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ON DEADLOCK DETECTION IN DISTRIBUTED

COMPUTING SYSTEMS

D. Z. Badal and M. T. Gehl

Computer Science Department
Naval Postgraduate School

Monterey, CA 93940

ABSTRACT

With the advent of distributed computing systems, the problem of

deadlock, -which has been essentially solved for centra ized computing systems,

has reappeared. Existing centralized deadlock detection techniques are either

too expensive or they do not work correctly in distributed computing systems.

Although several algorithms have been developed speciJically for distributed sys-

tems, the majority of them have also been shown to be inefficient or incorrect. A

new algorithm is proposed which is more efficient than any existing distributed

deadlock detection algorithm.

/. INTRODUCTION

Deadlock is a circular wait condition which can occur in any multiprogramming,

multiprocessing or distributed computer system which uses locking if resources

are requested when needed and processes are not assigned priorities. It indi-

cates a state in which each member of a set of transactions is waiting for some

other member of the set to give up a lock. An example of a simple deadlock is

shown in Figure 1. Transaction Tl holds a lock on resource Rl and requires

resource R2; transaction T2 holds a lock on resource R2 and requires Rl. Nei-



ther transaction can proceed, and neither will release a lock unless forced by

some outside agent. There have been many algorithms published for deadlock

detection, prevention or avoidance in centralized multiprogramming systems.

The problem of deadlock in those systems has been essentially solved. With the

advent of distributed computing systems, however, the problem of deadlock

reappeared. Certain peculiarities of distributed systems (lack of global memory

and non-neglibible message delays, in particular) make centralized techniques

for deadlock detection expensive. Recently there have been published several

deadlock detection algorithms for distributed systems [OBE82, GLI80, MEN79,

GRA73. TSA82]. However, most of them have been shown to be incorrect or to be

too complex and expensive to be practical. In this paper, we propose a new dis-

tributed deadlock detection algorithm for distributed computing systems which

is more efficient than any other published deadlock detection algorithm. The

major differences between the proposed algorithm and existing algorithms are

the concept of a Lock History which each transaction carries with it, the notion

of Intention Locks and a three staged approach to deadlock detection, with each

stage, or level, of detection activity being more complex than the preceding. In

this paper, we first present the algorithm, then an informal proof of correctness,

and finally a performance comparison of the proposed algorithm with the algo-

rithm presented in [OBE82]. Obermarck's algorithm is used for comparison for

two reasons. First, it is the most recently published distributed deadlock detec-

tion algorithm and it is also shown to be more efficient than other algorithms.

Tl T2

tXt
Rl ^R2

Fig. 1 -- A simple deadlock cycle



Second, Obermarck's algorithm is being implemented on IBM's distributed data-

base System R*.

// THE PROPOSED ALGORITHM

A. INTRODUCTION

The proposed algorithm assumes two types of Locks: Exclusive Write(W) and

Shared Read(R). Additionally, the proposed algorithm uses an Intention Lock (I)

which indicates that a transaction wishes to acquire a lock on a resource, either

to modify it (IW) or to read it (IR). The Intention Locks are piaced in a resource

Lock Table when an agent is created at a site of a locked resource which it

requires, or when a resource at the same site is requested but is already locked

by another transaction. The Intention Locks are also placed in the Lock Table of

the :ast locked resource(s) once the transaction can determine which

resc\j-ce(s; intends to lock in its next execution step. The Intention Locks are

not the sane as the Intention Modes used by Gray when he discusses hierarchi-

cal locks in. [GRA78]. Gray uses the Intention Mode to "tag" ancestors of a

resource ir. a hierarchical set of resources as a means of indicating that locking

is being done on a "finer" level of granularity, and therefore preventing locking

on the ancestors of the resource. The rules for locks in the proposed algorithm

are the same as for conventional locking, i.e., any number of transactions or

agen-s may simultaneously hold Shared Read Locks on a particular resource,

but only a single transaction or agent may hold an Exclusive Write Lock on a

resource. Any number of Intention Locks (I¥ or IR) may be placed on a

resource, which means that any number of transactions may wait for a resource.

