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1. INTRODUCTION

Since the early days of naval steam propulsion, the

surface condenser has evolved into a very reliable component

of the steam propulsion machinery plant. This reliability

has been achieved by providing generous design margins to

insure thermal performance at full power. The penalties for

this overdesign, however, are additional weight and volume

Cwhich must be carried around for the life of the ship) and

crowded machinery rooms with poor accessibility. Although

surface vessels and submarines have different design con-

straints, both types of vessels can benefit from a more com-

pact condenser design through improved heat transfer. The

actual dimensions of the condenser may have an impact on ves-

sel performance and cost [1]. In addition, the future

development of compact steam systems, both for main propulsion

and secondary heat recovery purposes, will require the appli-

cation of advanced technology to all system components, in-

cluding the condenser.

The purpose of this report is to review promising heat

transfer enhancement schemes which may be suitable for use in

naval surface condensers, and to identify important areas

where further research is needed.

2. SINGLE TUBE HEAT TRANSFER ENHANCEMENT

In recent years, there has been an increased awareness

regarding the use of enhanced heat transfer surfaces in the



design of heat exchangers [2, 3, 4, 5, 6, 7]. Webb in 1980

provided an excellent review of enhancement methods for par-

ticular use in condensers £8], In general, these methods may

be divided into tube-side enhancement (on the cooling water

side) and shell-side enhancement (on the steam side) techniques.

Enhancement on the tube side, where single phase turbulent

forced convection occurs, has included the use of rough sur-

faces, internal fins, and helical flutes. Shell-side enhance-

ment has included surface coatings, low integral fins, fluted

tubes and roped tubes. A description of those techniques which

appear most promising for naval condensers is provided below.

The largest thermal resistance to heat flow in conven-

tional surface condensers is usually, though not always, on

the tube side, so that tube-side enhancement may be expected

to be of greater benefit. In fact, it may be feasible to

simply increase cooling water velocity to increase the inside

coefficient without using any other enhancement technique.

With titanium tubes, for example, since there is relatively

little danger of erosion at higher water velocities, this

simple technique may prove to be attractive. By retaining

the smooth- tube configuration there would be no internal flutes,

fins or recesses with the attendant concerns about fouling and

cleaning. On the shell side, it may be possible to achieve

an overall enhancement with the proper use of condensate baffles

to limit inundation effects low in the tube bundle. Although

these standard improvement techniques must not be overlooked,



the emphasis in this report is upon the less-conventional

methods that show promise in the surface condenser applica-

tion.

2.1 TUBE-SIDE ENHANCEMENT

2.1.1 Rough-Walled Tubes

It is well known that surface roughness, either in the

form of random sand grains or regular geometric shapes, can

be used to increase turbulent flow heat transfer. A recent

patent by Penner and Ragi [9] describes a method of using

three-dimensional roughness to enhance heat transfer. They

propose the use of a single layer of randomly distributed

metal bodies bonded to the inside of a tube wall. Results

of water at a Reynolds number of 35,000 and a Prandtl number

of 10 are shown in Pig. 1. As the average height of the rough-

ness bodies increases, the enhancement increases up to a value

near 2.5, corresponding to e/D near 0.016. This increase in

heat transfer occurs at the expense of an equivalent expendi-

ture of energy to overcome fluid friction. Beyond e/D = 0.016,

no further improvement in heat transfer was observed but the

increased frictional resistance lowered the performance ratio

Ch/h )/Cf/f ) below unity.

The repeated-rib surface has been studied by Webb, Eckert

and Goldstein [10]. They provided generalized correlations

for both heat transfer and friction which depend upon roughness

element height and spacing. More recently, Han, Glicksman and



Rohsenow [11] showed that repeated ribs at a 45 angle of attack

gave better performance than ribs normal to the flow. Fig. 2

shows a schematic of the rib pattern as well as their performance

data for air flowing between parallel plates. It is clear that

the repeated-rib roughness with a 45 angle of attack is superior

to either sand grain roughness, or to ribs placed 90 to the flow,

and an enhancement factor, E., near 3.0 is possible.

Withers and Rieger [12] describe a commercially available

tube (TURBO-CHIL) which has an inner surface containing multiple-

helix ridging as shown in Fig. 3. Based upon experimental data

obtained by Withers [13] , the following tube-side correlations

for this type of tubing are proposed:

Vi =- <»:

2.46 U[r + (7/Re) ]

and

st- /f/ 8

5.63 (e/p)"
1/8 /Pr[(e/d.)Re /f78]

0,136
+ y (2)

where r and m are determined empirally for each tube, and

Y = - [2.5 In (2e/d.) + 3.75]. Equations (1) and (2) predict

heat transfer enhancement factors as large as 2.5.

2.1.2 Helically Corrugated Tubes

A wide variety of commercially available, helically corru-

gated tubes exist with varying shapes and flute depths. Figure

4 shows a representative sample of these corrugated tubes.

When considering these tubes for use in condensers, the mildly

indented or "roped" tubes seem most appealing. These tubes,

because of their mild deformations, can be manufactured out of

seamless titanium tubing, which is of definite interest in Naval



applications. They are easily cleanable, and can be readily

furnished with smooth lands spaced at appropriate intervals to

accommodate the tube support plates

.

