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J.B. Bassingthwaighte, I.S. Chan, A. A. Goldstein
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BACKGROUND

This work concerns a technique to be used in the solution of
optimal trajectory problems associated with kinetic energy
weapons. In this problem, it is desired to solve for a control
function (which might be thrust magnitude and direction of a

gimbaled engine) in time in order to minimize time to intercept
an enemy missile.

Such problems are really infinite dimensional in nature
(i.e., determining the control at each time point along the
trajectory). However, in using a digital computer to solve such
problems, certain operations occur which make the problem
discrete and so viewable in a finite dimensional setting. For
example, to numerically integrate the differential equations of
motion, only values of thrust at a finite number of time points
(typically, the beginning of each integration interval) affect
the trajectory.

The problem then is to determine these values so as to
minimize the time to intercept. For any particular trajectory,
this quantity is computed through a complicated flight equation
simulation model. Also inherent in this computation is noise
so that the computed time to intercept is really a noisy
quantity. The current algorithm considers the noise in solving
for the optimal control.

INTRODUCTION

We are concerned here with the problem of minimizing
functions in which the only data available are function values.
These values could be obtained by: a) observation and,
therefore, be subject to measurement errors, or byb) simulation
and so, be subject to computational errors of the simulation
model. A difficulty present in any type of numerical
optimization and often, in particular, when these errors exist,
is "stalling". This is the inability of the algorithm to further
reduce the function from its value at a non-minimizing point.
The object of the current work is to postpone "stalling" as long
as possible.
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"Stalling" arises when the magnitudes of the true gradient
and of the error in determining the gradient become comparable.
In the current problem, gradients are estimated from noisy
function values which can be expected to include an absolute
noise component. As the minimizing point is approached, the
magnitude of the true gradient decreases but the absolute noise
present in estimating it does not so that "stalling" results.

The procedure employed to delay "stalling" uses data
smoothing in computations involving descent direction
determination. The criterion of least squares is used to fit the
data over a mesh of points. A secondary optimization problem is
solved to optimize the location of the mesh points so that
maximal descent direction determination accuracy will be
achieved

.

This latter optimization is very demanding in the number of
data points and, hence, also the number of function evaluations
required. For this reason, the determination of the mesh is done
by three methods henceforth referred to as A, B and C. These are
of increasing sophistication and expense and are used
progressively as needed to provide continued decrease of the
function f. Method B witn associated numerical results is
discussed in this paper. Method A appears in [1] and method C is
the subject of a future paper.

DESCRIPTION OF THE ALGORITHM

The basic scheme is described in [2], The data is assumed
to include an absolute noise that is bounded by the input
parameter epsilon. It is possible to also include relative
noise, however, for small function values in the "stalling" phase
(these are the type of cases that were run) absolute errors
dominate relative erros. Thus, absolute errors were concentrated
on in this paper.

The procedure of [ 2 ] consists of computing relaxed Newton
and gradient steps. These directions are determined by using
least squares to fit a quadratic smoothing polynomial over a

local mesh of points surrounding the current estimate of the
minimizing point. This fit yields first and second order
coefficients for the function that define the Newton ana gradient
directions .

Method A is the first method used to determine the mesh. It

is based on the fact that in the least squares process the
accuracy in estimating the coefficients of the smoothing
polynomial is directly related to the error in function value
differences across the mesh. The method proceeds as follows:
the spacing along each coordinate axis is selected with the
purpose of maintaining at least a minimum significance in the
above referred to difference of function values. A linear model
is assumed for the function and the spacing predicted on the



basis of it. In order to keep function evaluations to a minimum
at the current estimate of minimizing point, the success in
achieving the above purpose is not verified. At the next
estimate of minimizing point, the spacing is updated, based on
the previous estimate. This scheme has proven to be adequate
from far-off starting points where, due to a large gradient
magnitude, the determination of the mesh is not so critical.

If, while performing mesh determination by method A, "stalling"
occurs, the algorithm then switches to method B. This method has
the same stated purpose as method A, but does not use a linear
moael. Also, the predicted value of spacing is verified by
function evaluation and solution is accomplished through an
iterative technique. Furthermore, in order to minimize
truncation errors, the smallest feasible spacing is used.

In the event that "stalling" occurs while method B is being
used for mesh determination, then the algorithm switches to
method C. This method requires extensive computation. Hence, it
is suited for use only in the final stages as the solution is
approached. The goal now is to determine the mesh which
minimizes the fitting error in the first and second order
coefficients. This is done by adjusting the location of each
mesh point so as to minimize the above error.

There are two points to note here. First, the optimal
adjustment of each coordinate of each mesh point would normally
lead to a large dimensional problem. Second, since the true
coefficients are not known, then reduction of the fitting error
cannot be done directly. Both of these difficulties are
discussed and procedures developed to overcome them in a future
paper

.

MESH DETERMINATION BY METHOD B

Optimal spacing is different for first and second order
coefficients. Because of this, a separate mesh and fit is
computed for each of these. Following is a description of the
construction of the mesh used to estimate the first order
coefficients .

