
UBRARY
TECHNICAL REPORT
NAVAL POSIC AOUA
MONTEREY, CALIFORI

NPS52-80-001

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THE TEXT EDITOR AS A UNIFORM MAN/MACHINE
INTERFACE. A PROPOSAL FOR A STANDARD EDITOR

Lyle Ashton Cox, Jr

February 1980

Approved for public release; distribution unlimited

FEDDOCS
D 208.14/2:NPS-52-80-001

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36721952?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

26 Feb 1980

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral J. J. Ekelund
Superintendent

Jack R. Borsting
Provost

The work reported herein was supported in part by the Foundation
Research Program of the Naval Postgraduate School with funds provided
by the Chief of Naval Research.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

NPS52-80-001

2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

The Text Editor as A Uniform Man/Machine
Interface. A Proposal for a Standard Editor

5. TYPE OF REPORT & PERIOD COVERED

Technical Report
6. PERFORMING ORG. REPORT NUMBER

7. AUTHORfsj

Lyle Ashton Cox, Jr,

8. CONTRACT OR GRANT NUMBERfs)

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Naval Postgraduate School
Monterey, CA 93940

tO. PROGRAM ELEMENT. PROJECT, TASK
AREA 4 WORK UNIT NUMBERS

61152N; RR000-01-10

N0001480WR00054
11. CONTROLLING OFFICE NAME AND ADDRESS

Naval Postgraduate School
Monterey, CA 93940

12. REPORT DATE

February 1980
13. NUMBER OF PAGES

14. MONITORING AGENCY NAME ft ADDRESSf// different from Controlling Office) 15. SECURITY CLASS, (of thle report)

Unclassified
15«. DECLASSIFI CATION/ DOWN GRADING

SCHEDULE

16. DISTRIBUTION ST ATEMEN T (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered In Block 20, If different from Report)

IB. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide If neceaaary and Identity by block number)

Text Editor
Software Engineering
Computer Networks

20. ABSTRACT (Continue on raveraa aide It neceaaary and Identity by block number)

There is a substantial group of professionals, scientists, engineers, and
managers who are justifiably reluctant to use computer networks such as the
ARPANET. This phenomenon continues despite the fact that they recognize some
of the benefits of computational assistance, that they have had experience
using computer systems, and that they have access to such a network. Their
reluctance usually stems from the feeling that the very machines and systems
is not justified by the occasional or intermittent nature of their computational

DD FORM
1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

S/N 0102-014- 6601 |
1

SECURITY CLASSIFICATION OF THIS PAGE (When Data Bntarad)

Unclassified
-ttumTY CLASSIFICATION OF THIS PAGE("H7>en Dmta Entered)

problems. In learning to use a new system, a large part of the familiariza-
tion effort is spent in trying to learn to use a new text editing program.
If such a utilit y program were standardized and made available on all of
the machines on the network, a large obstacle to the efficient use of such
systems might be removed. The design of such a system, a Standard Line
EDitor called "SLED" is proposed here.

SECURITY CLASSIFICATION OF THIS PAGEfWhan Date Entered)

ABSTRACT

There is a substantial group of professionals, Scientists,

engineers, and managers who are justifiably reluctant to use computer

networks such as the ARPANET. This phenomenon continues despite the fact

that they have had experience using computer systems, and that they have

access to such a network. Their reluctance usually stems from the feeling

that the very great effort required to familiarize themselves with new

machines and systems is not justified by the occasional or intermittent

nature of their computational problems. In learning to use a new system,

a large part of the familiarization effort is spent in trying to learn to

use a new text editing program. If such a utility program were standar-

dized and made available on all of the machines on the network, a large

obstacle to the efficient use of such systems might be removed. The de-

sign of such a system, a Standard Line EDitor called "SLED" is proposed

here.

The Text Editor as A Uniform Kan/Yachine Interface
A Proposal for a Standard Editor

by

Lyle A shton Cox Jr.

