
NPSCS-9 1-003

NAVAL POSTGRADUATE SCHOOL
Monterey, California

ANALYTICAL DERIVATION OF
SOFTWARE FAILURE REGIONS

Timothy J. Shimeall

MAJ John Manning Bolchoz, USA
CDR Rachel Griffin, USN

September 1991

Approved for public release; distribution is unlimited.

Prepared for:

Naval Weapons Center

China Lake, CA 93555-6001

FedDocs
D 208.14/2
NPS-CS-91-003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36721999?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

b £02, l<4l*
[

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. W. West, Jr. Harrison Shull

Superintendent Provost

This report was prepared for the Naval Weapons Center and funded by the Naval Postgradu-

ate School.

Reproduction of all or part of this report is authorized.

UNCLASSIFIED

DUDLEY KNOX LIBRARY

•e school NAVAL POSTGRADUATE SCHOOL
msa**— MONTEREY CA 03943-5101

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
ia. REPORT SECURITY CLASSIFICATION UNCLASSIFIED lb RESTRICTIVE MARKINGS

SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITV OF REPORT
Approved for public release;

distribution is unlimited

2a

2b. dECWSSIFIcATIONJdOWNORADINg SCHEDULE

4. PERFORMING 0RgAni2ATi0N RePORT numbER(S)

NPSCS-9 1-003
5. MONITORING ORGANIZATION REPORT NUMBER(S)

fe. NAME OF
C(

'EPiFORMING ORGANIZATION
Jomputer Science Dept.

Naval Postgraduate School

6b. OFFICE SVmBOL
(if applicable)

cs

7a. NAME OF MONITORING ORGANIZATION

Naval Weapons Center

6c. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943

7b. ADDRESS (City, State, and ZIP Code)

China Lake, CA 93555-6001

Sa NAME OF FUNDING/SPONSORING
ORGANIZATION

Naval Postgraduate School

8b. OFFICE SYMBOL
(if applicable)

$. PROCUREMENT INSTRUMENT IDENTIFICATION WuMBER

OM&N Direct Funding
10 SOURC E OF FUNDING NUMBERS
PROGRAM

8c. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000

ELEMENT NO.
PROJECT
NO.

TasR-
NO.

WORK UNIT
ACCESSION NO.

1 1 . TITLE (Include Security Classification)

ANALYTICAL DERIVATION OF SOFTWARE FAILURE REGIONS (U)

ShimeaU, Timothy J., Bolchoz, John Manning, Griffin, Rachel

J3a. TYPE OF REPORT
Progress

I5. PAGE COUNT
34

13b. TIME COVERED
10/90FROM TO 9/91

14. DATE OF REPORT (Year, Month, Day)

1991, Sept. 9
16. SUPPLEMENTARY NOTATION

The views expressed in this report are those of the author and do not reflect the official policy or position of the

Department of Defense or the US Government.

17. COSATI CODES

FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Software Testing,Formal Models, Software Faults, Software Failures,

Software Tools

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This paper proposes an analytical method for deriving software failure regions, which are regions of the input space

that are mapped to failures by specific faults. Previous studies have used empirical rather than analytical approaches

to derive failure regions. A manual technique is presented and proven to produce the necessary and sufficient

condtions of a fault being executed and leading to a failure. Semiautomated tools to assist in the manual technique

are discussed, as is the use of failure regions in regression testing.

ST. ABSTRAC T 5ECURI TY CLASSIF ICATION

UNCLASSIFIED
&. DISTRIBUTION/AVAILABILITY OF ABSTRACT

fj UNCLASSIFIED/UNLIMITED fj SAME AS RPT. fj DTIC USERS

^WiCE SYMBOL
m22a. NAME OF RESPONSIBLE individual

Timothy J. Shimeall
22b. TELEPHONE (Vnc/ude Area Code)

(408) 646-2509

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted

All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Analytical Derivation of Software Failure Regions 1

Timothy J. Shimeall

MAJ John Manning Bolchoz, US Army
CDR Rachel Griffin, US Navy

Computer Science Department

Naval Postgraduate School

Monterey, CA 93943-5100

Abstract

This paper proposes an analytical method for deriving software failure regions, which

are regions of the input space that are mapped failures by specific faults. Previous studies

have used empirical rather than analytical approaches to derive failure regions. A manual

technique is presented and proven to produce the necessary and sufficient conditions of a

fault being executed and leading to a failure. Semiautomated tools to assist in the manual

technique are discussed, as is the use of failure regions in regression testing.

Index terms: Software Testing, Formal Models, Software Faults, Software Failures, Soft-

ware Tools

1 Introduction

It is widely recognized that many faults in installed software are introduced during software

maintenance. For example, a recent change to the switching software used in the US

telephone system inadvertently introduced a three-line fault that interrupted service to

customers in six states. [17] Regression testing is the process of testing software to determine

if a modification has introduced a fault. Currently, there is no consistent theoretical

basis for the conduct of regression testing, forcing maintainers to rerun all previous tests

(in the phone system example, a 13-week process) to determine if any previously-correct

results have been affected during maintenance. One reason for modifying software during

maintenance is to correct known faults in the software. This paper describes and verifies

a technique for predicting the domain of input that produces results affected by a specific

fault in a specific piece of software. This technique is supported by a set of software tools,

*The research reported here was conducted with funds administered by the Naval Postgraduate School

Research Council.

also described in this paper. Knowledge of this input domain focuses the testing needed

to determine if correction of the fault corresponding to the domain has introduced further

faults. For convenience of presentation, this paper assumes that the software to be analyzed

is written in an ALGOL-derived language.

