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Abstract

The analytic solution to the shallow water equations in a closed equatorial basin subject

to arbitrary wind forcing is presented. Two particular examples, including the transient

response of the basin to a moving "top-hat" wind pulse representative of the atmospheric

Southern Oscillation, are worked out in detail. The analytic results compare favorably

with previously published numerical model results and offer new potential for interpreting

equatorial ocean variability-both modeled and observed.
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1 Introduction

The collective atmosphere-ocean anomaly known as the El Nino-Southern Oscillation

(ENSO) has received a great deal of attention in recent years. One common framework

within which the system has been studied is the shallow water equations. With this ap-

proach, the atmosphere and/or the ocean is treated as the first baroclinic mode of the

shallow water equations. The equations governing the two systems are the same, except

for their equivalent depths (or phase speeds) and their forcing functions. The atmosphere

is generally forced by a source term in the continuity equation, representing heating at

middle to upper levels of the atmosphere; the ocean is usually forced by a momentum

source, representing surface wind stress.

Shallow water models of an equatorial ocean basin have been solved numeri-

cally by Hurlburt et. al.(l976), Busalacchi and O'Brien (1981), Busalacchi, et. al. (1983),

Weisburg and Tang (1983), and others, using both hypothetical and observed forc-

ing functions to represent enhanced surface wind stress due to anomalous westerly

wind events. McCreary (1976), Cane and Sarachik (1976), Cane and Sarachik (1981),

Cane (1979), McCreary and Lukas (1986), and others obtained analytic solutions to sim-

ilar sets of equations. Similar techniques have been used by Gill (1980), among others,

to investigate the response of the first baroclinic mode of the global atmosphere to heat-

ing due to enhanced convection associated with sea surface temperature anomalies in the

equatorial Pacific.



An obvious extension of these studies has involved the coupling of the atmospheric and

oceanic shallow water models through the introduction of interactive forcing functions. The

resulting interactive models have more degrees of freedom than the individual component

models, and they provide additional insight regarding possible interdependencies and res-

onances of the coupled ocean-atmosphere system. Normal mode solutions to such coupled

(but laterally unbounded) systems were studied by Lau (1981), Philander et. al.(1984),

Yamagata (1985), Rennick and Haney (1986), and Hirst (1986), all of whom found the

possibility of unstable interactions under different sets of somewhat restrictive assumptions.

Numerical solutions to the coupled equations have been studied under fewer restrictions

by Rennick (1983), Schopf and Suarez (1988), and Hirst (1988).

One feature of most of the analytic studies cited above is that they failed to account

for the effects of reflections at the eastern and western boundaries of the ocean basin.

The ocean response study of McCreary and Lukas (1986), and all the normal mode stud-

ies of the coupled system noted above, effectively treated an unbounded equatorial ocean

band, with no continents. However, the numerical studies, as well as theoretical work by

McCalpin (1988), have shown that boundary reflections play an important role in par-

titioning energy among Kelvin and Rossby modes, and thereby affecting the structure

of disturbances, and the energy available to the unstable modes. In addition, observa-

tional evidence presented by White, et. al. (1985) suggests that reflection from the western

boundary in the ocean is important during ENSO events.

In this work, the forced shallow water equations are solved analytically in a closed equa-



torial ocean basin using a method of solution quite similar to that used by McCreary (1976).

Some of McCreary's simplifying assumptions were dropped, requiring a final numerical step

to construct the solutions, and a wider range of forcing functions was investigated. The

problem was posed as an initial value problem. The time dependence was made algebraic

by a Laplace transform. The dependent variables were expanded with respect to latitude in

terms of the Hermite polynomials, and the resulting system was reduced to a single equa-

tion for un (s,x), the transform of the Hermite coefficients for the zonal current. Finally,

the solution was back-transformed to physical space numerically, and the total solution

was reconstructed.

Section 2 reviews the system of equations and the method of solution. The results

obtained using two different forcing functions are described in Section 3. Some final com-

ments on the solutions are included in Section 4.



