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Integral identities for Random Variables

Edward 5. Rockov

Naval Postgraduate School

Dept. of Operations Research

Monterey, CA. 93943

ABSTRACT

Using a general method for deriving identities for random variables, i

find a number of new results involving character ist ic functions and

generating functions. The method is simply to promote a parameter in

an integral relation to the status of a random variable and then take

expected values of both sides of the equation. Results include formulas

for calculating the characteristic functions for x 2
, /x, l/x, x 2 + x, R 2 -

x 2 +
y
2

, etc. in terms of integral transforms of the characteristic

functions for x and (x, y). etc. Generalizations to higher dimensions

be DDtainec using the same method, i <pressions for inverse/fractionai

*
, E(n!}, et . ire 3

! -o presented, demonstrating t
n e method.

1MTRODUCT !OM

As is well known, it is sometimes easier to study a process using

transforms of the relevant probability distributions. Such transforms

inc ! ude : the charactenstic function, C(o>), and the moment generat

function, n(8), for general random variables; the probability generating

function, G(z), for integer valued random variables, and the Laolace

frans form of the probability density function, &(s), for r:on-nec::

.a jed random variables. They often allow one to !) simp

manipulations involving convolutions of probability distributions arising

from consideration ot Bums of random variables and more on p ued



compound and branching processes, and 2) apply powerful methods from

complex analysis and integral transform theory to the solution of

jifferential-difference equations which arise in the study of probability

and stochastic processes, and in the analysis of the analytic behavior of

•- Dse solutions. The value of techniques for manipulating such

transforms and of "methods for constructing new characteristic

functions out of given ones"
1

is well known. In fact, the theory of

probability "depends to a large extent on the method of characteristic

functions" 2
. The methods presented ^Qr9 may further aid in the

terpretation of complicated characteristic functions and facilitate the

identification of independent processes which contribute to the result

see e.g. reference [3]). Apart from their usefulness in probabilistic

applications, our results also provide another means of generating new

t ^s from old ones.

By - a .
.'' y etei [r) an integral expression to the status of a

ible (r.v.) and then taking expected values of both sides of

_er of interesting relations involving characteristic

.- ei ating functions, etc. are f ound. In general, while there

is no guarantee that the resulting integrals can be evaluated in closed

• orm :zr a particular distribution of interest, the expression may be

^e : pful in numerical work. An analogous technique for Generating

/Giving operators in Hubert space, matrices, etc. has been

-
. . -'''ployed ir

' physics (e.g. see the Appendix, below). In the

probability context similar methods have long been used to solve

ems by averag ng conditional results over the conditioning variable.



A number of identities are presented in Sections i! - V demonstrating

the method of derivation. Some examples of calculations using these

jentities are then earned out in Section V!. Finally, in Section V!! we

comment on the generality of the method.

!' dela tions Involving the Souare of R. V. s

A^ Consider the vvell-knowr integral expressing the normalization of a

il a Gaussian) distribution, in which x is an arbitrary constant,

00

! p*:dj -i: - x) 2 /f2o 2
) 1 d£

/(2TTC

Change variables according to, c
--> £/(220. l/(2o 2

)
-->

\Z, and

,-[-ic
:/

v-4^;- - icA ; di = pi i3x 2
] .

/(-I4TT20

•mote x to be a rea! random variable and take expected values of

both sides :: the equation, assuming that tne implicit interchange of

Drder? ' integration is justified, i.e. that
|
and E{ ) comrr !

CO

/[ i/(4tT#) ] JexpH? 2 /(4tf)l C x(t) dt C x?(3) . (2)

oo

i_ Now rnu "

y Eq i

1 by itself with x -->
y, c

-->
t, 2 -->

' '



00

j/ exDf-i?
2/(4y) * \Fx -if 2 /(48) +i6y] 6tae - exp[ i2x 2 * i6y 2

3

:-'4tt/( ?8)]

Again consider x, y to be r.v.'s and take expected values of both sides,

oo

i/[4ir/(*S) ] JJexpHt 2/(42D -k 2 /(4S)l C
x y

(£.e) d^de (3)

-oo

C
x 2

f

y2(Z,S)

If we now let 8 = 3 we have,

oo

i/l4ir*l JJexpHU: 2 *2)/(4*)l Cxy(f,0 (tfde (4)

oo

CR 2(^) ,

------ :
. This can be generalized further to 3 or more r.v.'s

analogous manner.

L '

'
-

' ly Eq. ( 1) by exp( iffx) ana take expected values to oDtain the

characteristic function for x 2 +

.

oo

/[ ./(47ttf) 1 |exp[-it 2/(4y)]C x(t tf) HZ = C x? + X (tf) . (5)

-oo

Again, it is clear that this may be generalized further.



