
LIBRARY
TECHNICAL REPORT SFCTION
NAV -:HO0
MUNTEfttv, CAI 9394(

NPS52-80-002

NAVAL POSTGRADUATE SCHOOL

Monterey, California

The Naval Postgraduate School
SECURE ARCHIVAL STORAGE SYSTEM

Part I - Design -

Roger R. Schell and Lyle A. Cox

March 1980

FEDDOCS
D 208.14/2:NPS-52-80-002

proved for public release; distribution unlimited

epared for:

Chief of Naval Research
Arlington, Virginia 22217

-/

26 Mar 1980

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral J. J. Ekelund Jack R. Borsting
Superintendent Provost

The work reported herein was supported in part by the Foundation
Research Program of the Naval Postgraduate School with funds provided
by the Chief of Naval Research.

Reproduction of all or part of this report is authorized.

This report was prepared by:

iJ O X i. x cvj,

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUMBER

NPS52-80-002

12. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

The Naval Postgraduate School
SECURE ARCHIVAL STORAGE SYSTEM
Part I - Design -

5. TYPE OF REPORT & PERIOD COVERED

Technical Report

6. PERFORMING ORG. REPORT NUMBER

7. AUTHORfj;

Roger R. Schell and Lyle A. Cox, Jr.

8. CONTRACT OR GRANT NUMBERS)

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Naval Postgraduate School
Monterey, CA 93940

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

61152N; RR000-01-10

Noool480WR00Q54
11. CONTROLLING OFFICE NAME AND ADDRESS

Naval Postgraduate School
Monterey, CA 93940

12. REPORT OATE
March 1980

13. NUMBER OF PAGES

325
U. MONITORING AGENCY NAME 4 ADDRESSf// dl Iterant from Controlling Office)

Chief of Naval Research
Arlington, Virginia 22217

15. SECURITY CLASS, (ot thia report)

Unclassified
15«. DEC LASSIFI CATION/ DOWN GRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (ot this Report)

Approved for public release; distribution unlimited,

17. DISTRIBUTION STATEMENT (ot the abstract entered In Block 20. It dltterent trom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverae aide It neceeamty and Identity by block number)
Security Kernel Microcomputers
Archival Storage
Computer Networks
Operating Systems
Computer Security

20. ABSTRACT (Continue on reverae aide It neceeemry and Identity by block number)

There is an increasing need for systems which provide controlled access
to multiple levels of sensitive data and information. This report comprises
the first phase of the realization of such a system: the comprehensive design
of a multilevel secure file storage system. This is the focus of an ongoing
research project, which is currently in the early implementation phases. The
design is based upon security kernel technology as applied to modern multiple
microcomputer arrays.

This design is intended to interface with other (distributed) processing
i

DD FORMWU
1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

S/N 0102-014- 6601 1 Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Bntetad)

Unclassified
-IJ^ITY CLASSIFICATION OF THIS PAGEfWhon Data Entered)

elements, perhaps forming the central hub of a data secure network of
computers. The design would provide archival shared storage while insurin
that each interfacing processor accessed only that information appropriate
The design phase of the project is presented in a series of three research!
reports (Masters Degree theses) . These reports, reprinted in their entire;

here are: (1) O'Connell and Richardson's definition of a secure multi-
microprocessor family of operating systems; (2) Coleman's detailed securi
kernel design for a member of this family; and (3) Parks' hierarchical fill

system designed to run under the control of Coleman's security kernel.

Unclassified
SECURITY CLASSIFICATION OF THIS P AGE(TWi«n Data Ent>

The Maval Dostgraduate School

SECURE \RCHIVAL SmORACE SYSTEM

Dart I - design -

by

Roger R. Scheii and Lyle A. Ccx

editors

Hepartment ct Computer Science

Maval Pcstraduate School

Mcnterey, California

^arch 10S0

ABSTRACT

There is an increasing need tor systems which Drovide controlled

access to multiple levels ot sensitive data and intormaticn. This

rencrt comorises the first phase ot the realization ot such a system:

the comprehensive design ot a multilevel secure tile storage system.

This is the tocus ot an ongoing research oroject, which is currently in

the early implementation phases. The design is based uocn security ker-

nel technology as applied to modern multiple microcomputer arrays.

This design is intended to interface with other (distributed)

Drocessing elements, perhaps torminq the central hub ot a data secure

network ot computers. The design would orovide archival shared storage

while insuring that each interfacing processor accessed only that infor-

mation appropriate. The design ohase of the orcject is presented in a

series of three research reports (Masters Oegree theses) . These

reports, reorinted in their entirety here are: (1) Capt, O'Conneli and

Lt. Richardson's definition ot a secure multi-microprocessor family of

operating systems; (2) Cant- Coleman's detailed security kernel design

tor a member ot this family; and (3) Lt. Parks' hierarchical tile system

designed to run under the control ot Capt. Coleman's security kernel.

BACKGROUND

The Secure 'krchivai Storage System (SASS) system was first con-

ceived as a research project at the Naval Postqraduate School in late

1978. Crowing out of the requirements for unifying multiDle computer

systems' data bases in a secure environment, tor example the diverse

resources of the Naval Postgraduate School and its Ccmouter Center, its

Computer Laboratory, and its Microcomputer facility, a research program

was initiated to aopiy existing techniques to state of the art microcom-

puter architectures. Requirements and exoerience were drawn from a

number ot orograms, including the security kernel design of Multics [1]

,

the network storage of several systems including OCTOPUS [2] , the tile

structure of several timesharing systems including UNIX [3] , and the

current operational Navy programs of SMAP2 (the shipborne administrative

processing system) and the Navy Laboratory Computer Network (NALCON)

.