Department of Computer Science
Naval Postgraduate S^ho^i

Monterey, California

ABSTRACT

There is a substantial group of professionals, scientists,

engineers, ard managers who are justifiably reluctant to use

computer networks such as the ARPANET. This phenomenon continues

despite the fact that they recognize some of the benefits of

computational assistance, that they have had °xpeni c nce using

computer systems, and that they have access to such a network.

Their reluctance usually stems from the feeling that the very

great effort required to familiarize themselves with new

machines and systems is not justified by t v e occasional on

intermittent nature of their computational problems. In learning

to use a new system, a large part of the familiarization effort,

i s spent in trying to learn to use a new text editing pnogram.

If such a utility program were standardized and rede available

on all of the machines on the network, a larg p obstacle to the

efficient use of such systems mig v t be removed. The design of

such a systerr, a Standard Line EPitor called "SLED" is proposed

h°re

.

BACKGROUND

The United States Navy is currently conducting en

experiment to determine the effectiveness of computer networking

in providing the computing support required by thf= Kavy

laboratories. In the course of this experiment, significant

resources of the laboratories are bein±> organized into a "i\Avy

Laboratory Computer Network" or "NALCON" (1) (?) to promote the

efficient use of the physical and logical resources of the Navy

laboratories .

While the NALCCN system was being implemented, it was

recognized that software technology often poses greater problems

than does the hardware design and construction. In response to

this, the Navy Laboratory Computer Corrrittee (NLCC) forrei a

Software Technology V'crking Group. It is the goal of this group

to address the specific software problems of N/LCON, and to

consider the larger problems of software technology in the Navy

computing community.

After a series of meetings, the Software Technology Working

Croup reported (o) that the number and diverse nature of text

editor programs constituted a significant obstacle (both real

and psychological) to the efficient use of network nesources. It

was suggested that either a standard editor be developed, or

that all network computers contain editors with a standard

subset of commands.

Subsequently, work was undertaken at the Naval Postgraduate

School to determine the desirable characteristics which such en

editor should display, and to define or specify the user

interface for this proposed standard editor. The results of this

effort are described below.

PHILOSOPHY

Before we describe the proposed standard editor, it is

appropriate that several non-technical, philosophical, aspects

of the editor design be discussed.

It should be recognized that any editor will certain some

characteristics which significant portions of the computer user

community will find objectionable. The implementation of text

editor features is often a matter of personal ta c te. ^ou can not

please all of the people all of the tire. I»e believe that the

proposed editor is well thought out, and is based upon the

experience of thousands of computer users spanni r £ well oven ?

decade of network and timesharing experience. Our solution is

certainly not unique. There are other solutions. Ive have

ccnfid°nce that ours is or° of the better possibilities, and

should seriously be considered as a standard.

With regards to the specification itself, in th<= following

sections we will attempt to describe the editor i '"forma 11;-,

using a mixture of two technioues. The description will not be a

rigorous specification in the software engineering sense? nor

will it be a "users view" of the editor. 3y combining aspects of

7

these two techniques - specifications and a "users introduction"

type description of the editor - we hope to both describe the

editor in sufficient detail that it can be implemented, and £iv°

the readers a "feel" for using the editor. V.e ask that the

reader keep in mind the goal of the standard editor project, and

this philosophy while reading the remainder of this paper.

TEE GOALS OF A "STANDARD EDITO?"

The goal of thp Standard Editor project is to definp and

develop a simple and easy to use text editor program whi^h can

he readily implemented or a wide variety of host machines and

operating systems. This objective and the computer network

context of its development allow further definition of SIED

requirements

.

The usage envisioned for SLED is twofold* casual use by

persons local to the host? eni use by occasional network quests

of the host. Such a simple, basic editor can not and should not

attempt to replace the principal system editor programs

available on the host machines. Since the scope of usage 5s thus

reduced, no attempt need be made to design SLED to be all

powerful (and hence complex). SLED only needs to support the

basic text editing functions, and if these functions are

supported in a well designed, wpII documented, easy to use

implementation, the basic goals of the project can be fulfilled.