Withers [14] described one such tube (KORODENSE), Fig. 5,

and found that his data [15] could be correlated by equations

similar to Eqs . (1) and (2) above. Gupta and Rao [16] compared

the heat transfer and friction characteristics of a similar type

of indented tube to smooth tube behavior. They found that the

performance ratio (h/h )/(f/f ) varied with a "severitv factor",
s s

<t> = e 2 /pD, and the highest performance occurred for $ equal to

0.00 2 (i.e., a very mildly indented tube) , Fig. 5. For this

case, the heat transfer enhancement factor h/h was 1.75 for
s

water.

A similar type of "roped" tubing is available from Yorkshire

Imperial Metals, Ltd. in Great Britain. Their product brochure

[17] recommends the widely used correlation

St = C
1
Re' * 2

Pr" 2/3 (3)

where C, varies with the tube geometry (C, is 0.027 for smooth

tubes) . Values of C, for these enhanced tubes are plotted in

Fig. 7, and it is easily seen that enhancements of 3-4 are

possible as groove depth increases and pitch decreases (i.e.,

a tighter spiral)

.

The above mentioned tubes all have a low number of starts-

between 1 to 3 . A multi- fluted tube, which contains many more

flutes than the other tubes described above (approximately

15-25 starts), has been proposed by Yampolsky [13], Fig. 3.

This tube has been tested by Maimer at HTRI [19] and by



Reilly and Ciftci at the Naval Postgraduate School [20, 21], and

its internal heat transfer and friction characteristics look

attractive. For a 5/8-inch OD tube, at heat fluxes corresponding

to naval condenser conditions, this tube gave a heat transfer

enhancement factor over 3.0 with a corresponding friction factor

less than the equivalent smooth tube. As shown in Fig. 9, the

friction factor data of HTRI [19] and of Reilly [20] are in close

agreement. The rather surprising decrease in friction factor

compared to the smooth tube is explained by Yampolsky [18] to

be due to secondary flows, within the internal grooves, which

are stimulated by high heat fluxes radially inward. Work on

this concept should definitely continue, including an investi-

gation of the fouling characteristics of this type of surface.

A variety of the above-mentioned tube types have been tested

and reported on [21, 22], and it appears that for 5/8-inch

diameter tubes, internal enhancement factors near 2 to 3 are

feasible. For a given type of groove geometry and depth, there

appears to be an optimum groove pitch which gives the best

thermal performance. It is reasonable to expect that these

spirally fluted surfaces enhance heat transfer by a mixture of

effects due to turbulence and swirl. If the helix angle (with

respect to the tube axis) is too large, then the flow will tend

to spill over the flutes with little swirl. The optimum helix

angle would, of course, depend on heat flux, number of starts,

groove depth, and flow conditions.



2.1.3 Summary

At present, the most promising technique to enhance heat

transfer on the tube side is with one of the commercially

available helically corrugated tubes. With a mildly indented

tube, internal heat transfer enhancement factors of from 1.5

to 3.0 may be expected with a larger increase in friction

factor. No one "best" surface exists and final selection will

depend upon fouling characteristics, costs, and structural

considerations, as well as the intended application.

There remains a significant need to study the fouling

characteristics of these internally enhanced tubes, which may

be a controlling feature to the practical application of these

advanced concepts. Care should also be taken to study cleaning

techniques as well as tube noise and vibration. Additional

heat transfer research should be carried out on the multiple

start helically ridged tubing, such as that proposed by Yampol-

sky, in order to further understand the fluid flow and heat

transfer mechanisms which occur in turbulent, swirling motion.

2.2 SHSLL-SIDE ENHANCEMENT

Since the analysis performed by Nusselt in 1916 [23], many-

analytical and experimental investigations have been conducted

to further understand the condensation process. From these

works, it is well-known today that during condensation a large

thermal resistance occurs due to conduction of heat across the

condensate film, and anything that can be done to thin or disturb

this film is generally beneficial to heat transfer. For



horizontal condenser tubes, this thinning may occur by promoting

dropwise conditions, by using finned or fluted surfaces, or by

improving condensate drainage. Vertical fluted tubes, using

surface tension effects to thin the film, may also be very effec-

tive. Condensation heat transfer enhancement by shell-side

surface geometry modification has been recently reviewed by

Cooper and Rose [24],

2.2.1 Dropwise Condensation on Smooth Tubes

A recent review of dropwise condensation was performed by

Tanasawa [25]. In addition to work done on the basic mechanism

of dropwise condensation, Tanasawa also discussed the methods

of promoting dropwise conditions, and stated that finding how

to promote dropwise conditions for long periods of time was

one of the most important problems to be solved before practi-

cal application of this mechanism can be accomplished. He

further concluded that of all the promoting techniques, the use

of a thin coating of organic polymer (such as Teflon) was the

most promising in regard to economic feasibility. With this

technique, however, two major problems must be addressed:

(1) organic coatings have poor thermal conductivities and must

therefore be applied in the form of an ultra-thin film, in order

to reduce their conduction resistance, and (2) techniques must

be developed to apply these ultra-thin films so that they are

strongly adherent to the condenser tube, and have a toughness to

withstand industrial conditions during assembly and use.