The requirements definition and design chase of this research

are just being completed. Prototype implementation of a demonstration

system is beqinning, and will be the subject of a second reoort.

The S\SS is designed as a member of the family of

secure, multi-microcomputer operating systems described by Caot.

O'Connell and Lt. Richardson Appendix A) . It is a rather restricted

subset with a uniprocessor , a static set ot processes, non-demand memory

management, and no application programs besides the supervisor itself.

However, a strong tamily tie is maintained since this project is just

one part ot research in secure operatim systems tor multi-

microcomputers.

The S^iSS design ettort tccuses on what are perceived to be the

key research issues and therefore does net include all the features that

might be desired for a production version. The design has made a cons-

cious effort to be extendable, and seme of these capabilities will be

addressed in the future.

A security kernel [41 is used to provide an extended virtual

machine supporting asynchronous Processes and a segmented virtual

memory. The security kernel is responsible tor ncn-discretioninq secu-

rity. It must be capable of enforcing ot the OcD classification and

clearance policy, but is applicable to other policies such as privacy.

Particular attention has been given to minimizing the size and complex-

ity ot the kernel. Each host is connected to the S\SS with its own

bidirectional digital link tor the transmission of commands and files.

The SASS provides each host with a hierarchical tile system. The host

can store and retreive tiles, and can share tiles with other hosts. The

SASS is self sufticient in the sense that any host can effectively use

it, even if the host has no independent knowledge of its contents.

OVERVIEW OF STRUCTURE AMD ORGANIZATION

The following sections summarize the salient features and struc-

ture of NPS-SASS. Design details tor each area are found in Appendices

A thru C.

STORAGE SYSTEM <ynyjcrtJRE

To minimize the security kernel, the storage svstem structure is

created entirely in the supervisor domain that is "outside of" the ker-

nel, as described by Lt. Parks (Appendix C). The tile system supervisor

builds en the primitive process and segment objects created by the ker-

nel.

Internal Organization

The file system supervisor creates a single, tree structured

tile system using only the primitive segments provided by the kernel.

Seme segments are used to create directories whose contents are managed

by the tile system itselt. These directories define the hierarchical

file structure. The underlying kernel has no explicit knowledge of this

file structure.

The files trom a host are stored as a strings of bits that are

never interpreted in any way within the SASS. One or more segments, as

required, is used to store each tile.

^vo processes are associated with each host link and access that

portion of the tile structure associated with that host. An I/O process

orovides tor the transmission of information over the link to the host.

This process communicates with a tile manager orccess that is responsi-

ble tor the tile system structure.

Host Interface

The I/O process ccrnmunicates with its host using fixed length

packets. The physical I/O coerations are performed by the kernel, in

response to requests trcm the supervisor. Packet exchange with the host

is on an asynchronous (send/acknowledge) basis with a limited -''send

ahead", errcr checking, and retransmission it required.

There are two classes of packets: data and commands. Each com-

mand to the SASS is an "atomic" operation and addresses a single tile.

The commands are actual Iv executed by the file manager orccess. The

design specifically addresses the orcblem of retaining a valid tile,

even it the SASS is interrupted (e.g. a power failure) in the middle of

a command.

Host Storage

A SASS tile manager process creates a virtual tile system for

each host link. The host accesses tiles by means ot ccmmands, e.g., tc

create, delete, store or retrieve tiles. Sach host virtual tile system

is essentially a subtree of the total SASS hierarchy.

In addition, the virtual tile system can include a tile link to

a tile of another host. This is used tor sharing tiles. The SASS pro-

vides conflict tree sharing, even if a shared file is retrieved by one

host while it is being undated by another host. The retrieved file will

be some complete and valid version of the file that existed between the

time of the retrieval command and the time of the command completion

acknowledgement by the SASS.

SECURITY KST3NEL OR^AMIZ ?\TIQN

All the physical hardware resources are managed by the kernel of

the operating system, as described by Cant. Coleman (Appendix B) . The

initial design tor the SASS uses a serial, RS232 link to each host. It

contemplates a hard (Winchester) disk as the actual storage medium,

although care has been taken to avoid device dependence outside the dev-

ice driver itself. The kernel transforms the physical resources into

virtual resources for the use of each supervisor process.

Segmented Memory

The kernel produces a segmented (virtual) memory. This is done

through the use of memory management hardware, such as the memory

management unit of the Zilcg Z3000 [5] or the contemplated Intel VLSI

follow on [61 to the 308^.

This is a non-random access virtual memory. There is no demand

memory management. A supervisor orocess must request that the kernel

swap specific segments into or out of memory. Each process is allocated

a bounded, linear quantity of virtual memory into which it can swap seg-

ments. All communication between processes is accomplish using shared

seqments.

Asynchronous Processes

As noted before, there are two suoervisor processes tor each

host link. The kernel includes synchronization primitives to facilitate

communication between the I/O and file manager processes of a host. In

addition the file manager processes of different hosts use these syn-

chronization primitives to control race condition when accessing shared

files. The I/O process also uses this to synchronize with the physical

transmission of packets over the host link.

There is also a memory management kernel nrccess. This orocess

dees the actual I/O needed tcr the swapoing of segments between secon-

dary storage and memory.