In this paper, a fault is an erroneous piece of program source code. An error is a

discrepancy between a computed, observed or measured value or condition and the true,

specified or theoretically correct value or condition, the immediate result of the execution

of a fault. A failure is the termination of the ability of a functional unit to perform its

required function (i.e., a failure is either the production of a value that contradicts some

portion of the specification, or the lack of production of a specified value). [1]

A software failure region is the set of all input values that are mapped by an individual

program fault onto any failure. Each fault in a program, by definition, is associated with a

single failure region, which may be composed of several disjoint or overlapping subregions.

A single failure region may be associated with more than one fault, these faults being

differentiated by varying effects on the program results. Different faults may also map

distinct failure regions onto the same set of program failures. See figure 1 for a diagram of

these failure region - fault - set of failure associations.

This paper describes a manual technique for analytically deriving a failure region from

a known fault in a program's source code. This technique views a failure region as bounded

by the conjunction of three boolean conditions. The first, reachability, states the conditions

that hold when the program executes the section of source code containing the fault. The

second, generation, states the conditions that cause the fault to produce an erroneous

internal state (e.g., bad variable values). The third, propagation, states the conditions

under which the erroneous internal state becomes a failure.

Input Space Program Output Space

Fault 1

Fault 2

Fault 3

Fault 4

Figure 1: Associations between Failure Regions, Faults and Failures

If software developers can efficiently determine a software failure region, regression

testing would be simplified. The bounding conditions of a failure region are the necessary

and sufficient conditions for a failure due to the associated fault. The regression-testing

subtask of evaluating if the fault is fully corrected may be viewed as applying a sample

from the failure region to the program and examining the results for failures. Instead of

simply repeating previous tests, testers could apply intelligent sampling techniques on the

failure region. The regression-testing subtask of evaluating if the fault correction has not

introduced new faults may also be facilitated by knowledge of the failure region. This

latter question is the subject of ongoing research [6].

The following section briefly reviews research that has involved failure regions or con-

cepts similar to failure regions. Section three describes a manual method for analytical

derivation of the failure regions. Section four describes automated tools that have been de-

veloped to aid this analysis. This paper concludes with a discussion of specific applications

of failure regions to regression testing.

2 Failure Regions

Software failure regions are sets of program inputs, one set for each fault in the program

and each element in each set a complete series of inputs that causes the program to execute

the corresponding fault and produce a failure due to the fault. These sets are always finite,

given the limitations on representation in a finite machine, but are often too large for

tractable enumeration. Each element of each set may be of complex structure. Due to

these considerations, this paper will denote failure regions by the boolean conditions that

identify their elements.

Ammann and Knight first described software failure regions in research on software fault

tolerance[3]. They identified and characterized failure regions by repeated sampling across

a plane through the program input space. They used plots of the identified portions of the

failure regions as a basis for the proposal of a data- variation fault-tolerance technique. No

attempt was reported to identify the bounding conditions of the failure regions. Dunham

and Finelli applied this sampling procedure to other software[4], referring to failure regions

to as 'error crystals'.

In parallel with this fault-tolerance-based interest in the effects of known faults, testing-

based research has investigated conditions that would lead to detection of suspected or

hypothesized faults[ll, 18, 5, 12]. The testing techniques that have been derived from that

research seek to identify at least one data set that would reveal a fault, rather than in

deriving the necessary and sufficient conditions to identify all data that would reveal the

fault. These two problems are clearly related, but they are not identical, and it is the latter

problem that is the subject of this paper.

Voas[16] investigated the dual of the problem discussed in this paper, namely iden-

tification of the portions of the program text that are most likely to contain faults by

examination of where faults are likely to be propagated or obscured. This probabilistic

work has focussed principally on missing-statement faults and the insights from that work

are currently under examination using software failure regions[6].

While there has been broad interest in the conditions that lead to fault detection, no

one has previously proposed a technique to derive the necessary and sufficient conditions

for a fault to cause a failure. Such a technique is the focus of the next section.

3 Manual Technique for Deriving Failure Regions

3.1 Assumptions

There are several assumptions that are implicit in the failure regions analysis technique.

These assumptions may limit the applicability of the technique and are provided here to

give context to the technique description that follows.

The first assumption is that the region is to correspond to a known fault. The region

analysis technique does not detect faults, but generates failure regions for previously-

detected faults. Myers[10] conjectured that the sorts of information that appear in a

failure region's bounding conditions may be used to detect other faults, but this has yet to

be empirically determined. The next section describes the characteristics of a fault used

in application of the region analysis technique .

The second assumption is that, while deriving the failure region corresponding to a

given fault, the effects of other faults may be ignored. In the early stages of program

testing, this assumption may be quite restrictive, and research is anticipated to derive

failure regions for multiple faults simultaneously.

The third assumption is that the analyst knows the loop effects for each loop in the

program, whether iterative or recursive. Specifically, the technique assumes the analyst

can indicate what changes in the local data state of a program execution are made by

a loop. This may be easier to define then a loop invariant. While identification of loop

effects is impossible in the general case, since not all loops terminate or can be proved

to terminate, in many cases the source code, design or requirements documentation will

readily provide this information.

The fourth assumption is that the program under consideration is a sequential program

with soft-real-time constraints. The program is assumed sequential to avoid consideration

of interleaving and interference effects. It is assumed under soft-real-time constraints to

allow analysis for excessive looping faults, but to avoid consideration of explicit timing

values during the analysis. Research is underway to extend the analysis technique to deal

with concurrent and hard-real-time software.

The fifth assumption is that the virtual machine provided by the language processor,

hardware and operating system will not differ from its specified operation in a manner

that affects the analysis. In practice, this assumption means that either the program un-

der analysis avoids any problems with the virtual machine, or that the developers have

corrected these problems prior to application of the region analysis technique on the appli-

cation software. It is not assumed that the virtual machine is an ideal machine, nor that

it has limitless precision and storage, so that the technique may analyze faults that lead

to problems revealed by virtual machine limits.