Topper and Baer [26] in 1955 were the first investigators

to use Teflon as a promoter of dropwise condensation.
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Unfortunately, they did not obtain heat transfer data as part

of their investigation. A U. S. Navy study in 1956 [27] used

Teflon paint sprayed on the outside of a horizontal 5/8-inch

OD copper-nickel condenser tube. Although the coating was

probably guite thick, about a 10 percent increase in overall

heat transfer coefficient was measured for steam condensing at

2 inches Hg absolute pressure. Depew and Reisbig [28] sprayed

Teflon onto a horizontal 1/2-inch OD aluminum tube. They noted

that a strong bond was formed, presumably due to a porous oxide

coating on the aluminum, which allowed the Teflon to adhere to

many pores on the surface. They estimated the coating thick-

ness to be 6 ym (0.00025 inches) , and measured an improvement

in the overall heat transfer coefficient of about 30-50 per-

cent when condensing steam at 1 atmosphere pressure. They

attributed this overall increase to an increase in the condens-

ing codfficient of about 100 percent.

Erb and Thelen [29] in 1965 applied ultra-thin polymer

films using a vapor deposition technique. They noted that the

polymers did not stick on a 90-10 copper-nickel substrate,

presumably due to a loosely adhering oxide on the substrate,

which had a tendency to flake off. However, if they covered

the substrate first with a thin film of chromium, then the

polymer adhered very well. They took heat transfer data using

a 0.25 ;jm thick film of parylene N (a polymer of para-xylylene)

on a vertical tube with steam condensing at 1 atmosphere pressure

Their overall heat transfer coefficient with a cooling water

velocity of 9.75 ft/sec increased by 28 percent over their film-



wise results. Edwards and Doolittle [30] in 1965 used a 25 yra

thick film of Teflon to promote dropwise condensation on a

vertical copper tube. Their results for steam condensing at

1 atmosphere showed a 16-30 percent increase in overall coeffi-

cient depending on heat flux; their calculated condensing

coefficients ranged from 240 to 330 percent larger than their

filmwise coefficients. They further noted that their dropwise

heat transfer coefficients were about half as large as values

obtained by other investigators who used chemical promoters

rather than a permanent organic coating.

In 19 66 Brown and Thomas [31] applied a 2.5 \im thick

Teflon film to a horizontal 3/4-inch OD tube of Admiralty brass.

They measured their noncondensible gas concentration and kept

this less than 100 ppm throughout their tests. Their results

for steam condensing at pressures between 0.35 and 3.0 inches

Hg absolute, showed that at a given heat flux there was a fall

in both dropwise and filmwise heat transfer coefficients with

decreasing operating pressure. At 7.0 inches Hg absolute, and a

2
flux of 19,000 BTU/hr ft , they measured an increase in their

condensing heat transfer coefficient of approximately 130 percent.

Other studies [32,33,34,35,36] have been carried out in recent

years to confirm the promotion of dropwise condensation of steam

using a Teflon film, but these investigations have not provided

useful heat transfer data.

Two recent thesis research projects were carried out at

the Naval Postgraduate School in an effort to determine the use-

fulness of applying a Teflon coating to promote dropwise

10



condensation. In 1979, Manvel [37] utilized sputtered ultra-

thin films of Teflon on horizontal 5/3-inch OD, 90-10 copper-

nickel tubes. He obtained condensing heat transfer coeffi-

cients for steam at a pressure of 6 inches Hg absolute by

using a Wilson Plot technique [38]. His results are plotted

in Figure 10 and show that as the thickness of the sputtered

film decreases from 0.2 to 0.08 am the dropwise condensing

heat transfer coefficient increases about 40 percent. As the

film thickness is reduced further to 0.04 urn, it appears that

the heat transfer coefficient may decrease, presumably due to

the fact that for very thin films, the film may not give

complete coverage of the surface, and the condensing surface

may therefore be partially wet in regions, leading to incomplete

dropwise conditions. This effect is in agreement with a recent

paper by Woodruff and Westwater [39] who showed that for less

than 200 layers of gold electroplated on copper, pure dropwise

conditions did not occur, and deposits of 1000 layers of gold

(approximately 0.2 urn) were required before "perfect" dropwise

conditions occurred. In examining Figure 10, it is clear that

the results must be treated as being preliminary due to the

large uncertanties associated with the measurements inherent

in using the Wilson Plot technique to calculate the separate

coefficients based on the measurement of overall values.

A second project was therefore carried out by Perkins [40]

in 1979 using vertical copper-nickel discs 1-1/4 inches in

diameter. He obtained heat transfer data for steam condensing

11



on sputtered films of Teflon at the same pressure used by Manvel.

Some of Perkins' data is shown in Fig. 11 which compares his re-

sults for filmwise conditions to those with 0.13 urn and 0.08 ym

thick films of Teflon. Data for dropwise condensation using

n-octadecyl mercaptan in octanoic acid as the promoter is also

provided for comparison. His results show that the thinner film

of Teflon increases the heat transfer coefficient, but neither

Teflon film is as good as the chemically promoted surface. For

2
example, at a heat flux of 50 kW/m , the condensing coefficient

for the 0.13 \im thick film was approximately 100% higher than

the filmwise value, and the 0.08 um thick film produced a coef-

ficient which was 140% above the filmwise value. Perkins calcu-

lated the thermal resistance of each of the Teflon films and was

not able to account for the difference between his chemically

promoted surface and his Teflon coated surfaces. He attributed

the discrepancy either to an error in the Teflon film thickness

(a value close to 3 ym would be needed to account for the differ-

ence) , or to the possibility that the Teflon coating itself out-

gasses, producing a zone of noncondensible gas in the immediate

vicinity of the test surface, which adds an additional thermal

resistance to the condensation process.

