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ABSTRACT

Today's computers are among the most complex man made systems in

existence today. How can we make our designs not only more precise, but

make these systems more accurately and cost effectively achieve their

goals? We have begun to reply upon computer aided design techniques. The

use of these techniques often commences not with the statement of the

system goals, but rather with the specification of an architecture and a

logic technology. In view of the high costs of computer development, we

should be quite confident that our architecture/technology combination is

capable of meeting the system requirements before we proceed to more de-

tailed design phases. The entire system design process must be integrated,

and include performance prediction and verification techniques. This de-

sign process should be reflected in a single description language. A

methodology for accomplishing this goal capable of employing many existing

design practices is discussed here.





PERFORMANCE PREDICTION FROM A COMPUTER HARDWARE DESCRIPTION

by

Lyle Ashton Cox, Jr.

Department of Computer Science
Naval Postgraduate School

Monterey, California

Introduction

We do not need to develop more computer system description languages:

we need to develop a single, comprehensive language capable of unifying

the system design and implementation process. Today's computers are

among the most complex man made systems in existence today. The develop-

ment of such systems represents a significant commitment of physical and

mental resources. This cost can only be justified if these computing

devices serve their intended purpose — the efficient processing of

data in response to specific needs. How can we make our designs not

only more precise, but make these systems more accurately and cost

effectively achieve this goal? What can we do in the design phases of

computer system development to insure that our final product will meet

our expectations? We have begun to reply upon computer aided design

techniques. The use of these techniques often commences not with the

statement of the system goals, but rather with the specification of an

architecture and a logic technology. In view of the high costs of

computer development, we should be quite confident that our architecture/

technology combination is capable of meeting the system requirements

before we proceed to more detailed design phases. The entire system

design process must be integrated, and include performance prediction

and verification techniques. This design process should be reflected



in a single description language. A methodology for accomplishing this

goal capable of employing many existing design practices is the subject

of this paper.

MOTIVATION

Classically, new digital systems have evolved in response to specific

problems or families of problems. In the case of large computer systems,

this evolution has usually occured in the following sequence of events:

(1) A problem is recognized with no existing (economical solution.

(2) The problem is analyzed.

(3) A concept is developed for the design and construction of a new

hardware system.

(4) The system is designed and constructed.

(5) Software is generated for the applications.

(6) The system is tested and made operational.

(7) The system's performance is enhanced by software and hardware

modifications as required.

In some cases the software may already exist, and will form part of the

problem statement for the hardware designer. In other cases, step (5) may

preceed steps (3) and (4). Essentially, these steps are not allowed to

proceed in parallel.

Partially this reluctance to allow the hardware and software designs

to proceed simultaneously appears to be due to the sequential nature of

human thought. Much of the reason for our sequential design methods stems

from limitations of our current design tools. In terms of overall system

performance, the hardware and software are closely coupled. To design

one of these two components without knowledge of the other's structure



(or the knowledge that the other will be designed later for compatibility)

is poor strategy. It allows too many independent variables for efficient

design using conventional techniques.

Furthermore, the sequential nature of this design process limits

the speed with which we can implement effective systems. This is one

reason why today's systems use yesterday's technology. It also makes

our design process one of trial and error. Until both the software and

hardware are complete, we can not assess overall performance. (If we

are willing to pay the high costs of simulation, we can perform some

testing when the designs are complete. This is still essentially trial

and error development, since we have paid the price for the detailed

designs before we can begin the simulations.) If performance proves

satisfactory, all is well and good. If not, we are condemned to a

lifetime of expensive system modifications (step 7).

If demand for computing was static, perhaps we could continue to

develop new systems in this manner. This is not the case. Our design

load is increasing both in volume and complexity. Modern technology

has lowered the hardware costs sufficiently so that unique, architectur-

ally customized, limited purpose machines are becoming economically

feasible. Since design costs are essentially independent of eventual

production volume, the increasing introduction of limited purpose

machines will add to the overall design demand. In a somewhat similar

manner, the decreasing hardware costs coupled with requirements for high

performance systems had lead to the increasing use of digital systems

capable of executing multiple operations simultaneously. We have com-

paratively little experience with systems of this type, and there is no



formal theory to aid our investigations. Our design efforts for these

complex systems are therefore more costly. For these reasons and sheer

increased demand, our design load is growing. We can not continue to

design systems as we have.