Each site must therefore have some method for determining which transaction

will be given the resource when it becomes free. Our algorithm uses Lock His-

tory (LH) of a transaction which is a record of all types of locks on any resources



which have been requested or are held by that transaction. An example of a

Lock History for transaction Tl is LH(Tl): $W(R3C), W(R2B), R(R1A)J. This LH

shows that Tl holds a Write Lock on resource R3 at site C, a Write Lock on

resource R2 at site B, and a Read Lock on resource Rl at site A. The information

contained in a Lock Table for a resource includes a) the transaction or agent ID

and its Lock History, b) the type of lock and c) the resource (and type of lock)

which that transaction holding this lock intends to lock next. The field contain-

ing the current lock will be referred to as the "current" field of the Lock Table,

and the field containing the future intentions of that transaction holding the

"current" look will be called the "Next" field. For clarity, Lock Histories will be

shown as separate entities. An example of a Lock Table is LT(R2B): T1*W(R2B),

IW(R3C)j; T2$IW(R2B){. The Lock Table for resource R2 at site B shows that Tl

holds a Write 1 Lock on R2. and that T2 has placed an Intention Write Lock on R2.

Tl has also iidicated that it intends to place a Write Lock on resource R3 at site

C. The proposed algorithm assumes a distributed model of transaction execu-

tion where each transaction has a Site of Origin (Sorig), which is the site at

which it entered the system. Whenever a transaction requires a remote

resource, (a resource at a site other than the site it is currently at), it

"migrates" to the site where that resource is located. Migration consists of

creating an "agent" at the new site. The transaction agent then executes, and

may either create additional agents, start commit or abort actions, or return

execution to the site from which it migrated. This transaction model is con-

sistent with recent literature [OBE82, GRAB IB]. When a transaction migrates, it

carries along its Lock History. A Wait-For Graph (WFG) is constructed by the

deadlock detection algorithm, using the Lock Histories of transactions which are

possibly involved in a deadlock cycle, any time a transaction or agent attempts

to place a lock on a resource which is already locked, or when it determines that

a remote resource will be required. There are two types of nodes in the WFG;



transactions (or agents) and resources. A directed arc from a resource node to

a transaction node indicates that the transaction has a lock on the resource,

while a directed arc from a transaction node to a resource indicates that the

transaction has placed an Intention Lock on that resource. A cycle in the 7WG

indicates the existence of the deadlock. The WS is a list of transaction - waits -

for - transaction strings (obtained from the site's WFG), in which each transac-

tion is waiting for the next transaction in the string, and the Lock History for

each transaction in the string. For example, the WFS [T1[W(R2A), IW(R3B)j,

T4$W(R3B)J] shows that Tl is waiting for T4, and each transaction's Lock History

is in brackets. A transaction may also bring along other information such as a

metric representing its execution cost, but such information is not included in

this paper as it is outside the primary function of the proposed deadlock detec-

tor. We assume that each transaction or agent will have a globally unique

identifier which indicates its Site of Origin. Agents can be in any of three states;

active, blocked (waiting), or inactive. An inactive agent is one which has done

work at a site and created an agent at another site or returned execution to its

creating site, and is now awaiting further instructions, such as commit, abort or

become active again. A blocked transaction is one which has requested a

resource which is locked by another transaction An active agent is one which is

not blocked or inactive. To allow concurrent execution, a transaction may have

several active agents. Each site in the system has a distributed deadlock detec-

tor, which performs deadlock detection for transactions or agents at that site.

Several sites can simultaneously be working on detection of any potential

deadlock cycle. The basic premise of the proposed algorithm is to detect

deadlock cycles with the least possible delay and number of inter-site messages.

Based on the findings by Gray and others [GRA81A] that cycles of length 2 occur

much more frequently that cycles of length 3, and cycles of length 3 occur much

more frequently that cycles of length 4, and so on the proposed algorithm uses



a staged approach to deadlock detection. We distinguish two types of deadlock

cycles to be considered; a) those which can be detected using only the informa-

tion available at a site, and b) those which require inter-site messages to detect.

In the proposed algorithm, the first type has been divided into two levels of

detection activity. Because the proposed algorithm checks for possible

deadlock cycles every time a remote resource is requested and another transac-

tion is waiting for a resource being released by the transaction making the

remote resource request or a local resource is requested but already locked,

the level one check should be as quick as possible. If the requested resource is

still not available "after X units of time" [GRA7B], then the probability of a

deadlock has increased sufficiently to justify a more complex and time-

consuming check in level two. Therefore the proposed algorithm has three lev-

els of deadlock detection activity. Levels one and two correspond to the first

type of deadlock cycle, while level three corresponds to the second type. The

first level is designed to detect cycles of leng;h 2, although certain more com-

plex deadlock cycles could be detected, depending on the topology of the

deadlock cycle. This level uses only information available in the Lock Table of

the requested resource if the resource Ls local, or the last locked resource if the

requested resource is at another site, and in the transaction Lock Histories.

