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SUMMARY

The centered difference leapfrog technique, commonly used in the numerical

solution of the primitive equations of meteorology, computes the gradient

of the geopotential at the n time step by:

!* (t ,x.) = JL { ft £ } ,dx n j 2Ax J+l j-1

where:

The Shuman technique replaces this term by a weighted average of the centered

st th st
differences on the (n-1) , n , and (n+1) time steps. This should

allow the use of a longer time step than that predicted by the CFL condition

before the onset of computational instability. This paper considers the

computational stability regions obtainable by this technique in the cases

of: (1) the linearized barotropic model with no Coriolis force and no mean

flow, (2) the linearized barotropic model with no Coriolis force, but includ-

ing a mean flow, (3) the linearized barotropic model with no Coriolis force

and no mean flow, but incorporating the time filtering technique designed

by Robert, and, (4) the linearized barotropic model with no Coriolis force,

but including a mean flow and time filtering. In each of these cases, the

Shuman technique is demonstrated to yield an increased time step and the

maximum size of the time steps is shown. The presence of a mean flow or

filtering yields maximum time steps lower than those of basic solution

(case (1)), but still significantly higher than the unaveraged method.
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1. Introduction

Shuman [6] has proposed a modification to the leapfrog scheme for the

primitive equations which are used in numerical weather prediction. The

scheme which uses a weighted average of the pressure gradient at the past,

present and future times, allows a longer time step than the one given by

the CFL condition. Brown and Campana [2] have carried out the linear

analysis of this modification for the three cases: (1) the barotropic model,

(2) a two-layer model whose pressure is the vertical coordinate, and (3) a

two-layer model with the Phillips [4] sigma coordinate system. In this

paper we will treat only the linearized barotropic model. We will present

an analytic solution for the computational stability curve for the simplest

case. A mean flow will be added to the equations and the stability curve

will be obtained numerically and also with an approximate analytic pro-

cedure. Finally the time filter designed by Robert [5] will be applied to

all variables and the resulting stability curve will be presented. It

will be seen that both the presence of a mean flow and the time filtering

reduce the time step, but that the use of the Shuman technique is still

advantageous

.

2. Basic solution

The linearized equations for the barotropic model with no Coriolis

force and no mean flow are:

5t - S • (1)

5t * ax • (2)

Here u is the velocity component in the x-direction and
<f)/g

is the

departure of the free surface height from its mean value $/g . These

4



equations describe shallow water waves which move with speed „/$ .

The finite difference approximations to equations (1) and (2) with the

Shuman pressure gradient averaging included are:

n+1 n-1

^n+l An-1 n n
9. - (P. u.,- - u. _

where the discretization uses x = jAx and t = nAt . The usual leapfrog

differencing is obtained by setting a =
• This scheme is explicit since

_ il
({> may be obtained from (4) before it is needed in (3).

In order to obtain the computational stability properties of this

scheme we substitute the following expressions

n . n ikAxi
u. = A od e

(5)

„ n ikAxj
B co e

into (3) and (4). After the constants A and B have been eliminated we

obtain the following quartic equation for co:

od
4
+ 4Sa cD

3
-2[l-2S(l-2a)] co

2
+ 4Sa CD+I = , (6)

where S s (^)
2

$ sin
2
kAx . (7)

Since S and a are real, the roots of (6) are either real or in complex

conjugate pairs. Due to the symmetry in the differencing we expect that

|cu
J

= 1 for some range of the parameters. As a result the polynomial

factors to

(cu
2
+ 2a

r
'D + 1) (co + 2a

2
« + 1) = . (8)



If we expand (8) and compare with (6) we find that a., and a must

satisfy the following equation:

a
±

2
- 2Sa a

±
+ S(l-2a) - 1 = , i = 1,2 . (9)

The solutions to this equation are

a
±

« Sa ±j/(Sa+D
2

- S . (10)

It can be seen from (8) that only when the a.'s are real and of magnitude

less than or equal to unity will all the roots of (8) have jco
|
= 1 . The

value of a. will be real when the quantity under the radical is non-nega-

tive; therefore, this condition can be written

(Sa + l)
2

- S > . (11)

If we choose the equality we will obtain the following stability relation:

s = 1 - 2a - ,/l - 4a
( (12)

2a

where the minus sign in front of the radical was chosen to make the expres-

sion reasonable in the limit as a — . The condition that the a.'s have

magnitude not greater than 1 leads to the condition

a< I
• (13)