In recent years, significant technological advances have

been made in the coatings industry, including the development

of techniques to produce strongly adhering ultra- thin films of

organic materials for wear and lubrication [41]. The use of an

RF plasma to deposit Teflon films has been described by Warner,

Park and Mayhan [42], They, as well as others [43], noted

12



that RF plasma deposited Teflon is different than conventional

Teflon due to extensive cross linking which occurs in the

process, making a more adherent film with fewer voids. A

recent patent disclosure by NASA [44] describes an ion beam

sputter deposition process for f luoropolymers which can be

applied to fabrics, glass, metals, and metal oxides at high

deposition rates (and therefore reduced cost) . Their technique

achieves more complete coverage of the substrate having surface

irregularities and interstices, and has been developed to give

preferred film thicknesses between 0.2 and 5 jam. The Naval

Research Laboratory has developed fluoronated epoxy coatings

which are hydrophobic and exhibit better resistance to abrasion

than Teflon [45] . Commercially available coatings such as

NEDOX [46] exist in which a porous chrome-nickel layer can be

electro-deposited onto a copper substrate, and polytetraf luor-

ethylene is then infused into the micro pores to form an abrasion

resistant, hydrophobic coating. With several of these new types

of coatings, it may be possible to apply an ultra-thin continuous

film which has strongly adhering qualities. In so doing, long

lasting heat transfer improvements of several hundred percent

may become a reality.

The above results show that using an organic coating to

promote dropwise conditions may give enhancements of the steam

condensing heat transfer coefficient for single horizontal tubes

in the range of from 40 to perhaps 200 percent. This range of

increase is substantially less thatn the 1000 to 2000 percent

13



increase obtained for monolayer promoters on vertical surfaces

[25, 47], and suggests perhaps that the potential steam-side

enhancement for organic-coated tubes has yet to be achieved.

Therefore, one would expect that it may be possible to improve

significantly on the modest enhancements so far reported for

organic-coated tubes.

2.2.2 Film Condensation on Finned Tubes

Since the early work of Beatty and Katz [48] in 1943, the

use of externally finned tubes in surface condensers has received

much attention, although most of the efforts have been devoted

to condensing refrigerants. As originally described by Gregorig

[49] in 1954, the fins generate surface tension forces which

tend to thin the condensate film on the convex tips of the fins

and to thicken the film in the concave channels, or troughs,

between fins. In so doing, the condensing heat transfer coeffi-

cient is increased over the smooth tube case.

Staub [50] reported on some experimental work in 1961 which

included film condensation of steam on horizontal finned tubes

at both atmospheric and sub-atmospheric pressures. All data

were obtained with 5/8-inch OD, copper tubes. His external heat

transfer coefficients for a fine pitch tube (26 fins/inch) at

1 1/2-inches Hg absolute were about 2.5 to 3 times his smooth

tube values at a heat flux comparable to surface condenser

2designs (approximately 25,000 3TU/hr ft ). Results with a

coarse pitch tube (17 fins/inch) for the same conditions were

only 2 times his smooth tube results, indicating that fin pitch

is an important variable. Nabavian and Bromley [51] used a

1 A



finned condenser tube (8 fins/inch) to take measurements of the

condensation coefficient of water in 196 3. They machined the

fins into a 1/4-inch nominal OD , schedule 80, copper pipe. The

profile of the fins was chosen "to yield a constant and very

high heat transfer coefficient along the top part of the fin"

[51]. Karkhu and Borovkov [52]obtained condensation data for

steam on four horizontal tubes containing different configura-

tion of trapezoidally shaped fins. All their data was taken at

pressures slightly higher than atmospheric, and they discovered

that for transverse fins with large Weber numbers (i.e., large

surface tension forces in relation to gravity forces) , the aver-

age condensation heat transfer coefficient increased by 50 to

10 percent, whereas for low Weber numbers, there was little,

or no improvement.

Carnavos [53] tested a wide variety of finned tubes using

R-ll and showed gains in the heat transfer coefficient as much

as 5 times the smooth tube result. Some recent work in Japan

[54], for condensing R-113 , showed that a finned surface which

was covered with a porous metal coating gave more than a ten-

fold increase in the heat transfer conductance per unit length

of tube. The development of the Hitachi THERMEXCEL-C condenser

tube for refrigerants [55] has provided further proof that

finned condenser tubes have promise in surface condensers.

Figure 12 shows that an optimum groove spacing (i.e., pitch)

exists for this tube based upon data for R-12 . The best perform-

ance occurs for a tube with 35 fins/inch.

15



Of course, using steam, due to differences in surface

tension, thermal conductivity, latent heat of vaporization and

viscosity when compared to the refrigerants, a different pitch

should exist for optimum performance.

In fact, in designing finned tubes for use with steam,

the relatively large surface tension of water requires that

special care must be exercised to avoid bridging of the gap

between fins by the condensate. As shown schematically in

Fig. 13, the fin geometry must be chosen with the particular

working fluid in mind. In the case of steam, the fins must

be spaced far enough apart to avoid this bridging phenomenon,

otherwise, the thermal performance will be severely deteriorated.

Some recent data for steam indicate that the optimum fin spacing

may be near 10 fins/inch [56].