111. Identities for /x and 1/x

a_ Consider the definite integral (e.g. reference [6] p. 341),

f
exp [ -3/c 2 -b£ 2

1 d£ = /[Tt/(4b)j exp[-2/(ab)] . (6)

o

Let a — >' x, b --> s 2/4 to obtain the identity,

00

J exp [ -x/£ 2 -s 2
£
2/4 ] d£ = /Or) /s exp[-s/x] .

' 7
)

o

Now, promote x to be a non-negative r.v. ana average over x, to obtain

the Laplace transform of the pdf of /x,

oo

s//tt | exp [-s 2
£
2/4 1 &x(l/t

2
) dt = &/x

(s) . (8)

Alternatively, a similar integral on p. 399 of reference [6] allows one I

express £/x
(s) in terms of the characteristic functic

,

tL To obtain the Laplace transform of the pdf for the r.v i/x, i.e.

ot;/
x ,

given &
x

, consider the integral 10
,

X)

f exp( -a? i J (b>/O d£ = 1/a exp[ - b2 /(4a)

' iply both sides by a and change the parameters b --> 2 v's, a --> x,

the latter a non-negative r.v., to obtain,



:-

J E{ x exp[ -x£ ] } • J [ 2/(sO I d£ = E{ expf - s/x ] }.

o

•r r r
r
;s of the Laplace transform, this is.

00

(-) J
£'

x(0 • J [ 2/(sO 1 dt = A,/X (s). (9)

i ,
. identities for Non-standard Moments and Averages

A, Consider the elementary integral, where x is just a parameter,

00

i
s
rrl

exr. -v s] as = (n-i)! / x
n

.

' be a non-negative r.v., whose pdf falls off sufficiently

js x --> 0, e.g. an Er!ang(n+1) ) and take expected values wrt x,

1/(n-1)! { s
n_1

2, (s) ds = E{1/xn } (10a)x

o

ett ng x — > (x * a; leads immediate . to the identity,

s
n ' exp(-sA) £Y(s) ds = E{l/(x+A)n ) (10b)

Identities for the Laplace transform could also be written in terms of



the moment generating function, when it exists. Analogous results for

the moment generating function were also derived in references [4], and

[5] using methods similar to the above. Those references also contain

additional applications of this result.

EL Consider, now, the integral.

2 |
exp [ -a t

2
] dt = /(Tt/a)

, (11)

o

let a -->
x, a non-negative r.v., and take expected values,

oo oo

?//tt
J
C
x
(it 2 ) dt - 2//tt J&x

(t 2
) dt - E{l//x} (12)

O

Making the change of variable to y = t
2 in Eq.(12) results in,

i//-rt
J y

1/2 "' £
x (y)

dy = E(i/\

o

"his can be recognized as a tract iona! integration ot - jer l /2 of the

lace transform (or flGF). Somie of the other moments in this sect

can also be written as fractional integro-differentiations of moment

generating functions or Laplace transforms. This fact, as well as other

extens :>n and related references) are discussed in references [7 9].



Multiply Eq. (1 1) by a, let a — > x and average, to obtai

00

2//tt { E{x exphxt 2
]} dt = E{/x]

or, switching to moment generating functions instead of Laplace

transforms for this result (either could be used UerQ),

oo

2//n J rr
x
(-t 2

) dt = E{/x}. (13)

This can be generalized to obtain a formula for E{ x
m+1/ ^

}, with m an

integer, in a straightforward manner.

r
-

Consider Lipschitz's integral 10 for the ordinary Bessei function of

zeroth order, J ,

exp[ -as ] J (bs) ds = I //(a2 + b 2
).

o

Dte a --> x, a non-negative random variable and take expected

jes of both sides to obtain.

00

J &x
(s) J (bs) ds E{ l//(x 2 * b 2

) }. (14)

Successively differentiating this identity wrt the parameter b produces

a family of similar identities.

8



L Consider one form of Bessei's integral for the n
tfl

order ordinary

Bessel function 10
,

n

Jn
(x) = !/(2tt) f exp[ -n i e +

i x sine ] de,

-7t

let x be a r.v. and average over all >:, to obtain,

F{ J n(x) } = l/(27t) J expf -n i e ] c
x
(sine) de. (15)

-it

Clearly, this result can De generalized in many W3ys, and is somewhat

reminiscent of the well-known formula.

H(> I = I/(2tt)
f
H(co) C

x
(o>) dco,

where H(o>) is the Fourier transform of H(x). The latter equation can, in

tr
'e spirit of this paper, be simply derived by taking expected values ol x

ir
tri e representation of H(x) as the Fourier Transform of H(a)).