This is consistent with (12) which becomes complex for a > 7" •

The combination of conditions (12) and (13) is given in Fig. 1 as the

curve labeled <j - . Brown and Campana [2] determined a curve with

approximately this shape by numerically solving for the roots of (6) ;

however, they did not present its analytic form (12). The maximum value

of S which is S = 4 , occurs at a = t • For the usual leapfrog



differencing (a = 0) the maximum value of S which allows computationally

2
stable solutions is S = 1 . Since S is proportional to At (see Eq.(7))

it follows that the use of the Shuman pressure gradient averaging in this

linear system allows a doubling of the time step as compared with the

standard leapfrog scheme. However it may be difficult to achieve this

factor of 2 in practice when other effects are included since the width of

the stable region goes to zero as S approaches 4 . In fact a value of

a which is slightly less than t would probably be preferable.

3. Solutions with mean flow

In this section we add the effects of a constant mean flow to the

stability analysis. The linearized equations are:

du du _ d0 ,,. v

Tx.
+ u S =

- £? (14)

* + n I* - - -
*»

t
+ u s = - * ^ • (15)

Normally the addition of the mean flow terms does not have a great effect

on the computational stability criteria since the phase speed of the

1/2
external gravity waves, $ , is generally much greater than the speed

of the mean wind, U .

When Eqs. (14) and (15) are put in finite difference form with the use

of the approximations in (3) and (4), the mean advection terms are evaluated

with centered finite differences, and the relations (5) are substituted

into the finite difference forms of (14) and (15), we obtain the following

equation for a> :

cd
4
+ 4(Sa+ ia) a;

3
+ 2[2S(l-2a)-(l+2a

2
)] co

2
+ 4(Sa- ia) a + 1 = , (16)

where

a = ^ sin kAx . (17)
Ax



4
Note that dividing (16) by cjl> and taking the complex conjugate of the

equation, yields an equation in 1/oj* with the same coefficients as (16).

Thus, it follows that a> is a root of (16) if and only if (oo*) is

also a root, and therefore the roots must be distributed in exactly one of

the following ways:

Case I: Four roots (including multiple roots) on the unit circle

(e^l, e
1
^, e

1
^, e

1
^; ^ + ^ + ^ - - %) .

Case II: Two roots on the unit circle, two roots off the unit circle

(e
1
^, e

l
$3, pe

1(
tl, ± e% 2^ + ^ - -

f,)
•

Case III: Four roots off the unit circle

(pe r, - e
1
", ^e"

1
^, - e"

1
^, p,£ 4 1)

In each case the fact that the product of the roots is equal to the last

term in (16) was used.

The analysis of Cases I - III indicates that (16) has at least one

factorization of the form

(a;
2
+ 2ae

i0/2
a> + e

iQ
) (a)

2
+ 2be~

iG/2
to + e"

iQ
) = , (18)

for some angle , and a and b real. Furthermore it is easily shown, by

analyzing the possible combinations, that in either of the unstable cases

(Cases II or III), the factorization (18) must be unique and either a or b

(or both) greater than unity in magnitude, whereas the stable case will

generally have three distinct representations with both a and b less than

or equal to unity in magnitude. The only exception will be when stable,

but degenerate (multiple) roots occur.



If we expand (18) and compare with (16) we can obtain the following

equations

:

a So, sec 0/2 + a esc 0/2 , (19)

b = Sa sec 6/2 - a esc 0/2 , (20)

S
2
a
2

sec
2

0/2 - S + Sa + cos
2

0/2 - a
2

cot
2 0/2=0. (21)

2
When we write u = cos 0/2 and use trigonometric identities we can obtain

the following polynomial in u :

P (u) = (u-1) (u
2
+ S(2cc-D u + sV) + aV = , (22)

a

where one different factorization of the form (18) arises from each distinct

solution of (22) in < u < 1 . Thus by our above comments a sufficient

condition for stability is that (22) have more than one solution in [0,1].

The appearance of (22) as a cubic should be expected, since as noted above

in the generalized case of stability, we expect three distinct factoriza-

tions. When only one solution of (22) occurs in [0,1], then there must

be instability unless (16) has a triple root. It can be shown that there

is at most one value of a for which (16) has a triple root.