2 Basic Formulation

In order to find the response of the ocean basin to prescribed forcing, the shallow water

equations on the equatorial /3 plane are written in their dimensional form:

dh du

ox dt

dh „„ dv

dy dt

dh ,du ,dv— +d— +d— =
dt dx dy

where r is the surface wind stress, d is the mean depth of the fluid, and the other variables

have their usual meanings. The independent variables are nondimensionalized according

to

t = /?2 C 2f

X — p*C 21

y = P 2 c *y

where c = (gd)*. The fundamental equations for the system are then

9

c
hx + u t

- yv — P 2 C 27-
(1)

-h
y + yu^v t

= (2)

-h
t + ux + v

v
= (3)

The zonal current is required to vanish at the ends of the basin (x = 0,/), and the

meridional current is required to vanish far from the equator. Initially, the system is at



rest, with a flat surface. These boundary and initial conditions are expressed as

u(0,x,y) = (4)

v(O
t
x

t y) = (5)

h{0,x,y) = (6)

u = at x = 0,/ (7)

v —> as y —» ±oo (8)

The values of the constants are shown in Table 1.

A Laplace transform of (l)-(3) gives

-hx + su — yv — p 2 C 27- (9)

/iy + yu + sv = (10)

-sh + u x + v
v
= (11)

c

where £(s,x,y) = £(£) = /
°° £(£,x,y)e 8t

cft. /i is eliminated by taking 5(9) — (ll) z and

6(10) - (11),.

5 u - uw - ysu - i;xy = p 2 C 2 5r (12)

ysu - u xv + s
2

t) - t)vy = (13)

The dependent variables and the forcing function are expressed as sums of the Hermite

polynomials, Hn .

00

i(s,x,y) = £ Us,x)En (y)e-y^
2

n=0



dimensional value nondimensional value

9 9.8 m s
-2

d .408 m

c 2.0 m s
_1

I 14780 km 50

a- - 6.767 x 10" 6 s" 1

/32c 2 3.383 x 10~ 6 m

to 34.2 days 20

1 .0667 .0667

a .00835 day
-1

.0143

V .358 m s" 1 .179

A 7390 km 25

Table 1: Values of constants



Expanding (12) and (13) in terms of Hn , multiplying by Hm e v I 2 and integrating over y,

a pair of equations for un and vn are obtained.

(s
2 -D2

)un -{n + l){s + D)vn+1 - i(s - D)vn^ = p->c->sTn (14)

(n + l)(s - D)un+1 + ~(s + Z?)un_!

-(rc + 2)(n + l)0n+2 + (s
2 + n+-)i;n --i>n_ 2 = (15)

2 4

These equations are rewritten in matrix form

A\u)-B\v) = C\t)

E\u) + F\v) =

where

An
,
m = {s

2 -D 2
)6n

2 \.. m

B n,m = -(s - D)6ntTn+l + (n + l)(s + D)6ntm- 1

En,m = ~(s + D)6nitn+1 + (n+ l)(s - D)6n>m-i

Fn,m = --f>n,m+2 + {s
2 + n+ -)6nim - (n + 2)(n + l)6niTn- 2

and D =
J^.

The matrix operators A, B, C, E, and F are all linear, with constant

coefficients. Then FB — BF = 0, and

{FA + BE)\u) =FC\t) (16)



The operators in (16) are expanded

{FA + BE) = -\{s2 - D2
)6nim+2 +s 2 + n + l(s* - D*)6nim -{n + 2)(n + l)(s 2 - D 2

)8n<r

+ \(s 2 - D 2
)6n>m+2 +ln(s-D) 2

6nim

+ \{n + l)(a + £>)
2
(5n

,
m +(n + l)(n + 2)(5

2 - £ 2
)<5n

,
T

FC - /H C-5s{-i£n>m+2 + (s
2 +n + |)<5n>m -(n + 2)(n + l)£n>m-2 }

The off diagonal terms of (FA + £?£") all cancel, so that (16) may be written

{s
2D 2 + sD+ [s

2 + 2n + l)s
2

}
un = 0-*c~*6 {-J^n-a + {s

2 + n + -)fn - (n + 2)(n + l)fn+2
J

(17)