Due to the information contained in the "Next" field of the Lock Table and in

each transaction's Lock History, this level of detection activity can detect all

direct deadlocks of cycle length 2 involving one or two sites. The deadlock is

direct if at least one transaction is blocked, i.e., is waiting for the resource R

locked by another transaction T' and R is the last resource locked by T before it

becomes blocked too. The direct deadlocks occur mostly due to locks being

released after the transaction does not require the resource any more. The

indirect deadlocks can occur when the resources are kept locked until the tran-

saction termination as is done in database systems which use two-phase locking.

S



As an example, let transaction Tl at site A Write Lock resource Rl. Let transac-

tion T2 at site B Write Lock resource R2. These locks would be placed in the Lock

Tables of the respective resources, and also in the Lock Histories for the respec-

tive transactions. Transaction Tl now determines that it must lock a remote

resource R2, so it places that information in the "Next" field of its lock entry of

resource Rl and in its Lock History. It then migrates to site B, where its agent

places an Intention Lock in the Lock Table for R2, and then becomes blocked.

waiting for resource R2 to be released. A le^el one check is made using the Lock

Table of R2, showing no deadlock cycles. Now transaction T2 determines that it

requires a Write Lock on a remote resource Rl. It places that information in the

"Next" field of its lock entry in the Lock Taole of R2 and in its Lock History. As

Tl is waiting for R2 a deadlock detector triggers level one of the deadlock detec-

tion algorithm before T2 migrates to site A. The deadlock detection algorithm

combines the Lock Histories of all transactions holding or requesting locks on R2

(Tl and T2) into a WFG. and detects a deadlock. In this example, the cost of

creating an agent of T2 at site A was saved by a very quick check for cycles of

length two. Inasmuch as the majority of deadlocks occurring will be of this

length, this simple and inexpensive check ^rill detect the majority of deadlocks

as they occur. If, in the example just given, transactions Tl and T2 had simul-

taneously determined the need for locks at the other site, the initial level one

check would not have been performed because no transactions were waiting for

those resources. Both transactions would have migrated and placed Intention

Locks at the new sites. A level one check is then made at each site when it is

noted that the requested resource is not available. Each site constructs a WFG

from the Lock Histories of the transactions in the Lock Tables of the requested

resources, and each site will detect a deadlock cycle in the WFG without any

inter-site messages. Even if the first level of detection activity fails to detect a

deadlock cycle, there can still be a more complex deadlock cycle in existence.



The second level of detection activity requires more time because it constructs

aWG using all Lock information available at the site, i.e., Lock information from

all resource Lock Tables at the site. If we assume that more complex deadlock

cycles are comparatively rare, it is advantageous to "wait X units of time"

[GRA78] before starting the second level of detection activity. If a transaction

is still waiting to acquire a lock after these X units of time, the probability of a

more complex deadlock cycle existing has increased sufficiently to justify a

more comprehensive check. As previously mentioned, the second level still

attempts to detect a cycle using information available at the same site where

the transaction is waiting for a resource. The Lock Histories of all blocked or

inactive transactions at the site, and the Lock Histories from all transactions in

the WFSs from other sites are combined into a new Wait-For Graph. (The WS's

are generated by the third level of the proposed algorithm). If no deadlock is

detected, and because level three of deadlock detection activity involves inter-

site communication, it might be advantageous to wait Y units of time before con-

tinuing in order to increase the probability of the wait condition being an actual

deadlock. After Y units of time, when the deadlock detection algorithm is ready

to continue, the WG is converted into a WS. The WS is then sent to other

sites. The version of the algorithm presented here includes an optimization

whereby the WS is sent to the site to which the transaction being waited for has

migrated only if the first transaction in the WS has a higher lexical ordering

than the transaction which has migrated. This optimization is similar to one

used in [0BE82]. When a site deadlock detector receives a WS, it substitutes

the latest Lock Histories for any transaction for which it has a later version (the

longest Lock History is the latest). It then constructs a new WFG and checks for

cycles. If a cycle is found, it must be resolved. If any transactions are waiting

for other transactions which have migrated to other sites, the current site must

repeat the process of constructing WFG's and sending them to the sites to which

B



the transactions being waited for have migrated, subject to the constraints of

the optimization. If the transactions being waited for are at this site and active.