The last assumption is that undefined variables will not be coincidentally correct. We

introduce this assumption to avoid system-specific probabilistic arguments as to the con-

tents of memory. In practice, this assumption introduces a degree of overestimation into the

failure region analysis, but in this first formulation of the failure region analysis technique,

we view that overestimation as tolerable.

3.2 The Fault and Program Models

In this paper, a fault is an erroneous, possibly non-contiguous, portion of the program

source code. A fault may be undesirable extra statements, a miswritten set of statements,

or a lack of needed statements. A fault is characterized for the region-analysis technique

by three pieces of information. The first is its location, which is either the statement most

closely enclosing the fault or the first statement encountered in the course of execution that

uses values affected by the fault. Of these two alternatives, the first is most tractable in

analysis, but can't be defined for some missing-code faults. Should there be no statement

that uses values affected by the erroneous code portion, then if that section causes the lack

of an output, the analysis treats it as a self-revealing fault (see section 3.3); otherwise if

that section does not cause the lack of an output, then it is not a fault to be analyzed by

this technique.

The second piece of information used to characterize a fault is the list of variables

that the immediate execution of the fault gives erroneous values to, without any interven-

ing action by any other section of the source code. These erroneous values (henceforth

called errors), are viewed as being stored in atomic variables, slices of arrays or files with

known limits, individual fields of a record structure, indirect-referenced data with all aliases

known, and entire sets, strings or variant structures. Should a fault not produce an error,

but otherwise cause the program to fail, the analysis treats it as a self- revealing fault.

The third piece of information used to characterize a fault is the conditions under which

it will generate an error. These conditions are represented as a boolean expression on the

local execution state of the module containing the fault's location. The analysis should

include the known limits on slices of arrays or files in this expression.

More formally, then, the analysis technique uses a characterization of a fault as a 3-

tuple:

< LF , VF , CF >

where Lp is the location of the fault, Vp is the list of variables that form the error caused

by the fault and Cp is the the conditions under which the fault causes the error, described

by a Boolean expression. In practice, this characterization means that the fault must be

identified specifically prior to the analysis, but not necessarily corrected. This character-

ization is not unique, as equivalent Boolean expressions to any Cp may be constructed

by negation (i.e., _i
(
_,Cf) = Cf). Such an equivalence will not change the results of the

analysis technique.

A program is characterized by the variables, modules and statements that are its con-

stituent parts. Modules and variables are identified by unique names (if necessary, by

associating them with their defining scope). Statements are identified by their order of

occurrence within the program source code, and may enclose subsidiary statements. The

input and output statements of the program are explicitly identified. Formally, then, a

program is characterized as a 6-tuple:

<Vp,RP,MP,SP,Ip,0P >

where Vp is the list of variables defined by the program, Rp is a subset of Vp indicating

variables that are input, Mp the list of modules, each having the same structure as the

program, Sp is the list of statements, Ip the subset of Sp that are input statements, Op

the subset of Sp that are output statements. An input statement is defined as one where

8

variables receive values from a source external to the program. An output statement is

defined as one where messages and variable values are transmitted to a sink external to

the program. The initial statement of a program is not considered an input statement,

nor is the final statement of the program considered an output statement, unless these

statements are members of Ip or Op, respectively.

A statement S is formally characterized as a 7-tuple:

< Ts , Ds , Rs, Us, Cs , Es , E's >

Ts is the text of the statement, exclusive of any enclosed statements. Ds is a list of the

variables that are defined (given values) by the statement. Rs is a list of the variables that

are referenced by the statement. Us is a list of the variables that become undefined (lose

their value) at statement S. Cs is the portion of Ts that forms a boolean condition. Es and

E's are lists of statements enclosed by the statement and executed if Cs evaluates to true

or false, respectively. Any or all of Ds, Rs, Es and E's may be the empty list. Should the

statement not contain a boolean condition, Cs will be 'true'. A path is a set of statements,

a subset of the union of all statements in the program and its submodules. The elements

of a path are all statements visited during some specific portion of a program execution,

and some elements of a path may also appear as substatements of other elements of the

path.

Lastly, the type BooleanExpression, used in the sections following, is an expression

in the first-order predicate calculus, maintained as an expression rather than being reduced

to a Boolean value.

3.3 Overview of the Analysis Technique

This paper describes the failure regions analysis technique using a pseudocode similar to

Ada. This description is for compactness and formality, rather than for implication of

automatic implementation of the analysis technique.

In a broad view, the analysis technique is made up of four steps: 1) deriving reachability

conditions, 2) merging error-generation conditions obtained during fault identification, 3)

deriving propagation conditions and 4) post-processing to simplify the region conditions

and eliminate non-input variables. A process-program arrangement of these steps appears

in Figure 2. A self-revealing fault, one that always causes an immediately visible result

that contradicts the specification (e.g., an abnormal program exit) or that always prevents

a specified result, omits the analysis of error propagation conditions (i.e., its propagation

condition is 'true').

procedure DeriveRegion (in F: Fault; in P: Program;
out region : BooleanExpression) is

r: BooleanExpression := 'true'

q: BooleanExpression := 'true'

for each i 6 Ip loop
for each path t from i to LF loop

r := r V Reach (t,LF)

end loop
end loop
r := r A CV — obtained from debugging
if F is not a self-revealing fault then

for each o G Op loop
for each path t from LF to o loop

q := q V Propagate (F, t, o)

end loop
end loop

end if

r := Reduce (r A q, Vp — Rp)

region := Simplify (r)

end DeriveRegion

Figure 2: Top-Level Description of Region Analysis

The technique requires the user to select paths for the derivation of the reachability and

propagation conditions. The assumptions of soft-real-time program character and isolation

of faults combine to ensure that the analysis will terminate (i.e., that it need not consider

infinite or excessive looping prior to the fault location).