The only viable solution to the increasing design load is to increase

productivity. The digital engineering community recognized this problem

relatively early, and computer aided design/design automation efforts

have been actively explored for years.

INCREASING DESIGN "EFFICIENCY"

Much of the work in developing computer aided design tools has focused

on the stages of the design process described by Su (1975)

:

"The task of designing a digital system can be considered as consisting

of the following steps:

(1) The generation of a system diagram from the specifications of

the system to be designed.

(2) The production of detailed logic diagrams for each subsystem.

(3) The partitioning of the logic diagram into several units.

(4) The assignment of integrated circuit chips for implementing

each unit.

(5) The placing of chips on logic cards, and of cards on boards.

(6) The interconnecting of chips.

(7) The testing of the integrated circuit boards."

While digital design efforts which have followed this pattern have

been both valuable and necessary, they have served only to enhance the

existing (sequential) design process. Design automation, and the develop-

ment of Computer Hardware Description Languages (CHDL's) have served to



broaden the scope of optimization within this design process. These

efforts have not significantly changed the logical structure of the

digital design task.

Just as we are moving from sequential computation to parallel

computation in order to increase our processing throughput, we must

move from sequential system design techniques to parallel design techniques

to increase our design throughput. To make this type of design possible

we will have to create appropriate controls and methodologies which

enforce coordination and assure that our designs, when complete, fulfill

the original system requirements.

Hardware engineers are not alone in this problem. Much the same

situation is being faced by software engineers. They are charged with

the development of large software systems, and traditional design

efforts are no longer adequate. Their moves to develop specification

languages, and concurrent control descriptions are allowing them to

introduce more local parallelism into the software design process while

increasing reliability. Hardware design automation and CHDL analysis

will allow us the same advantages. Neither of these localized efforts

is sufficient.

Further major improvements to our digital system design process

must stem from "global" rather than "local" optimizations. We must view

the entire process as a whole, from the formulation of requirements to

the system implementation, including the design and development of both

the hardware and the problem software. Can we undertake such a massive

task?



THE UNIFIED SYSTEM DESIGN PROCESS

In fact, we may not be very far away from just such a unified system

design and implementation practice. Mateland (1976) demonstrated an

unoptimized but comprehensive system capable of designing both hardware

and software for specialized control systems. Work in design automation

and CHDL analysis, as well as the analogous work in software engineering

provides many of the basic tools we will need. Consider the entire

digital system design and development process of large computing systems

as outlined in Figure 1.

The initial system development begins in the "Problem Definition

Phase" where, after the need for a new system has been recognized, the

requirements are formalized, and specifications for system performance

are written. These requirements and specifications should be independent

of perceptions of current technological capabilities. They must also

be either free from abiguity or contain an explicit ambiguity resolution

methodology. Significant progress is being made in this area by software

engineers, administrative scientists and operations analysis researchers.

Once the system's requirements have been specified (in machine

processable form, so as to make this information available to the automated

design tools used in the following stages) the system design enters a

"Conceptual Design and Analysis Phase." In this phase the hardware and

the software designs are started concurrently. The hardware designers,

using what I term "Hardware Conceptual Design Descriptions" (HCDD's)

develop the basic structure of the processing system, and select the

implementation technologies. The software development proceeds, with

the selection of algorithms and the overall control structure as expressed

in enhanced (concurrent) specification languages.
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Before investing more effort and resources on the designs, these

design concepts are validated. Using performance prediction techniques

(which will be discussed later) the requirements of the software structure

are mapped onto the hardware, and the overall system performance evaluated

in terms of cost, system throughput, response time, subsystem utilization,

logical performance of algorithms etc. The predicted performance is compared

with the specifications for the system, and both the hardware and software

design concepts can be iteratively refined until the performance appears

satisfactory.

At this point we can be confident that the hardware and the software

designs will perform adequately together, and that the overall system

performance will be satisfactory. The design concepts have been validated.

We then proceed to the next stage: "Design Implementation."

Here, the hardware design is completed using automated techniques

which follow Su's steps. The software design is also completed and

some portions of code written. At this point the performance of the

completed design can be more precisely verified using simulation techniques

similar to those demonstrated during the selection of the Army-Navy Joint

Computer Family Architecture (Barbacci and Siewiorek, 1977) . Again, the

results are compared with the system specifications, and the designs

iteratively modified if necessary. When the designs are shown to be

satisfactory, the system enters the final development stage: "Con-

struction and Integration."