With this characterization consider the qualitative behavior of P (u).
a

Note for all u > , a > that P (u) will lie above the curve
a

P
o
(u) = (u-1) (u

2
+ S(2a-D u + S

2
a
2

) , (23)

where it is easily seen that

P CO) = p (0) = - S
2
a
2

, (24)
o a

P (D = , (25)

P^(l) = (sa + l)
2

- S . (26)



Also note that for fixed u, P (u) is a strictly increasing function of a .

a

These observations now allow us to visualize fairly easily how an in-

stability develops. Consider Fig. 2, which shows a typical situation when

P (u) has three distinct roots in < u < 1 , i.e. a - yields a

stable procedure. Then observe that as a increases the curve moves

upward, causing the value of the smaller root to decrease, and the two

larger roots to move closer together. Eventually, for some value a ,

the larger two roots degenerate to a single double root with P (u)
(jmax

tangent to the axis there. Finally for <j > a > the curve detaches
max

from the axis, leaving only the single smaller root, and hence instability

must occur.

Intriguingly, this construction also allows us to visualize a situa-

tion when q > will yield a stable procedure even though p = does

not. This is shown in Fig. 3, where as <j increases the curve first

attaches itself producing a double lower root, which then moves apart,

until eventually a double upper root appears, followed by instability.

Numerical solution of (16) verifies this in fact occurs, as evidenced by

the curves for a > r in Fig. 1.

Now consider the situation when P' (1) > and < a < T • The roots

of P (u) = are

u = 1 , (27)

Ul =
f [(l-2a) - yi- 4a ] , (28)

u
2 2

[(1' 2a) + J 1 ' 4a ] ' (29)

2
Since (l-4a) < (l-2a) it follows that P (u) has a shape as indicated

in Fig. 2. The maximum stable value of q (hereafter called q ) occurs
max

when the larger root of P'(u) = is also a double root of P (u) .

a o

10



Since P (u) is a cubic the conditions can be worked our formally; how-

ever, the resulting conditions are too cumbersome to provide computational

or analytic insights. Therefore we shall present some simpler necessary

conditions and approximate expressions.

First, observe that if P'(u) < , P (u) has exactly one root in

< u <1 , hence P (u) must have exactly one root in < u < 1 . Thus
a

P'(u) > is a necessary condition for stability when <j > . (Observe

the condition that (26) be non-negative is identical to (11).)

A rather accurate approximation to <j for this situation can be
max

obtained by noting that the onset of instability must correspond to a = 1 ,

since a > 1 yields, from (18), a solution with |cd| > 1 . Thus from (19)

a satisfies
max

Sec sec 9/2 + a esc 0/2 = 1,
max

or

OL
_§o_ + :gg*. = i , (30)

A. V1-^.

where uT denotes the smallest root of P (u) . This is necessary
max

since both a and b must be continuously dependent on q .

The u in (30) is not known exactly, but the examination of Fig. 2
Li

indicates that

U
L ~ U

l
' ^31 ^

where u.. is the lower root of P (u) . Thus to a first approximation,

stability will occur for

SCI | n . 1°^cW -Vl-«
1

1-= . 0<a<^, (32)

' ^A1

1
'

11



where u- is given by (28). It will be seen that this equation gives an

excellent approximation to the values obtained numerically. Unfortunately,

a similar approximation for 7" < a has not yet been found.

The roots of (16) were computed numerically and the resulting stability

curves are given in Fig. 1 for selected values of a • All the curves in

Fig. 1 have similar shapes with the lowest curves corresponding to the

highest values of <j • The following stability condition for a = is

easily obtained:

S
1/2

+ lal < 1 . (33)

For cr = 0.1 the increase in At over the value for a = (see equation

(17)) is about 80 percent. A typical value of g for operational numerical

prediction models would be between 0.1 and 0.2. Fig. 1 also shows that

stability can occur for the larger values of a in the region a > t •

However these values of a should not be used because there will always

be a value of kAx in (17) which will give an arbitrarily small value of

a and therefore instability.

Tables 1 and 2 compare values on the numerical stability curve from

Fig. 1 with values computed from (30). The agreement is quite good with

the largest difference occurring for a near t and for larger values

of a •

4. Solutions with time filter

Time filtering has been used in numerical weather prediction models

to damp both physical and numerical noise (Robert [5], Haltiner and

McCollough [3]). Consider the following centered time filter:

F(t) = F(t) + r[F(t + At) + F(t - At) - 2F(t)] . (34)

12



This form is convenient for operational prediction because it uses the

previous averaged value which saves machine storage. When this filter

is used in linear equations which have solutions proportional to co ,

equation (34) takes the form

F(t) = (F(t) +7fF(t + At) - 2F(t)]/(l - jui'
1
) . (35).