'-
. ide^t't'es for Probability Gene r ating Functions

A. Consider again the well-known integral used to define the gamma

i ction, 7;;> i ),

: z
n

exp[ -s z] dz - n! / s
n+ ]

.

o



This time let n be a non-negative integer valued random variable and

average over n,

00

{ G(z) exp[ -sz] dz = E{n!/sn+1
}. (16)

o

In particular, when s = 1, this yields E{ n! }, when it exists, i.e. the

Laplace transform of the probability generating function, evaluated at

s =
I is just E{ ni } (cf. the factorial moments E{n(n- 1 )--(n-k+ 1 )}

=

(d/dz)
k
G(z)

| z= ]

). For non-integer r.v.'s we can obtain a corresponding

expression for E{ r(x) }.

EL Consider the integral,

-,n ^— - •

•
'

v, let n oe a non-negative integer valued r.v. and average.

J G(z) dz '- E{ 1/(n*1) }. (17)

o

:h also follows easily from the power series definition of G(z) and is

directly analogous to the usual result for E{n}.

C^ Consider the integral exoressmg the standard result for the even

lents of the Norma! distribution.

10



00

J z
2n

expf -z2/(2a 2
) 1 az = (2n - !)!! a 2n ,

/(27TC 2
)

where the double factorial symbol means, e.g., 5!! - 5-3-1. Again take

averages over n on both sides of the equality,

oo

j G(z2
) expi -z2/(2d 2

) 1 dz E{ (2n 1 )!! a2n }, (18)

/(2ita 2
)

and vvnen a - 1 we have E{ (2n - 1)!! }.

EL Consider the two integrals, found on p. 369 of reference [6],

Tt/2

n2 e]
m dO = ir/2 • (2m - 1)!! / (2rr

if

J sine [sin2e]
rTI

de = (2m)!! / (2m + l)i!
.

o

etting m be a r.v. and averaging over a!! values of m on each side of the

above equations, we obtain,

Tt/2

2/7T J G( sin2
) de E{ (2m - I)!! / (2m)M } , (19)

and,

1 1



7t/2

/sine G( sin2 ) d0 E{ (2m)M / (2m I)!! } . (20)

o

•espectively.

- ome Applications of the identitiesVI. .jL

A, If x has a Norma! distribution with zero mean then

C
x(£)

-- expK 2o 2 /2].

Putting this in Eq. (2) ana performing the integration, we have.

00

C
x 2(3)

= A 1/(4*20 ] Jexp[-i£.
2 /(4#) - £

2a 2 /2 ] d£ .

-co

= l//( I
- 2iO 220- (21)

rhis is, indeed, recognized as the characteristic function tor the X
2

distribution a
tr

i one degree of freedom. (Similarly, if x, y have

• :- ' normal distributions with the same value of the variance,

- ,• p2 - y2 + Y 2 has a negative exponential distr iDution follows

- j from Eq. (4). )

•••
, let x have a Normal distribution with non-zero mean, u, then

C
x(0

- exp{ iji£ - £
2 2/2).

Substituting this in Eq. (2) and integrating, yields.

12



CO

C
x2(20

= /[ J/C4TT25') ] Jexpl ip;; - i£ 2/(42) - l}o 2/2 ] d£
•x

-oo

= !//(]- 2io 23) exp{ ijj
2#/(l - 2i0 2 #) }, (22)

which is the characteristic function of an offset X
:' distribution.

EL Calculate E{l//x } where x has an exponential distribution with

parameter X. In this case the characteristic function of x is,

C
x(£)

-- X/(X -iU.

Hence, substituting this in Eq. (12) we have,

00 00

2 //it f C
>:
'ii.

:
) dt = 2//jt J X/(X +

t
:

) dt,

D

I, using a standard integral, we obtain,

E{i//x } = u/x. (23)

fhis is easMy verified to be correct by a direct calculation. E{ v
-' -

3lso easily verified to be the result produced by Eq. (13).

C Insert the Laplace transform of the pdf for an exponential

distribution, X/(X * s), into Eq. (14), obtaining,

00

Ei i//( x 2 + b 2
) } =

f
X/fX * s) • Jn(bs) ds .

13



This integral is tabulated on p. 685 in reference [6], resulting in,

E( !//( x 2 + b 2 ) } = X 7T/2 [ H (bX) - N (bX) ]. (24)

where H and N arQ Struve and Neumann functions, respectively, of

zeroth order (N can be replaced with Y
, the Bessei function of the

second kind). For example, taking b = 4 and A =
1 ( H (4) - J 350 land

Y (4) = -.01694 )
s we find for the exponential distribution,

E{ l//( x 2 b 2
) } = .2387

,

:h is easily confirmed by direct Gauss-Laguerre integration of the

left-hand-side.

Q_ We now calculate the average of the n
tn

order Bessei function when x

has a N(0, a) distribution with the use of Eg. (15). After inserting the

i eristic function for a normal distribution, using the trig identity

l
- cos2G)/2, and again using Bessel's integral identity, this

for l

r
,-,. Eq. (15) leads to,

E( j n( x ) } = expl -c 2/4 ]
•

l n/2 (^
2 /^). (25)

for n even, and zero when n is odd. This expression can be confirmed by

ev iluating the expected value directly with the help of an integral

tabular, i n p. 710 of reference [61.