General solutions to (17) are constructed as the sum of two parts, un — Un + n ,

where J7n is a particular solution depending on the forcing, and vn is a solution to the

homogeneous form of the equation. Solutions to the homogeneous equation are given by

vn = fn{s)e
k"^ s

\ where fn is an arbitrary function of 5 (to be determined by the boundary

conditions), and kn {s) is given by the dispersion relation

-s 2
k

2 + sk + (s
2 + 2n+l)s 2 =

1

K =
2s

-1 ±y/l +4s 2 (s 2 + 2n+ 1) (18)

The Hermite representation guarantees that the solution will vanish as y — ±00. The

boundary conditions at x — 0,/ must be satisfied by an appropriate choice of fn {s). That

is, the fn {
s ) must be chosen such that

f:(s)e^ l + f-(s)e^ l + Un (sJ) =

9



Thus, the coeficients /*(s) are given by

*w-*3kfc£gfca (1 »,

General solutions to (17) which satisfy both initial and boundary conditions are then

found for different forcing functions r(t,x,y), and back transformed to physical space.

10



3 Solutions

a Zonally uniform forcing

The first case which was investigated was driven by a simple wind stress function

r(t, x,y) = £ [*©(*) -(t- t )Q(t - t )} e~*™
2

(20)
to

where is the Heavyside step function. (20) represents a zonally uniform eastward wind

stress with a Gaussian meridional profile. The width of the Gaussian corresponds to that of

a first meridional mode atmospheric Kelvin wave. The magnitude of the forcing increased

from zero to a finite value corresponding to a uniform westerly wind anomaly of about 10

m s
-1

over a period of about one month. This uniform "spin-up" forcing is very similar to

that used by McCreary (1976).

The above forcing was expanded in terms of Hermite polynomials, and each term was

Laplace transformed to yield

f»=i[l - e"i T»

where T„ is the nth Hermite coefficient of Ae~* lv
. Particular solutions to (17) are

0-2C~2 l-e- st °

Un (s,x)

'- sf0 1_ . • 1

4
Tn_ 2 + {s

2 + n+ -)Tn - (n + 2)(n + l)Tn+2
s3 (s 2 + 2n + 1) t

Using (19), the general solution for u n is found to be

„, , A/ ,
[Un (s,l) - eWUn (s, 0)1 e*"- [un (s, I) - e

kt lUn (s, 0)1 e
k^

un {s, x) ---- Un {s
t
x) - -L- J

<jb+l _
^

(21)
e*"' — e Kn'

11



The Hermite series for r{y) is truncated at n = 6, and solutions are found for un (s, x).

These are back transformed numerically, using the IMSL subroutine INLAP, and the so-

lution for u(t,x,y) is reconstructed in physical space.

The zonal current anomaly for this case is shown in Figs. 1 and 2. These figures

show an initial response of eastward current anomalies along the equator in response to

the eastward stress anomaly. By t — 5 (roughly 8.5 days) this response is limited to a

narrow latitude band along the equator, with a wider region of eastward flow near the

eastern end of the basin. The strongest response at this time is the .20 m s
_1 westward

currents located on the equator near the western end of the basin. Less intense westward

currents flank the eastward equatorial flow across most of the basin, with eastward return

flow at higher latitudes.

At t = 20 (« 34 days) the forcing has reached its final value. The equatorial currents

are now westward at all longitudes, with a maximum of .18 m s
-1

across most of the basin.

The patch of enhanced westward flow near the western boundary is still evident, but its

magnitude has decreased to about .14 m s
_1

. Under the influence of continued forcing, the

same general pattern persists. The meridional extent of the westward currents continues to

expand with time and the relative magnitudes of the eastern and western current maxima

change so that at t — 100 (w 171 days) they are both w 1.6 m s
-1

(Fig. 2).