SECURITY

The most distinctive feature of the SASS is its methodical

treatment of security. The security kernel technology is applied, an^

this has strongly influenced both hardware and software decisions. The

security kernel is organized as a distributed operating system for the

supervisor processes; that is, its functions are distributed in all

processes.

Each orocess has two domains: suoervisor and kernel.

Protection of the Kernel

Since it is included in the address space of every process the

security kernel orocedures and data are to be protected from tampering

by the supervisor. This means there must be some form of hardware

enforced domains. Since there is a strictly hierarchical relationship

(kernel more privileged than supervisor) , protection rings (as defined

for Baltics) are a satisfactory domain implementation. In fact, for

only two domains, simple user and supervisor processor modes can be used

along with memory management hardware to realize two rings.

The design includes a software gatekeeper to manage the entry of

a process into the kernel, viz., when the supervisor calls on a kernel

function - this gatekeeper also provides parameter validation for these

cross-ring calls.

Non-Discretionary Security

A. security policy may require enforcement of access limitations

that are established external to any computer. The noO classification

and clearance policy is a common example of such a non-discretionary

policy. The security kernel is responsible for this enforcement. In

fact, a major design goal has been to simplify the kernel as much as

possible by including only those functions necessary to enforce non-

discretionary security.

The link to each host is for a single access class (e.g. , single

10

level ot DcD classification) . This access class is authenticated by a

physical connection, that nay include an encryoted communication oath.

If a host is multilevel secure, then it nay have multiple host links to

the SASS. Sach SASS orocess, of course, is assigned the access class ot

its corresponding host- link. An examole ot the inoact of secutitv is

that process synchronization must be done with eventcounts [7] rather

than more traditional mechanisms such as Pand V.

Discretionary Security

In addition to the non-discretionary limitation, file access can

be further controlled based on individual user identification. This

discretionary security is enforced outside the kernel by the file

nanagement orccesses. H!ach tile has an access control list specifying

its authorized users.

The user is identited (by the host) as oart ot each command to

the SAS^. Clearlv the reliability ot this control is limited by the

ability of a host to reliably authenticate users and pass their identitv

to the SASS. However, no host weakness can impact the reliable enforce-

ment of the non-discretionary controls by the kernel.

Verif iability

The research goals of this project do not include verification

methodology that is being addressed by several other qroups. Use ot the

SASS in a hostile environment would most likely be preceeded by a formal

verification ettor thet tor kernel. The security kernel is designed to

11

the formal non-discretionary security model, and thus is considered

"verifiable. " By this we do not mean that the verification would

immediately succeed. Rather, we are confident that the problems

discovered by verification would not require any basic changes to the

desiqn.

SUMMARY

We have attempted to summarize the salient features of the Naval

Postgraduate School Secure Archival Storage System Design. We have

found this project to be an interesting and exciting experience in

applying state of the art security and operating system techniques to

the architecture of modern microcomputers. We hope the reader has been

encouraged to examine the design details as presented in the following

aopendices. Finally we would solicit any comments or suggestions the

readers might have for our consideration as we continue with implementa-

tion.

AC^1QT.\LF/TGSN1ENTS

The editors would like to acknowledge the many long hours of dedicated

effort on the parts of Capt. 7. O'Connell, Lt. L. Richardson, A. Cant.

Coleman, and Lt. S. Parks which was certainlv "'above and beyond the

call" of their academic requirements, additionally, we would like to

thank Professor TJno r<odres of the Maval Postqraduate School tor his sup-

port, advice and interest which in many ways enabled us to begin and

12

pursue this research.

This research was partially supported by grants trorn the Office ct Maval

Research Project Mumber MR 332005 monitored by Mr. 7oel Trimble, and

from the Maval Postgraduate School Research foundation.

REFERENCES

[11 Schroeder, M . O. et al, "The ^ultics Kernel Design D roject,'' Proc.

Sixth \CA Symposium on Operating Systems Principles, November 19*77,

on 43-55.

[2] Schneider, ThcmDson and Whitten, "Users Guide to the OCTOP'JS Corn-

outer Uetwcrk" University of California ^eocrt UOID-30043-R3

,

October 1975.

[3] Ritchie, 0. M. , and Thompson, K. , "The UNIX Time-Sharing System,"

Ccmm. ACM 17,7 (ju iy 1974), 3^5-3^5.

T4] Schell, R. R. , "Security Kernels: A Methodical Oesign ct System

Security," USE Technical Paoers (Spring Conference, 1079) , March

1979, pp. 245-250.

[51 Peuto , B. L. , "Architecture of a Mew Microorocessor ," Comnuter , 12,

2 (February 1979) , 10-21.

[51 Markcwitz, R. , and Pohlman, W. R. , "The Evolution nath of the °03^

Microprocessor Architecture for Operating System Environments,"

13

Intel Corporation, 19*30.

[7] Reed, D. P., and Xanodia, R. K. , "Synchronization with FVentcounts

and Sequencers," Conn. AC* 22, 2 (February 1970), 115-123.