deadlock detection activity can cease. Level three activity will continue until a

deadlock is found or it is discovered that there is no deadlock. The following

definitions are used in the description of the algorithm:

IL — Intention Lock
W(v) — Exclusive Write lock on resource x
R(x) - Shared Read lock on resource x
IW(x) — IntentioD Lock(Write) on resource x
IR(x) — Intention Lock(Read) on resource x
Sorig(T) — Site or Origin of transaction T
LT(R) - Lock Table for resource R
LH(T) — Lock History for transaction T
"Next" - Field in Lock Table reflecting the resource the transaction intends to

acquire next
"Current" — Field in Lock Table reflecting the lock currently held by a transac-

tion

B. THE ALGORITHM

1. {Remote resource R requested or anticipated by transaction or agent
T{

A. Place appropriate IL entry in "next" field of the Lock Table of

the current resource (the last resource locked bv T.if any) and in

LH(T).

B.
I
Start level 1 detection activity at current site}. If another

transaction is waiting for the last resource locked by T, construct
a Wait-For graph and WFS from the Lock Histories of the transac-
tions holding and requesting that resource and check for cycles.

C. If no cycles are detected or if no transactions are waiting:

1) Collect LH(T) and the WFS (generated at step l.B) from
the current site, and have an agent created at the site of the
requested resource.

2) Stop

D. If a cycle is detected, resolve the deadlock

2. {Local resource R requested}

A. If resource R is available: [Lock it{

1) Place appropriate lock in Lock Table of resource R and
inLH(T).

9



2) end

B. If resource is not available: $Start level 1 detection activity}

1) Place appropriate IL in Lock Table of resource R and in

LH(T).

2) Construct a WF Graph from Lock Histories of all tran-

sactions holding and requesting R, and check for cycles.

3) If there are no cycles, and if the transaction holding
the lock on R is still at this site and active, stop. If there
is a cycle, resolve the deadlock.

4) If the transaction holding the lock on R has either
migrated to another site, or is still at this site but is

blocked by another transaction which has migrated to

another site, delay(tl).

5) If resource is now available:

a) Remove IL from Lock Table and LH(T)

b) Go to step 2A

6) If resource is not available: $Start level 2 activity}

a) Construct a WFG using the Lock Histories of the

transactions in the WFSs which have been sent from other
sites by level three detection activity, and the Lock His-

tories of all blocked or inactive transactions at this site

and check for cycles.

b) If any cycles are found, resolve the deadlock.

c) If no cycles are found. Delay(t2)

d) If the requested resource is now available, go to

step 2A

e) If the transaction being waited for is at this site

and active, stop.

f) If the resource is still not available, go to step 3

$Start level 3 detection activity}.

3. [Wait-For Message Generation}

A. JStart Level 3 detection activity} Construct a WFS by condens-
ing the latest WFG into a list of strings of transactions waiting for

transactions. Add the Lock Histories of each transaction in

string.

10



B. Send the WFS to the site to which the transaction being waited
for has gone if the transaction being waited for in each substring
has a smaller identifier than the first transaction in that sub-
string.

4. $Wait-For Message Received}

A. \ Start level 3 detection activity} Construct a WFG from the
Lock Histories of the transactions in the WFS's from other sites,

and from the Lock Histories of all blocked or inactive transac-
tions at this site. (Use the latest WFS from each site.)

B. If this WFG shows that a transaction which is being waited for

has migrated to another site, go to step 3. ^Repeat WFS Genera-
tion}

C. If the transaction being waited for is active, and has not indi-

cated by an Intention Lock that it will attempt to acquire a
resource which may result in a deadlock, discard the WFG and
stop.

D. If the transaction being waited for is active but has indicated
by an Intention Lock that it is going to a site which will cause a
deadlock, or if a cycle is found, resolve the deadlock.

C. EXPLANATION OF THE ALGORITHM

Step 1. This step is executed any time a transaction (or agent) T requests a

remote resource, or when it determines that it will require a remote resource.

