencer: normal distributions with the same value of the variance, *rat $R^{2}=x^{2}+y^{2}$ nas a negative exponential distrioution follows *-viz! í from Eq. (4).)

How, lei x rave a Normal distribution with non-zero mean, u, then
$C_{x}(z)=\exp \left\{118 z-\varepsilon^{2} \sigma^{2} / 2\right\}$.
Sust tuting this in Eq. (2) and integrating, yields.

$$
\left.\begin{array}{rl}
\Gamma_{x}(\gamma) & =\sqrt{ }[1 /(4 \pi \gamma)\}, \exp \left(1 \mu^{i}-1 \varepsilon^{2} /(4 \gamma)-\xi^{2} \sigma^{2} / 2\right] d i
\end{array}\right) .
$$

which is the chardateristic function of an oifset x^{2} gistrituiton.
E. Lilculate E\{1/ $\sqrt{x}\}$ wherexhas an expunential jistribution witn
parameter λ. In this case the characteristic function of x is,

$$
C_{y}(E)=\lambda i(\lambda-1 \xi)
$$

Hence, subctuluting this in Eq. (12) we have.
∞
∞
 00
arnt, usirig a standard integral, we ootann.

$$
\begin{equation*}
E\{i / \sqrt{ } x\}=\pi \sqrt{ } \lambda \tag{-3}
\end{equation*}
$$

Thl: is faslly verlifed to De correct oy a grect caloulaton. Ei v. is
הIs? Deslly verlifed to De the result produced Dy Eq. (:5).

- Insert tne Lapiace transform of the pif ior an exponentiai
jistrioution, $\hat{A}(\lambda+5)$, 1 nto Eq. (14), obtammg,
$\left.E: 1 / \sqrt{ } x^{2}+\square^{2} ;\right\}=\left\{\hat{\lambda} /\left(\hat{\lambda}+s j \cdot j_{n}(D s) d s\right.\right.$

This integral is tabulated on p. 685 in reference $[6]$, resulting in,

$$
\begin{equation*}
E\left\{1 / \sqrt{ }\left(x^{2}+D^{2}\right)\right\}=\lambda \pi / 2\left[H_{0}(D \lambda)-N_{0}(D \lambda)\right] . \tag{24}
\end{equation*}
$$

where H_{0} and N_{0} are Struve and Neumann functions, respectively, of zeroth order (N_{0} can be replaced with Y_{0}, the Bessel function of the second kind). For example, $\operatorname{tak} \operatorname{ing} b=4$ and $\lambda=1\left(H_{0}(4)=.13501\right.$ and $\left.r_{0}(4)=-.01694\right)^{\text {g }}$ we find for the exponential distribution.

$$
E\left\{1 / \sqrt{ }\left(x^{2}+D^{2}\right)\right\}=.2387 .
$$

which is easily confirmed by direct Gauss-Laguerre integration of the left-nand-side.
Q. we now calculate the average of the $n^{t h}$ order Bessel function when x मas and 0, o) distribution with the use of Eq. (15). After inserting the -haracteristic function for a normal distribution, using the trig identity $\sin ^{2} 4=(1-\cos 2 \theta) / 2$, and again using Bessel's integral identity, this imefor in 2 . Eo. (15) ieads to.

$$
\begin{equation*}
E\left\{\int_{n}(\alpha)\right\}=\exp \left[-\sigma^{2} / 4\right] \cdot n_{n / 2}\left(\sigma^{2} / 4\right) \tag{25}
\end{equation*}
$$

for neven, and zero when n is odd. This expression can be confirmed by -valuating the expected value directly with the help of an integral tabulates on p. 710 of reference $[61$.
E. Let $G(z)$ be trie generating function for a Puisson distribution,

$$
\sigma z=\exp [\vec{n}(z-1)]
$$

Putting this in Eq. (16) and integrating yleids,

$$
\begin{equation*}
E\left\{n!/ s^{n+1}\right\}=1 /(s-\bar{n}) \cdot \exp \{-\bar{n}] . \tag{26}
\end{equation*}
$$

and, in particular, when $s=1$,

$$
E\left\{n^{\prime}\right\}=1 /(1-\bar{n}) \cdot \exp [-\bar{n}\}
$$

This is easily verified to be correct, as well as the fact that for a Puisson aistribution $\mathrm{E}\left\{\mathrm{n}^{\prime}\right\}$ is onily finite for $\bar{n}<1$.
F. If we substitute the generating furiction for a Poisson r.v. Into

Eq.(18) and perform the integration, we easily obtain (letting $\sigma=1$).

$$
\begin{equation*}
E\{(2 n-1) \|\}=1 / \sqrt{ }(1-2 \bar{n}) \cdot \exp \{-\bar{n}] . \tag{27}
\end{equation*}
$$

Clearly, this is finite only for $\bar{n}<1 / 2$.