The limited scope also allows implementations to be

accomplished without undue attention to questions of ex°cuticn

efficiency which are vital in the design of a principal system

editor. Thus implementations can be nealized using higher level

computer programming languages, with emphasis on portability and

system independ°nce.

The wide variety of users anticipated, and the large number

of Implementations, requires several characteristics of the

editor to be present in all its implementations. Certainly all

the implementations must be as nearly uniform (in terns of the

user interface) as current software technology permits. In

designing the editor, the usage and commands must be kept

simple. The commands must function "intuitively" and be easy to

learn and remember. Further, no special terminal character set

or line speed assumptions can be made.

SPECIFYING THE EDITOR

From these general requirements, a rore detailed

specification was developed. Great effort was made to keep the

editor simple (from the user's point of view). Of secondary

importance was machine and system independence, and portability

of the implementations. The resultant specifications are

described informally (fror the point of vi°w of the usen) below.

The constraints upon terminals and line speed*, coupled

with the restricted nature of the editor led us to sp]ect a

"line oriented editor" approach. Vith the addition of a logical

line terminator character and a simple display function, line

9

oriented editors have been shown to function efficiently with a

variety of terminals using a wide rangp of line speeds in a time

sharing environment (4), (5).

A minimum set of commands consistent with easy use has been

selected (5), (6). These commands draw their mnemonic symbols

from the first letters of their key words taken in normal

English language order. "For example, the command to "insert text

<A>fter <L>ine 5" is "A15". There was some desire to limit the

mnemonics to single characters. While this would decrease the

total number of key strokes required in an edit session, the

decrease is a small percentage of the total number of characters

typed. The advantages of natural English language command

ordering combined with the relative independence from rany other

editors which use single character commands (hence decreasing

the chances of confusion and error for persons inadvertently

reverting to other editor commands) was considered to outweigh

the advantages of exclusive use of single character mnemonics.

There are a total of eleven commands, only seven of which

need be used to obtain full text editing capability. These

eleven commands can be rougnly subdivided into five basic

groups

:

1. Line Insertion and replacement commands (two commands)
2. String Replacement commands (one basic command)
3. String Search commands (one basic command;
4. Terminal Output commands (four cormands)
5. Control commands (three commands)

These commends are more fully described in Table 1.

10

Since many of the prospective SLED users are only

occasional users of computer systems, initiation cf all

implementations should he uniformly commenced by typing only

"SLED<Carrage-return">" after linking and lodging i^to the

network- host machine. At this point, thp casual user may ask for

a menu to refresh his memory as to the basic commands and their

format via the "m" command. (See Figure 1 for an exanple of the

<m*>enu output.) The possibility of SLED users equipped with low

speed terminals or low speed lines rpquir°s that this message be

kept brief. Two incorrectly formatted requests in series will

automatically cause the execution of a < y >enu cormard.

A more experienced user may directly execute th^ <V>°rsicn

command which will print a brief version identification, the

name and telephone numbers of consultants who can provide some

help if required, and will explicitly identify any features of

the editor which are required by the local system. A sarple of

the <V>ersion output is shown in Figure 2.

The editor, like many other editors, features essentially

two modes: "Edit command" mode and "t^xt Insert' mode. SLEI,

when initialized, starts in "Fdit command" mode, and requests ar

edit command from the user's console by transmitting to the user

the prompt "F>". This prompt will also be transmitted following

the successful execution of any edit command message line

(except one containing the "<TQ>uit" command) and the editor will

await further instructions. Following this prorpt the user can

enter any command shown in Table 1. Commands and their field?

11

can be separated by any valid logical message terminator (see

Figure 2). The character "Carriage return" always serves as a

message terminator. One other character is provided for use as a

message terminator, and this is changible at the direction of

the user via the <C>han&e <TT>erminator command. This feature

allows the "stacking" of editor commands within a single

physical line of input. This feature is demonstrated below, and

is extremely convenient in a network operating environment. If

the command executed by the user causes the editor to enter the

"text Insert" node, the editor will prompt the user for data

with the symbol "l>". All text entered after these prompts will

be copied directly to the text file, and will not be interpreted

as edit commands. The only way to return from the "text Insert"

mode to the "Edit command" mode is by entering a single message

consisting of ONLY a period ".".

