Calhoun: The NPS Institutional Archive Reports and Technical Reports All Technical Reports Collection 1985-03 Hydrographic data from the OPTOMA Program: OPTOMA12, 8-18 October 1984, OPTOMA13, 22 October-3 November 1984, OPTOMA13P, 27 October 1984, OPTOMA14, 3-14 Calhoun is a project of the Dudley Knox Library at NPS, furthering the precepts and goals of open government and government transparency. All information contained herein has been approved for release by the NPS Public Affairs Officer. Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943 NPS-68-85-012 # NAVAL POSTGRADUATE SCHOOL Monterey, California HYDROGRAPHIC DATA FROM THE OPTOMA PROGRAM OPTOMA12 8 - 18 October 1984 OPTOMA13 22 October - 3 November 1984 OPTOMA14 3 - 14 November 1984 OPTOMA13P 27 October 1984 by Paul A. Wittmann Edward A. Kelley, Jr. Christopher N.K. Mooers March 1985 Approved for public release; distribution unlimited. FEDDOCS D 208.14/2 NPS-68-85-012 epared for: fice of Naval Research vironmental Sciences Directorate (Code 420) lington, VA 22217 - Luci - 1942-5 p NAVAL POSTGRADUATE SCHOOL Monterey, California 93943 Commodore R.H. Shumaker Superintendent David A. Schrady Provost This report is for the research project "Ocean Prediction Through Observations, Modeling and Analysis" sponsored by the Physical Oceanography Program of the Office of Naval Research under Program Element 61153N. Reproduction of all or part of this report is authorized. This report was Prepared by: | | REPORT DOCUMENTATION | PAGE | READ INSTRUCTIONS BEFORE COMPLETING FORM | |----|--|----------------------------|---| | | REPORT NUMBER | 2. GOVT ACCESSION NO. | 3. RECIPIENT'S CATALOG NUMBER | | | NPS 68-85-012 | | | | | TITLE (and Subtitle) | A DDOCDAM | S. TYPE OF REPORT & PERIOD COVERE | | | HYDROGRAPHIC DATA FROM THE OPTOM | | REPORT FOR OCTOBER 1982 | | | OPTOMA12, OPTOMA13, OPTOMA14 AND | OPTOMAT3P. | TO MARCH 1985 | | | | | 6. PERFORMING ORG. REPORT NUMBER | | | AUTHOR(a) | | 8. CONTRACT OR GRANT NUMBER(*) | | | <mark>PAUL A. WITIMANN, EDWARD A. KELLI</mark> | EY, JR | | | | CHRISTOPHER N.K. MOOERS | | | | | PERFORMING ORGANIZATION NAME AND ADDRESS | | 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS | | | NAVAL POSTGRADUATE SCHOOL | | THE A COUNTY TO THE | | | MONTEREY, CA 93943 | | 61153N | | | | | N0001484NR24501 | | ١. | CONTROLLING OFFICE NAME AND ADDRESS | | 12. REPORT DATE | | | OFFICE OF NAVAL RESEARCH (CODE 4 | 20) | MARCH 1985 | | | ARLINGTON, VA 22217 | | 13. NUMBER OF PAGES | | | <u> </u> | | 106 | | 4. | MONITORING AGENCY NAME & ADDRESS(II dilferen | t from Controlling Office) | 15. SECURITY CLASS. (of this report) | | | | | UNCLASSIFIED | | | | | 15a. DECLASSIFICATION DOWNGRADING SCHEDULE | APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED. 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, If different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse eide if necessary and identify by block number) CALIFORNIA CURRENT SYSTEM PHYSICAL OCEANOGRAPHY DYNAMIC OCEANOGRAPHY 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The three cruises, OPTOMA12, OPTOMA13, and OPTOMA14, and one AXBT flight, OPTOMA13P, were under taken in October and November, 1984. This report presents the hydrographic data, acquired by XBT, AXBT and CTD casts, from the cruises and the flight. | SECURITY CLASSIFICATION OF T | HIS PAGE (When Data Entered) | | | |------------------------------|------------------------------|--|--| ## Hydrographic Data from the OPTOMA Program: OPTOMA12 8 - 18 October, 1984 OPTOMA13 22 October - 3 November, 1984 OPTOMA13P 27 October, 1984 OPTOMA14 3 - 14 November, 1984 by Paul A. Wittmann Edward A. Kelley, Jr. Christopher N. K. Mooers Chief Scientists: C. N. K. Mooers, E. A. Kelley, Jr. A. A. Bird, M. C. Colton The **OPTOMA** Program is a joint program of Department of Oceanography Naval Postgraduate School Monterey, CA 93943. Center for Earth and Planetary Physics Harvard University Cambridge, MA 02138. LUBD ### 939. ## TABLE OF CONTENTS | | PAGE | |---------------------------|------| | LIST OF TABLES | ii | | LIST OF FIGURES | iii | | INTRODUCTION | 2 | | DATA ACQUISITION | 3 | | DATA PROCESSING | 3 | | DATA PRESENTATION | 4 | | SECTION 1: OPTOMA12 | 7 | | SECTION 2: OPTOMA13 | 31 | | SECTION 3: OPTOMA14 | 61 | | SECTION 4: OPTOMA13P | 89 | | ACKNOWLEDGEMENTS | 102 | | REFERENCE | 102 | | INITIAL DISTRIBUTION LIST | 103 | #### LIST OF TABLES | Table No. | Caption | Page | |-----------|--|------| | 1. | Scientific instruments aboard R/V ACANIA | 6 | | 2. | OPTOMA12 Station Listing | 11 | | 3. | OPTOMA13 Station Listing | 35 | | 4. | OPTOMA14 Station Listing | 65 | | 5. | OPTOMA13P Station Listing | 93 | #### LIST OF FIGURES | Figure | No. | Caption | Page | |--------|----------|---|------| | 1. | | The NOCAL, CENCAL, and WABC subdomains of the OPTOMA Program. Isobaths are shown in meters. | 1 | | 2. | | The cruise track for OPTOMA12. | 8 | | 3. | | XBT and CTD locations for OPTOMA12. | 9 | | 4. | | Station numbers for OPTOMA12. | 10 | | 5 | (a)-(e). | XBT temperature profiles, staggered by multiples of 5C (OPTOMA12). | 14 | | 6 | | CTD temperature profiles, staggered by multiples of 5C, and salinity profiles staggered by multiples of 4 ppt (OPTOMA12). | 19 | | 7. | | CTD casts deeper than 500m (OPTOMA12). | 20 | | 8 | (a)-(j). | Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow (OPTOMA12). | 21 | | 9. | | Mean temperature profiles from (a) XBT's and (b) CTD's, with + and - the standard deviation. (OPTOMA12). | 27 | | 10. | | Mean profiles of (a) salinity and (b) sigma-t, with + and - the standard deviations, from the CTD's (OPTOMA12). | 28 | | 11. | | (a) T-S pairs and (b) mean T-S relation, with
+ and - the standard deviation, from the CTD's.
Selected sigma-t contours are also shown.