.et G(z) be the generating function for a Poisson distribution,

z exp [ n (z -
I ) ].

14



Putting this in Eq. (16) and integrating yields,

E{ n! / s
n+1

} = i/(s - n) • exp[ -n ]. (26)

and, in particular, when s - !,

El n! 1 = 1/(1 - n") exp [ -n 1 .

This is easily verified to be correct, as well as the fact that for a

Poisson distribution E{ n' } is only finite for n < 1.

L It" we substitute the generating function for a Poisson r.v. into

Eq.(lS) and perform the integration, we easily obtain (letting o - 1),

U (2n - l)n } = I //(I - 2n } exp[ -n ].

Clearly, this is finite only for n < 1/2.

£L Again using the generating function for a Poisson r.v., Eq. (20) yields,

after using a trigonometric identity for sin2G and Bessel's integral

representation for the Bessel function of zeroth order,

E{ (2m)!! / (2m * 1)!! } = exp[ -n / 2 ] J (i n 12)

-- exp[ -n / 2 ] l ( n/2),

^here . the modified Bessel function of zeroth order.

15



vii. Conclusion

Some of the foregoing integral identities involving characteristic

functions and generating functions may be derived or verified using other

methods. For example, I originally obtained Eg. (2) by expanding C
x2(#)

in a McLaurin series, replacing the derivatives wrt Z by even order

vatives of Cx(0 wrt £, and re-summing the infinite series. That

lei it ion, which relies on the existence of ail moments, is presented in

the Appendix. Similarly, the expression for E{1/(n + 1)} follows easily

m integrating, term by term, the infinite series definition of G(z). In

fact, expressions for fractional and/or inverse moments, including some

of those derived in Section IV. have been expressed elsewhere p,8,s
in a

. fied manner .;, terms of fractional integro-differentiations of the

MGF, generalizing trie usual formulas for moments and factorial

moments.

• '-mate derivations are not readily identified for ali of our

: relations. The point is, that by presenting our unified treatment

uaining as a proper subset some of the previously mentioned

' )rma!isms) it becomes straightforward to obtain new integral

entities for random variables by a judicious search of tables of

.
- 3 such as reference [6]. As a final example, a somewhat

gratuitous result is obtained by consideration of integral no. 3 on p. 304

i

' eference [6],

-<p i -pt ) /[I + exp(-gt) ] dt - Tt/q cosec [pTi/q], q > p > 0,

-«> or q < p < 0.

16



Let q =
I

, p -> x, a r.v. in the interval [0, I] and average over x,

00

/tt
J M

x
(-t) /[I + exp(-t) ] dt = E{ cosec [tt-x] }. (29)

-00

It is clear that many other integral identities for random variables can

be generated in the same manner. The only requirement is that the

implicit interchange of orders of integration be justified.
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APPENDIX

In this appendix an alternate derivation of Eg. (2) is presented, patterned

after that in reference [3] in which it is applied to help in the

interpretation of a complicated characteristic function and identify

independent processes which combine to form the final process. The

usual definition for the characteristic function yields,

C
x
(.n = E{ exp(ic.x) ) , j'o C

x2(#)
= E{ expdtfx 2

) }. (AD

We solve the prob!em : given C
x . to find C

x 2 . First, note that the ever.

moments of x can be expressed alternatively as,

[ 1/i2(d/dO 2
l

n C
x(O|^ = Ei x

2n
}.

or (A2)

[ 1/1 (d/d3) ]

n
c
x

2<
1 3=0

= E^x2rM .

i.e. the Ihs of these two expressions are equal, assuming the moments

exist.

We can now write the ordinary McLaunn series for C
x
2 as.

<2(20 = I[l/i(d/d^)]m C
x2(^)|^ (i^)

m /mi (A3)

m=0

which can De rewritten using Eqs. (A2) as,

C
x2

(2f) ~- I [ -(d/dO2
l

m C
x(0 1 ^. (i*)

m /m!
.

(A4)

m=0

19



Next, re-sum this power series in (d/d£) 2 to obtain,

C
x2(20 = exp { -iff (d/dO 2

) C
x(0|^n •

f'A5)

Now, note that,

exp{ a 2(d/dx)2
) f(x) = l//(27ta2

) j exp{ -(x - x')
2/(2o 2

) r(x') dx\

which can be verified using the convolution theorem of Fourier

transforms. This equation could also have been obtained directly from

Eg. (I) if we promote x to be the operator d/dx, instead of a r.v., and

then post-rnu it lpiy by f(x). Making the change of variables x -->
£,

C 2 ----- -2iff, and setting I - we recover Eq. (2).
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