Only the far western part of the basin has reached a steady state configuration at this

time. Examination of the Hermite coefficients (not shown) indicates that only the n =

term has reached a steady state value. The n — 2 term has equilibrated over the western

12



U(X,Y), T=5 (INT-0.002)

45 500

U(X,Y), T=20 (INT-0.02)

50.0

Figure 1: Zonal current anomaly, a) t = 5, contour interval = .002 m s" 1
; b) t = 20,

contour interval = .02 m s
_1

. (Westward currents are dashed.)
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Figure 2: Zonal current anomaly, a) t = 50, contour interval = .1 m s
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; b) t = 100,
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one fourth of the basin, and higher order terms over successively smaller regions near the

western boundary. This is to be expected, because of the slower phase speeds associated

with the latter waves. However, since the magnitudes of the lowest order coefficients

are much greater than those of the higher order terms, the qualitative character of the

solution does not change significantly. The steady, basin-wide eastward wind stress results

in a relative rise in sea level in the eastern part of the basin, and a westward equatorial

flow with weak eastward return flow at higher latitudes.

b Eastward moving pulse

The second case which was studied is more realistic, and therefore somewhat more complex.

The wind stress is given by

r(t,x,y) = [l-e~ at

]

[Q{x - rjt) - 0(x - A - rjt)} Ae~^ 7

Thus, the surface stress is assumed to be in the form of an eastward moving pulse (top-hat)

of anomalous westerly winds similar to that used by McCreary and Lukas (1986) in their

study of an unbounded equatorial ocean. The zonal extent of the pulse (A) is taken to

be half the length of the basin (« 7000 km) and it moves eastward with speed 77 such

that it traverses the basin in about 16 months. Its magnitude grows from zero to its

asymptotic value with an exponential time constant of about four months. During this

time, the leading edge of the pulse travels from the western boundary of the ocean to

x « 12. The meridional shape and final magnitude of the forcing are the same as in the

15



zonally uniform case discussed above. This wind stress anomaly is more realistic than the

uniform stress discussed in the previous section in that it is not zonally uniform, and the

region of strongest anomalous wind stress propagates towards the east, eventually leaving

the region. This behavior is not unlike the wind anomalies that are observed during major

ENSO events such as 1982-83, and it is similar to that used by Blundell and Gill (1983)

and McCreary and Lukas (1986).

The Laplace transform of the nth term of the Hermite expansion for r[t,x,y) is

rn (s,x) = (i{l-e- sx / f? -0(x-A)[l-e-^- A )/ r?

]}

s + a |
1 _ c

-(«+a)x/.? _ e Qc
_ A

)
1-e («+a)(z-A)/»j })r„

A particular solution to (17) with this forcing is

Un {s,x) = A n (s){Pn {s) + Qn {s)e-
xf" + Rn {s)e-l'

+aW«

-G{x - A) [Pn {s) + Q^e-^-^l^ + Rn {s)e^
s+^ x-^^]

}

where

An (s)

Pn(s)

Qn(s)

Rn {s)

n— A —

1

P 2 C 2 --Tn-2 + (s
2 + n + -)Tn - (n + 2)(n + l)Tn+2

s 2 {s + a){s 2 + 2n+l)
,2

»7

5 2
[77

2
(3

2 + 2n + l) -v-s 2
}

,2
»?

(5 + a)[sr) 2 (s 2 + In + 1) - (5 + a)r? - 5(5 + a) 2
]

16



Since Un (s,x) is discontinuous at x = A, the functions /*(s), discussed in Section 2, must

be modified slightly to allow different solutions for x < A and x > A. Additional boundary

conditions require that the total solution, u n {s,x), and its first derivative with respect to

x are continuous at x = A.

The Hermite coefficients of the solution, un (t,x), are shown in Figs. (3)-(7). Note

that, in order to show details of the response, each figure has a different scale on the

ordinate. The points at which the curves appear to be jagged (e. g. uo(50, x) for x « 20)

correspond to points at which the numerical inversion of the Laplace transform failed to

converge to the desired (1%) tolerance, and a 10% tolerance was accepted.