(OPTOMA12). | 29 | | 12. | | Mean N^2 profile $()$, with $+$ and $-$ the standard deviation $()$. The N^2 profile from $T(z)$ and $S(z)$ is also shown (\cdots) . (OPTOMA12). | 30 | | 13. | | The cruise track for OPTOMA13. The first excursion of the track is shown as a solid line, the second excursion as a broken line. | 32 | | Figure | No. | Caption | Page | |--------|----------|---|------| | 14. | | XBT and CTD locations for OPTOMA13. | 33 | | 15. | | Station numbers for OPTOMA13. | 34 | | 16 | (a)-(f). | XBT temperature profiles, staggered by multiples of 5C (OPTOMA13). | 39 | | 17 | (a)-(b). | CTD temperature profiles, staggered by multiples of 5C, and salinity profiles staggered by multiples of 4 ppt (OPTOMA13). | 45 | | 18 | (a)-(s). | Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow (OPTOMA13). | 47 | | 19 | | Isopleths of (1) temperature and salinity and (2) sigma-t from the CTD's (OPTOMA13). | 56 | | 20. | |
Mean temperature profiles from (a) XBT's and (b) CTD's, with + and - the standard deviation. (OPTOMA13). | 57 | | 21. | | Mean profiles of (a) salinity and (b) sigma-t, with + and - the standard deviations, from the CTD's (OPTOMA13). | 58 | | 22. | | (a) T-S pairs and (b) mean T-S relation, with + and - the standard deviation, from the CTD's. Selected sigma-t contours are also shown. (OPTOMA13). | 59 | | 23. | | Mean N^2 profile $()$, with $+$ and $-$ the standard deviation $()$. The N^2 profile from $\overline{T(z)}$ and $\overline{S(z)}$ is also shown (\cdots) . (OPTOMA13). | 60 | | 24. | | The cruise track for OPTOMA14. | 62 | | 25. | | XBT and CTD locations for OPTOMA14. | 63 | | 26. | | Station numbers for OPTOMA14. | 64 | | 27 | (a)-(g). | XBT temperature profiles, staggered by multiples of 5C (OPTOMA14). | 69 | | Figure | No. | Caption | Page | |--------|----------|--|------| | 28 | | CTD temperature profiles, staggered by multiples of 5C, and salinity profiles staggered by multiples of 4 ppt (OPTOMA14). | 76 | | 29 | (a)-(n). | Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow (OPTOMA14). | 77 | | 30. | | Mean temperature profiles from (a) XBT's and (b) CTD's, with + and - the standard deviation. (OPTOMA14). | 84 | | 31. | | Mean profiles of (a) salinity and (b) sigma-t, with + and - the standard deviations, from the CTD's (OPTOMA14). | 85 | | 32. | | (a) T-S pairs and (b) mean T-S relation, with
+ and - the standard deviation, from the CTD's.
Selected sigma-t contours are also shown.
(OPTOMA14). | 86 | | 33. | | Mean N^2 profile $()$, with $+$ and $-$ the standard deviation $()$. The N^2 profile from $T(z)$ and $S(z)$ is also shown $()$. (OPTOMA14). | 87 | | 34. | | The flight track for OPTOMA13P. | 90 | | 35. | | AXBT locations for OPTOMA13P. | 91 | | 36. | | Station numbers for OPTOMA13P. | 92 | | 37 | (a)-(c). | AXBT temperature profiles, staggered by multiples of 5C (OPTOMA13P). | 94 | | 38 | (a)-(h). | Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow (OPTOMA13P). | 97 | | 39. | | Mean temperature profile, with + and - the standard deviation. (OPTOMA13P). | 101 | Figure 1: The NOCAL, CENCAL and WABC subdomains of the OPTOMA Program. Isobaths shown in meters. #### INTRODUCTION The OPTOMA (Ocean Prediction Through Observations, Modeling and Analysis) Program, a joint NPS/Harvard program sponsored by ONR, seeks to understand the mesoscale (fronts, eddies, and jets) variability and dynamics of the California Current System and to determine the scientific limits to practical mesoscale ocean forecasting. To help carry out the aims of this project, a series of cruises has been planned in three subdomains, NOCAL, CENCAL, and WABC shown in Figure 1. The three cruises and one AXBT flight were undertaken, during October and November 1984, in the NOAA Ship McARTHUR and a Reserve Patrol Wing P3B aircraft. Hydrographic data were acquired off the coast of Washington, Oregon, and California in an area which covered and extended the WABC and NOCAL regions. OPTOMA12 was carried out from 8 to 18 October and sampled the WABC subdomain, an area approximately 150km square about 150km west of the Straits of Juan de Fuca. An additional transect from the WABC area to Pt. Arena was sampled, as shown in Figure 2. OPTOMA13 was carried out from 22 October to 3 November, and sampled an area approximately 200km square centered about 190km off the coast between Pt. Reyes and Pt. Arena in the NOCAL domain, with additional transects to and from Monterey, as shown in Figure 13. OPTOMA14 was carried out from 3 to 14 November, and sampled the Mendocino escarpment area, off the coast of Cape Mendocino, with additional transects from Monterey and to Seattle, as shown in Figure 24. OPTOMA13P was carried out on 27 October aboard a USNR P3B aircraft, and sampled an area approximately 250km square in the NOCAL area, as shown in Figure 34. On each cruise track, transect extremes are identified by letter in these figures to aid in cross-referencing the data presented in subsequent figures. On each of these cruises, hydrographic stations were occupied at approximately 15 km along the track. For the AXBT flight, the along-track spacing was about 46km. DATA ACQUISITION Data acquired during OPTOMA12, OPTOMA13, and OPTOMA14 include XBT and CTD profiles; whereas data acquired during OPTOMA13P are AXBT profiles. Bucket surface temperature and water samples for salinity were taken at most CTD stations. These surface values were used for calibration purposes as well as contributions to the data base. The