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The St ructura 1 Analysi s o f Programming Language s

B. J. MacLennan

1. Introduction

It is common to find articles in the programming language

literature riddled with unsupported claims. 'Words and phrases,

such as 'better', 'simpler', 'more structured' and 'less error

prone', are used with abandon. If we were selling aspirin ani

made such unsupported claims, we would probably be sued. We

clearly need more precise ways of measuring our languages.

A language's structures are some of its most important

characteristics. These include the data structures: those

mechanisms that the language provides for organizing elementary

data values. They also include the control structures, which

organize the control flow. Less obviously, they include the name

structures, which partition and organize the name space.

Languages can be compared relative to their structures in

the data, control and name domains (and others, such as the syn-

tactic domain). To make this comparison precise, we need a pre-

cise method of describing the structural properties of a

language. Further, this method should be syntax independent; it

should "look through" the syntax of a language to its underlying

structure. In the next section we discuss a means by which pro-
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gramming language structures can be described.

2. Describing Structure

The number of different structures that a programmer can use

are essentially unlimited. For instance, there are an infinite

number of ways he can organize his data or control flow. Since

programming languages are finite, there must be some finite means

of generating this infinite number of structures.

The means, of course, is to have some number of primitive

structures and some number of constructor functions which take

existing structures and compose them into new structures. For

instance, Pascal data types are built by applying the data type

constructors (array, record, set, etc.) to the primitive data

types (real, integer, char, etc.). This results in hierarchical

structures. Similarly, control flows may be organized by apply-

ing the control flow constructors ('sequence', 'if,' and 'while')

to the control flow primitives (those constructs that do not

alter the control flow)

.

The hierarchical application of constructors to primitives

is the most common method of building structures. Thus, we can

use this as a starting point for our analysis of structures. For

instance, as a first approximation, we can compare the complexity

of structures of two programming languages by comparing the

number of primitives and constructors in each. For instance, we

can see from Table 1 that Pascal has 5 primitive data types and 7
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data type constructors

TABLE 1. Data Structures

Pascal

5 primitives:

7 constructors:

Algol - <5_0

3 primitives:

1 constructor:

Lisp l.j>

1 pr imi ti ve :

I constructor:

Algol - ^8

II pr imi t i ves

:

6 constructors

real, integer, Boolean, char, text

subrange, enumeration, set, array, file,

poi nt er , record .

real, integer, Boolean.

array.

atom

list

int, real, bool, char, format, compl , bits,

bytes, string, sema, file

long, ref, array, struct, union, proc

Since Algol-SO has 3 primitives and 1 constructor, it is probably

simpler than Pascal. Conversely, since Algol-^S has 11 primi-

tives and 5 constructors it is likely to be more complex. How-

ever, the number of primitives and constructors is not the entire

story.

A significant aspect of the structuring mechanisms provided

by a language is the complexity of the inter-relationships among
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the primitives and constructors. For instance, if the output of

every constructor is a legitimate input to every constructor, and

every primitive is a legitimate input to every constructor, then

the system will be more regular than if this is not the case.

This is often called 'orthogonality'. It is also part of what is

involved when we call a language 'structured'. In the next sec-

tion we will develop means for analyzing these relationships.

3 . Data Structures

3.1 Semantic Grammars

We will begin with data structures to illustrate our tech-

nique for analyzing structure. Our goal is to analyze the

interrelationships among the primitives and constructors of a

system of data structures. How are we to go about this? We can

begin by looking at syntax because, in most languages, there is a

close relation between the syntax and the structures it embodies

(i.e., form follows function). In particular, there will usually

be exactly one syntactic construct for each data primitive. Con-

sider Pascal. We can see from Table 1 that the primitives are

denoted by the predefined type identifiers, 'integer', 'Boolean',

'real', 'char' and 'text'. There are constructors for enumera-

tions, subranges, sets, arrays, records, files and pointers. We

know that these are constructors because each can generate a

potentially unlimited number of structures (types). Since the

Pascal grammar tells us what syntactic entities can go together

this will be a big help in deciding what semantic entities can go
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together

.