10

3.4 Analysis for Fault Reachability Conditions

The first analysis step derives the fault's reachability conditions along a specific path.

The analysis invokes this step iteratively, as described in figure 2. This step forms a

composition of all the conditions connecting one statement in the path to another. One

group of conditions occur in the text of loop, if, and multiple-branch conditional (case)

statements. This group will henceforth be called referencing clauses.

Another group of conditions, henceforth called defining clauses, occur due to the effect of

assignment statements and procedure or function calls. These clauses represent the changes

in variable values that occur during program execution. The analysis uses defining clauses

to record transformation of the program state, so that the analyst may change conditions

that occur in the program (involving a mix of input values, constants and current values of

local variables) to conditions that involve only input values and constants. It is the latter

conditions that form the desired bounds on the failure region. Most defining clauses will

not appear in the final failure region bounds, but only in the intermediate forms leading

to those final bounds.

The reachability condition analysis, then, traverses the statements in the path, form-

ing a composition of the defining and referencing clauses. This traversal is described in

figure 3. The formation of the composition is guided by the known location of the fault,

and simplified to deal with that specific set of code. Loops in the path are dealt with

by applying the exit condition (if the loop body is not in the path) or applying the loop

effects (which will be represented by Effect (s,c) below, where s is a loop statement

operating in a state characterized by c) and then extracting the loop body from the path.

If the fault location is part of the loop body, then the traversal algorithm applies the loop

effects to emulate any iterations prior to the fault and extracts any paths through the

loop body except from the loop initiation to the fault location. Other control statements

are dealt with by incorporating their enclosed conditions in the reachability condition and

traversing their enclosed statements (if any). Non-control statements are dealt with using

11

the Semantics operation.

function Reach (in £:path; in g: statement)
returns BooleanExpression is

cur: BooleanExpression := 'true'
flat: set of statements :=

flatn: set of statements :=

for each statement set loop
flat := flatten {E9)

flatn := flatten (E'
a)

if s is a loop A Es C t A g G flat then
cur := cur A Effect (s, cur) A C3

t := (i-flat) U {s'
\
s' G flatA g G flatten (s')}

elseif s is a loop A g G flat then
cur := cur A C3

elseif s is a loop A Es C t then
cur := cur A Effeet (s, cur)

t := t-Ea

elseif 5 is a loop A Ea (£ t then
cur := cur A ->C9

elseif E3 ± 0A(£a C tM g G flat) then
cur := cur A C3

elseif E'
a y£ ® A {E'

3 C t V g 6 flatn) then
cur := cur A ->C3

else cur := Reduce (cur, D 3) A Semantics (T3 , cur)

end if
end loop
return Simplify (cur)

end Reach

Figure 3: Description of Reachability Analysis

The derivation of the reachability and propagation conditions make use of an operation

referred to as Semantics and an inclusion-expanding function flatten. Semantics

represents the operation of the underlying virtual machine. The analyst is assumed to

take the text of a statement and a context for evaluation to obtain a Boolean expression

describing the results of evaluation. Methods for implementing Semantics in practice

include symbolic execution^ and code reading[9].

The function flatten takes a list of statements and returns the union of that list with

all of the statements enclosed by any element of that list. The algorithm for flatten is

12

given in figure 4.

function flatten (in L: set of statements;
returns set of statements is

cur: set of statements :=

working: set of statements := L

while working ^ loop
s 6 working
working := (working— {s}) U Ea U E'

s

cur := curU£s U£^U {s}

end loop
return cur

end flatten

Figure 4: Flatten Algorithm

3.5 Analysis for Error Propagation Conditions

After the analysis of reachability conditions and the merger of the error generation con-

ditions that were obtained during fault identification, the next step in the failure region

derivation is to determine when (if ever) the value of each output is affected by the fault.

Figure 5 provides an overview of the error-propagation analysis.

The starting point for this analysis is a list of variables with erroneous values that are

immediate results of the fault (denoted by Vp in figure 5). This list forms the initial 'con-

tamination list' for the analysis. The analysis propagates the contamination list separately

along each possible path from the location of the fault to each program output. In each

specific path, the analysis expands the contamination list as variables receive values de-

rived from one or more variables in the contamination list, the analysis removes variables

from the contamination list as they become undefined or as program statements give them

new values that do not derive from variables in the contamination list. If the last output

statement in the path references variables in the contamination list, then the analysis re-

turns the path condition as a partial failure region condition. If the output statement does

not reference any of the variables in the contamination list, or if the contamination list

13

becomes empty, then the path is not incorporated in the failure region conditions.

3.6 Post-Processing of Analysis

To be a practical source of information for testing, the bounding conditions of a software

failure region must be simplified as much as feasible without loss of information and the

conditions must involve only variables that are of interest to the testers, typically the pro-

gram input variables. There are two operations that are used to convert the conjunction

of conditions derived from the program text into a useful failure region bound. The Sim-

plify operation is a conventional Boolean simplification. The Reduce operation takes a

Boolean condition (involving both defining and referencing clauses) and a list of variables.

It returns a Boolean condition in which each reference to any of the variables on the list

has been replaced with the associated definition, and any definition of the variables on the

list has been eliminated.

The preceding description of the Simplify and Reduce operations does not imply

that these operations are to be fully automated. In practice, the analyst may need to

intervene to replace complex or intertwined clauses with simpler forms derived from the

program specification, design or source code. This has been found to be particularly true

when the input data control the values of program variables only in an indirect fashion.