The dominance of the lowest order (Kelvin wave) term is clearly seen. Immediately after

the pulse of eastward wind stress is initiated the n = response retains the shape of the

forcing, but propagates eastward at a considerably greater speed than does the prescribed

forcing. This is the result of a superposition of a series of Kelvin waves, each propagating

with speed c, which is about 5.6 times greater than the speed of the forcing, ry. Once the

leading edge of the Kelvin wave front reaches the eastern boundary (t « 25 « 43 days) the

shape of the pulse is no longer preserved, due to reflections. The strongest response is seen

at t = 100 (« 170 days). By t — 200, the leading edge of the forcing has moved beyond the

eastern boundary of the ocean basin, so that only the eastern third of the basin is subject

to direct forcing.

The n = 2 (Fig. 4) response is similar to that for n = 0, except that the leading edge

of the response is retarded, due to the slower phase speed of the higher order wave mode.

17
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The magnitude of the response is much smaller because the direct forcing of this mode is

also much smaller. The higher order response (Figs. 5-7) follow this same pattern.

Even though the magnitude of the n = term is considerably greater than that of the

higher order modes, the latter have a distinct influence on the character of the complete

solution. Fig. 8 shows the total zonal current anomaly at t = 5 and t — 50. As might be

expected the initial response of the western part of the basin is rather similar to that found

for the uniform forcing case. The currents are weaker, because the forcing approaches its

final value more slowly, but the basic structure of westward currents at at the equator,

flanked by eastward return flow, is the same. At t = 5, the leading edge of the forcing

is at i = 25.9. The Kelvin wave front is at x — 30. To the east of x = 30 there is no

disturbance, as the signal has not yet reached this region. By t = 50, the leading edge of

the forcing has reached x « 35. To the west of this point, the solution still resembles that

of the earlier case. However, evidence of the trailing edge of the forcing begins to appear

in the far western part of the basin. Just ahead of the leading edge of the wind, a burst of

eastward motion (a Kelvin wave front) exists, with only a weak response near the eastern

boundary.

At later times (Fig. 9) the effect of the nonuniform, transient nature of the forcing

becomes more pronounced. At t = 100 moderate (« 1 m s
_1

) westward currents dominate

the center of the basin. These currents decrease more rapidly towards the west than in the

previous case (see Fig. 2) because the forcing there has vanised. The Kelvin wave front of

strong eastward currents ahead of the forcing pulse has gained strength, and now extends
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a considerable distance in the meridional direction. By t = 200 (^11 months), only the

eastern third of the basin is directly influenced by the forcing. There, the strong westward

currents persist near the equator, with eastward flow to the north and south. To the west

of the active forcing region, the flow is weaker.

At still later times (Fig. 10) the pulse of anomalous wind stress has exited the model

ocean basin. For t > 380, the forcing vanishes across the entire basin. The current

anomalies which persist are due to reflections of the waves which were generated as the

forcing traversed the basin. Because the model includes no dissipation, these waves will

persist for all time, but the shape of the disturbance will continue to fluctuate as the

different wave modes superpose in different ways. At t — 400 the region of westward flow

has expanded to fill almost the entire basin; the familiar bands of eastward flow have all

but vanished. While this is not a strictly steady state configuration, the general state

persists through t — 500, with only small qualitative changes due to the slow phase speeds

of the higher order modes which dominate at this time.
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4 Sumary and Conclusions

In this report we have presented the analytic solution to the shallow water equations in a

closed basin subject to arbitrary wind forcing. Two physically realistic example solutions

were shown and interpreted in some detail. One example corresponded to the spin up of

an equatorial ocean basin to a zonally uniform westerly wind anomaly. The other example

was the transient response of the basin to a zonally oriented top-hat wind pulse that moved

across the basin in a period of 16 months. This represented the wind forcing of an idealized

version of the atmospheric Southern Oscillation.

The analytic solution resembles published results for an ocean basin (e. g. Cane (1979);

Busalacchi and O'Brien (1981); Weisburg and Tang (1983)) which until now were obtained

only using numerical models. Although our results are somewhat incomplete without the

rest of the solution (i. e. v and h), it is clear that the present analytic solution offers con-

siderable potential for interpreting observations and numerical model results in equatorial

oceanography.
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