Several theoretical investigations [57, 58, 59, 60, 61, 62]

show that in addition to groove spacing, variables such as wall

material, fin shape and groove or trough dimensions are all sig-

nificant during film condensation with these finned surfaces. A

detailed theoretical analysis of film condensation on finned hori-

zontal tubing has yet to be performed, however, without making

significant simplications

All of the above results are based upon the Gregorig

premise that the surface contains numerous small fins and

troughs to allow surface tension forces to be important. These

forces act to thin the condensate film on the convex portions

of the fins (where heat transfer is high), and to thicken the

film in the troughs (where the heat transfer is low) . In

16



marked contrast to this model is the scheme proposed by Thomas

[6 3] for a vertical tube which uses projections from the tube

to draw the condensate away from the tube surface into the

fillets, thereby thinning the film between the fins . This

technique does not rely on conduction through the fins, and

is even effective when loosely fitting wires are used. Figure

14, from the patent of Thomas [6 3], shows that an optimum number

of fins/wires exists depending upon heat flux or condensate

mass flux. Figure 15 shows the relative performance which

occurs as the wires are moved away from the condenser surface.

At high heat flux, displaced wires can do better than those

placed on the surface, apparently allowing more space for con-

densate to collect and drain from the fillets at the base of

the wires. Even though this work was done for vertical sur-

faces, this same principle may be applied to horizontal tubes.

For example, some recent data for ammonia condensing on the

outside of horizontal, wire-wrapped tubes (about 4 wraps per

inch) gave external heat transfer coefficients about 3 times

the Nusselt value for smooth tubes [64].

2.2.3 Film Condensation on Corrugated Tubes

In 19 71, Withers and Young [6 5] compared film condensation

performance of horizontal corrugated ('roped') tubes to smooth

tubes. Tests were carried out for both 5/8-inch OD copper

tubes and 1.0 inch OD 90-10 copper-nickel tubes for atmospheric

as well as sub-atmospheric steam conditions. The corrugations

were produced on the tube by spiralling a single mild indenta-

tion, 0.03 inches deep, along the tube with a pitch of 1/4-inch
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This configuration provided four corrugations per inch of tube

length. Their external heat transfer coefficients were deter-

mined by a Wilson plot technique from overall measurements and

showed considerable scatter. Their 1.0 inch OD corrugated

tube showed a 35 percent increase in external heat transfer

coefficient when compared to a smooth tube. Their 5/8-inch

OD corrugated tube showed an 3 percent decrease . Palen, Cham

and Taborek [66] in 1971 tested 1.0 inch OD corrugated tubes

made of 9 7.5 percent copper. The tubes were corrugated by

placing four deep indentations, 0.19 inches deep, around the

tube circumference, and twisting the tube to a desired pitch

of 0.56 inches. This created a tube with almost two corruga-

tions per inch. The tests were made for a bundle of 196 tubes.

Steam pressure was kept greater than atmospheric pressure to

eliminate air leaks into the condenser. External heat transfer

coefficients were calculated using the Wilson plot method, and

results showed an average enhancement factor on the outside

of 2.1 when compared to the smooth tube.

In 1975, Young, Withers and Lampert [67] reported on some

additional measurements using mildly corrugated tubes with a

groove depth near 0.0 3 inches. Three 1.0 inch OD 90-10 copper-

nickel tubes with 2, 3, and 4 flutes per inch were tested at

atmospheric and sub-atmospheric steam conditions.



The Table below summarizes their findings.

TUBE FLUTES/INCH PRESSURE ENHANCEMENT
FACTOR
( ha

/h
s

)

atm 1.57

vac 1.33

atm 1.62

vac 1.41

atm 1.31

vac 1.25

II

III

IV

This data shows that the heat transfer improvement of these

mildly corrugated tubes is better at atmospheric conditions

than sub-atmospheric, or vacuum, conditions. The number of

flutes per inch also influences the tube behavior, presumably

due to different drainage characteristics.

In 1976, Catchpole and Drew [63] tested a family of

corrugated tubes having different groove depths and spacings.

All tests were on 5/3-inch OD 70-30 copper-nickel tubes at a

steam pressure of 2 psia. They were able to correlate their

external enhancement factor by the following relationship:'

0.076
h /h = 1.17 (We • cosa)
a s

(4;

where

We = Weber Number, ^' x
= a function of condensate

pg

density and surface tension, as well as enhance-

ment geometry and dimensions.
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a = Helix angle of the grooves measured from the

perpendicular to the tube axis.

They therefore concluded that it is desirable to design the

corrugation so that a large Weber number exists, and a small

helix angle exists. In fact, when a = , i.e., when the

grooves are vertical, the best performance would occur. The

highest enhancement factor they measured was 1.7, correspond-

ing to a tube with grooves 0.02 inches deep, spaced 0.08

inches apart (i.e., 12 grooves per inch). Their results are

reproduced in Figure 16.

In 1978, Cunningham and Milne [69] studied the effect of

helix angle on mildly indented ('roped') tubing. The tubes

had a nominal OD of about 3/4 inches, an indentation depth near

0.008 inches, and were prepared with two different numbers of

starts to give the same groove spacing but different helix

angles of 18 and 44 degrees. Their data showed no condensation

heat transfer enhancement when compared to their smooth tube.