XBT and AXBT data were digitized using a Sippican MK9 unit. All data were recorded, using an HP200 series computer, on data disks and transferred to the IBM 3033 mainframe computer for editing and processing. Station positions aboard ship were determined by Loran C fixes and are claimed to be accurate to within about 0.1 km. A Plessey CTD and Sippican XBT's were employed during OPTOMA12; a Neil Brown CTD and Sippican XBT's were used during OPTOMA13 and OPTOMA14. Their accuracies are stated in Table 1. The bottle surface salinity samples from OPTOMA12 and OPTOMA13 were determined onboard by a Plessy salinometer; its accuracy is contained in Table 1. Samples from OPTOMA14 were determined by a Guildline Model 8400 "Autosal" salinometer with an accuracy of ± 0.003 ppt. Also during OPTOMA13, expendable current profiler (XCP) data were acquired, but will not be presented in this report. Station positions for OPTOMA13P are accurate to within 1 km, temperature values to within 0.2C and depth values to within 2% or 5m (whichever is larger). DATA PROCESSING Data processing, such as estimating depth profiles for the XBT and AXBT temperature profiles based on the descent speed, and conversion of CTD conductivity to salinity using the algorithm given in Lewis and Perkin (1981), was carried out on the IBM 3033 at the Naval Postgraduate School. The data were then edited by removing obvious salinity spikes and eliminating cast failures that were not identified during the cruise. Approximately 100%, 94%, 100% and 81% of casts were retained in the data set of OPTOMA12, OPTOMA13, OPTOMA14 and OPTOMA13P, respectively. During OPTOMA12 the conductivity cell appeared to be unstable during the first three CTD stations; only the temperature data from those stations appear in this report. The surface salinities for the next four CTD stations of OPTOMA12 were too high on average by 2.16 ppt and were adjusted accordingly. No corrections were made to the remaining two CTD's. For the OPTOMA13 and 14 salinities, no corrections were required. The CTD data were interpolated to 5 m intervals and then up and down casts were averaged. The data have been transferred on digital tape to the National Oceanographic Data Center in Washington, DC. #### DATA PRESENTATION The cruise track, station locations (with XBT's, CTD's and AXBT's identified) and station numbers are shown in the first three figures of each of the next four sections, which present the data from OPTOMA12, OPTOMA13, OPTOMA14 and OPTOMA13P respectively. These figures are followed by a listing of the stations, with their coordinates, the date and time at which the station was occupied, and the surface information obtained at the station. Vertical profiles of temperature from the XBT casts are shown in staggered fashion. The location of these profiles may be found by reference to the various maps of the cruise tracks. Transect extremes are identified as nearly as possible. The first profile on each plot is shown with its temperature unchanged; to each subsequent profile an appropriate multiple of 5C has been added. Vertical profiles from the CTD's follow (except Leg P). Profiles of temperature are staggered by 5C and those of salinity by 4 ppt. Isotherms for each transect are shown in the next pages, followed (except for Leg P) by isopleths of temperature, salinity and sigma-t, from the CTD's, when four or more casts were acquired along a transect. Based on instrument accuracy and the vertical temperature gradient, it is estimated that depths of isotherms in the main thermocline are uncertain to +20m. The tick marks identify station positions and, again, the transect extremes are shown on these plots. Sections 1, 2, and 3 include mean profiles of temperature from the XBT's and CTD's. In addition mean profiles of temperature, salinity and sigma-t from the CTD's are given, as well as a scatter diagram of the T-S pairs and the mean S(T) curve, with the \pm standard deviation envelope; the data presentation concludes with a plot of the mean N^2 (Brunt-Vaisala frequency squared) profile, with \pm the standard deviation. On the sigma-t and N^2 plots, the appropriate profiles derived from the mean temperature and mean salinity profiles are also shown. Section 4 includes the mean profile of the temperature from the AXBT's. Table 1: Scientific instruments aboard the NOAA Ship McARTHUR | | Instrument | Variable | Sensor | Accuracy | Resolution | |---|--------------------------------|---|---|--|------------------------------------| | * | Neil Brown
CTD
Mark IIIb | pressure
temperature
conductivity | strain gage
thermistor
electrode cell | 1.6 db
0.005 C
0.005 mmho | 0.025 db
0.0005 C
0.001 mmho | | | Sippican
BT | temperature
depth | thermistor
descent speed | 0.2 C
greater of 4.6
and 2% of depti | | | |
Plessey
CTD | pressure
temperature
conductivity | | +0.04% of depth
+0.005 C
+0.005 mmho | h | | | Plessey
salinometer | salinity | | <u>+</u> 0.003ppt | | ^{*} employed only during OPTOMA13 and OPTOMA14 Section 1 OPTOMA12 Figure 2: The cruise track for OPTOMA12. Figure 3: XBT and CTD locations for OPTOMA12. Figure 4: Station numbers for OPTOMA12. Table 2: OPTOMA12 Station Listing | STN | TYPE | YR/DAY | GMT | | LONG
(WEST)
(DDD.MM) | SURFACE
TEMP
(DEG C) | SALINIT | Y TEMP | SALINITY | |---|--|---|---|---|--|--|---------|--------|----------| | 12345678910112131456171819201222324525233345363738940142344 | XBT
XBT
XBT
XBT
XBT
XBT
XBT
XBT
XBT
XBT |
84283
84283
84283
84283
84283