In addition to the absolute noise (discussed above) in
function values, roundoff noise is present in representing these
values in the computer. This is approximately equal to r|f(x)|
where r is the roundoff in representing unity in the computer.
The criterion used for mesh spacing in this paper is the
following folk dictum: across the mesh, first order function
differences (used in estimating first order coefficients) should
retain at least approximately one-half the number of significant
digits present in f(X) itself. In order to satisfy this, tne
spacing for the jth coordinate axis (j = 1,...,n) of the mesh is
computed by iteration such that, with the notation listed next,
then the formula below is true. The symbols
f, X ,h.j , I .; are respectively the function to be



minimized, the currest estimate of minimizing point, tne spacing
along the jth axis and the jth column of the identity matrix

f(X
Q

+ h.i.) - f(x
Q

) /2(e + r|f(X
Q

)

The above equation is solved by a method of bisection, thus
determining the mesh used for least squares. Only the first
order coefficients of this fit are used in the algorithm since
these are the only ones for which the mesh was adjusted.

A scheme similar to the one above is used to determine the
mesh for the second order coefficients. The distinction is in
retaining the significance of second order differences.
Analagous to the above, and using the notation there, the spacing
is adjusted to satisfy

f (X, hi) + f (X h.i., - 2f (X
Q

) » / 4(e + r|f (X
Q

) | )

A new least squares determination is made with this mesh and
the resulting hessian is used to compute a Newton direction.
Next, line searches (described below) along both the Newton and
gradient directions are made and the smallest function value used
to determine the next estimate of the minimizing point.

THE LINE SEARCH

The first and second order coefficients resulting from the
above fits are used to define the negative gradient direction
D _ and the Newton direction D n' These vectors define the

directions of separate one dimensional searches (described next)
to obtain a value of f lower than HXq). That vector associated

with the lowest attained value of f defines the direction
step for the next value of X n about which to form meshes

and
anc

restart the process.

The one dimensional search for each vector consists of
starting with an initial step size for Newton and gradient
directions respectively sn = 1, sg = 2/ H(Xq) , (these stepsizes

give guaranteed decreases in f along Newton and gradient
direction) where H is the fitted Hessian of the function f.

These values are halved repeatedly if f increases from f(XQ).

Tne halving process continues until an input value lower bound
exceeds the current step size in which case no decrease is
assumed along that vector. If f is decreased from HXq) then



repeated steps of that size are taken until f starts to increase.
As soon as a local dip occurs in the value of f, then an
overdetermined quadratic is fit through the dip, the critical
point determined and compared to the other sampled values of f

along that vector and the lowest value recorded.

NUMERICAL RESULTS

Method B was tested in stand-alone mode, using test problems
with standard starting values near the solution. Method A is
counted on to provide the movement from far-off starts to points
near the solution where method B will take over. For comparison
purposes, the IMSL routine ZXMIN (a quasi-Newton method) and tne
Nelder-Mead Simplex method were used.

Since function values for the runs were computed (rather
than measured) then the roundoff error of r f(X) outlined above
should be replaced by the actual roundoff error in computing
f(X). This was done as follows: The runs were made on a

computer with roughly seven decimal places of accuracy (single
precision). In order to approximate the roundoff in computing f

at location X, a vector of |X|e~' was added to X (as a bound on
the single precision error in representing X) and this sum which
shall be called X^, was represented in double precision. Next,

a double precision computation of f at Xd
was performed. Calling

this as f
d (X d ), then the difference | fd (Xd )-f (X)| (where both

function values were computed without input noise) was used as
the roundoff error in computing f(X).

Four standard problems with standard starting values were
run for each of the algorithms. These are the Rosenbrock,Beale
and Freudenstein-Roth problems in two dimensions and the Helical
Valley problem in three dimensions. For each problem the input
noise bound epsilon was run at the levels of 0, .001 and .01.
The input noise consisted of multiplying these values by the
output of a uniform random number generator with mean and
variance 1. Runs were terminated when stalling occurred. The
results are listed below with max (AX.j)| , |

A f
|
being

i
J

respectively the maximum absolute component miss in achieving the
minimizing point and the associated absolute miss in function
value



PROBLEM & INPUT METHOD B ZXMIN SIMPLEX
STARTING
POINT NOISE mx |Af| mx |Af| mx |Af|

ROSENBROCK 0.000 0.0 0.0 0.4E-3 0.3E-7 0.0 0.0

-1.2, 1. 0.001 0.104 0.4E-2 0.19 1.4 0.7E-2 0.6E-3

0.010 0.330 0.37E-1 1.65 0.76E-1 0.368 0.35E-1

F-ROTH 0.000 0.0 0.0 0.1E-3 0.1E-3 0.2E-3 0.0

0.5, -2. 0.001 0.0 0.5E-3 0.1E-1 0.8E-3 0.7E-4 0.1E-3

0.010 0.16E-2 0.21E-2 0.1E-1 0.8E-3 0.1E-1 0.33E-2

HELICAL 0.000 0.2E-9 0.2E-17 0.2E-6 0.6E-14 0.6E-8 0.5E-16

VALLEY 0.001 0.3E-1 0.8E-3 0.479 0.229 0.15 0.23E-1

-1.0, 0.0, 0.0 0.010 0.11 0.55E-2 2.9 8.48 0.189 0.26E-1

BEALE 0.000 0.000 l.E-13 overflow 0.00 0.000

10., 10. 0.001 0.39E-1 0.7E-3 overflow 7.19 0.297

0.010 0.119 0.1 IE-

1

overflow 7.26 0.302

CONCLUSIONS

Generally, the best performance was exhibited either by

method B or the simplex method. In particular, for the lowest
values of input noise, these methods either shared or alternated
in attaining the best results. However, for the highest input
noise level, method B showed definite dominance over the simplex
method .
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