The Lock Table of the resource which the transaction is currently using (or has

just finished with) is checked to see if any other transactions are waiting (i.e.,

have placed Intention Locks) for that resource. If so, the Lock Histories of all

transactions requesting and holding the resource are combined into a WFG and a

check for cycles is made. If no cycle is found, T collects the WFS formed from

the WFG at that site and causes an agent to be created at the site of the

requested resource. Step 2. This step is executed each time a local resource is

requested, either by an agent (transaction) already at that site or by a newly

created agent. If the resource is available, appropriate locks are placed and the

resource granted. If the resource is not available, Intention Locks are placed in

the Lock Table of the requested resource and in the Lock History of the

11



requesting transaction, a WFG is constructed using only the information in the

Lock Table of the requested resource and the Lock Histories of the transactions

holding or requesting that resource, and a quick level one check is made for pos-

sible deadlock cycles. If no cycles are found, the algorithm waits for a certain

period of time before continuing. This should allow the transaction which holds

the resource to complete its work and release the resource. If the resource is

not available after this delay, the chance of a deadlock is higher, so the algo-

rithm shifts to another level of detection. It now uses the Lock Plistories from

each blocked or inactive transaction at the site, as well as from any WFS's from

other sites which have been brought by migrating transactions. If there are no

cycles in this graph, and the resource is still not available after a second delay

(also tunable by the system users), the possibility of deadlock is again much

greater, but the current site has insufficient information to detect it. Therefore

the proposed algorithm progresses to the third level of detection (step 3). Step

3. The Wait-For message generated by this step consists of a collection of sub-

strings. Each substring is a list of transactions each of which is waiting for the

next transaction in the substring. The substring also contains che resources

Locked or Intention Locked by each transaction in the substring. This step

includes the optimization that a WFS is only sent to another site .if the transac-

tion which has migrated has a lower lexical ordering than the first transaction in

the substring. For example, for the WFG shown in Figure 2, the WFS would be

[T2SW(R2B).IW(R3C)j, T3fW(R3C), IW(R4D)j, T4$W(R4D),IW(R1A)}]. T4 has migrated

to site A. The WFS would be sent to site A only if T4 is less than T2.

T4 T3 T2

^\ S\ S\
R1A R4D R3C R2B

Fig. 2 - Example WFG

Step 4. In this step, the Lock Histories of the transactions in the WFS's previ-

12



ously received from other sites, and the Lock Histories of any blocked or inac-

tive transactions at this site are added to the Wait-For information contained in

a received "WFS. If there is still insufficient information to detect a cycle (a tran-

saction being waited for has migrated to another site), another iteration must

be performed, so the algorithm repeats by transferring to step 3. If a cycle is

detected, it is resolved, and if the last transaction being waited for is still active,

the algorithm stops.

D. OPERATION OF THE ALGORITHM

Ihe operation of the algorithm will be shown by executing it on the following

example. Tl migrates to site B and locks resource R2. It then migrates to site C

and locks resource R3. T4 locks resource R4 at site D. At this point, the Lock

rlistories and Lock Tables are as in Fig. 3.

Tl now attempts to acquire resource R4. By step 1, an IL entry is placed in

Site A

LH(T1): |IW(R2B)J

SiteB

LH(T1): |W(R2B),IW(R3C){

LT(R2B): T1*W(R2B)J

Site C

LH(T1): $W(R2B),W(R3C)1

LT(R3C): T1|W(R3C)J

SiteD

LH(T4): $W(R4D)J

LT(R4D): T4$W(R4D)J

Fig. 3 Lock Histories and Lock Tables

13



LH(T1) and in LT(R3) at site C. As there are no Intention Locks in LT(R3C), the

WFS from site C is collected (at this point in time, none exists), and an agent of

Ti is created at site D, with Tl "bringing" LH(T1): [W(B2B), W(R3C), 1W(R4D)J.

Site D now applies step 2B1. and places the H. entry in LT(R4D) and LH(Ti). Then

it executes step 2B2 by combining the Lock Histories of Tl and T4. No cycles are

found, but as T4 is still active at site D, the DDA is stopped. The current status

of the Lock Tables and Lock Histories is as in Fig. 4. T4 now determines that it

needs to write into resource R3. It applies step 1 and places an IL entry in

LH(T4) and LT(R4D). The Lock Table for R4 is now LT(R4D): T4|W(R4D),IW(R3C)J;

TUlW(R4D)i. and the Lock History for T4 is now LH(T4): *W(R4D), IW(R3C)$. It

sees in LT(R4D) that Tl is waiting for R4, so it combines its Lock History with

Tl's. This reflects the cycle Tl—>T4->T1, so a deadlock has been detected with

no intersite messages.