14

NPS52-80-002 APPENDIX A

Approved for public release; distribution unlimited

DISTRIBUTED, S2CUR3 DISIGN FOR A

MULTI-MI CRQPRCC3S SOP. OPERATING SYSTEM

oy

James Steven O'Connell
Captain, United States Marine Corps

B.S., University of Utah, 1971

Larry Don Richardson
Lieutenant, United States Navy

B.S., University of Nebraska, 1373

Submitted in partial fulfillment of th<

requirements for the degree of

MASTER CJ? SCIENCE IN COMPUTER SCIZNCZ

from the

NA71L POSTGRADUATE SCHOOL
June 1979

'7~\ y

Dean of Information and PAlicy Sciences

A-l

A3STHACT

This thesis applies the state of the art techniques for

methodical design of secure operating systems to a

distributed, multi-microprocessor environment. Explicit

process structure and utilization of virtual environments

are the fundamental concepts that form a basis for the

design presented. The primary design techniques utilized in

the design are segmentation, distributed operating system,

security kernel, multiprocessing, "cache" memory strategy

and multiprogramming. The resulting design is for a family

of distributed operating systems that can provide the power

of yesterdays large computer in a microprocessor

environment. Security, configuration independence, and a

loop free stricture are the primary characteristics of the

design. The design, although hardware independent, was

formulated with the Zilog ZS000 or similar microprocessor in

mind.

A-

2

TABLE OF CONTENTS

I. INTRODUCTION a- 6

A. MOTIVATION a- 7

3. BASIC ELEMENTS 07 DESIGN a- 8

a. STRUCTURE 0? THE THESIS a-12

II. FUNDAMENTAL CONCEPTS A-13

A. PROCESS STRUCTURE a-13

1. Definition of a Process a-13

2. Multiple domains A~14

3. Communication and Synchronization A' 15

£. System Processes A-ia

5. Process Switching a-18

B. SEGMENTED VIRTUAL MEMORY a-19

1. Segmentation a-21

2. Loading a-22

3. Dynamic Linking a-23

4. Information Sharing a-24

5. Access Control a-26

6. Functional Subsets a-26

C. SECURITY a-27

1. Computer Security Problems a-28

2. Mathematical Model A-32

3. Properties and Conditions a-34

4. Segmentation a-38

5. Hardware Requirements a-39

III. DESIGN a-41

A-3

DESIGN TECHNIQUES a-41

1. Resource Visualization a-4i

2. Distributed System a-42

3. Multiple Protection Domains a-43

4. Multiprocessing a-44

5. "Cache" Memory Strategy a-45

6. Multiprogramming a-46

?. Family of Operating System a-47

3. Levels of Abstraction a-49

PROPOSED DESIGN A-51

1. Notation a-51

2. System Overview a-52

3. Supervisor A-eo

a . Linker A-eo

b. Searcher A-ei

c. Segment Handler a-62

d . Memory Handler a-64

e. Discretionary Security a-65

4i. Distributed Kernel a-66

a . Segment Manager * a-66

b. Non-Discretionary Security a-70

c. Taffic Controller A~7i

d. Inner Traffic Controller a-75

5. Non-Distributed Kernel a-79

a. Memory Manager a-79

b. I/O Manager a-82

6. Eoilov on Work a-82

a-4

17. CONCLUSION

LIST OF REF5RBNI

A-83

A-85

A-

5

I. INTRODUCTION

The microprocessors available today are affordable and

powerful computing devices. Applying these resources to

various applications r especially those requiring multiple

microprocessors, presents a formidable problem. The solution

to this problem is a family of operating systems to

effectively orchestrate processor and memory management

across a wide range of applications. However, such systems

have not come from the specialized microprocessor operating

systems in use today. Such an operating system family could

provide a major reduction of overall system software cost in

the microprocessor environment.

In this thesis the substantial body of operating system

design principles are applied to a methodical design of an

operating system for the microprocessor environment. Tor

realism the Zilog Z8000 microprocessor [lj is considered

representative of modern features. Configuration

independence, distributed processing, multiple protection

domains, multiprocessing and multiprogramming are addressed

in the design of a secure operating system suitable for a

family of operating systems: ranging from a specialized

tactical system to a multi-user time sharing system.

The thesis will also identify meaningful subsets of the

design (viz., smaller members of the family) for potential

use, and state hardware needed (future development) to

A-

6

implement the design to its fullest capabilities. The

operating system designed in this thesis will he referred to

as the SYSTEM throughout the thesis.

A. MOTIVATION

The processing power of microprocessors is increasing.

If this power could he effectively coordinated hy an.

operating system it could provide a more affordable and

powerful product. In addition, there is a growing emphasis

on the protection of information stored and processed in

computers; hence, the requirement for a system that also

provides information security.

The multi-microprocessor systems in use today suffer

performance degradation as more processors (generally a

maximum of *• to 5) are added to the system. Sophisticated

crossbar interconnections between processors and memories

can reduce this problem. However, there is still a need for

a combination of microprocessors and memory that dc not

suffer massive degradation as more processors are added.

The ability to configure a system to meet a variety of

capacity needs is an important feature; however as software

becomes an increasing portion of system cost, the ability to

reconfigure the system as requirements change without major

re-design effort is often an even more valuable feature. For

this reason the design technique of resource visualization

will be applied as a way to realize configuration

independence

.

A-

7

B. 3ASIC ELEMENTS OF DESIGN

The SYSTEM is composed of a supervisor and a security

kernel [2]. The supervisor supports user services (dynamic

Linking, discretionary security, demand memory management

and a hierarchical file system). The security kernel

controls the physical system resources (processors ,> memory,

and external devices) to provide virtual resources for the

supervisor.

1

.

Process Structure

A process within the computer system is an internal

representation of the computational task of a user utilizing

the system. Each process is characterized by an execution

point and an address space. Attributes of each process

include a security class authorization and a unique

identifier that corresponds to the user. 3y supporting

distinct, explicit processes the operating system allows an

application to be divided into several cooperating parts.