Consider the array type. We can write its syntax as

array-type ::= array [ index-type ,... ] of type

The index-type must be a type isomorphic to a subrange of the

integers. Syntactically , this can take the form:

index-type: scalar-type | subrange-type ! type-identifier

scalar-type: ( identifier ,...)

subrange-type: constant .. constant

What we are interested in, however, is the semant ics of the array

constructor. Since we know that the index type must be iso-

morphic to a subrange of the integers, we know that the type-

identifier must either name a scalar-type or a subrange-type or

one of the predefined finite discrete - types , Boolean and char.

Also, a subrange must be constructed from a d i screte constant

(i.e., an integer, or an element of a scalar or finite discrete

type). We can write this as a "semantics-oriented grammar":

array-type: array [ index-type ,... ] of type

index-type: scalar-type ! subrange-type | discrete-type

scalar-type: ( identifier ,...)

subrange-type: constant .. constant

discrete-type: Boolean ! char

One further simplification can be made here. Recall that in Das-
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cal

array [ i, j ] of t

is just an abbreviation for

array [i] of array [j] of t

Thus, without loss of generality, the definition of array-type

can be written

array-type: array [ index-type ] of type

We have not altered the syntax; we have just eliminated some syn-

tactic sugar. The semantics of most of the rest of Pascal's con-

structors closely follows their syntax.

If we are to be able to compare structures in different

languages, we must obviously ignore any syntactic differences

that exist between them. This we can do by writing the grammar

in a neutral, functional form. For instance, for arrays:

array-type: array (index-type, type)

index-type: scalar-type | subrange-type
I
discrete-type

scalar-type: scalar ( identifier* )

subrange-type: subrange (constant, constant)

discrete-type: Boolean | char

3 . 2 Interpretation

Now, let us make some observations about these rules. Con-

sider a typical string generated by this grammar:
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array (char, array (Boolean, real ))

This string describes a particular Pascal data type. Now suppose

BOOLEAN = { true, false } is the set of all Boolean values and

REAL is the set of all real values. Then, the set of all arrays

with Boolean indices and real elements in just the set of func-

tions napping BOOLEAN into REAL: [ BOOLEAN -> REAL 1 . There-

fore, we can see that the string shown above describes the set of

data values:

[ CHAR -> [ BOOLEAN -> REAL ] ]

This suggests that we can define an interpretation function ,

I, that associates a set of data values with each string gen-

erated by the grammar. This can be defined recursively:

array (t, f) ] = [ I[t] -> I[t* ] ]

scalar (i
1
,...,i n ) ] = { i

1
,...,i

n }

subrange (C, C) ] = { x
I
C<x s x<.C }

Boolean ] = BOOLEAN

char ] = CHAR

[ real ]
= REAL

To make this interpretation more obvious, we will write subrange

(C, C) as C..C, and scala r (ij,...,i ) as { i !,'••• ' In ) Fia-

ure 1 shows the complete Pascal type system using these conven-

t ions

.

Defining the interpretation for record-type and pointer-type

s quite complicated without the notations of a relational
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type: simple-type I
structured-type |

pointer-type
simple-type: index-type ! integer

I
real

index-type: scalar-type
I
subrange-type I

discrete-type
scalar-type: { identifier +

}

subrange-type: constant .. constant
discrete-type: Boolean I

char
structured-type: [packed] unpacked-structured-type
unpacked-structured-type : array-type I record-type

I
set-type

f i le-type
array-type: array (index-type, type)
record-type: record ([field*]) [variant-part]
field: field (identifier, type)
variant-part: field (identifier, index-type)

X (constant X record-type)*
set-type: set (index-type)
file-type: file (type)
pointer-type: pointer (type)

Figure 1. The Pascal Type System

calculus, so they will not be shown here. The interpretation of

set and file types are easy to define:

I [ set (t) ] = P ( I[t] )

I [ file (t) ] = I[t]*

where P is the power-set function.