This is the "nuts and bolts" implementation of the designs which we

have developed. Since performance prediction and monitoring have been a
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continuing part of the design process, there should be comparatively

little doubt that the system will function not only as advertised, but

as originally desired.

What is stopping us from having such a unified, optimized system

implementation process today? There are several problems which must

still be overcome. Even if all of the various functions were understood

well, the creation of working interfaces between the various phases, the

software and hardware aspects, the designers and users, is certainly not

a trivial task. Many technical and not so technical problems exist,

including developing the specifications and requirements interface to

the non-engineer.

Perhaps more significant, it should be realized that the implementation

of such an integrated system design system has certain unavoidable language

design problems. We no longer can be content to just describe computer

hardware. We must describe performance, specifications and software as

well. Moreover, our language must live and grow as the design grows.

We have almost no experience with "information added" languages, where

a valid "program" is defined, and then is refined and expanded in

iterative steps. It is precisely this adding of information at each

stage which the system design process requires. Development of efficient,

usable languages which support "information adding" will be a challenge.

ASSURING COMPATIBILITY OF THE DESIGNS

The most difficult problem, however, is achieving (guaranteeing)

the coordination between the hardware and the software. This is controlled

by the performance prediction and performance evaluation stages shown in

Figure 1. Conceptually, we would like this process to proceed cont-

12



tinuously throughout the designs evolution. However, the difference

between the two stage method hypothesized and the continuous evaluation

will not be significant in comparison to other effects.

The problem of performance evaluation, given the hardware and the

software designs has been shown to be feasible. The ISPL based simulator

used in the Army-Navy Joint Computer Family Architecture selection is one

example.

The remaining key stage of our integrated system design process is

then the performance prediction of systems in the conceptual design stages.

If this problem can be resolved, and in a manner such that the integration

of the components is facilitated, and "information adding" is supported,

then the entire concept of a unified digital system design and implementation

language system is possible. The remainder of this paper demonstrates

such a performance prediction system exists.

CONCEPTUAL DESIGN PERFORMANCE PREDICTION

In the conceptual design and analysis phase shown in Figure 1, the

inputs to the performance prediction package consist of three main sources

of information. These are: first, the user's performance requirements in

terms such as "turnaround time," "thruput," "system and 'sub-system

utilization," and of course, "cost;" second, in response to the user's

processing requirements, a description of the algorithms and control

structure of the software in terms of the requirements it will levy against

the hardware; and third, a description, quantized in terms of its actual

response in time, of the actual hardware resources and any limitations en-

forced by the nature of the organization.

This initial performance evaluation stage, as described utilizes

13



"Hardware Conceptual Design Descriptions" (HCDD) and software specifications

to predict performance. In order to be compatible with other computer

hardware description languages (i.e. CHDLs) the HCDD's must meet the

criteria outlined by Su and Baray (1975) . Such languages must facilitate

multi-level modeling and support variable levels of detail. They must allow

the specification of the structure and the control of the system they

describe. They must allow analysis by decomposition. They must be able

to describe synchronous, asychronous and mixed systems. And finally they

must be conceptually similar to the subject matter, and report back results

in usable terms.

A language which meets all of these requirements would be capable of

providing more and more detailed performance projections as the design

progresses (information adding). It would also allow the graceful

transition into existing CHDL/DA systems. Such a system would also

serve as a useful tool for evaluating the impact of mid-term design re-

directions, changes in tasking, or technology changes.

A suitable test-bed language, "P5" has been developed and refined

in accordance with these goals.

THE PETRI PERFORMANCE PREDICTIVE PACKAGE

In response to the requirement for an architectural design aid a

performance prediction system based on Petri-Net models was created.

The system, named P4, standing for Petri Performance Predictive Package,

operates as follows. When developing systems, the designers describe

their concepts in terms of the P4 system. A P4 program (P5) consists of

a description of the computer system organization and capabilities, and

a description of software control and functional requirements. These

14



descriptions are Petri-Nets, and in order to make use of the hierarchical

nature of these nets, and to express system organizations in a more concise

and convenient manner, a macroprocessor is included in the system. P5

descriptions include a prototype HCDD and a software control specification

language. This description cf the solution concept is then evaluated in

a dynamic sense and directly produces an analysis of the system's

predicted performance.