Such a process structure leads to simpler more effective

software

.

2. Segmented Virtual Memory

Segmentation involves separating all stored

information into discrete packages called segments. Each

segment has attributes such as security class and access

(read or write) permissions. A process' address space is a

collection of segments. Segmentation is used by the

*-8

supervisor to present the user a random access virtual

memory. Copies of all segments are kept on secondary storage

until actually referenced, at which time room is made for it

in main memory, possibly "by removing another segment from

memory. This demand memory management is done within the

supervisor. The supervisor views a non-random access virtual

memory. 3y presenting the supervisor and the user with

virtual environments the kernel establishes configuration

independence for them.

3. Distributed Operating Srstem

The address space of each process has three domains

(user, supervisor and kernel). The domains form sub-sets of

the address space by limiting the segments that can be

accessed when the process' execution point is within a given

domain. The operating system is part of each process. It is

distributed throughout all the processes in protected

domains (supervisor domain and kernel domain). Maximum

access is in the kernel domain. It is the most priviledged,

and the traditional "privileged instruction* can be executed

only in the kernel domain. Only the kernel domain has access

to system wide data bases.

The kernel domain creates an extended machine for

the supervisor and is supported by system processes. The

supervisor is less priviledged but provides the user domain

with certain common services such as discretionary security

and virtual memory. It should be noted that by distributing

A-9

the operating system throughout all processes, services are

independent 1/ (and simultaneously) available to each

process.

4. Processor-Local Memory

The operating system is designed to support a

multi-processor configuration with a local memory in close

proximity to each processor. The local memory is addressable

only* by that processor. In addition there is a global memory

that is addressable by all processors (Figure 1).

Segmentation is the key to effective allocation of

information between local and. global memory. Problems can

arise in the use of a local memory. If a process is allowed

to execute on any processor then each time the process is

switched from one processor to another the contents of local

memory must also be switched. Thus the use of local memory

implies that general multiprogramming should not be allowed.

This problem can be alleviated by allowing multiprogrammed

processes to be semi -dedicated,, that is make an effort to

restrict the process to a certain processor.

5. Security Kernel

Security cannot in general be built around a present

system (i.e., added to) but rather a system must be built

around security. Tet today there are a limited number of

"secure" systems. One of the main obstacles in providing

security is verifying the system is secure. The recently

A-IO

LOCAL

MEMORY

3

u

s

CPU

LOCAL

MEMORY CPU

•

LOCAL

MEMORY G-L03AL

MEMORY

CPU

LOCAL

MEMORY CPU

LOCAL

MEMORY 1 CPU

LOCAL

MEMORY

1

CPU

L0CAL/C-L03AL MEMORY

MULTIPLE CPUs

FIGURE 1

A-ll

developed security kernel [2] technology has made it possible

to solve this problem. By keeping all the things that

provide the security in the security kernel and keeping the

things that do not involve security out, the security kernel

can be kept relatively small and verifiable. The desire to

keep the security kernel small (to simplify the verification

procedure) is one of the goals driving several design

choices

.

C. STRUCTURE 0? THE THESIS

First, the fundamental concepts (process structure,

virtual memory and security) and their relationships to the

SYSTEM are discussed. Second, the design of the SYSTEM is

presented. This includes a discussion of the design

techniques utilized as well as an explanation of the

proposed design. Third, the conclusions are presented.

A- 12

II. FUNDAMENTAL CONCEPTS

A. PHOCESS STHUCTUHS

By dividing a job into asynchronous parts and executing

these parts as seperate entities significant benefits can he

realized. '#ithin a single processor system, the partitioning

into asynchronous parts provides 'only" design simplicity

(and thus software economy). In a multi-processor system the

partitioning into asynchronous parts is essential if the

parallel processing potential of the system is to he

realized .

1 . Definition of a Process

A process is characterized by an execution point and

an address space. Saitzer[3] defines a process as a program

in execution on a pseudo-processor. Each process is assigned

a unique identifier and is an explicit entity that requires

management. In a distributed operating system, those

portions of the operating system that are logically part of

the sequential flow of control (viz., locus of execution)

are within the address space of the user process. This is

made possible by dividing the operating system into

procedures which are called Hie any other procedure. It

should be noted that in a distributed operating system there

is no "master" assigning processes to processors. Rather,

each running process "hands off" its processor to the next

A- 23

process that is to ran.

2. Multi-Die Domains-

To protect these procedures from the user, the

process' address space is divided into hierarchical domains:

user, supervisor, and kernel. The kernel domain is the most

privileged. Only the security kernel executes in this domain

and can access all segments within the address space. All

system wide data bases are restricted to access "by the

security kernel to prevent any exchange of information

"between processes, in violation of confinement [4j . There

could he more than three domains, and all domains need not

he hierarchical, hut three is minimum for this design.

The supervisor domain is less priviledged and

excludes segments representating the management of the

shared resourses. The supervisor domain is separated from

the user to protect the user from inadverently destroying

the operating system services. The user domain is the least

priviledged. The data oases utilized by the supervisor

contain only "process local" information - that is,

information that is required by this process alone.

Proper controls and checks are utilized when

switching the domains (flow of control) so that the security

policies are not violated. The hierarchy could be

implemented with rings [5] in hardware. Since hardware rings

are not available in microprocessors, separate segment

descriptors for each domain can be used, with software ring

A-14

changes as was done in the original Multics design[5] . The

Zilog ZS0£0 can use multiple memory management units (MMU)

to provide the separate descriptor for each domain.