However, they pointed out that dropwise conditions were never

completely eliminated from their smooth tube, implying that

their measured heat transfer coefficients for the smooth tube

were larger than expected. Consequently they were probably

getting enhancement on their 'roped' tubes. In 19 79, Mehta and

Rao [70] obtained data for a family of mildly indented tubes

having an OD near 3/4 inch, groove depths from 0.000 5 to 0.0 56

inches, and spacings from 2 to 8 grooves/inch. Their results

for steam at atmospheric pressure showed that the outside
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x 2 ,coefficient was dependent on a 'severity .actor' . o = e /pD

.

where e is the groove depth, p is the groove pitch and D. is

the tube inside diameter. Marto, Reiily and Fenner [22]

obtained data for 5/8 inch OD tubes having a variety of config-

uration shapes and sizes. Their results for steam at 3 psia

for three types of corrugations are shown in Figure 17. Their

data indicate that both pitch/diameter and depth/diameter are

important variables. For each type of tube tested, the per-

formance increased as pitch/diameter decreased, implying that

grooves should be near vertical to promote good condensate

drainage. Other recent studies [21,711 show that micro-

grooves on the surface of a corrugated tube can improve upon

the enhancement that occurs for steam at low pressure, giving

an enhancement factor near 2.0.

2.2.4 Condensate Film Drainage and Removal

During film condensation on a smooth horizontal tube, the

Nusselt theory predicts that the condensate film is thinnest at

the top of the tube, and thickens around the tube until at the

bottom it becomes infinitely thick as the film drains off the

tube in a continuous sheet. With this model, the thinner film

on the top of the tube causes better heat transfer to occur.

For example, Jakob [72] states that the Nusselt theory predicts

that the top half of the tube will transmit 60 percent of the

heat compared to only 40 percent through the bottom half.

Therefore, it is reasonable to expect that if the thick film is

interrupted on the lower part of the tube, creating the oppor-
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tunity for a new thin film to be generated, heat transfer will

increase. Mayhew [73] analyzed this possibility and found that

if the condensation film is interrupted at $ = 90 from the top

of the tube, and if a new film is assumed to grow from this

point as seen in Figure 18, the average heat transfer coeffi-

cient increases by 19 percent. This augmentation technique was

experimentally studied in 1973 by Glicksman, Mikic and Snow [74]

.

They interrupted the condensate film on copper tubing by using

Teflon tape 0.125 inches wide and 0.006 inches thick. They

found however, and perhaps somewhat surprisingly, that the best

position for the tape was along the bottom of the tube, and

this location gave an average heat transfer coefficient which

was 1.6 times the smooth tube value with no tape. Desmond and

Karlekar [75] tested a 1.25 inch OD stainless steel tube which

had a 0.36 inch wide and 0.001 inch thick film of Emralon, a

non-wetting f luoroplastic, attached at the bottom. They pointed

out that this location of the tape gave the greatest incremental

increase in heat transfer, which amounted to a 20 percent in-

crease in the overall heat transfer coefficient.

As pointed out above, the Nusselt analysis assumes that the

condensate film drains from a horizontal tube in a continuous

sheet. In reality, this does not occur. The condensate collects

at the bottom of the tube and forms drops which depart from the

tube at discrete points when they grow large enough for the force

of gravity to overcome surface tension. In a recent paper by

Yung, Lorenz, and Ganic [76], they postulate that the thin film
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on the underside of a horizontal tube is similar to the classical

Taylor instability which occurs when a heavier fluid is on top of

a lighter one. They therefore predict that the spacing between

departing drops is given by the Taylor wavelength A:

\ = 2tt
f 2a (5)

where a is the surface tension of the condensate. The above

equation agrees with experimental data for water to within 15

percent, and predicts a droplet spacing of about 1.0 inches for

water at 100 F. When this surface tension effect is included

in the analysis of film condensation from a horizontal tube,

agreement with experimental data is improved [77], Shklover and

Buevich [78], using high speed filming, measured the time it

takes for a new droplet to begin forming to be about 0.04 sec.

They also measured the time it takes for this newly formed drop

to depart from the tube. This time was 0.3 7 sec. Their data

points out that to keep the condensate film thin, it is extremely

important to remove the large droplets as often as possible.

Also, it may be of considerable merit to generate drop departure

sites using spines or flutes. These sites should be spaced

closer together than the Taylor wavelength in order to provide

more locations to which the film on the tube can drain. The

minimum spacing would be approximately the same as the departure

diameter of a droplet, which according to Yung, Lorenz and Ganic

[75] would be approximately 0.3 inches for water at 100 F. This

would say that 3 departure sites per inch of tube would be desir-
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able (i.e., 2 more than occur naturally). Condensate reten-

tion of horizontal integral-fin tubing was recently reported

on by Rudy and Webb [79] . They performed a series of experi-

ments to measure static liquid retention in integral-fin

tubing having variable fin densities, and showed that surface

tension forces play a significant effect in film drainage.

2.2.5 Enhancement on Vertical Tubes

It is well-known in the heat transfer literature that

the film condensation heat transfer coefficient for a vertical,

smooth tube is less than the equivalent horizontal tube. The

Nusselt theory gives the following ratio:

h = 1.295 (£)
1/4

(6)
h
H

L

where D is the outside diameter of the tube, and L is the

tube length. For a tube with a diameter of 1.0 inch and a

length of 15 ft, Eq. (6) predicts that a vertical tube would be

only about 1/3 as effective as a horizontal tube. As mentioned

earlier, the use of round or rectangular wires spaced around

the circumference of a vertical tube has been shown [6 3] to

effectively thin the condensate film, and enhance condensation

heat transfer significantly. For steam, as shown in Fig. 14,

these wires can increase the condensing heat transfer coeffi-

cient by as much as 9 times that of a smooth, vertical tube.