3.7 Example of Deriving A Software Failure Region

As an example of deriving failure regions from the source code, consider the Pascal function

AcuteAngle in figure 6. This function is specified to determine if the angle subtended

by a rectangle centered at an arbitrary point (Xt,Yt) when viewed from the origin (i.e.,

the largest angle with the vertex at the origin and two of the corners of the rectangle as

the endpoints) is less than | radians. The width (w) and length (/) of the rectangle are

parallel to the x and y axes, respectively. (See figure 7 for an illustration of a rectangle

and origin layout, where a is the angle to be measured.) This function is derived from

14

function Propagate (in F: Fault; in t:path;

in o: statement) returns BooleanExpression is

cur: BooleanExpression := 'true'

contamlist: list of variables := VF
flat: set of statements :=

flatn: set of statements :=

for each statement s E t loop
if contamlist is null then

cur := false
exit loop

end if
flat := flatten (JSa)

flatn := flatten (E'
a)

if s is a loop AE3 C t A LF E flat then
cur := curAEf feet (s, cur) A C3

t := (*-fiat)U{s' \s' £ flatALF E flatten (s')}

elseif 5 is a loop ALF E flat then
cur := curACj

elseif 5 is a loop AES C t then
cur := curA Effect (5, cur)

t := t-E3

elseif 5 is a loop AEa ^ t then
cur := curA-iC,

elseif Es ^ A {Ea C t V LF E flat) then
cur := curAC,

elseif E'a ^ A (£; C t\/LF E flat) then
cur := curA->C3

else
cur := Reduce (cur, D3) A Semantics (Ts , cur)

end if

if contamlistni?3 ^ then
contamlist := contamlistU.D,

elseif contamlistfli), ^ then
contamlist := contamlist - D9

end if

contamlist := contamlist - U3

end loop
if contamlistni? = then return false
else return Simplify (cur)

end if
end Propagate

Figure 5: Description of Propagation Analysis

15

code developed for a software experiment[15]. The particular implementation in figure 6

has a fault at line 13, where the corners used to calculate the subtended angle are those

identified as B and C in figure 8, rather than the proper B and D. Assume that the only

input statement is at line 1 and the only output statement is at line 29. The conditions

for reaching line 13 are:

XA = XT - f A YA = YT + iA

XB = XT + f AYB = YT+{A

Xc = XT - f A Yc = YT - L A

XD = XT+^ AYD = YT- |A

YD < A YB > A XD <

The first four lines are defining clauses, the last line a referencing clause.

The conditions under which the code produces an erroneous value due to the substitu-

tion of C for D are those where the angle formed by B, C, and the origin (angle COB) is

different from B, D and the origin (angle DOB), or:

Xc Xd

which, since Yc = Yd, simplifies to Xq > Xc-, which reduces to w > 0. Lastly, the

conditions under which the erroneous value isn't masked by the comparison at line 29 in

figure 6 are where angle COB is less than | and angle DOB is greater than |, or:

(tan-(|L) _ tan-'(g)) < \ < (tan-(g) - tan"
1

^))

Combining these inequalities, substituting for defining clauses and simplifying yields the

result:

(^ < YT < |) A XT > =f A w > 0A

(tan
-1

(j^Jr) — tan" 1^-^!) j
< f < (tan

-1
(XT+ l)

— tan~ l

(A:r ~i

A cross-section of this region appears as the cross-hatched portion of figure 8 for a particular

set of values for Xt, Yj, w and /. As we vary those four values, the failure region forms a

16

tetrahedral cylinder through the four-dimensional input space, with a rotating tetrahedral

groove through one face.

function AcuteAngle (XT, YT, W, L: real) :boolean;
const Pi=3. 1415926535;
var AX, AY, BX,BY, CX,CY, DX,DY: real;

Angle, HalfWidth, HalfLength: real;
begin

1 HalfWidth := W / 2; HalfLength := L / 2;

2 AX
3 DX
4 BX
5 CX

= XT-HalfWidth; AY
= XT+HalfWidth; DY
= DX; BY
= AX; CY

=YT+HalfLength;
=YT-HalfLength;
=AY;

=DY;

6 if ((YO > BY) and (XO > BX)) then
7 Angle := abs (arctan (DY/DX) - arctan (AY/AX)

)

8 else if ((XO < CX) and (YO < CY)) then
9 Angle := abs (arctan (AY/AX) - arctan (DY/DX)

)

10 else if ((YO > AY) and (XO < AX)) then
11 Angle := abs (arctan (CY/CX) - arctan (BY/BX)

)

12 else if ((YO > DY) and (XO > DX)) then
13 Angle := abs (arctan (BY/BX) - arctan (CY/CX)

)

14 else if XO > BX then
15 Angle := abs (arctan (DY/DX) + arctan (BY/BX)

)

16 else if XO < AX then
11 Angle := abs (arctan (AY/AX) + arctan (CY/CX)

)

18 else if (YO >= AY) then
19 if (XO = AX) then Angle := Pi/2 - abs (arctan (BY/BX)

)

20 else if (XO < BX) then
21 Angle := Pi - abs (arctan (AY/AX))

- abs (arctan (BY/BX)

22 else Angle := Pi/2 - abs (arctan (AY/AX)

)

23 else if (YO <= CY) then
24 if (XO = DX) then Angle := Pi/2 - abs (arctan (CY/CX)

)

25 else if (XO > CX) then
26 Angle := Pi - abs (arctan (DY/DX)) - abs (arctan (CY/CX)

27 else Angle := Pi/2 - abs (arctan (DY/DX)

)

28 else Angle := 2 * Pi;

29 AcuteAngle := Angle <= (Pi/2)

;

end;

Figure 6: Function AcuteAngle

17

1^

"C" /(0.0)

w

Figure 7: Parameter Layout for Function AcuteAngle

< W

•
(XT.YT)

r

Figure 8: Failure Region in Function AcuteAngle

3.8 Validation of the Analysis Technique

Section 1 defined a failure region as bounded by the necessary and sufficient conditions for

a fault being executed and leading to a failure. This section proves the following theorem:

Theorem 1 Given the assumptions in section 3.1 and that the fault detection process

accurately supplies Lp, Vp and Cf, and that the Semantics function accurately supplies

the effect of its argument statement on its argument environment, DeriveRegion, if

it terminates, will produce necessary and sufficient conditions for executing a fault and

causing it to lead to any failure.