It should be noted that the above equations imply structural

equivalence of Pascal types, as opposed to name equivalence . The

Revised Report on Pascal [4] does not define the form of type

equivalence used. It is simple to alter the above definitions to

accommodate name equivalence; we just represent each type by a

pair where the first element of the pair is the type's identifier

and the second element of the pair is the type in the structural

sense. Thus we have,

type: identifier X unnamed-type

unnamed-type: simple-type | structured-type I
pointer-type
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It should be pointed out that there are limitations to the

descriptive power of this notation. For instance, it does not

express the fact that the identifiers in scalar-types must be

distinct, or that type identifiers must he distinct, etc. To

include all this information would clutter the notation to the

point of unusability.

4 . Structure Diagram s

We have said that the complexity of a collection of struc-

tures is reflected by the complexity of the semantic grammar. It

is still a little difficult to see this complexity in the tradi-

tional BNF form. For this purpose we have found a diagrammatic

form enlightening. This is really a dependency graph (showing

which nonterminals depend on which others) coupled with special

symbols for various operations, viz.

-€>*— a

3

A*

A+

AXB

A I B I C

[A|B]

where [A'Bj means either A or 3 or nothing.

In our semantic grammars (as in syntactic grammars) common
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structural patterns are factored out and given names. This

reflects the fact that these structural patterns only have to be

learned once. In the structure diagrams this factoring is

represented by an edge that forks and goes to each of the uses of

that structure. For example, since 'index-type' is used both as

a part of 'discrete-type' and as a part of array and set types,

the edge from index type goes to the subgraphs defining each of

these structures. We have adopted the convention of only using

binary forks; since edges represent dependencies, this simplifies

complexity estimation by edge counting.

Structures from other systems are represented by T-shaped

terminations. Given this explanation, the reader is encouraged

to compare the diagram of Pascal's data structures in Figure 2

with the semantic grammar in Figure 1. The data structures of

LISP, Algol-60, and Algol-68 are diagrammed in Figures 3-5.
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Figure 3- The LISP Type System
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Figure 4. The Algol-60 Type System
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Figure 5- The Aigol-68 Type System
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5. Name Structures

Next, we will demonstrate the application of these tech-

niques to the name structures, another subsystem of programming

languages. The name structures of programming languages are

often described by terms such as "block-structured", "monol-

ithic", "disjoint", etc. To get a better grasp on these struc-

turing techniques we must ask, "What is being structured?'' To

put it more precisely, "What relation or relations are being con-

trolled by the structuring mechanisms in question?"

For name structures this relation is visibility , that is,

the relation that holds between a binding and a use of an iden-

tifier when that use can refer to that binding. Thus, the pr imi -

ti ves from which names structures are assembled are bindings and

uses of identifiers, and the constructors used to assemble these

structures are mechanisms such as block structure.

How can we abstract the name structures from a programming

language? Again, we can use syntax as a guide. In Figure 6 we

show the fragments of Algol-60 syntax relevant to visibility.

Irrelevant parts of the syntax have been elided. Each string

generated by this grammar (ignoring reordering of declarations,

etc.) defines a unique name structure, i.e., structural arrange-

ment of visibility relations. In Figure 7 we have formulated a

semantics oriented grammar for these relations.
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<identifier> ::= ....

<block> ::= <block head>; <compound tail>

<block head> ::= begin <declarat ion> I <block head>; <declaration

<compound tail> ::= <statement> end

I <statenent>; <compound tail>

<program> ::= <block> I
<compound statement>

<procedure declaration> ::= [<type>] procedure

<proc .heading> <proc.body>

<proc.heading> : := <proc. identifier> <formal par.part>;

<formal par.part> ::= ( <identifier> ,... )

<decla rat ion> ::= <proc.decl.> I <other decl.>

Figure (5. A Fragment of Algol-^0

program: executable

block: scope (declaration"1", executable)

declaration: simple-decl
|
proc-decl

proc.decl: identifier X scope (s inple-decl* , executable)

simple-decl: identifier

executable: {identifier
I
block}*

Figure 7. The Algol-60 Name System

Notice that, from the visibility standpoint, a procedure declara-

tion is the same as a block; they both bind local identifiers and

delimit a scope. Figure 8 shows the Algol-50 name system in

diagrammatic form. The following figures (9-11) show the name

systems of the lambda ca Iculus , FORTRAN and Pascal.
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j identifier

executable

-cope^^
<-

\COft

Figure 8. The Algol-60 Name System

expr

scspe &

identifier

Figure 9* The Lambda-Calculus Name System
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proc-v dec\

secpe
^)<-

<

—

<

record.

scope
< lo

deniiyiir

Figure 10. The Pascal Name System

scope

s* \cope
k
i

-®<—I \deY)i)per

Figure 1 1 . The FORTRAN Name System

In the latter case (Pascal), note that we have analyzed the

record declaration as a scope defining (or name grouping) con-

structor. Figure 12 compares the complexities (as measured by

edge-count) of these name systems along with the complexities of
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their type systems.