Site A

LH(T1): {IW(R2B)J

SiteB

LH(T1): $W(R2B),IW(R3C)J

LT(R2B): Tl£W(R2B)i

Site C

LH(T1): |W(R2B),W(R2C),IW(R4D)j

LT(R3C): T1J"W(R3C).IW(R4D)J

SiteD

LH(T4): }W(R4D)J
LH(T1): |W(R2B),W(R3C),IW(R4D)|

LT(R4D): T4$W(R4D);T1$IW(R4D)}

Fig. 4 Lock Tables and Lock Histories

14



///. INFORMAL PROOF OF CORRECTNESS

In general, a deadlock cycle can have many different topologies. For the model

of transaction execution used in the proposed algorithm (migration of agents of

transactions), these different topologies can be loosely grouped into four

categories. Category A involves local deadlocks in which all the resources and

transactions involved in the deadlock are local, i.e., located at one site, and thus

the transactions involved have not locked any resources at other sites.

Category B is the same as category A. with the exception that the trans actions

are nonlocal, i.e., they may have locked resources at other sites Category C

contains direct deadlocks of cycle length two involving only one transaction and

one resource at each of two sites. Category D is a generalization of category C

deadlocks; any number of transactions and resources may bo direotly or

indirectly deadlocked at any number of sites. For each category, it will be

argued that the algorithm detects all possible deadlocks in that category, and

that the algorithm does not detect "false" deadlocks except in the iase T.'>nere a

transaction which was involved in a deadlock has aborted, but its agen:s have

not yet been notified. If all the transactions and resources iivolved in a

deadlock are located at the same site and none of the transactions have locked

resources at other sites, each transaction's Lock History will be an accurate and

complete snapshot of the locks placed by that transaction. If the deadlock cycle

length is two, the combination of the Lock Histories in step ZBZ (level l) will

detect the cycle. If the length of the cycle is greater than two, step 2B6 (level 2)

will combine, for this category of deadlock cycles, the Lock Histories of all the

blocked or inactive transactions at the site. This information will be a complete

and accurate global snapshot of the deadlock cycle, and hence the deadlock will

be detected. Deadlocks in the second category are those in which all the tran-

sactions and resources involved are at one site, but the transactions involv
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may have locked resources at other sites before creating the agent at this site.

The argument to show that ail deadlocks in this category will be detected by the

proposed algorithm is essentially the same as the one used for the first

category. Since ail the transactions involved in the deadlock are currently at

this site, their Lock Histories are complete and accurate in so far as they per-

tain to the deadlock cycle. It is possible, in the case of concurrent execution of

a transaction's agents, for an agent involved in a deadlock to be unaware of

resources locked by other agents of that transaction which are executing con-

currently, and will probably still be active. The only difference between this

case and the preceding is that the WFGs constructed by steps 2B2 and 2B6 may

contain information about other locks held by the transactions involved, but the

information concerning the deadlock cycle will be present. Deadlocks in the

third category will be detected b]
-

level 1 because a single Lock Table at each

site holds sufficient information to detect a deadlock cycle. If the migrations

occur simultaneously, the "Next" field of the Lock Table of the requested

resource would sho^v an Intention Lock on the other resource, and this cycle

would be detected by step 2B2. If the migrations occurred sequentially, the

second transaction would, before migrating, place an Intention Lock in the Lock

Table of its last locked resource. The level 1 check of step IB would cause a WFG

to be constructed which would reveal the deadlock cycle. The fourth category of

deadlock cycles is a generalization of the third. Deadlock cycles in this category

may involve any number of transactions and resources at any number of sites.