This theorem is the conjunction of the following two propositions:

Proposition 1 (Necessity) All input sequences that satisfy the conditions produced by

DeriveRegion will cause the fault to be executed and lead to some failure.

Proposition 2 (Sufficiency) There are no input sequences that fail to satisfy the con-

ditions produced by DeriveRegion and cause the fault to be executed and lead to any

failure.

Both of these propositions may be conveniently proved by contradiction. The negation

of Proposition 1 assumes that some input satisfies the conditions generated by DeriveRe-

gion but does not execute the fault and lead to a failure. This may only happen due to

one or more of the following:

nl The input does not cause the code at the fault location to be executed.

n2 The input does not cause the fault to generate an error.

n3 The input does not execute a path from the fault to any output statement.

n4 The input maps the error generated by the fault into a correct state along the

path to each output statement.

19

Option nl may occur iff at some statement prior to Lp, the condition on the branch

that leads to Lp was false in the state derived from the input. That implies that there

exists some input statement i G lp such that a path from i to Lp exists, but that path is

not included in the derivation of failure region bounds, or the conditions along the path

were incorrectly analyzed by Reach. The implication that the path was not included is in

conflict with the 'all paths from i to Lp 1

loop in DeriveRegion.

The implication that the conditions along a path were incorrectly analyzed by Reach

implies two possibilities: the referencing clauses were incorrectly analyzed or the defining

clauses were incorrectly analyzed. The possibility that the defining clauses were incorrectly

analyzed is a contradiction of the assumption that Semantics accurately captures the

effects of the statement. The possibility that the referencing clauses were incorrectly an-

alyzed is shown a contradiction by examination of the condition handling in Reach (the

if structure inside of the for each loop).

In any path through the text of a program, there are three possible traversals of a

single-entry, single-exit section of the text : the section could be completely traversed,

the path could terminate inside of the section, or the path could include none of the

statements in the section. Complete traversal of a code section is dealt with by the third,

fifth and sixth if clauses in Reach, in which the conditions for entry of the code section

are included in the path conditions. Partial traversal of a code section is dealt with by

the first, second, fifth and sixth if clauses, where the presence of the path termination is

tested, and if present, the conditions for entry of the code section are included in the path

conditions. Non-traversal of a code section is dealt with by the for each loop, which

restricts construction of path conditions to the statements in the path, and the fourth

if clause, which incorporates the loop exit conditions if the body is not executed. Thus

in each case the appropriate conditions are included in the path condition, so incorrect

analysis by Reach is shown to be a contradiction.

20

Option n2 is a contradiction of the assumption that Cp has been accurately captured

by the fault detection process, and hence may be neglected.

Option n3 may occur iff at all statements reachable from Lp, the branches that include

any member of the set of program output statements required conditions that were found

to be false in the state derived from the input. That implies that there exist paths from

Lp to at least one output statement o, but these paths are not included in the derivation

of the failure region bounds or the conditions along the path were incorrectly analyzed by

Propagate. The implication that the path was not included is in conflict with the 'all

paths from Lp to o' loop in DeriveRegion. The implication that the conditions along

the path were incorrectly analyzed by Propagate may be shown to be a contradiction

through argument paralleling the preceding discussion of Reach.

Option n4 may occur iff at some point on the path selected by the input after the

execution of Lp, all variables affected by the fault and subsequent erroneous calculation

have had their values replaced by values resulting from calculation or reference with solely

unaffected variables. This conflicts with the first if inside the for each loop in Prop-

agate, which, by returning 'false', precludes input that selects such paths from inclusion

in the failure region.

Since each possible cause of the negation of Proposition 1 has been shown to be a

contradiction, that proposition is found to be true. DeriveRegion is thus proven to

generate necessary conditions for a fault to be executed and lead to a failure.

The negation of Proposition 2 assumes that some input exists that does not satisfy the

conditions generated by DeriveRegion but does lead the fault to produce some failure.

This may only happen through one or more of the following:

si The input causes program execution along a path from an input statement

through the fault location that was not considered in DeriveRegion.

21

s2 The conditions derived from the input cause the fault to generate an error in a

manner not considered in Cp-

s3 The input causes program execution along a path from the fault location to an

output statement that was not considered in DeriveRegion.

Option si is shown to be a contradiction through an argument that parallels the refuta-

tion of option nl. Option s2 is a direct contradiction of the assumption that Cf has been

accurately captured by the fault detection process. Option s3 is shown to be a contra-

diction through an argument that parallels the refutation of option n3. All three options

being shown as contradictions, DeriveRegion is proven to generate sufficient conditions

for a fault to be executed and lead to a failure.

This proof of necessary and sufficient conditions is subject to the assumptions made

at the start of the section. These assumptions limit the applicability of the manual tech-

nique to those contexts that can reasonably satisfy them. If the technique is applied in a

context where these assumptions do not hold, it may generate the necessary and sufficient

conditions, but this proof does not hold.

4 Automated Support for Failure Region Analysis

While the manual process allows for the derivation of software failure regions, it is too

mentally taxing and too slow for use with large or complex software. To facilitate and

accelerate failure region derivation, five semiautomated software tools have been developed

to support the failure region analysis: REACHER, WALKER, FALTER, SPACER and VIEWER.

A flow diagram of the use of these tools is in figure 9.

These tools are not intended to replace a human analyst, but rather to support the

analyst in the derivation of failure regions. At any point in the analysis process, the analyst

may intervene to replace conditions, change the source code fragment being analyzed, or

22

Displays and

Prompts

Final Failure

Bound

SPACER

Immediate

ACFG

Fault /

ALKER Location

Commands Condition

Cumulative ACFG

SPACER
Commands

Graph/

Condition

Prompt

FALTER

Faulted ACFG

Figure 9: Flow Diagram of Support Tools

examine previous analysis results. At some points in the process, the analyst is required

to provide information that is not automatically determinable.