Operating system procedures generally are permitted

to reside within the local memory (possibly ROM) of each

processor. In the cases of the security kernel, some of the

data bases of these procedures are shared by all processors

and therefore will reside in global memory. To prevent

undesired intervention by simultaneous accesses to these

data bases a locking scheme must, of course, be provided.

Choosing to put the operating system procedures in each

local memory will "waste* memory but may well provide a

higher performance by keeping most memory references to

local memory where there is no contention for the BUS to

global memory. In a specific instance the choice will be

determined by whether or not the cost of memory is

significant when compared to the value of the increase in

performance

.

3 . Communication and Synchronization

For parallel processing, a job that is composed of a

mixture of sequential and non-sequential tasks is explicitly

divided into an appropriate structure of processes that can

run concurrently. Inter-process communication and

synchronization are necessary for parallel processing.

Inter-process communication provides synchronization to

coordinate the exchange of data between processes. The

A-15

actual exchange is realized by use of a shared writable

segment. This segment acts like a mailbox in that messages

(data) can he delivered by any process that has the

appropriate access (both discretionary and

non-discretionary) .

The synchronization between processes is supported

by the 3L0CI and WAKEUP, which are kernel calls to the

traffic controller. It should be noted that the P and 1

semaphores [7] are useable for synchronization but were not

chosen. The traffic controller concept is taken from

Saltzer[3], and his block and wakeup have demonstrated their

usefulness in his design for Multics. The traffic controller

is the operating system (kernel) module that manages

processes. The traffic controller has the job of scheduling

user processes. The traffic controller does this by

multiplexing the users processes onto a limited number of

virtual processors.

The 3L0CK and WAK3U? are primitives of the traffic

controller that provide synchronization for the user

processes. How the user's procedures invoke the BLOCK and

WAKZUP primitives will, of course, determine the actual

process structure. These primitives can be used to provide

simple cooperation, such as mutual exclusion, or complex

interactions when required by the application. A process can

only block itself and cannot block another process. The

block invokes the traffic controller and the traffic

controller puts that process in the blocked state and then

A-16

schedules another process to run on that virtual processor.

The process that is scheduled next is based on the specific

scheduling policy of the traffic controller.

The wakeup is used to provide asynchronous processes

a synchronization signal* The parameter passed with the

wakeup is the process ID of the process for which the wakeup

is intended. The wakeup invokes the traffic controller. The

traffic controller checks the state of the process specified

by the parameter. If that process is not in the blocked

state the traffic controller returns, otherwise he will put

that process in the ready state and determine if there is

another process running with a lower priority. If this is

the case the traffic controller will send the virtual

processor that the lower priority process is running on a

pre-empt interupt, and then return. The process that

receives the pre-empt interupt will transfer control to the

traffic controller who will in turn schedule the ready

process with the highest priority.

Another STST2M module concerned with synchronization

is the inner traffic controller. This manages the hardware

(real) processors to create the virtual processors that are

managed by the traffic controller. The inner traffic

controller provides the interface between the virtual and

physical (real) processors. The inner traffic controller is

responsible for assigning the small, fixed number of virtual

processors to physical processors. "Each physical processor

has associated with it several virtual processors. Some

A-17

virtual processors are multiplexed between users processes

by the traffic controller. The remaining virtual processors

are allocated to the system processes. Each system process

is assigned a virtual processor. The inner traffic

controller determines which virtual processor will run on

the physical processor based on the priority assigned to

each virtual processor. The primitives SIGNAL a^.<i WAIT are

used by the inner traffic controller to provide

communication and synchronization between the virtual

processors. SIGNAL and WAIT are very similar in form and

function to 3L0C1 and WAKSUP, except for the fact that they

relate to virtual processors rather than user processes.

4. System Processes

System processes are used to perform operating

system functions that are asynchronous to each user process.

System processes are typically responsible for the shared

resources. The system processes are in the kernel and

therefore permitted to access information of any access

class. The system processes include the I/GJ^ANAGSR and

MEMORTJ1ANAGER.

5

.

Process Switching

Process switching is the removing and assigning of

processes to virtual processors. When a process switch

occurs the execution point (internal registers) and address

space of the process being removed must be saved (unloaded),

A- 18

and then the execution point and address space of the new

process must be loaded.

Some systems utilize a descriptor base register

(D3R) [6, p. 12] , which is a pointer to multiple descriptor

lists in memory - one list for each process. To change the

address space you only need to switch the T3R in the

physical processor. However, in microprocessor systems a

descriptor list is implemented as registers in the memory

management unit (MMU). Process switching can be costly when

MMU registers are saved and restored for each change in

address space. Alternatively, it is possible to increase the

number of MMCs and then the address space could be changed

by just switching control to another MMtJ.

3. SEGMENTED VIRTUAL MSMCRT

In many memory handling" schemes a user process cannot

run until there is sufficient memory available to load its

entire address space. This requires large main memory and

restricts the size of the process's address space. An

alternative is to use the operating- system to produce the

illusion of an extremely large memory. Since the large

memory is merely* an illusion, it is called virtual memory.

Demand segmentation is a memory management scheme which is

used to realize the concept of virtual memory in this

design.