Here we have used the relation F(t - At) = co F(t) .

This time filter is introduced into the finite difference equations

(3) and (4) by replacing u. and ({>. with the filtered values ob-

tained from (35). When the relations (5) are introduced into the time

averaged difference equations we obtain the following equation:

4(7(1+7) + S[l-2a(l+7)] j-2jto
4
+ 4[sa-7] a>

3
+ 4(7(1+7) + s[l-2a(l+7)] J-2L2

+ 4[S(a(l+27)-27) -7(1-27)] co -h4S7 (7-a) d-27)
2

= . (36)

If we consider the special case of no pressure gradient averaging

(a = 0), the equation reduces to

[co
2

- 27CD - (1-27)]
2

= -4S(cu-7)
2

. (37)

Take the square root of both sides of this equation and solve for to

which yields

co = 7 ± 1S
1/2

+ J (7-1)
2

- S (38)

This result was obtained by Asselin [1] who has discussed the solutions

in detail. When S is sufficiently small the solutions will be damped.

The critical value of S which is always less than 1, decreases as 7

increases. However, in the damping region, the damping rate increases

with increasing 7 .

13



In the general case the roots to (36) must be found numerically.

Fig. 4 contains the curves which separate the unstable solutions from the

stable solutions for selected values of 7 . The left hand limits of the

curves show the reduction in the critical S as a function of 7 for

a . The curve for 7 = .05 closely approximates the curve for

a = in Fig. 1. As 7 increases the maximum stable value decreases and

shifts to the right. In fact sizable stable regions exist for a > t

depending on 7 . For 7 = there are no stable solutions for a. > T •

We now consider the effect of the time averaging on the solutions when

the mean flow is included. When the time averaging effects are added to

equation (16) we obtain:

od
4
+ 4[Sa-7 + ia]a>

3
+[4(7(7+D-a

2
+ S(l-2a (y+l)))-2 -12oyi] cd

2

+ 4[S(a(l+27)-27)-t7(l-27+27
2

) + ia(27(7+l)-U a>

+ 4S7 (7(l-a
2
)-a) + (1-27)

2
+ 14o7(l-27) - . (39)

Fig. 5 contains the stability curves which were obtained by numerical solu-

tion of (39) for the value a = 0*1 • The curves which are for

7 = 0.1, 0.2, 0.3 show smaller values of maximum values of S than are

seen in Fig. 3. However the starting points (a = 0) are also smaller.

In general the peaks are located at about the same values of a and the

peaks are broader. Both Figs. 4 and 5 show a large improvement in maximum

S over the value with no pressure gradient averaging (a = 0).

5. Conclusions

The stability properties of the Shuman [6] pressure gradient averaging

technique have been investigated in this paper with the linearized shallow

water equations. The analytic solution obtained in Section 2 shows that

the time step can be doubled for a = 7" • However, the width of the stable

14



region becomes very narrow as a = T is approached so that the best value

of a would be slightly less than t . When a mean flow is included the

time step must be reduced. However for reasonable values of the mean flow

(q = 0.1 to 0.2) the time step can still be increased by 70 to 80 percent.

The time averaging of all variables which was suggested by Robert [5] has

been used to damp unwanted high frequency components in numerical forecasts.

The use of the time filtering, however, requires a smaller time step and

therefore more computation time. When the time filtering is used in con-

junction with the pressure gradient averaging, the time step can be

significantly increased although for the larger values of y the time

step may not be much larger than with no time or pressure gradient averag-

ing. When the time averaging is used the optimum value of a, is critically

dependent on y . The addition of the mean flow decreases the time step,

but does not appreciably affect the optimal a •

The Shuman [6] pressure gradient averaging technique has been used

operationally at the National Meteorological Center and it is now under-

going tests at the Fleet Numerical Weather Central. This technique should

be useful in other fluid dynamical applications provided that the

velocities are appreciably less than the fastest gravity waves.
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TABLES

a 0.1 0.2 0.225 0.25

s
an

0.78 1.00 1.50 1.75 2.62

S 0.80 1.02 1.55 1.80 2.50
num

Table 1. Comparison of the values of S on the stability curve from
Fig. 1 (S ) with the values of S computed from Eq . (30)
(S ) for

n
S
m
= 0.1.

an

a 0.1 0.2 0.225 0.25

s
an

0.33 0.43 0.61 0.71 1.04

S 0.35 0.46 0.62 0.74 0.88
num

Table 2. Same as Table 1 except for a - 0.4.
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