84283
84283
84285
84285
84285
84285
84285
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288
84288 | 101
156
246
334
419
511
610
656
743
831
918 | 48.27
48.37
48.28
48.18
48.32
48.32
48.32
48.32
48.32
48.32
48.32
48.33
48.54
48.33
48.55
47.53
47.53
47.45
47.37
47.49
47.37
48.23
48.23
48.23
48.23
48.23
48.35
47.53
47.45
47.45
47.45
48.23
48.23
48.23
48.23
48.23
48.23
48.23
47.45
47.45
47.45
48.23
48.23
48.23
48.23
48.23
48.23
47.45
47.45
47.45
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
47.45
47.45
47.45
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
48.23
47.43
47.43
47.43
47.43
47.43
47.43
47.43
47.43 | 124.48
124.52
124.57
125.03
125.12
125.21
125.29
125.35
125.35
125.43
125.52
126.00
126.08
126.16
126.12
126.07
126.04
126.07
126.05
126.05
126.33
127.31
127.31
127.31
127.36
127.37
127.31
127.31
127.31
127.31
127.36
127.31
127.31
127.31
127.31
127.31
127.31
127.31
127.31
127.31
127.31
127.31
127.31
127.31
127.31
127.31
127.31
127.31
127.31
127.31
127.31
127.31
127.31
127.31
127.31
127.31
127.31
127.31
127.31
127.31
127.31
127.30
127.43
127.43
127.47 | 13.1
13.2
13.1
13.2
13.1
13.0
12.6
11.9
13.8
13.6
12.7
12.9
13.8
13.6
12.3
12.6
13.4
13.3
12.6
13.4
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.6
14.1
14.2
14.2
13.8
13.8
13.6
14.1
14.2
13.8
13.8
13.6
14.1
14.2
13.8
13.8
13.6
14.1
14.1
14.2
14.2
13.8
13.6
13.7
14.1
14.1
14.2
14.2
13.8
13.6
13.7
13.8
13.6
13.7
14.1
14.1
14.2
14.2
13.8
13.6
13.7
13.8
13.8
13.8
13.6
13.7
14.1
14.1
14.2
13.8
13.8
13.6
13.7
13.8
13.6
13.7
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8 | 32.05 | * * | * * | | 45 | CTD | 84289 | 1130 | 47.27 | 125.41 | 14.0 | 32.08 | * | 32.03 | | STN | TYPE | YR/DAY | GMT | LAT
(NORTH)
(DD.MM) | | | SALINI | TY TEMP | T BOTTLE
SALINITY
) (PPT) | |----------------------------------|--|--|--|--|--|--|--------|---------|---------------------------------| | 46
47
48
49
50
51 | XBT
XBT
XBT
XBT
XBT
XBT | 84289
84289
84289
84289
84289 | 1221
1309
1414
1513
1614
1711 | 47.25
47.23
47.19
47.17
47.14
47.12 | 125.54
126.06
126.22
126.36
126.51
127.06 | 13.7
14.1
14.5
14.4
13.9
14.0 | | | | | 52
53
54
55
56
57 | CTD
XBT
XBT
XBT
XBT
XBT | 84289
84289
84289
84289
84289 | 1810
2019
2110
2202
2253
2347 | 47.09
46.59
46.49
46.40
46.30
46.20 | 127.19
127.16
127.13
127.10
127.07
127.04 | 14.1
14.7
14.6
14.5
14.8
15.2 | 32.10 | * | 32.13 | | 58
59
60
61
62
63 | XBT
XBT
XBT
XBT
XBT
XBT | 84290
84290
84290
84290
84290 | 37
131
218
306
357
451 | 46.11
46.00
45.51
45.43
45.32
45.22 | 127.01
126.58
126.55
126.52
126.48
126.46 | 14.9
14.7
14.8
15.0
15.1 | | | | | 64
65
66
67
68
69 | XBT
XBT
XBT
XBT
XBT
XBT | 84290
84290
84290
84290
84290
84290 | 534
622
710
756
840
927 | 45.12
45.02
44.52
44.42
44.33
44.23 | 126.43
126.40
126.37
126.34
126.31
126.28 | 14.8
15.0
15.1
15.0
14.3
14.3 | | | | | 70
71
72
73
74
75 | XBT
XBT
XBT
XBT
XBT
XBT | 84290
84290
84290
84290
84290
84290 | 1021
1110
1200
1246
1335
1422 | 44.12
44.03
43.53
43.43
43.33
43.23 | 126.25
126.22
126.19
126.15
126.13
126.10 |
14.9
14.7
15.3
15.5
15.7 | | | | | 76
77
78
79
80
81 | XBT
XBT
XBT
XBT
XBT
XBT | 84290
84290
84290
84290
84290
84290 | 1518
1605
1655
1741
1830
1925 | 43.12
43.03
42.53
42.44
42.35
42.24 | 126.09
126.06
126.04
126.02
125.59
125.57 | 15.3
15.3
15.8
15.6
14.7
15.1 | | | | | 82
83
84
85
86 | XBT
XBT
XBT
XBT
XBT | 84290
84290
84290
84290
84290 | 2011
2100
2150
2238
2328 | 42.15
42.05
41.55
41.46
41.36 | 125.56
125.54
125.52
125.49
125.47 | 15.1
14.6
14.6
14.0
13.9 | | | | | 87
88
89
90 | XBT
XBT
XBT
XBT | 84291
84291
84291
84291 | 18
106
200
256 | 41.26
41.17
41.06
40.56 | 125.46
125.43
125.41
125.38 | 14.6
14.1
14.4
14.5 | | | | | STN | TYPE | YR/DAY | GMT | | LONG
(WEST)
(DDD.MM) | TEMP | SALINI | TY TEM | ET BOTTLE IP SALINITY C) (PPT) | |-----|------|--------|------|-------|----------------------------|------|--------|--------|--------------------------------| | 91 | XBT | 84291 | 347 | 40.46 | 125.35 | 14.9 | | | | | 92 | XBT | 84291 | 439 | 40.37 | 125.32 | 14.9 | | | | | 93 | XBT | 84291 | 532 | 40.27 | 125.28 | 14.7 | | | | | 94 | XBT | 84291 | 626 | 40.17 | 125.25 | 14.4 | | | | | 95 | XBT | 84291 | 715 | 40.07 | 125.23 | 14.7 | | | | | 96 | XBT | 84291 | 806 | 39.58 | 125.16 | 15.2 | | | | | 97 | XBT | 84291 | 855 | 39.50 | 125.09 | 15.2 | | | | | 98 | XBT | 84291 | 952 | 39.40 | 125.02 | 14.9 | | | | | 99 | XBT | 84291 | 1047 | | 124.55 | 13.2 | | | | | 100 | XBT | 84291 | 1139 | 39.22 | 124.46 | 13.3 | | | | | 101 | XBT | 84291 | 1235 | 39.13 | 124.42 | 12.8 | | | | | 102 | XBT | 84291 | 1331 | 39.05 | 124.35 | 13.0 | | | | | 103 | XBT | 84291 | 1425 | 38.56 | 124.29 | 12.6 | | | | | 104 | CTD | 84291 | 1600 | 38.49 | 124.22 | 12.6 | 33.27 | * | 33.35 | | 105 | XBT | 84291 | 1707 | 38.38 | 124.15 | 13.2 | | | | | 106 | XBT | 84291 | 1758 | 38.30 | 124.08 | 13.4 | | | | | 107 | XBT | 84291 | 1852 | 38.21 | 124.01 | 13.5 | | | | | 108 | CTD | 84291 | 1942 | 38.12 | 123.54 | 12.8 | 33.45 | * | 33.45 | | 109 | XBT | 84291 | 2141 | 38.04 | 123.44 | 14.4 | | | | | 110 | XBT | 84291 | 2300 | 37.56 | 123.34 | 14.1 | | | | | 111 | XBT | 84291 | 11 | 37.49 | 123.25 | 13.7 | | | | | 112 | XBT | 84292 | 125 | 37.40 | 123.18 | 12.6 | | | | | 113 | XBT | 84292 | 231 | 37.32 | 123.10 | 12.6 | | | | | 114 | XBT | 84292 | 346 | 37.24 | 123.03 | 12.7 | | | | | 115 | XBT | 84292 | 501 | 37.16 | 122.56 | 14.1 | | | | ^{*} Data not available Figure 5(a): XBT temperature profiles, staggered by multiples of 5C (OPTOMA12). Figure 5(d) Figure 6: CTD