Conceptually, this prediction methodology takes an algorithm and

expresses the control structure of all or some representative kernel of

the algorithm in a fashion which makes the potential parallelism ex-

ploitable. For a given computer system, the control sturcture dictated

by the software is then mapped onto a similarly expressed hardware

structure, and the performance evaluated.

The key to this process is the expression of a representative

program kernel and hardware control structure as special kinds of

concurrent control system models (in this case, a Petri-Nets) similar

to the marked, directed graph discussed by Commoner, et al. (1971) . This

type of approach has been recently suggested by others, including Dennis,

Misunas and Leung (1977) to predict the performance of computer systems

including data flow machines. It has also been used by Patil (1975) to

describe digital systems and their behavior in the context of CHDL's.

In a directed graph representing the logical flow of functions to

be performed, each arc can be regarded as having some propagation delay

which is dependent upon the performance of the computer system executing

the program. If these delays are fixed and known, then the question of

performance reduces to a question about the minimum period for the cyclic

15



behavior of the marked graph which represents our program. This problem

was solved by Karp and Miller in 1966.

The requester/server interface (Cox, 1978) , allows the construction

of a two graph structure which in a wide variety of interesting circumstances

is equivalent to the single graph. The two graph nature of the requestor/

server interface allows the representation of user algorithms and hardware

organizations by separate graph structures. This permits each graph to be

constructed in such a manner as to both express the control structure and

to maintain a direct and meaningful representation of the important

concepts in each domain.

A complete review of Petri-Nets will not be given here. For a more

detailed treatment, Peterson's recent Computing Survey article (1978)

provides excellent background. Briefly, however, a Petri-Net may be

thought of as an abstract, formal model of information flow. As such,

it is possible to describe not only the information flow, but the controls

and constraints of such flow. The Petri-Net graph models the static

structure of a system in much the same manner as a flowchart models the

structure of a computer program. In order to represent the dynamic

properties of the system to be modeled, a Petri-Net can be "executed"

with "tokens" to respond to the flow of information (or the occurrence

of events) in the system. Petri-Nets can model actual parallel processes

by attaching some significance to token movement.

Petri-Net concurrent control system models have many characteristics

which are desirable in a performance prediction system. This model is

capable of representing both hardware and software systems and is

hierarchical in nature. These characteristics are intrinsically important,

and important in interfacing to existing CHDL/DA systems.

16



In the two net system, the software net's events represent basic

requests for service. For example, an event might represent a request

for an integer addition. The flow of tokens represents the logical

flow of the algorithm.

In the hardware net, events roughly represent operations in time.

A collection of one or more event are used to represent a functional

unit and its temporal response to the hardware control constaints. Token

movement through the hardware net represents the data and control flow

of the hardware system. An example of an early P5 description is shown

in Figure 2, which describes a very simple algorithm and an integer adder

to be used in computing the solution.

Based on this concept, good predictions of system performance have

been demonstrated (Cox, 1978) . In validating this approach, the

performance of FORTRAN programs of over 1000 statements to be run on

Control Data 6000 and 7000 series machines was predicted to within a few

percent of actual measured values. Subsequent work has focused upon

making the P4 system better fulfill the requirements of the performance

prediction function required for use in the "Conceptual Design and Analysis"

phase of system development.

The original P5 language was developed directly from the formal

definition of Petri-Nets, and was implemented to present the appearance

of a procedural language. Descriptions of both hardware and software

were written in essentially identical terms. While a macroprocessor was

included in the P4 system, its intended use was merely convenient to take

advantage of the hierarchical nature of the Petri-Net model.

In trying to make the P4 system easier to use, and to make the P5

language interface with other existing description languages, the power

17



of the macroprocessor became evident. Highly customized user interfaces

can be constructed, which continue to produce uniform Petri-Net models

after expansion and translation. Since the macroprocessor operates with

a default library of predefined macros as well as dynamically defined

macros, custom user interfaces can be built. By making the macroprocessor

sensitive to the current program context (i.e. hardware description or

software description etc.) both phases of the description can present

the appearance of different languages, and allow the descriptions to

use terminology familiar to the particular designer. The addition of

random effects has allowed the simulation of I/O and other nondeterministic

phenomena, including the exercising of alternative branches in software

systems. These changes allow the designer to define software and hardware

structures more naturally and realistically.