-
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TYPES

or

f£

Figure 12. Complexities of Name and Type Systems

6. Control Structures

Control structures are analyzed in the same way as the other

structures. These are reflected in the equations and structure

diagrams shown in Figures 13-16.



- 19 -

WMe

repeat"

for R— dcwr\

.Cast <£ H cio nsiawt

co.il

*®*£
functi cno

z'
ex press i on

l_i
f

i
cio < < H jtf.be

I

K-~
staieyri^n-L

Coioop^UKia. sfa'keme r\~t

Figure 13- Pascal Control Structures



- 20 -

< (9W
--» rSPv ra\\

^ v^^
expr

<

^s^* ^ i—Tl

-e<

^» i

^» "*» "v.

co no,<- -<^4

. fiinc-LioK)
1 identifier

Figure 14- LIS? Control Structures



>€<* u e v) ce

- 21 -

call
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'igure 15. FORTRAN Control Structures

lab<
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Figure 16. BASIC Control Structures

Consider Pascal; the relevant parts of the grammar are shown

in Figure 17. These diagrams are somewhat deceptive because thev

do not reflect the extraordinary complexity introduced into the

control structures by the goto statement. An analogous complex

ity is caused in data structures by the pointer construct. Thes<

are both examples of non-local references ,
whose proper treatment
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simple-statement: assign-stat ! proc-stat I goto-stat | empty

assign-stat : expr

f unct ion-desig : call (fid, exprlist)

exprlist: expr*

expr: f unct ion-desig*

proc-stat: call (fid, (expr 1 fid}*)

goto-stat: goto (label)

statement: [label] x unlab-stat

unlab-stat: simple-statement I
struc-stat

struc-stat: comp-stat | cond-stat ! rep-stat |
with-stat

comp-stat: statement"*"

cond-stat: if-stat I
case-stat

if-stat: if (expr, stat, [stat])

case-stat: case (expr, case-list-element )

case-list-element: const x statement

rep-stat: while-stat ! repeat-stat 1 for-stat

while-stat: while (expr, stat)

rep-stat: rep (stat + , expr)

for-stat: for (id, forlist, stat)

forlist: expr x [down] x expr

with-stat: with (expr + , stat)

Figure 17. Pascal Control Structure ^rammmar.

remains an open question.
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7 . Conclusions

The techniques we have described provide a simple, visua]

method of comparing the structuring methods provided by program-

ming languages. Languages can often be ranked as to their struc J

tural complexity by comparing the complexity of their structural

grammars or structure diagrams. In addition, the diagrams alio*

the language designer to appraise the regularity or irregularity

of a structural subsystem and to identify areas where they can b«

simpl i f ied

.

Of course, it is very desirable to be able to quantify thes(

ideas, and there are many approaches to this quantification. 0n<

of the simplest, which was used in this paper, was to count th<

number of edges in the graph, since this reflects the dependen

cies within the system. In the cases we have investigated, this

metric agrees with our informal evaluation.

These are, of course, other graph theoretic measures tha

can be applied, for instance, variants of McCabe's Cyclomat it

Number [3], although which is the best remains an open question

It is also possible to apply the measures of Halstead's "Softwar<

Science" [1] to either the structural grammar or the structun

diagrams. This has also been tried, but this work is still ii

progress [ 2]

.

Although the proper measure to be applied remains an opei

problem, the representation of structures in a measurable form

such as the structure diagrams, is a first step toward;
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development of these metrics. Future research will attempt to

refine the analysis of structures and their representation as

graphs, and will attempt to develop appropriate measures of their

complexi ty

.
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