temperature profiles, staggered by multiples of 5C, and salinity profiles staggered by multiples of 4 ppt (OPTOMA12). Figure 7: CTD casts deeper than 500m (OPTOMA12). Figure 8(a)-(c): Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow (OPTOMA12). Figure 8(d) Figure 8(e) Figure 8(f) Figure 8(g) Figure 8(h) Figure 8(i) Figure 8(j) Figure 9: Mean temperature profiles from (a) XBT's and (b) CTD's, with + and - the standard deviation. (OPTOMA12). Figure 10: Mean profiles of (a) salinity and (b) sigma-t, with + and - the standard deviations, from the CTD's (OPTOMA12). Figure II: (a) T-S pairs and (b) mean T-S relation, with + and - the standard deviation, from the CTD's. Selected sigma-t contours are also shown (OPTOMA12). Figure 12: Mean N^2 profile(—), with + and - the standard deviation(---). The N^2 profile from $\overline{T(z)}$ and $\overline{S(z)}$ is also shown(...) (OPTOMA12). Section 2 OPTOMA13 Figure 13: The cruise track for OPTOMA13. The first excursion of the track is shown as a solid line, the second excursion as a broken line. Figure 14: XBT and CTD locations for OPTOMA13. Figure 15: Station numbers for OPTOMA13. Table 3: OPTOMA13 Station Listing | STN . | TYPE | YR/DAY | GMT | LAT
(NORTH)
(DD.MM) | LONG
(WEST)
(DDD.MM) | TEMP | | Y TEMP | SALINITY | |--|---|---|--|--|--|--|----------------|--------------|----------------| | 1
2
3
4
5
6
7 | XBT
XBT
CTD
XBT
XBT
XBT
XBT | 84296
84296
84296
84296
84296
84296 | 1724
1816
1919
2030
2127
2224
2322 | 36.44
36.49
36.54
36.59
37.05
37.08 | 122.08
122.19
122.30
122.42
122.53
123.05
123.16 | 12.7
14.4
14.3
14.2
15.0
15.1
14.4 | 33.35 | * | 33.21 | | 8
9
10
11
12
13 | XBT
CTD
XBT
XBT
XBT
XBT | 84297
84297
84297
84278
84298
84298 | 3
122
2250
115
122
302 | 37.15
37.22
36.48
37.02
37.03
37.12 | 123.16
123.28
122.18
122.48
122.49
123.00 | 14.1
13.6
14.7
14.3
14.4
15.2 | 33.27 | 13.8 | 33.23 | | 14
15 | CTD
CTD | 84298
84298 | 415
825 | 37.18
37.21 | 123.23
123.26 | 13.2
12.7 | 33.32
33.43 | 13.9
13.0 | 33.42
33.45 | | 16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37 | XBT CTD XBT | 84298
84298
84298
84298
84298
84298
84298
84299
84299
84299
84299
84299
84299
84299
84299
84299
84299
84299
84299 | 910
1013
1152
1302
1426
1547
1805
1949
2144
2341
201
344
531
702
836
1039
1147
1321
1409
1457
1603
1758 | 37.24
37.26
37.36
37.44
37.53
38.01
38.12
38.21
38.29
38.37
38.48
38.56
39.05
39.13
39.22
39.31
39.36
39.31
39.22
39.14 | 123.26
123.24
123.30
123.35
123.41
123.46
123.56
124.02
124.09
124.15
124.23
124.28
124.42
124.49
124.56
125.00
125.12
125.06
124.59
124.39 | 14.3
13.8
14.3
13.8
13.1
12.7
13.1
12.7
11.6
12.6
12.7
12.7
12.7
12.7
12.7
12.7
12.7
12.7 | 33.18 | 14.0 | 33.20 | | 38
39
40 | XBT
CTD
XBT | 84299
84299
84299 | 1841
1955
2125 | 38.41
38.32
38.24 | 124.33
124.27
124.20 | 11.4
12.1
12.9 | 33.26 | 12.3 | 33.26 | | 41
42 | CTD
XBT | 84299
84299 | 2235
2352 | 38.16
38.07 | 124.13
124.07 | 13.8
13.4 | 33.10 | 14.0 | 33.16 | | 43
44
45 | CTD
XBT
CTD | 84300
84300
84300 | 128
305
444 | 38.03
38.11
38.19 | 124.18
124.24
124.30 | 14.0
14.0
13.6 | 32.98 | 13.8
13.6 | 32.99 | | STN | TYPE | YR/DAY | GMT | LAT
(NORTH)
(DD.MM) | | SURFACE
TEMP
(DEG C) | SALINIT | | SALINITY | |--|--
---|---|--|--|--|----------------------------------|---------------------------|----------------------------------| | 46
47
48
49
50
51
52
53 | XBT
XBT
CTD
XBT
CTD
CTD
CTD | 84300
84300
84300
84300
84300
84300
84300 | 628
739
911
1257
1521
1702
1911
2222 | 38.27
38.37
38.48
38.56
39.03
39.06
38.52
38.56 | 124.37
124.45
124.53
124.59
124.50
125.08
125.10
124.59 | 13.0
12.2
12.6
12.8
12.5
13.0
13.0 | 33.24
33.07
33.11
33.22 | 12.7
*
12.8
12.8 | 34.93
33.50
33.07
33.21 | | 54
55
56
57
58
60
61
62
63
64
66
66
67
67
77
77
77
77
77
77
77
77
77 | XBT
XBT
XBT
XBT
XBT
XBT
XBT
XBT
XBT
XBT |
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302
84302 | 122
240
326
410
439
531
622
710
757
847
935
1027
1118
1213
1302
1347
1447
1532
1633
1711
1836
2119
2210
2303
2352
413
450
527
632 | 39.15
39.25
39.16
39.08
39.02
38.52
38.43
38.35
38.26
38.30
37.51
37.54
37.56
37.59
38.08
38.15
38.25
38.32
38.42
38.50
38.50
38.50
38.50
38.50
38.70
38.50
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
38.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39.70
39 | 125.15
125.22
125.25
125.29
125.31
125.25
125.18
125.11
125.05
124.58
124.51
124.43
124.49
125.01
125.12
125.19
125.25
125.33
125.38
125.47
125.53
125.58
126.04
126.10
126.00
125.41
125.42
125.45
125.45
125.45
125.47
125.45
125.47
125.37
125.37
125.33
125.33 | 12.9
14.3
13.6
12.7
13.1
14.2
14.6
14.1
13.1
14.0
14.1
13.9
13.4
13.7
13.8
14.2
14.3
13.6
13.7
13.8
14.3
13.6
13.7
13.6
13.7
13.6
13.7
13.6
13.7
13.6
13.7
13.6
13.7
13.6
13.7
13.6
13.7
13.6
13.7
13.6
13.7
13.6
13.7
13.6
13.7
13.6
13.6
13.7
13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6 | 33.12 | 13.8 | 33.07 | | STN | TYPE | YR/DAY | GMT | | LONG
(WEST)
(DDD.MM) | SURFACE
TEMP
(DEG C) | SALINIT | Y TEMP | SALINITY | |--|---|---|--|---|--|--|---------|--------|----------| | 91
92
93
94
95
96
97
98
99 | XBT
XBT
XBT
XBT
XBT
XBT
XBT
XBT
XBT | 84302
84302
84302
84302
84302
84302
84302
84302
84302
84302 | 917
939
955
1010
1026
1039
1052
1106
1118
1130 | 39.13
39.12
39.10
39.09
39.08
39.07
39.07
39.05
39.05 | 125.25
125.26
125.26
125.27
125.27
125.28
125.28
125.28
125.28 | 13.7
13.3
13.2
12.9
12.8
12.8
12.8
12.8 | | | | | 101
102
103
104
105 | XBT
CTD
XBT
XBT
XBT
XBT | 84302
84302
84302
84302
84302 | 1602
2005
2102
2155
2252 | 39.04
39.11
39.08
39.03
38.58
38.53 | 125.29