The importance of these changes can be seen from the following example.

A HCDD specification of a dual, synchronous Amdahl A470V/6 CPU system

written in the original P5-Macro language required about 210 lines of

code, 86% of which were used to specify the control and precedence of

machine states. (The remaining statements defined actual hardware units.)

By modifying and developing the macroprocessor, it is now possible to

specify the identical system in 26 statements (a 7 fold reduction) , 21 of

which specify the control and precedence (73%) . If it were not for the

unique pipeline "flush" mechanism which the A470V/6 CPU uses for responding

to interrupts, the dual system could be specified in six to ten statements

of the type

:

18



begin hardware;
define V6PIPE macro type PIPELINE

of 12 states, of 30 ns;

declare CPUl macro type V6PIPE;
declare CPU2 macro type V6PIPE;
declare SYNl macro type SYNCHRO. S.

2

with output = CPUl;
declare SYN2 macro type SYNCRHO.S.2

with output = CPU2;
declare CLOCK macro type 2P. CLOCK

of 30 ns
with output=SYNl , and
with OUtput=SYN2;

end hardware;

This system allows the user to draw from predefined macros in the

library, such as "PIPELINE" and the clock macro, as well as to define

new macros which are built from the existing library stock. As a

specific user gains experience with the system, the continuing redefinition

of library macros causes the system to adapt itself to the user and his

application, without affecting the end model's structure. This, in turn,

insures that the interface to CHDL's which may follow this HCDD in the

design process are presented with a uniform model.

In a similar manner, the software descriptions have evolved using

the macroprocessor for language enhancements and extension. It is now

possible to define programs in a flowchart like manner but with con-

currency explicitly defined. For example, with a suitable macrolibrary

defined, a signal processing program might be defined as follows:

begin software;
declare DATA event type RANDOM,

with P=0.0071;
define JFILTER macro type PASSFILTER,

with 2 bands;
define XFORM macro type FFT

with 1024 points;
declare SIGNALTOFREQ macro type XFORM;
declare INVERSEXFORM macro type XFORM;

DATA preceeds SIGNALTOFREQ;
SIGNALTOFREQ preceeds JFILTER;
JFILTER preceeds INVERSEXFORM;
end software;

19



While not yet perfected, languages such as these are much more

usable than previous versions, and offer compatibility with the other

systems shown in Figure 1.

CONCLUSIONS

Looking at the process of computer system development as a whole,

optimization on a global scale appears both necessary and possible.

The key to achieving this optimization is the ability to predict the

performance of computer systems early in the design development. This

prediction must consider the conceptual organization of both the hardware

and the software, support "information adding," and interface to existing

design assistance systems. The technology for such a performance prediction

system has been demonstrated. The interfacing of this methodology is

shown to be possible, the design has been shown to be capable of accurate

prediction. Only hard work remains.
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A software program:

Fortran program:

Begin program example; c Begin, (everything m registers)

Declare BEGIN event type #;j

Declare J + K event type 5;

Declare M + J event type 5;

Declare END event type 0;

Declare ST" transition;

Input BEGIN;
Output J + K;

Output M + J;

EndSTI;

Declare ST2 transition;

Input J t K;

Input M + J;

Output END;
End ST2;

End program example;

L - M + J

End

The petn-net representation:

A hardware functional unit:

Petn-network

Begin machine net;

Declare iN5 event type 5;

Declare Gate event type <j>;

Declare U1 event type p,

Declare U2 event type 0;

Declare OUT5 event type —5;

Declare T1 transition;

Input INS,

Input Gate;

Output U1;
End T1;

Declare T2 transition;

Input 111;

Output U2;

End T2;

Declare T3 transition;

Input U2;

Output Gate;

Output OUT5;
EndT3;

End machine net;

An adder (3 minor cycies)

( NOT PIPELINED )

Legend:

T Vpe

(Name)

Name

Event Transition

Figure 2.

TYPE REFERS TO THE
KIND OF SERVICE EITHER
PROVIDED OR REQUESTEO.
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