E Again using the generating function for a Poisson r.v..EA. (20) yleids, after using a trigonometric identity for $\sin ^{2} \theta$ and Bessel's integral
representation for the Bessel function of zeroth order.

$$
\begin{aligned}
E\{(2 m) / / 2 m+1) m\} & =\exp [-\bar{n} / 2] j_{0}(1 \bar{n} / 2) \\
& =\exp [-\bar{n} / 2] 1_{0}(\bar{n} / 2),
\end{aligned}
$$

where in is the modified Bessel function of zeroth order.

vil. Conclusion

srome the foregoing integral identities involving characterisic func:ions and generating functions may be derived or verlfled using other methods. For example, I originally obtained Eq. (2) by expanding $C_{y 2}(8)$ in a Molaurin series, replacing the derivatives wrt γ by even order jer ivatives of $\dot{c}_{,}(\xi)$ wrt ξ, and re-summing the infinite series. That terivation, which relies on the esistence of ail moments, is presented in the Lppendix. Similarly, the expression for $E\{1 /(n+1)\}$ follows easily from integrating, term by term, the infinite series definition of $G(z)$. In fact, expressions for fractional and/or inverse moments, including some -r those gerivec in section IV, have Deen expressed elsewhere ${ }^{7,8,9}$ in a unfied mariner in :erms of fractional integro-differentiations of the wisr, zererakizing the usual formulas for moments and factorial moments.

Hemever. aternate derivations are not readily identified for ali of our 'mtegrai relations. The point is, that bu presenting our unified treatment 'rontaining as a proper subset some of the previously mentioned - orma'.isms) it becomes straightforward to obtain new integral cur. tes for random variables by a judicious search of tables of inturais such as reference [6]. As a final example, a somewhat Gratultous residit is obtained by consideration of integral no. 3 on p. 304 in risierence [6].
(x)

$$
\begin{array}{ll}
\left.\int \exp :-p t\right) /[1+\exp (-q t)] d t=\pi / q \operatorname{cosec}[p \pi / q], & q>p>0, \\
& \text { or } q<p<0 .
\end{array}
$$

Let $q=1, p \rightarrow x$, ar.v. in the interval $[0,1]$ and average over x.
∞
$1 / \pi \int M_{x}(-t) /[1+\exp (-t)] d t=E\{\operatorname{cosec}[\pi \cdot x]\}$.
$-\infty$

It is clear that many other integral identities for randorn variables can De generated in the same manner. The only requirement is that the impileit interchange of orders of integration de justified.

Acknow leggements: The author is gratefu, for advice and encouragemert from Prois. E. Mckenzle, D. Gaver, and P. A. W. Lewis: and to Prof. A Liwrance for references $[7,81$. This work was partially supportec unjer a contract from U. S. Navy, SPAWARS, PD'w $107-5$.

REEEENCES

1. W. Feller, An Introduction to Frobability Theory and Its Applications, Volume II, (Wiley, New York) 1965, P. 477
2. W. Feller, An Introduction to Probabllity Theory and Its Applications, Volume I. (Wlley, New York) 1960, p. 248
3. E. Rockower and N. Abraham. "Calculating Generating Functions from Enaracteristic Functions, with application to quantum optics", \therefore Phys. A. 11, 10. PD. 1884-1879 (1978)
4. N. A. C. Cressie, A. S. Davis, J. L. Folks, and G. E. Policello ll, "The Moment-generating Function and Negative Integer Moments",