A record is always kept of the site to which a transaction has migrated (in the

"Next" field of it's last locked resource at the current site.) If level 2 cannot

detect the cycle in step 2B6 with information at that site, level 3 causes a WFS

containing this site's information to be sent to the site to which the transaction

has migrated if the transaction which has migrated has a lower unique identifier

than the first transaction in the substring. Steps 3 and 4 cause this process to
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be continued, with each site adding additional information, until a site contains

enough information to detect a deadlock cycle or determine that no deadlock

exists, reg ardless of the number of migrations made by a transaction. To show

that, this process will continue until the deadlock is detected, we refer to the

proof in [OBE82], since the optimization in the proposed and in the Obermarck's

algorithm is essentially the same. False deadlocks are an anomaly where a non-

existent deadlock cycle is detected by a deadlock detection algorithm, and are

usually a -esult of incorrect or obsolete information Since the proposed algo-

rithm uses only the latest copy of a transaction's Lock History for deadlock

detection purposes, the information used cannot be incorrect in the sense of

invalid entries, although it may be incomplete. This means that a Wait-For graph

constructed from incomplete versions of Lock Histories may have insufficient

information to detect a deadlock at that particular level of detection activity or

iteration of level three activity, but it will not have incorrect information. When

a transaction which has agents at two or more sites commits or aborts, however,

it i& possible that the commit or abort messages to other agents of that transac-

tion may be delayed. Obviously, a transaction which is ready to commit cannot

have any of it's agents in a blocked state (and therefore in a possible deadlock

condition), so its agents can either be only active or inactive. While inactive

agents may be being waited for by agents of other transactions, no Lock History

or Lock Table can show that an agent of the transaction which is about to com-

mit is waiting for another transaction, so no false deadlocks can exist. There-

fore only the possibility of a transaction which is in the process of aborting and

thus causing a false deadlock to be detected must be considered. Suppose an

agent of a transaction decides to abort, but before its abort message reaches

another agent of that transaction, a deadlock is found involving that transaction.

Technically, this could be considered a false deadlock, since one of the transac-

tions involved has aborted, probably breaking the deadlock cycle. If the
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deadlock cycle is complex, and the proposed algorithm is performing level two

or three detection activity, the delays introduced in steps 2B4 and 236c should

allow the abort message to arrive. For what we believe to be the rare

occurences where the abort message does not arrive, it would probably be more

efficient to let the deadlock detection algorithm resolve the (false) deadlock

rather than having the algorithm perform some explicit action (such as delaying

before resolving any detected deadlock cycle) each time it detects a deadlock,

IV. PERFORMANCE ANALYSIS

To check the efficiency (in terms of inter-site messages) of the algorithm, it was

analyzed in several deadlock scenarios. The algorithm of Obermarck [QBE88J

was also analyzed in these scenarios. Obermarck' s algorithm was chosen for

this comparison because it is being implemented in IBM's developmental distri-

buted database system, System R* and because its performance has been shown

[0BE82] superior to other deadlock detection algorithms. Since the majority of

deadlocks which will occur will be of length two or three, three test cases involv-

ing deadlock cycles of those lengths will be used for the comparison. It is

assumed that the transactions are lexically ordered Ti < T2 < T3. These cases

are shown in Figure 5. Tl originated at site A and holds a lock on Rl, and T2 ori-

ginated at site B and holds a lock on R2. In cases two and three, T3 originated at

site C and holds a lock on R3. In case one, Tl has migrated to site B and

requested R2, while T2 has migrated to site A and requested Rl. In case two, Tl

has migrated to site B and requested R2, T2 has migrated to site C and

requested R3, and T3 has migrated to site A and requested Rl. In case three, Tl

has migrated to site C and requested R3, T2 has migrated to site A and

requested Rl, and T3 has migrated to site B and requested R2.

For case one, where the deadlock cycle is of length two, the proposed algorithm
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Fig. 5 — Deadlock cycles used in performance analysis

requires no additional messages for deadlock detection, while Obermarck's algo-

rithm requires one message. For case two, with a deadlock cycle of length

three, Obermarck's algorithm requires two messages. The number of messages

required by the proposed algorithm is dependent on the timing of the transac-

tion migrations. If the migrations occur at different times (i.e., sequentially), no

messages are required. If, however, the migrations happen to occur simultane-

ously, only one message is generated because of the optimization. A similar

situation occurs in case three. If the migrations occur simultaneously, two mes-

sages will be generated by the proposed algorithm, although one of these mes-
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sages i:s redundant, Le., any one message is sufficient to detect deadlock. If

transaction migrations occur at different times (i.e., sequentially) then no mes-

sages are required. Obermarck's algorithm requires three messages, regardless

of the timing of the migrations. As pointed out in [0BEB2] it is apparent that in

the overwhelming majority of cases the global deadlocks are of cycles of length

two involving two sites. No messages are required to detect direct global

deadlocks of cycle length two by the proposed algorithm. In order to provide

the evaluation of both algorithms for global deadlocks with cycle length n > 2 we