Two tools support the reachability analysis process. REACHER parses Pascal programs

and builds a control flow graph. This control-flow graph is a data-structure representation

of the program model given in section 3.2. Using the control-flow graph, the conditions

under which each statement in the program may be reached may be derived.

REACHER is constructed using LEX and YACC and a specification for Pascal based on

the ISO standard. In a single non-interactive pass over the Pascal source code, REACHER

creates a list of blocks corresponding to each procedure and function. Each block contains

information such as the declaration text for each block, the sub-blocks belonging to or

nested within each block and a pointer tracing the block back through the thread of its

definition.

Concurrent with the construction of the linked list of blocks is the construction of a

linked list of nodes that correspond to the statements in the program. It is this list that

results in the control-flow graph. For example, consider the Pascal fragment in Figure 10.

begin
readln (x)

;

if x > 3 then

y := 10

else

y := 20;

writeln(x / y)

end

Figure 10: Example Pascal Fragment

The list would contain nodes for begin-end, the readln procedure call, the if-

then-else, the two assignment statements and the write In procedure call. The nodes

are linked as shown in figure 11, forming the control- flow graph. Each node is annotated

with the conditions under which program flow may proceed to each succeeding statement.

Once REACHER has constructed the initial control-flow graph, annotated with the im-

24

begin readln

true true A

A A
/

A

if

>

y := 20

x>3 A true A

Aj

>(
r >'

y : = 10 writeln

true A i—

»

false A

A A A

Figure 11: Node Linkages in Example Pascal Fragment

mediate branching conditions, WALKER is used to collapse unneeded nodes and to collect

the immediate branching conditions into the node reachability conditions. Unneeded nodes

are those unrelated to the fault being analyzed. They are collapsed by merger of the node

information in the internal data structure. The collection of branching conditions into

reachability conditions is accomplished by a user-guided loop [0,1] traversal as described in

section 3.4. By default WALKER will 'and' together the branching conditions of the nodes

traversed. If the user finds the resultant conditions undesirable, WALKER allows the user to

replace the current condition with one of the user's choosing at any point in the traversal.

WALKER is implemented in C using the BSD Unix support libraries.

FALTER is used to attach a description of a known fault to the data structure cor-

responding to the program block in which the fault is found. The fault description cor-

responds to the information described in the fault model in section 3.2, including the

error-generation conditions and the list of variables with values immediately contaminated

by the fault. FALTER then translates the internal structure into a LISP expression for sym-

bolic execution by SPACER. FALTER is implemented in C using the BSD Unix support

libraries.

SPACER supports the propagation analysis described in section 3.5. At the start of

execution, SPACER prompts the analyst to select the fault to be analyzed from the list

of faults identified through FALTER in the current program. SPACER then symbolically

executes the program, performing a traversal of the program paths. When the fault lo-

cation is reached, SPACER initiates the analysis process described in section 3.5, using

the information provided via FALTER. At each output statement, SPACER reports the

current propagation conditions for the variables referenced in the output. During this pro-

cess, SPACER requires user guidance to select paths to traverse and to resolve complex

expressions. SPACER periodically reports to the user the current state of the analysis and

the statements being traversed. SPACER is implemented in Allegro Common LISP, using

portions of the UNISEX symbolic execution package[7].

26

While each of the above tools may be directly accessed by the analyst, a coordinating

visual interface is provided by the VIEWER tool [2]. VIEWER presents textual and graphic

information to facilitate the analyst's tracking of the analysis process, provides a mouse-

driven command structure to replace the text command structure supported by the other

tools, deals with tool initiation and termination, eases consistency between tool usage, and

provides an extensible command structure to ease common commands. VIEWER is imple-

mented in C using the SunView user interface libraries. A sample of VIEWER operation

(one supporting WALKER execution) is given in figure 12.

5 Conclusions

This paper has presented a new technique for deriving the bounding conditions for soft-

ware failure regions. These conditions form the necessary and sufficient conditions for an

individual program fault to be executed and to lead to a failure. But the technique requires

that the fault be known prior to the analysis. One testing task in which this knowledge

would be present is the regression testing task.

There are two immediately obvious ways in which failure regions analysis aids regression

testing. First, the failure region offers a framework within which statistical sampling

techniques can be used to evaluate fault correction. Testers, if they know the limits on

the useful test cases, can intelligently plan regression tests, rather than iterate previous

testing. Research is in progress on detailed regression-testing techniques based on sampling

of failure regions.

The second way failure regions analysis aids regression testing is by focusing detailed

attention on the fault. As a review method, failure regions analysis may allow the analyst

to identify if a proposed correction is inadequate prior to run-time testing. As a planning

method, failure regions analysis may allow maintenance personnel further insight on the

fault as they consider alternative corrections to the fault.

27

Valker Window 2.4
SC := Slope(X0,Y0,CX,CY);
SC := arctan(SC);
SB := Slope(X0,Y0,BX,BY);
SB := arctan(SB);
if ((YO > BY) and (XO > BX)) then
Angle := abs(SD - SA)

else
if ((XO < CX) and (YO < CY)) then
Angle := abs(SA - SD)

else
if ((YO > AY) and (XO < AX)) then
Angle := abs(SC - SB)

else
if ((YO > DY) and (XO > DX)) then

c: 'true'

a:'here we are and (null)'

>g Angle
node: 4

@:(13)' '

c: 'true'
a:'(null)'
>n 34

node: 34

@:(35)'if ((XO < CX) and (YO < CY)) then'

c:' ((XO < CX) and (YO < CY)) '

a:'(null)'

>0

[Rnnotate") [Condi ti on] [Join ~) [Goto"""*)[Prior]f Left "] [Right~)[Node]

Walker input string:

(Type "") [Lister"^ Lister input:

LCDR Vicki Rbel, USN and CRPT lledio Monti, USI1C

Lister output:

Figure 12: Sample of VIEWER Operation

Finally, knowledge of the failure region bounds allows examination of a variety of issues

relating to the applicability of software testing techniques. Research is in progress that

applies software failure region analysis to a population of software with known faults and

examines these issues. In summary, software failure regions analysis offers both assistance

in portions of the software test effort and insight into a variety of phenomena relating to

faults and their detection.