V'hile these two prompts are somewhat inconvenient to users

desiring to operate in a "non-echo" mode, they are, in general,

necessary for two reasons. They are useful in corfirmlrg to the

(inexperienced) user which mode he is currently in; and they are

vital in systems which do not save data buffers as a

synchronization mechanism (for example a PDP-11 using the PSX-11

operating system which does NOT allow "type ahead" of logical

read commands).

These modes and their functions can be better understood

from the following example of SLED usage:

12

EXAMPLE 1: USING SLED TO CREATE A EILE
(Fror a UNIX Like implementation)

^SLED
E>0
fllename?>NEW.file
-creating file "NEW.file"-
E>AL0
I> First text line
I>Second text line
I> Third text line
I>.
E>L1,3

1 First text line
2 Second text line
3 Third text line

F>Q
%

In the above example, the SLET editor was used to create a

new text file, end to enter three sirpl p lin p s of text. Use of

the logical message terminator key (if available} can

significantly simplify the use of the editor. This key allows

several command lines (either edit commands or insert lines) tc

be entered on a single physical line from the terminal. Example

2 shows the use of the logical message terminator key («^hown as

"$") to "stack" several editor commands into a single line of

input. The effect of the commands shown in this example are the

same as those shown in Exarple 1.

FXAMPLF 2: THE LOGICAL MESSAGE TFEMINATOF
(Same effect as Example lj

%SLEL
E>0£NEW.file$ALP
-creating file "NEfc.file"-
I> First text line$Second text line
I> Third text line$. $H t ?sC

1 First text line
2 Second text line
3 Third text line

13

Note that in the fifth line of the above example, a. line of

text was inserted, and then the insert mode was terminated (by

sending a message consisting of only a "." delimited by the

logical message terminator) and "Edit mode" commands were then

sent. It is this power of transmitting multiple messages

delimited by a reserved key which allows those users with slow

terminals or those experiencing long data transmission delays

over the network circuits to effectively use the editor.

Many persons considering the editor instruction set in

Table 1 ask how it is possible to delete lines and patterns with

this editor. These functions are acomplished with the use of the

"replace" functions, replacing the items to be deleted with

"nothing". In the context of this editor, a "string" consists of

a sequence of characters which does not contain any of the

logical message terminators. Thus, a string is a portion of a

line since all lines terminate with a <RETURN> which is a

terminator. To replace portions of lines one uses the <R>eplace

<S>tring command, while the <R>eplace <L>ine command is used for

larger modifications. For example, consider the file created in

Fxample 2: supppose we wanted to delete the string "text" in the

first line, and delete the entire third line. Using the "RS" and

"RL" commands this could be accomplished as shown in Fxample 3.

14

EXAMPLE 3: DELETING STRINGS AND LINES

%SLED
E>0$NEW.file
- 3 lines in file "NEW.file"-
F>L1

1 First text line
E>RS$text$$Ll

1 First line
E>RL3$.$S1

1 First line
2 Second text line

E>Q
%

In the above example, the pattern to be deleted in line

number one was replaced with a string consisting of no

characters. The third line was deleted by replacing it with a

null line (ie. entering INSERT mode, and exiting -via a message

consisting of only a period- without entering any data). In much

the same manner the desire to insert text "Before Line n" can be

accomplished with commands to insert text "A^ter Line n-l".

SIED implementations must also cushion the user from his

mistakes (ie. provide "fail soft" features). Ecr pxample, an

attempt to open a non existant file should produce an error

message as shown in Example 4.