A wide variety of vertical fluted surfaces have been tested

at Oak Ridge National Laboratory using refrigerants [80,81,82,83]

Fig. 19 shows the enhancement ratio of one such tube (tube F)
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compared to a smooth tube (tube A) for R-113 refrigerant. This

figure shows that rubber drain-off skirts placed at various

axial intervals can significantly improve upon fluted tube per-

formance at high heat fluxes. These skirts strip the condensate

away from the flutes, thin the film and prevent flooding. The

uppermost curve in Fig. 19 is for 7 skirts placed 0.5 ft. apart,

whereas the lowest curve is for tube F with no skirts.

Newson [84] has proposed a helically fluted tube which, in

the vertical orientation, gives enhancements of 3-4 times the

vertical smooth tube value. A recent patent by Notaro [85] has

proposed a single layer of randomly distributed metal particles

bonded to a vertical tube wall. These particles serve to create

tortuous paths for the condensate rather than the straight, open,

unimpeded drainage channels commonly found in vertical fluted

tubes. Surprisingly, these paths do not impose a severe restric-

tion to the flow of condensate, while thinning the condensate

film around each particle. Fig. 20 is a sketch of the condensate

around these particles, and shows that for steam condensing on

a 20 ft. long tube, the presence of the particles can increase

the heat transfer coefficient by as much as 18 times the smooth

tube value.

Although a savings in surface condenser area is possible

with vertical fluted tubes [86], much more work remains to be

performed before vertical condensers will be used aboard naval

vessels.
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2.2.6 Summary

The use of permanent plastic coatings in the form of

ultra-thin films to promote dropwise condensation may give

shell-side enhancements on a single tube of 2 to 3. This is

far less then the values of 10-20 quoted for a monolayer of

chemical promoter on a vertical surface, and further research

is needed to investigate which methods of applying strongly-

adhering, ultra-thin films lead to the best thermal perform-

ance.

Low-finned tubing for steam condensation use has not been

pursued due to difficulties with condensate bridging across the

fins. However, there is some experimental data showing exter-

nal enhancement factors of 2-3, and work is therefore needed

to select an optimum low-fin tube for steam use.

Mildly indented ("roped") tubes which are available com-

mercially give modest enhancements of 1.2-1.5. The use of

micro-grooves on these indented surfaces (similar to low fins)

can increase the enhancements near 2.0. A wire wrap on these

tubes may also provide additional enhancement.

Vertical fluted tubes, with properly designed drain-off

skirts, and/or vertical tubes coated with metal particles may

give significant enhancements over 3 times smooth horizontal

performance. Further theoretical and experimental work with

steam should be performed to study optimum flute shape, skirt

spacings, metal coated surfaces, etc.
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3. ENHANCEMENT IN TUBE BUNDLES

It is well-known that the thermal performance of a condens-

ing tube may be dramatically affected by the surrounding two-

phase multi-component flow. Condensate loading, local vapor

velocity and local noncondensible gas content all have important

effects upon the thermal resistance on the steam side of the

tube. It is therefore, very important to study tube performance

in a bundle environment.

Nunn and Marto [87] provide a detailed discussion of the

main factors that are likely to be significant in bundle perform-

ance. Most of the literature cited in their discussion however,

pertains to smooth tubes, and little information exists in the

literature regarding the performance of enhanced tubes in large

tube bundles.

With dropwise conditions, there are data available which

show that condensate falling on a horizontal tube may not dete-

riorate the heat transfer coefficient (as is well-known during

filmwise conditions [38, 39]), and in certain circumstances, may

actually increase the heat transfer coefficient [90,91,92].

This reversal in trend with the two modes of condensation is

presumably due to the fact that condensate falling on a tube

condensing in the dropwise mode may sweep the tube of the large,

ineffective drops, thereby creating the opportunity for new

microscopic drops to form and improve upon the performance.

Data obtained during filmwise condensation on a horizontal, wire-

wrapped smooth tube show a similar trend. In this latter case,
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the condensate falling on the lower tubes does not deteriorate

the thermal performance of these tubes because the helically-

wrapped wires draw the condensate very rapidly toward the fillets

formed between the wire and the tube wall [93] . Because of this

mechanism (which doesn't exist for the smooth tube) , the conden-

sate is always thinned between the wires; and a large portion of

the tube wall is therefore available for high heat transfer rates

There is evidence that during film condensation on corru-

gated tubing the effect of condensate inundation is not as pro-

nounced as for the smooth tube case [65,68], For a 5/8 inch

diameter tube, Withers and Young [65] show that the mean heat

transfer coefficient for a vertical column of n tubes can be

represented by:

k = C h (7)m n Nu

where h„ = the mean heat transfer coefficient according to the

Nusselt theory,

-1/4
= const, n ,

and
/ 20

J
1.11 n'^ , KORODSNSE

C
n "

] , -. 0.00 6 ..
U.20 n , smooth.

From this result, it is clear that the effect of condensate

inundation is less with the KORODENSE tube than with the smooth

tube.

It should be pointed out however, that the inundation trends

mentioned above were obtained with low velocity steam. The

exact behavior with high velocity steam moving in various direc-

tions with respect to the tube bundle remains to be determined,
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and will require a comprehensive set of bundle tests for a

variety of test conditions.

4. CONCLUSIONS

(a) With the present state-of-the-art, the most

promising technique to enhance heat transfer is with one

of the commercially available, helically corrugated tubes.