Memory has three different views which corresponds to

the three different domains (user, supervisor, kernel)

A-19

within tile computer system. Starting- with the user, each

view is derived from the previous view by means of an

"extended machine" view. The user sees a practically

unlimited segmented virtual memory. The user is no longer

involved in memory management. Demand memory management is

utilized to interface between the user view and the

supervisor view.

The supervisor views a fixed amount of virtual memory.

The memory is fixed by the physical memory allocated to each

process by the kernel. The kernel establishes a mapping

between the supervisor memory and the kernel memory. The

memory is virtual because there are only absolute addresses

in the kernel. The supervisor multiplexes the user's

segments onto this fixed virtual memory in response to a

hardware fault when the process references a segment that is

not in memory. The demand memory management was placed in

the supervisor because it is not involved with security and

we want to keep the security kernel as simple and small as

possible.

The kernel views a fixed physical memory. The physical

memory is limited by the local memory available to the

processor for use by the user processes. There is some

minimum amount of memory required by the operating1 system

for each processor. 3efore a process is elgible to run, its

fixed virtual memory (of the supervisor) must be mapped into

the fixed physical memory of the processor. We then call the

process "loaded". The kernel's memory manager is responsible

A-20

for the proper mapping as the processes address spaces are

multiplexed onto the processor's physical memory.

The idea is to require that a limited amount of the joe

be resident in memory. When the user requests a portion of

the process that is not currently in memory, a fault will

occur. The supervisor, using the demand memory manager, must

find the requested segment and decide where it wishes to

place the requested information in virtual memory. The

supervisor then sends a reauest to the kernel to bring this

information into memory, thereby repairing the fault so that

normal processing can resume..

1. Segmentation

In most micro systems, the user cannot effectively

share memory because the different uses of memory can not be

specified. The inability to specify the memory use makes

memory management difficult, especially when there is memory

local to each processor. The different uses are denoted by

shared/unshared and writeable/ron-writeable (read). The

following matrix lists the uses and where they may reside.

shared

unshared

wri teable

global

local

non-writeable

local/global

local

If the memory can be divided by uses and each part has

attributes which distinguish the uses, then the management

of memory is made reasonable.

A- 21

Segmentat ioa provides the ability to divide the

memory into parts (segments). A segment is a collection of

information important enough to be given a name. Each

segment is distinguished from others by its logical

attributes,, that provide the basis for the desired control.

Segmentation provides a mechanism for a limited portion of a

processes' information to reside in memory at any one time.

This also facilitates easy movement of information by

segment in and out of memory. The collection of all segments

that a process may access (whether or not in physical

memory) is what composes its address space.

2 . Leading

The loading of a segment consists of finding a

segment and making it known (discussed later) to the

requesting process (viz., adding the segment to the address

space). It is the added feature of segmentation that this

loading may be delayed until the segment is actually needed.

At that time a segment name can be transformed into a file

system pathname. The pathname can then be resolved into the

unique identifier for a segment. Then the supervisor

requests a segment number be assigned by the kernel, which

makes the segment known to the process. If the segment is

then required for execution it is physically loaded into

memory when actually referenced.

Each segment has associated with it a segment

descriptor[6] which contains its attributes (address in

A-22

memory, size, access allowed). Since this descriptor is

referenced by the hardware at each access request to this

segment, then the memory uses can be distinguished. The

different segment descriptors of a process can then be

contained in a descriptor list. This design utilizes the MMU

(memory management unit) which consists of a set of

registers to implement the descriptor list. Each register

(segment descriptor) contains the descriptor of a particular

segment. The ^KU registers retain the distinct attributes of

each segment at execution time and, therefore, makes it

possible for another process to share selected segments, if

desired.

The dynamics of a segment fall into two classes,

physical and logical. An example of the physical dynamics is

the request of a user for write access to a currently used

segment. The operating system can physically move the

segment from local to global memory so the segment can be

shared without the user's knowledge. A stack segment whose

size varies is an example of logical dynamics.

3. Dynamic Linking

When a procedure segment makes an external reference

to another segment, the address of the later segment must be

determined. This is called linking, the constructing of

executable instructions that achieve references to externel

objects (segments). Linking nee<i not be completed at load

time* It can be nostooned until the actual reference is

A-23

encountered. This waiting to Liai, until referenced, is

called dynamic linking[3] . Segmentation is not necessary to

achieve dynamic Linking, but it helps. When a process begins

execution, it should not have to find and bring into memory

any more of its segments than is absolutely necessary to

begin running. The mere presence of a reference to an

external segment in a segments text is no guarantee that the

flow of control will touch this reference. Therefore, there

is little point to undertake the expense of finding a

segment and making it known unless there is some significant

expectation that that segment will be referenced during the

time allotted to that process. Dynamic linking permits

unnecessary linking to be eliminated.

Once the segment has been made known to the process

(assigned a segment number), even though it may be moved in

and out of memory, the references to this segment need not

be changed since the segment number remains the same. The

segment descriptor is used to reflect the presence of a

segment in memory and the current address in memory. The

segment looses none of its attributes by virtue of having

been made known to this process.

4. Information Sharing

Segmentation allows direct addressability >ij the

process to any segment within the process' address space.

The basic advantage of direct addressability is that the

copying of data is no longer mandatory. A segment is also a

A-24

unit of sharing. This eliminates the need to duplicate a

segment for each requesting process and saves memory. Even

more important is the idea that sharing provides a means of

inter-process communication. This is important for realizing

the power of the explicit process structure, that is

essential to an effective multi-processor environment.