The American statistician 35, No. 3. pp. 148-150 (1981)
5. M T. Chao and W. E. Strawderman, "Negative Moments of Positive Random Variables", J. American Stat. Assoc. 67, No. 338, D0. 429-431.(1972).
5. S. Eraoshteyn and 1. M. Ryzhik. Tables of Integrals, Series, and Products, (Academic Press, London) 1980
2. M. C. Jones, "Inverse Factorial Moments", preprint, CAn. Is stat.
E. M. C. Iones. "Expressions for Inverse Moments of Positive Quadratic Forms in Normal Variables". scheduled to appear in Austr. J. Stat., August. 1986
3. iv. A. Eressle and M. Borkent. "The Moment Generating Function Has Its Muments", J. Statist. Plann. Inference 13, 337-344 (1986)
1). G. N. watson, A Treatise on the Theory of Bessel Functions, 2nd ed. (Cambridge Universitu Press) 1958, D. 384
i. M. Abramowitz and I. Stegun. Handbook of Mathematical Functions. (Siover Disblications, New York) '955

APPENDIX

In this appendix an alternate derivation of Eq. (2) is presented, patterned at ter that in reference [3] in which it is afplied to help in the interpretation of a complicated characteristic function and identify independent processes which combine to form the final process. The usual definition for the characteristic function yields.

$$
c_{x}(\varepsilon)=E\{\exp (i \varepsilon x)\}, \text { and } c_{x^{2}}(\gamma)=E\left\{\exp \left(1 \gamma x^{2}\right)\right\}
$$

we solve the problem: given C_{x}, to find $r_{-x^{2}}$. First, note that the sever moments of x can be expressed alternatively as.

$$
\left\{1 /\left.\left.i^{2}(d / d \xi)^{2}\right|^{n} c_{x^{\prime}}(\varepsilon)\right|_{\xi=0}=E\left\{x^{2 n}\right\} .\right.
$$

or

$$
\left[1 /\left.1(0 / 0 \gamma) \cap^{n} C_{x}(x)\right|_{x=0}=E\left\{x^{2 n}\right\}\right.
$$

1.e. the lhs of these two expressions are equai, assuming the moments en 15 t .
we can now write the ordinary Mclaurin series for $\mathrm{Cx}_{\mathrm{x}}{ }^{2}$ as.
∞
$\Sigma_{2} 2\left(\gamma^{\prime}\right)=\sum\left[1 / i\left(\sigma / d \gamma^{\prime}\right)\right]^{m} c_{x^{2}}\left(\gamma^{\prime}\right) \mid \gamma^{\prime}=0(1 \gamma)^{m / m} \quad$ (AJ)

$$
m=0
$$

which cart de rewritten using EqS. (A2) 3s.

$$
\varepsilon_{2} 2(\gamma)=\left.\sum_{m=0}\left[-(d / d \xi)^{2}\right]^{m} C_{x}(\xi)\right|_{\xi=0}(1 \gamma)^{m} / m!
$$

Next, re-sum inis power series in $(d / d \xi)^{2}$ to obtain,

$$
\begin{equation*}
C_{x} 2(\gamma)=\left.\exp \left\{-i \gamma(d / d \xi)^{2}\right\} C_{x}(\xi)\right|_{\xi=0} . \tag{A.5}
\end{equation*}
$$

Now, note that.

$$
\exp \left\{\sigma^{2}(\sigma / d x)^{2}\right\} f(x)=1 / \sqrt{\left(2 \pi \sigma^{2}\right)} \int \exp \left\{-\left(x-x^{\prime}\right)^{2} /\left(2 \sigma^{2}\right) f\left(x^{\prime}\right) d x^{\prime}\right.
$$

which can be verified using the convolution theorem of Four ier transforms. This equation could also have been obtained directly from Eq. (i) If we promote x to be the operator $d / d x$, instead of a r.v., and then post-muttipily by $f(x)$. Making the change of variables $x-->\xi_{\text {, }}$ $\rightarrow-->-213$, and setting $\varepsilon=0$ we recover Eq. (2).
No. of Copies
Defense Technical Information Center2Cameron Station
Alexandria, VA 22314
Library (Code 0742) 2Naval Postgraduate SchoolMonterey, CA 93943-5000
Office of Research Administration (Code 012) 1Naval Postgraduate SchoolMonterey, CA 93943-5000
Center for Naval Analysis 12000 Beauregard Street
Alexandria, VA 22311
Operations Research Center, Rm E40-164 1
Massachusetts Institute of Technology
Attn: R. C. Larson and J. F. Shapiro
Cambridge, MA 02139
Edward B. Rockower 10
(Code 55Rf)
Naval Postgraduate School
Monterey, CA 93943-5000