EXAMPLE 4: Soft Failure

%SLFD
2>L1
-no text file open-
ENOsNEW.file
2 lines in file "MEW. file"

E>0
%

In addition to the normal demands of defensive programming,

15

the nature of the editor requires that careful attention "be paid

to error detection and recovery. The variety of terminal types

and line speeds requires that the SLED messages be both clear

and concise. The minimum set of SLED advisory messages is shewn

in Table 2, along with the circumstances which will cause them

to be generated. Ml implementations must detect these

situations and recover gracefully. Individual implementations

are encouraged to perform more sophisticated consistency checks

for abnormal user and system conditions.

CONCLUSIONS

Significant increases in the productivity of computing

professionals can be realized if we can rake our existing

computer resources more "usabl<=". The ultimate goal -the

creation of an effective and uniform man/computer interface- is

perhaps idealistic and unachievable. There are however, a number

of areas where we can achieve success, and make more efficient

usage of our human and machine resources. Cne such area is

uniformity of software development tools in distributed

computing systems.

The Standard Line EDitor project is an experiment in this

vein. Several testbed implementations of S T EI are now being

written. With the completion of these oro^rars, and with the

continued support of the Navy Laboratory Computer Committee and

the NICC Software Technology Working Group, it is hoped that

SLEP may be implemented throughout the NALCON. This will ce a

16

first, small, experimental step along the pathway to developing

effective and uniform software development tools for use in

computer network environments.

17

Table 1:

SLED Command Summary

COMMAND FUNCTION USACi

LINE INSERTION ANT REPLACEMENT COMMANDS:
insert text After Line number n ALn (*)
insert text to Replace Lines n thru m PLn,r (*]

or., to insert text to Replace a single Line, n ?Ln (* N

STRING REPLACEMENT COMMANDS
Replace all occurrences of String "p" with the FSn,mpq£
string "q" in lines n thru m inclusive.

or.... ^eplacjf all occurrences of String "p" T> Snpq$
with string "q" in line n

or.... Replace all occurences of String "p" RSpq$
with string "q" in the current line.

STRING SEARCH COMMANDS
Display all lines containing String "p" TSSp*
or... Display all lines between

f>
lines n and m

inclusive which contain string "p" DSn,mp

OUTPUT COMMANDS
set current Line to n and display that line In
or... display the current line L

or... display Lines n thru m inclusive, and set. In,m
the current line to m.

display a "Screen" of lines (22 lines) beginning Sr
with line n

or... display a "Screen" beginning with S

the current line
display Version and implementation information V

display <^^enu of editor commands M

CONTROL COMMANDS
Open or Create a file for editing o

Cuit the editing session and update all files C

Change the message Terminator CIX

The symbol "$" indicates the use of a logical message
terminator, not the <PFTUPN> key. (Sf=e further the text and
Figure 2.

)

(#) These commands cause the editor to enter the TEXT
INSERT mode.

18

Figure 1:
Sample output from «^M>enu command

SLED COMMAND SUMMARY
LINE/TEXT INSERT STRING RFPLACEMFNT
ALn insert <A>fter <L>ine n RS$p*q$ 0>>e£lare <S>trinp
PLn <R>eplace <L>ine n .or. RSn^p^q* "p with "q" in
RLn,m lines n thru m RSn,npq$ inidcated lines.

OUTPUT COMMENTS STRINC SFARCH
I display current<L>ine DSp <D>isplay lines wt
Ln or line n, string "p",
Ln,m lines n thru m

f>
PSn,mp or show any lines

S <S>hov a "screen" of lines n-rr containing "p"

Sn show a screen about In #n CONTROL COMMANDS
M show command <^M>enu (this) '0>per a file or
V show <V>ersior information create e file for editing

CT <C>hange the logical
TO <Q>UIT TEE EDIT TYPE "Q<ret>" message <T>erminator

Figure 2:
Sample output from <V>ersion Command

SLED Version Pasl.l NPS-Mcnterey 600503
Local Expert is J. Doe 406-646-2449 06C7'£-1600 PST

LINF DFLFTE KFY is <C0i^TR0L-U>
CHARACTER DELETE KEY is <RU 13OUT> (also called DELATE

)

EDITOR LOGICAL MESSAGE TERMINATORS ARE:
(1) <RETURN> and (?) <ESCAPF> (echo? "J")

** the message terminator can NOT be changed tc "line-Feed* *

Local System supports UPPFR/lower case
Local System DID NOT require deviation fm SLED standard

19

Table ?:

SLED Minimum Advisory Messages

Message Situatior and Editor resporse

-invalid command- in command mode an unrecognizable
command was issued (or an ambigious
delimiter was used.)