125.26
125.12
125.00
124.48
124.35 | 12.6
13.2
12.7
13.0
12.9 | 33.03 | 13.2 | 33.06 | | 106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127 | CTD XBT | 84303
84303
84303
84303
84303
84303
84303
84305
84305
84305
84306
84306
84306
84306
84306
84306
84306
84306
84306 | 12
214
338
501
625
810
934
1109
1243
2103
2200
2311
18
126
225
327
443
530
636
740
922
1010 | 38.47
38.41
38.34
38.28
38.22
38.15
38.09
38.02
37.55
37.55
37.58
38.01
38.04
38.07
38.09
38.12
38.15
38.20
38.23
38.23
38.23 | 124.23
124.12
124.03
123.53
123.43
123.24
123.15
123.05
123.13
123.24
123.36
123.48
124.00
124.12
124.24
124.38
124.48
125.00
125.12
125.36
125.47 | 12.5
12.4
12.2
12.0
13.5
13.2
12.9
11.8
11.8
11.6
11.3
13.5
13.0
12.6
13.9
13.5
12.6
13.9 | 33.34 | 13.1 | 33.34 | | 128
129
130
131
132
133
134
135 |
XBT
XBT
CTD
XBT
XBT
XBT
XBT
XBT | 84306
84306
84306
84306
84306
84306
84306 | 1101
1152
1411
1528
1644
1850
2000
2113 | 38.34
38.37
38.41
38.45
38.36
38.19
38.11
38.03 | 125.59
126.11
126.35
126.51
126.43
126.31
126.24
126.18 | 16.5
16.8
16.7
16.4
17.3
17.2 | 32.73 | 16.8 | * | | STN | TYPE | YR/DAY | GMT | LAT
(NORTH)
(DD.MM) | LONG
(WEST)
(DDD.MM) | SURFACE
TEMP
(DEG C) | |-----|------|--------|------|---------------------------|----------------------------|----------------------------| | 136 | XBT | 84306 | 2213 | 37.54 | 126.11 | 17.0 | | 137 | XBT | 84306 | 2311 | 37.46 | 126.05 | 16.6 | | 138 | XBT | 84307 | 10 | 37.38 | 125.58 | 15.9 | | 139 | XBT | 84307 | 109 | 37.29 | 125.52 | 16.6 | | 140 | XBT | 84307 | 209 | 37.20 | 125.45 | 15.1 | | 141 | XBT | 84307 | 309 | 37.26 | 125.33 | 15.3 | | 142 | XBT | 84307 | 544 | 37.15 | 125.55 | 15.2 | | 143 | XBT | 84307 | 702 | 37.10 | 126.07 | 15.1 | | 144 | XBT | 84307 | 956 | 37.35 | 125.39 | 16.0 | | 145 | XBT | 84307 | 1056 | 37.45 | 125.37 | 15.8 | | 146 | XBT | 84307 | 1205 | 37.56 | 125.34 | 14.9 | | 147 | XBT | 84307 | 1259 | 38.04 | 125.30 | 13.3 | | 148 | XBT | 84307 | 1406 | 38.04 | 125.18 | 13.8 | | 149 | XBT | 84307 | 1456 | 38.04 | 125.06 | 14.2 | | | | | | | | | ^{*} Data not available Figure 16(a): XBT temperature profiles, staggered by multiples of 5C (OPTOMA13). Figure 16(f) Figure 17(a): CTD temperature profiles, staggered by multiples of 5C, and salinity profiles staggered by multiples of 4 ppt. (OPTOMA13). Figure 17(b) Figure 18(a): Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow (OPTOMA13). Figure 18(c) Figure 18(d) Figure 18(e) Figure 18(o) Figure 18(p) Figure 18(r) Figure 18(s) Figure 19: Isopleths of (1) temperature and salinity and (2) sigma-t from the CTD's (OPTOMA13). Figure 20: Mean temperature profiles from (a) XBT's and (b) CTD's, with + and - the standard deviation (OPTOMA13). Figure 21: Mean profiles of (a) salinity and (b) sigma-t, with + and - the standard deviations, from the CTD's (OPTOMA13). Figure 22: (a) T-S pairs and (b) mean T-S relation, with + and - the standard deviation, from the CTD's. Selected sigma-t contours are also shown (OPTOMA13). Selected sigma-t contours are also shown (OPTOMA13) Figure 23: Mean N^2 profile(--), with + and - the standard deviation(---). The N^2 profile from $\overline{T(z)}$ and $\overline{S(z)}$ is also shown(...) (OPTOMA13). Section 3 OPTOMA14 Figure 24: The cruise track for OPTOMA14. Figure 25: XBT and CTD locations for OPTOMA14. Figure 26: Station numbers for OPTOMA14. Table 4: OPTOMA 14 Station Listing | STN | TYPE | YR/DAY | GMT | LAT
(NORTH)
(DD.MM) | | | | Y TEMP S | SALINITY | |--|---|--|--|---|--|------|-------|----------|----------| | 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 9 30 31 32 33 34 35 6 37 38 9 40 14 20 1 | XBT
XBT
XBT
XBT
XBT
XBT
XBT
XBT
CTD | 84309
84309
84309
84309
84310
84310
84310
84310
84310
84310
84310
84310
84310
84310
84310
84310
84310
84310
84310
84310
84310
84310 | 1022
1114
1202
1303
1406
1502
1600
1658
1724 | 40.19
40.20
40.21
40.23
40.24
40.26
40.26 | 125.08
124.54
124.42
124.56
125.10
125.24
125.38
125.52
125.52 | | 32.14 | * | 32.23 | | 43
44
45 | XBT
CTD
XBT | 84310
84310
84310 | 1838
1952
2114 | 40.26 | 126.05
126.18
126.31 | 14.7 | 32.22 | * | 33.22 | | STN | TYPE | YR/DAY | GMT | | LONG
(WEST)
(DDD.MM) | SURFACE
TEMP
(DEG C) | SALINI | | SALINITY | |---|--
---|---|--|--|--|--------|---|----------| | 447890123456789012345678901234567890
4478955555555666666666777777777888888888890 | XBT
CTD
XBT
XBT
XBT
XBT
XBT
XBT
XBT
XBT
XBT
XBT |
84310
84311
84311
84311
84311
84311
84311
84311
84311
84311
84311
84311
84311
84311
84311
84311
84311
84311
84311
84311
84311
84311
84311
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312
84312 | 2208
2319
31
131
247
326
355
540
602
701
801
846
934
1022
1114
1210
1301
1411
1505
1559
1676
1803
1905
2011
2121
2236
2358
110
202
252
350
440
522
623
711
806
852
955
1043
1139
1230
1310
1310
1310
1310
1310
1310
1310 | 40.23
40.22
40.21
40.20
40.32
40.32
40.33
40.35
40.36
40.38
40.38
40.48
40.48
40.51
40.53
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40.55
40 | 126.45
126.58
127.12
127.24
127.37
127.33
127.29
127.03
126.56
126.40
126.24
125.59
125.46
125.33
125.20
125.31
125.47
125.34
125.47
126.00
126.13
126.52
127.05
127.19
127.31
127.19
127.31
127.19
127.06
126.52
127.05
127.19
127.31
127.40 | 15.2
15.4
15.3
15.4
15.7
15.7
15.6
14.8
14.6
14.6
14.5
14.8
13.5
13.8
13.7
13.8
13.7
13.8
14.1
14.6
14.7
14.6
14.7
14.6
14.7
14.7
14.8
15.1
14.7
14.6
14.7
14.8
15.1
14.7
14.8
15.1
14.6
14.7
14.8
15.1
14.6
14.7
14.8
15.1
14.6
14.7
14.8
15.1
14.6
14.7
14.6
14.7
14.8
15.1
14.6
14.7
14.8
15.1
14.6
14.7