assume that n nonlocal (or global) transactions are involved in the global

deadlock such that at each of n sites only one transaction is blocked by another

transaction and each transaction needs to execute only at two sites. Then the

number of messages needed by the proposed algorithm for the worst case

scenario (when all the transactions involved migrate simultaneously) can be

shown to be N-l, where N =%/ (n-k). Under the same circumstances it can be

shown that Obermarck's algorithm [OBE82] requires N messages regardless of

sequencing of transaction migrations, i.e., the number of messages depends only

on. the number of transactions involved in the deadlock. Thus for a cycle of

length three, the number of messages required for the worst case would be two

for the proposed algorithm and the Obermarck's algorithm would require tree

messages. For a cycle of length four, the worst case would require five messages

under the proposed algorithm vs. cycle of length five, nine messages would be

required. We want to stress again that the worst case performance of the pro-

posed algorithm only occurs, however, when all transactions involved migrate

simultaneously, and the lexical ordering of the transactions is such that n-l

messages are sent on the first iteration It is safe to assume that the worst case

scenario does not always occur with each global deadlock and therefore the real

performance of the proposed algorithm is expected to be better than we stated

here. However, we must point out that the decrease in the number of inter-site
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messages comes at the cost of slightly more complex lock tables and at the cost

of each transaction carrying with it slightly mere information (its Lock History).

The amount of time used in level one activity is minimal, since only a single

resource's Lock Table is used to determine the set of transactions "whose Lock

Histories must be combined. Even with Irvel two. the time required to construct

a WFG using all Wait For information at a site sfc.ould take no longer than the con-

struction of a WFG in Obermarck's algorithm. In [OBE82], Obermarck does not

discuss the factors which trigger deadlock detection, but for this analysis, it is

assumed that it is triggered X units of time after a transaction waits for a

resource. His algorithm constructs a WFG at. each iteration of the deadlock

detection cycle, regardless of the potential size of the cycle. Since the proposed

algorithm performs a comparable construction only when cycles of length two

have essentially been eliminated as a possibility, it appears that the proposed

algorithm will require less time to execute whenever it is invoked.

V. CONCLUSIONS

The proposed algorithm has been shown to be able to detect deadlock with

smaller number of inter-site messages tr^an any existing algorithm for deadlock

detection in distributed computing systems. We have shown that for the

deadlock scenarios analyzed in this paper the proposed algorithm requires from

zero to N-l (where N =^(n-k)) messages to detect a global deadlock, where n is

the number of transactions and sites involved in the deadlock cycle. It requires

no messages when the transaction migrations leading to the deadlock occur

sequentially. This is because when a transaction migrates, it "brings along" a

pertinent wait-for information from its current site. The worst case for the pro-

posed algorithm is when the transactions involved migrate simultaneously. This

can result in as many as N-l messages, depending on the ordering of the unique

transaction identifiers. Obermarck's algorithm for this case requires N
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messages, which is always one message more than the number required by the

proposed algorithm. The reason that the proposed algorithm requires one less

iteration of message passing is because the Lock Histories of each transaction

are brought along with the transaction when it migrates, and thus each site has

more information than the sites would have using Obermarck's algorithm. The

most important point is that the proposed algorithm can detect the most fre-

quent deadlocks without any inter-site messages. The proposed algorithm

requires no inter-site messages for direct deadlocks of cycle length two involv-

ing two sites, or for deadlocks of cycle length > 2 when a) a sequential migration

of transactions in order of their lexically ordered unique identifiers has occured

regardless of the number of transactions or sites involved or b) the deadlock is

direct and involves only two sites where at one site only two transactions conflict

and an arbitrary number it transactions conflict at the other site. For all other

types of deadlocks the proposed algorithm requires one less message than

Obermarck's algorithm. "Tie proposed algorithm could be modified by combin-

ing levels one and two, if the number of resources and transactions in the sys-

tem are small, and therefore the cost of creating WFG's at level 2 would be com-

parable to the cost of the level 1 WFG construction. The cost of construction of

the WFG's used by the algorithm could be saved by not constructing them at all,

but merely examining the WFS's and Lock Histories, since all required informa-

tion is contained in them. The delays which have been built-in to the algorithm

can be adjusted empirically to determine the optimum delays for a particular

implementation
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