6 Acknowledgements

The authors wish to thank Richard Kemmerer for his provision and permission to use

UNISEX as a portion of the SPACER tool. MAJ Medio Monte, USMC and LCDR Vicki

Sue Abel, USN, put in long hours of quality work to construct the VIEWER tool. Many

helpful comments during the conception and writing of this paper were provided by Dr.

Richard Hamming, Dr. Man-tak Shing and LT Lelon Ginn, USN.

References

[1] Glossary of Software Engineering Terminology, ANSI-IEEE Std 729-1983, Institute of

Electrical and Electronics Engineers, 1983.

[2] Abel, V.S. and Monte, M., VIEWER: A User Interface for Failure Region Analysis,

Master's Thesis, Computer Science Dept., Naval Postgraduate School, Monterey CA,

December 1990.

[3] Ammann, P.E. and Knight, J.C., "Data Diversity: An Approach to Software Fault

Tolerance", IEEE Transactions on Computers, April 1988, pp. 418-425.

[4] Dunham, J.R., and Finelli, G.B., "Real-Time Software Failure Characterization",

Proceedings of the Fifth Annual Conference on Computer Assurance, Gaithersburg,

MD, June 1990, pp. 39-45.

[5] Gayen, J.-T. and Kuchta, D., "Possibilities and Limitations of Error Detection by

White-box Testing Methods, Including the Domain Borders Method", Proceedings of

the Safety of Computer Control Systems Symposium 1988 (SAFECOMP J

88), Fulda,

FRG, November 1988, pp. 35-40.

29

[6] Ginn, L.L., An Empirical Approach to Analysis of Similarities Between Software Fail-

ure Regions, Master's Thesis, Computer Science Dept., Naval Postgraduate School,

Monterey CA, September 1991.

[7] Kemmerer, R. A. and Eckmann, S. T., "UNISEX: A UNIx-based Symbolic EXecutor

for Pascal", Software - Practice and Experience, Vol 15, No. 5, May 1985, pp. 439-455.

[8] King, J.C., "Symbolic Execution and Program Testing", Communications of the ACM,
Vol 19, No. 7, July 1976, pp. 385-394.

[9] Linger, R. C, Mills, H. D. and Witt, B.I., Structured Programming, Theory and

Practice, Addison- Wesley, 1979.

[10] Myers, G. J., The Art Of Software Testing, John Wiley and Sons, New York, NY,
1979.

[11] Rapps, S. and Weyuker, E. J., "Selecting Software Test Data using Data Flow Infor-

mation", IEEE Transactions on Software Engineering, Vol. SE-11, No. 4, April 1985,

pp. 367-375.

[12] Richardson, D.J. and Thompson, M. C., "The RELAY Model of Error Detection and

Its Application", Proceedings of the Second Workshop on Software Testing, Verifica-

tion and Analysis, Banff, Alberta, 1988, pp. 223-230.

[13] Shimeall, T.J., "FALTER-A Fault Annotation Tool", Technical Report NPS52-89-0-

51, Naval Postgraduate School, Monterey, CA, September, 1989.

[14] Shimeall, T.J., "REACHER-A Reachability Condition Derivation Tool", Technical

Report NPS52-89-050, Naval Postgraduate School, Monterey, CA, September, 1989.

[15] Shimeall, T.J. and Leveson, N.G., "An Empirical comparison of Software Fault Toler-

ance and Fault Elimination", IEEE Transactions on Software Engineering, Vol. SE-17,

No. 2, February 1991, pp. 173-182.

[16] Voas, J. M. and Morell, L. J., "Fault Sensitivity Analysis (PIA) Applied to Computer

Programs", Technical Report WM-89-4. College of William and Mary, Williamsburg,

VA, 10 December 1989.

[17] Watson, G. F., "Bell companies, manufacturers join to cure phone outages", The

Institute, vol 15, No. 7, September 1991, p. 1, 7.

[18] White, L.J. and Wiszniewski, B., "Complexity of Testing Iterated Borders for Struc-

tured Programs", Proceedings of the Second Workshop on Software Testing, Verifica-

tion and Analysis, Banff, Alberta, 1988, pp. 231-237.

30

Distribution List

Defense Technical Information Center,

Cameron Station,

Alexandria, VA 22314 2 copies

Library, Code 0142

Naval Postgraduate School,

Monterey, CA 93943

Center for Naval Analyses,

4401 Ford Avenue

Alexandria, VA 22302-0268

Director of Research Administration,

Code 012,

Naval Postgraduate School,

Monterey, CA 93943

2 copies

1 copy

1 copy

Dr. Timothy Shimeall

Naval Postgraduate School,

Code CS/Sm, Dept. of Computer Science

Monterey, California 93943-5100 15 copies

Robert E. Westbrook

Code31C
Embedded Computing Technology Office

Naval Weapons Center

China Lake, CA 93555-6001 2 copies

CDR Rachel Griffin

Naval ROTC
University of Rochester

Rochester, NY 14627 1 copy

MAJ J. Manning Bolchoz

1025 Chambers Lane

Mount Pleasant, SC 29464 1 copy

DUDLEY KNOX LIBRARY

3 2768 00343083 6