14.8
15.1
14.6
14.7
14.7
14.8
15.1
14.8
15.1
14.8
15.1
14.8
15.1
14.8
15.1
14.8
15.1
16.8
16.8
16.8
16.8
16.8
16.8
16.8
16 | 32.42 | * | 33.42 | | 91 XBT 84312 1707 42.02 127.32
92 XBT 84312 1758 42.05 127.18
93 XBT 84312 1844 42.07 127.06
94 XBT 84312 1944 42.14 127.16
95 XBT 84312 2041 42.21 127.26
96 XBT 84312 2138 42.29 127.35
97 XBT 84312 2233 42.36 127.46
98 XBT 84312 2233 42.36 127.46
98 XBT 84312 2327 42.43 127.56
99 XBT 84313 19 42.50 128.07
100 XBT 84313 109 42.58 128.14
101 XBT 84313 201 43.05 128.23
102 XBT 84313 253 43.13 128.32
103 XBT 84313 347 43.20 128.43
104 XBT 84313 438 43.27 128.54 | SURFACE
TEMP
() (DEG C) | |--|--| | 105 XBT 84313 542 43.35 129.03 106 XBT 84313 646 43.43 129.12 107 XBT 84313 750 43.49 129.21 108 XBT 84313 856 43.57 129.31 109 XBT 84313 1007 44.04 129.41 110 XBT 84313 1114 44.12 129.51 111 XBT 84313 1222 44.18 130.00 112 XBT 84313 1238 44.26 130.09 113 XBT 84313 1439 44.33 130.18 114 XBT 84313 2100 44.46 130.16 115 XBT 84313 2200 44.52 130.06 117 XBT 84313 2300 45.02 129.53 118 XBT 84314 31 45.12 129.53 120 XBT 84314 201 45.26 129.53 121 XBT 84314 | 10 (DEG C) 14.0 14.0 13.8 14.0 13.8 14.1 13.7 13.8 14.1 13.7 13.8 14.1 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.6 13.5 13.1 12.9 12.6 12.7 12.6 12.7 12.8 12.8 12.8 12.8 12.9 12.8 12.9 12.8 12.9 12.6 12.7 12.5 12.8 12.7 12.8 12.8 12.9 12.8 12.9 12.8 12.8 12.9 12.8
12.9 12.8 12.9 12.8 12.9 12.8 12.9 12.8 12.9 12.8 12.9 12.8 12.9 12.8 12.9 12.8 12.9 12.8 12.9 12.8 12.9 12.8 12.9 12.8 12.9 12.8 12.9 12.8 12.9 12.8 12.8 12.9 12.8 12.9 12.8 12.9 12.8 12.9 12.8 12.8 12.9 12.8 12.9 12.8 12.9 12.8 12.9 | | 131 XBT 84314 1009 46.31 127.33 132 XBT 84314 1059 46.38 127.24 133 XBT 84314 1146 46.44 127.14 134 XBT 84314 1228 46.51 127.03 135 XBT 84314 1322 46.57 126.53 | 4 12.3
4 12.3
3 12.1 | | STN | TYPE | YR/DAY | GMT | LAT
(NORTH)
(DD.MM) | LONG
(WEST)
(DDD.MM) | SURFACE
TEMP
(DEG C) | |-----|------|--------|------|---------------------------|----------------------------|----------------------------| | 136 | XBT | 84314 | 1402 | 47.03 | 126.43 | 11.9 | | 137 | XBT | 84314 | 1448 | 47.09 | 126.33 | 11.9 | | 138 | XBT | 84314 | 1536 | 47.16 | 126.22 | 11.6 | | 139 | XBT | 84314 | 1627 | 47.23 | 126.12 | 11.1 | | 140 | XBT | 84314 | 1713 | 47.29 | 126.02 | 11.6 | | 141 | XBT | 84314 | 1800 | 47.35 | 125.52 | 11.7 | | 142 | XBT | 84314 | 1835 | 47.39 | 125.48 | 11.6 | | 143 | XBT | 84314 | 1919 | 47.36 | 125.59 | 11.6 | | 144 | XBT | 84314 | 2011 | 47.37 | 126.13 | 11.2 | | 145 | XBT | 84314 | 2105 | 47.37 | 126.28 | 11.5 | | 146 | XBT | 84314 | 2157 | 47.35 | 126.43 | 11.1 | | 147 | XBT | 84314 | 2255 | 47.40 | 126.30 | 11.3 | | 148 | XBT | 84314 | 2350 | 47.45 | 126.17 | 11.6 | | 149 | XBT | 84315 | 41 | 47.49 | 126.05 | 10.4 | | 150 | XBT | 84315 | 139 | 47.54 | 125.51 | 10.5 | | 151 | XBT | 84315 | 235 | 48.00 | 125.39 | 10.8 | | 152 | XBT | 84315 | 328 | 48.05 | 125.27 | 11.1 | | 153 | XBT | 84315 | 422 | 48.12 | 125.15 | 11.3 | ^{*} Data not available Figure 27(a): XBT temperature profiles, staggered by multiples of 5C (OPTOMA14). Figure 28: CTD temperature profiles, staggered by multiples of 5C, and salinity profiles staggered by multiples of 4 ppt. (OPTOMA14). given. Dashed lines are used if the cast was too shallow (OPTOMA14). horizontal axis show station positions. Some station numbers are Figure 29(a): Along-track isotherms. Tick marks along the upper Figure 29(b) Figure 29(c) Figure 29(d) Figure 29(e) Figure 30: Mean temperature profiles from (a) XBT's and (b) CTD's, with + and - the standard deviation (OPTOMA14). Figure 31: Mean profiles of (a) salinity and (b) sigma-t, with + and - the standard deviations, from the CTD's (OPTOMA14). Figure 32: (a) T-S pairs and (b) mean T-S relation, with + and - the standard deviation, from the CTD's. Selected sigma-t contours are also shown (OPTOMA14). Figure 33: Mean N^2 profile(——), with + and - the standard deviation(---). The N^2 profile from $\overline{T(z)}$ and $\overline{S(z)}$ is also shown(...) (OPTOMA14). This page left intentionally blank Section 4 OPTOMA13P Figure 34: The flight track for OPTOMA13P. Figure 35: AXBT locations for OPTOMA13P. Figure 36: Station numbers for OPTOMA13P. Table 5: OPTOMA13P Station Listing | STN | TYPE | YR/DAY | GMT | | LONG
(WEST)
(DDD.MM) | TEMP | |---|--|---|--|---|--
--| | 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | AXBT
AXBT
AXBT
AXBT
AXBT
AXBT
AXBT
AXBT | 84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301
84301 | 1900
1749
1755
1800
1808
1814
1824
1944
1955
2014
2027
2033
2050
2100
2107
2122
2132
2138
2146
2152
2200
2205
2213
2221
2230
2241
2250
2255
2319
2325
2333
2341
2347
2358 | 37.52
37.30
37.12
37.02
36.52
37.09
37.19
37.39
38.01
38.73
37.36
37.36
37.46
38.27
37.17
37.36
37.46
38.27
38.45
38.25
38.45
38.25
38.35
38.25
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35
38.35 | 123.42
124.26
125.10
125.32
125.52
125.52
125.52
125.31
124.47
124.02
124.25
124.46
125.30
125.51
126.12
126.12
125.50
125.50
125.50
125.61
125.26
125.49
126.30
126.31
126.30
126.31
126.30
125.24
125.03
124.41
124.40
125.02 | 14.1
14.4
15.7
15.6
15.2
14.4
13.1
14.2
16.6
15.9
16.1
11.3
14.7
16.6
17.6
16.4
17.6
16.4
17.6
17.8
17.8 | | 40
41
42 | AXBT | 84302
84302
84302 | 5
23