-n lines in file "f"- an <0>pen command on file "f" completed
successfully.

-creating file "f"- tried to <0>pen file "f", which did
not exist. A new file is created.

-closing file "f"- an <0>pen command was issued with a

file already open. This file, "f"
is updated and closed, and the
command proceeds normally.

-no text file open- an edit command was executed without
a text file open.

-no string found- a "RS" or "DS" command was issu c d,
and the search string was not
found .

old string?^ (A prompt) A "RS" or "DS" command
was issued and the first string
was not specified. The editor new
waits for the string to be entered

new string?> (A prompt) A "?S" command was issued
where the second string was not
specified. The editor now waits
for the string to be entered.

file name?> (A prompt) An <0>pen command was
issued without specifying the narre

of the file. The editor now
waits for the file name tc be
entered .

terminator?> (A prompt) A <Ohange "C^ermirator coir mar
was issued. A valid ASCII character is
entened to act as a nessage terminator.

20

REFERENCES

(1) "The Navy Laboratory Computer Network (NALCON)", I. Larry

Avrunin, David Taylor Naval Ship R & D Center Report, 1379.

(2) "ARPANET Information Prochure", Defense Comrunica ti cr.s

Agency August, 1976.

(3) NLCC Software Technology Working Group Memorandum of If

November, 1979.

(4) "TPIX Report" A. Cecil and H. Moll , University of

California ILL Report UCID-3ei00 Rev. 2, December, 1976.

(5) "TPIX AC Text Editor User's Manual" A. Cecil and v
. Moll,

University of California LLL Report UCID-30040 Rev. 9, July

1977.

(6) "ED (I)" K. Thompson and D. Pichie in "UNIX Programmer '«

Manual" Eell Laboratories, May, 1975.

21

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Documentation Center 2

Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142 2

Naval Postgraduate School
Monterey, California 93940

3. Office of Research Administration 1

Code 01 2A

Naval Postgraduate School
Monterey, California 93940

4. Chairman, Code 52Bz 30

Computer Science Department
Naval Postgraduate School
Monterey, California 93940

5. Lyle A. Cox, Jr., Code 52C1 10

Computer Science Department
Naval Postgraduate School
Monterey, California 93940

6. I. Larry Avrunin 1

David Taylor Naval Ship Research
and Development Center (Code 18)

Carderock Laboratory
Bethesda, MD 20084

7. R. P. Crabb, Code 9134 3

Naval Ocean Systems Center
San Diego, CA 92152

8. G. H. Gleissner 1

David Taylor Naval Ship Research
and Development Center (Code 18)

Carderock Laboratory
Bethesda, MD 20084

9. Kathryn Heninger, Code 7503 3

Naval Research Lab
Washington D.C. 20375

10. Ronald P. Kasik, Code 4451 3

Naval Underwater Systems Center
Newport, RI 02840

22

11. Commander, Code 503
Naval Air Development Center
Warminster, Pennsylvania 18974

12. Mark Underwood, Code P204
NPRDC
San Diego, CA 92152

13. Michael Wallace, Code 1828
DTNSRDC
Bethesda, MD 20084

14. Walter P. Warner, Code K70
NSWC
Dahlgren, VA 22448

15. John Zenor, Code 31302
Naval Weapons Center
China Lake, CA 96555

23

U191069

DUDLEY KNOX LIBRARY - RESEARCH REPORTS

5 6853 01068118 2

U19106S