(b) With a mildly indented tube, internal enhance-

ment factors of between 1.5 to 3.0 may be expected at the

expense of a larger increase in friction factor.

(c) Mildly indented tubes do not show as much en-

hancement on the shell side. External enhancement factors

of between 1.1 to 1.5 may be reasonably expected with steam.

(d) In the future, with the use of multiple-start

ridging on the tube side, internal enhancement factors of

3.0 or greater are possible. 3y using dropwise condensa-

tion or a wire wrap, external enhancement factors of 2.0

to 3.0 are possible.

(e) The influence of vapor shear, condensate inunda-

tion and non-condensible gas concentration upon external

enhancement factors must be determined by conducting a

series of carefully planned experiments.

(.f) There remains a significant need to study long

term fouling characteristics of internally enhanced tubes.

Care should also be taken to study cleaning and inspection

techniques for use with enhanced tubes.

(.g) A comparison of vertical, fluted tubes to hori-

zontal fluted, or finned, tubes should be made by conducting

large bundle tests with each orientation.

29



5. FIGURES

30



so-

20-

5

o
-C

JZ

%XD

LI-

1.0

>3

0.9-

*5 as

«? 0.7

40 80 12J3 ISO 200 240 28.0 320

3e/ X 10

Figure 1. Performance characteristics of
three-dimensional roughness
[from Ref. 9 ]

31



Schematic of Rib Roughness
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Figure 5. Cross sectional view of
TURBO- CHI L tubing
[from Ref. 12]
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(a) Turbo tec tube

Cb) Korodense tube

(c) Yorkshire roped tube

(d) Yorkshire roped tube with
enhanced profile on the
outside

Figure 4. Photographs of corrugated tubes
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Figure 3. Photograph of General
Atomic "multiply-fluted
tube.

38



.03
c©
*o

% .02
oO
c.0!5
o

Li.

>* .0!

o
o
2

2x10

Moody Smooth Tube

/

HTRI Tests (Isothermal)

A-Reifly Tests (Isotherms!)

5xl04 I0 5

Reynolds Number
2x10

Figure 9. Moody friction coefficient versus
Reynolds number for helically fluted
tube [from Ref . 13 ]

.

39



Hz
w
l-H

u
t—

I

Ph
f*t

w
o
u
«
w
Pn
CO
z
<
«
H
H
<S
W
Hi

w
CO
t-l

5£

Q*o
«
Q
S5
o

.

E
3. z
m

CJ

to
<D
C

H cd

JSC

o o 1
75 Z 41

H »-( I—

J

Eh
< W

o» O ac u a
•*— Eh
o Zo O Ju J <

Pm Eh

w z
Eh O

CO
Pm m
o go
Eh 9
CJ
a <j
^H
a Z
w o

o
H
0)

h
3
50

iuaiO!^3oo jajsuDJi 1D8H 9P*sjnQ

40



WW

UJ
CO

ft
2 z o
9 9so

q:
Q.
-J
<

5 2 § 5— • • zco o 6
o x © M

u. u.
UJ UJ
H h-

E E
^ 3

o
"ro

O

__o

5
r-1

Eh

O
CJ

o
CO

CO
—

i

as
w
U r—

i

3 °
s
6 '-H

as eg
w

O '—i

C tt.

CO
cu 2:

cy e—i

o
o o

CO

J_

o
CD

O o
C\J

3

CgK/An) XiYlJ 1V3H

41



1.0

</.
°- 8

»o» 0.6

0.4

0.2 0.4 0.6 0.3 1.0 1.2 1.4 1.6

Groove pitch 1 (nn)
PS

Figure 12. VARIATION OF HEAT FLOW RATE ON
A UNIT LENGTH OF THE CONDENSER
TUBE WITH THE GROOVE PITCH [FROM
REF. 55]

.

42



Lowest Effectiveness

Surface
Tension

Fin Height to

<^ Spccing Ratio

Figure 13. Condensate retention as a function of
fin geometrv and condensate surface tension

43



©
in

CO
in

tfl u
< n

3
i fr»

«
X UI

h z

Q

as

*
03

z «
u. w
>- M4
03 C/3

o 2
2

UJ
> 5-t

O
u

Eh

o <
< a
<r SB
3
V> 2
u.o O •

Cm —

i

o 3 ro
h- v£5

cn

o
irt

oo

"l

i 5

=

I- r

o i

Pm

« 2
O O

os

en b
2 —
H
a W

CQ

h s
O Eh

>

W J
Oi w u <
o o

5 » «!

2 U
V W M

;•
* s- 2 En EtJ

1 '1 5 2 >
H

\
• <

W
•> . \ X z

i Eh O

CD

U
a

•H
En

•a

44



Dec 19, 1967

Filed Aug. 10, 1966

D. G. THOMAS

CONDENSER TUBE

3,358,750

4 Sheets-Sheet 4

DISTANCE FROM SURFACE *10 in

J7 igure 15. THE EFFECT OF WIRE DISTANCE
AWAY FROM CONDENSING SURFACE
UPON HEAT TRANSFER PERFORMANCE
[from Ref . 53 ]
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Figure 18. LOCAL FILM PROFILE AND HEAT TRANSFER
COEFFICIENT FOR A SINGLE HORIZONTAL
TUBE WITH CONDENSATE SPLITTERS AT 90°
[from Ref . 73 J .
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