29 | 39.07 | 125.22 | 13.4 | Figure 37(a): AXBT temperature profiles; staggered by multiples of 5C (OPTOMA13P). Figure 37(c) Figure 38(a)-(b): Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow (OPTOMA13P). Figure 38(e) Figure 38(f) Figure 38(h) Figure 39: Mean temperature profile, with + and - the standard deviation (OPTOMA13P). ## ACKNOWLEDGEMENTS This research was sponsored by the ONR Physical Oceanography Program. The success of the fieldwork was strongly dependent on the competent, willing support of the crew of the NOAA Ship McARTHUR and the P3 Reserve Patrol Wing aircraft. The National Ocean Service, NOAA is thanked for making the NOAA ship McARTHUR available for cooperative PMEL and NPS ocean circulation and mesoscale prediction studies of the Pacific Coast EEZ. Members of the scientific cruise party were: OPTOMA12 - Prof. C.N.K. Mooers, Chief Scientist, NPS Mr. Paul Wittmann, Assistant Chief Scientist, NPS Ms. Elzbet Diaz de Leon, Assistant Chief Scientist, UCSC OPTOMA13 - Dr. Edward Kelley, Jr., Chief Scientist, NPS Dr. Robert Loch, NPS Mr. Eric Kunze, Applied Physics Laboratory Mr. Arthur Bartlett, Applied Physics Laboratory OPTOMA14 - Ms. Arlene Bird, Chief Scientist, NPS Mr. Donald Martens, Party Chief, NPS OPTOMA13P - Ms. Marie Colton, NPS LT Mark Johnson, USN ## REFERENCE Lewis, E.L. and R.G. Perkin, 1981: The Practical Salinity Scale 1978: conversion of existing data. Deep Sea Res. 28A, 307-328. ## INITIAL DISTRIBUTION LIST | 1 | Naval Postgraduate School
Department of Oceanography
Monterey, CA 93943 Prof. Christopher N.K. Mooers
Dr. Michele M. Rienecker
Dr. Edward A. Kelley
Ms. Marie C. Colton
Mr. Paul A. Wittmann
Dr. Mary L. Batteen
Dr. Laurence C. Breaker
LCDR J. Edward Johnson, USN | 33
1
1
1
1
1
1 | |---|---|----------------------------------| | 2 | · | • | | | Prof. Allan R. Robinson Dr. James A. Carton Dr. Everett F. Carter Mr. Leonard J. Walstad Mr. Wayne G. Leslie Ms. Nadia Pinardi Prof. Myron B. Fiering | 1
1
1
1
1
1 | | 3 | Office of Naval Research (ONR)
800 N. Quincy St.
Arlington, VA 22217 | | | | Dr. Thomas W. Spence
Dr. Thomas B. Curtin | 1 | | 4 | College of Oceanography
Oregon State University
Corvallis, OR 97331 | | | | Prof. Robert L. Smith
Dr.
Adrian Huyer | 1 | | 5 | Jet Propulsion Laboratory (JPL)
California Institute of Tech.
4800 Oak Grove Road
Pasadena, CA 91109 | | | | Dr. Denise E. Hagan (Code 183-501)
Dr. Mark Abbott (also at Scripps) | 1
1 | | 6. | Commanding Officer
Fleet Numerical Oceanography Center (FNOC)
Monterey, CA 93943 | | |-----|---|------------------| | | CDR John F. Pfeiffer, USN Mr. R. Michael Clancy Mr. Ken Pollak Ms. Evelyn Hesse LCDR Michael R. Frost, RN | 1
1
1
1 | | 7. | Sandia National Laboratories
Div. 6334
Albuquerque, NM 97185 | | | | Dr. Mel Marietta
Dr. Eugene S. Hertel
Dr. Stuart L. Kupferman | 1
1
1 | | 8. | Marine Products Branch, W/NMC21
National Meteorological Center
National Weather Service, NOAA
Washington, D.C. 20233 | | | | LCDR Craig S. Nelson, NOAA Corps | 1 | | 9. | National Center for Atmospheric Research (NCAR)
P.O. Box 3000
Boulder, CO 80307 | | | | Dr. Dale B. Haidvogel | 1 | | 10. | Scripps Institution of Oceanography
University of California, San Diego
La Jolla, CA 92093 | | | | Prof. Russ E. Davis
Dr. Jerome A. Smith
Mr. Phillip Bogden | 1
1
1 | | 11. | Princeton University
Geophysical Fluid Dynamics Program
P.O. Box 308
Princeton, NJ 08540 | | | | Prof. George L. Mellor | 1 | | 12. | Tulane University Department of Mathematics 6823 St. Charles New Orleans, LA 70118 | | | | Dr. Robert N. Miller | 1 | | 1 | 13. | Woods Hole Oceanographic Institution
Department of Physical Oceanography
Woods Hole, MA 02543 | | |---|-----|---|-------------| | | | Dr. Kenneth H. Brink Dr. Robert C. Beardsley | 1 | | 1 | .4. | Naval Ocean Research and
Development Activity (NORDA)
NSTL Station
Bay St. Louis, MS 39525 | | | | | Dr. Steve A. Piacsek Dr. Dana A. Thompson Dr. Harley C. Hurlburt Dr. Alexander Warn-Varnas | 1
1
1 | | 1 | .5. | Mathematics Department 121-1984 Mathematics Road University of British Columbia Vancouver, British Columbia CANADA V6T 1Y4 | | | | | Prof. Lawrence A. Mysak | 1 | | 1 | 6. | Department of Oceanography
University of Hawaii
2525 Correa Road
Honolulu, HI 96822 | | | | | Prof. Lorenz Magaard | 1 | | 1 | .7. | NAVOCEANCOMFAC Keflavik Iceland
FPO NY 09571 | | | | | LTJG Diane C. Durban, USN | 1 | | 1 | .8. | Ocean Circulation Division Atlantic Oceanography Laboratory Bedford Institute of Oceanography Dartmouth, N.S. Box 1006 CANADA B2Y 4A2 | | | | | Dr. Motoyoshi Ikeda | 1 | | 1 | .9. | Precision Marine Meteorologic Nationale 2 Ave. RAPP 75340 Paris CEDEX 07 France | | | | | Dr. Jacques Saurel | 1 | | 20. | Div. of Oceanography RSMAS University of Miami 4600 Rickenbacker Causeway Miami, FL 33149 | | |-----|---|---| | | Dr. Otis Brown | 1 | | 21. | Applied Physics Laboratory
University of Washington
1013 NE 40th Str.
Seattle, WA 98105 | | | | Dr. Thomas B. Sanford | 1 | | 22. | School of Oceanography
University of Washington
Seattle, WA 98195 | | | | Dr. Steven C. Riser | 1 | | 23. | California Space Institute
MS-A021
Scripps Institution of Oceanography
La Jolla, CA 92093 | | | | Dr. Robert L. Bernstein | 1 | | 24. | Marine Sciences Research Center
State University of New York
Stony Brook, NY 11794 | | | | Dr. Dong-Ping Wang | 1 | | 25. | Applied Physics Laboratory
Johns Hopkins University
Laurel, MD 20707 | | | | Dr. Jack Calman | 1 | | 26. | Pacific Marine Environmental Lab
NOAA
Bldg. 3
7600 Sand Point Way, NE
Seattle, WA 98115 | | | | Mr. James R. Holbrook | 1 | | 27. | Defense Technical Information Center
Cameron Station
Alexandria, VA 22314 | 2 | | 28. | Dudley Knox Library
Code 0142
Naval Postgraduate School
Monterey, CA 93943 | 2 |