In general each procedure segment must he pure to

ensure sharing- is implemented correctly. A pure procedure

operates on variables in registers or in separate data

segments associated with the process. It never stores data

internally, nor does it alter itself. The linkage segment is

such a data segment used, to support the pure procedure. A

linkage segment is associated with each process. The linkage

segment is composed of linkage sections. There is one

linkage section for each procedure segment. The linkage

section is used to place all alterable information (linkage

faults, segment numbers, other static temporary variables)

for the pure procedures- Thus, the processes' segments which

are pure may be shared while linkage sections must be unique

to each process. The fact that the linkage segments are not

shared makes it possible to assign different segment numbers

to the same procedure in different processes since segment

numbers occur explicitly only in linkage segments, that may

be different for each process.

The approach in this design is to place the copies

of requested segments into local memory, thereby reducing

the data bus traffic. If the read-write access reauirements

A-25

are such that a segment must he physically shared, then It

is placed in Global memory and every process that is given

access will access it there. The key to this memory

management is segmentation that keeps a segment's attrihutes

explicit. The kernel can properly manage placement in local

and global memory with no intervention from the supervisor

or the user to "declare" that the sharing is needed.

5. Access Control

The access control in this design is separated into

discretionary (supervisor) and non-discretionary (security

kernel). When a segment is requested the supervisor

references the access control list attribute for that

segment and the access authorized for that process (subject)

is determined. The supervisor then passes this to the

security kernel sa that a non-discretionary check can be

made.. The kernel compares the access class of the segment

with that of the process and the appropriate access is

allowed. This access authorized is always the lesser of that

requested by the supervisor and that permitted by the

kernel. The access one process has for a segment is

independent of the access another process has for that same

segment.

6. Functional Subsets

Some members of the family of operating- systems will

not include all of the functions made available by this

A-26

design. As an example, consider a family member (e.g. for

tactical system) supporting applications that are entirely

resident in memory and pre—linked. It would require none of

the virtual memory functions provided by the supervisor.

This design readily allows this sort of functional

subsetting "because of its loop free structure [9] .

C. SSCURITT

The increased capability of the computer system in the

last decade has dramatically increased its possible uses.

^any users have actively allowed the computer system to

assume an increasing number of jobs upon which the user

depends to successfully function. As more dependence was

placed on the computer it became evident (regrettably by

example) that a knowledgeable user (employee of a user) who

has access to the computer also has access to all the

information contained within the system. Users such as the

government (classified information), banking facilities

(transfer of funds), corporations (trade secrets) have a

need to protect certain information from specific users?

therefore, there is an increasing demand for a secure

computer system. Designating a specific computer to only run

at a specific security class or only running certain

security classes at specific times has proven unsatisfactory

for the user who has information at many access classes.

What is commonly called a "multilevel" environment is one in

which information and users at different security classes

A-27

can exist simultaneously on the same computer system without

permitting a user to access information he is not authorized

to use. One goal is to design a system which will allow

secure operation in a multilevel environment.

1. Computer Security Problems

The initial attempts to provide a secure system

involved adding security onto existing systems. This proved

largely "useless for" designers were intuitively trying to

block: methods of would-be-penetrators rather than providing

a technically sound system design. These futile attempts [10]

led to the emerging technique of methodically designing a

secure system based on a security kernel derived from a

mathematical model (discussed later).

Information security can be provided by external

and/or internal control. External control includes guards,

watch dogs, door ciphers or anything which would prevent an

unauthorized penetration of the compound. Once the

penetration is made, the pot of gold is exposed. The

internal control is concerned with preventing unauthorized

penetration of the computer system. This involves insuring

the effectiveness of internal mechanisms in the operating

system so that only authorized exchanges of information in a

multilevel environment can occur. This includes providing no

information to unauthorized users and consistent replies to

security violations. The latter is necessary to insure no

inadvertant leakage of information [4l concerning the

A- 28

internal mechanisms. External control is expensive and

human-prone. It does not provide for the secure sharing of

information needed by many applications, thus forcing users

to forego many of the capabilities of modern computers. A

goal of this thesis is to design an operating system that

provides information security by utilizing internal control.

External controls are, of course, still required to

physically protect the computer system's information.

The reference monitor is an abstraction created to

present the conceptual idea of providing a secure computer

system. The reference monitor is composed of subjects,

objects r and an access matrix. Subjects are system entities

such as a user or a process that, can access system

resources. Objects are system entities such as data,

programs and peripheral devices that can be accessed by

subjects. The access matrix represents the permitted

accesses between subjects and objects. The reference monitor

must support the ability of subjects to reference objects as

per the access matrix and it must also support the ability

to alter the access matrix.

The security kernel [2] is a relatively recent

technical breakthrough, for computer security. The security

kernel is that portion of the computer's hardware and

software which enforces the authorized access relationships

between subjects and objects. It is the realization of the

abstract concept of a reference monitor. The software

portion of the kernel acts as an interface between the rest

A-29

of the system and the hardware. The software content of the

security kernel is influenced by the hardware features of

the processor. The underlying idea is that if the hardware

is proven correct and if the software is kept small and it

can be proven correct, then we can provide internal security

controls that are effective against all possible internal

attacks. Global variables such as the unique identifier have

been excluded from the supervisor. This has been done to

prevent undesired leakage of information. The global

variables are placed in the kernel where their proper use

can be verif ied[ll]

.

The security kernel must meet three essential design

requirements. First, the kernel must be tamperprocf. Second,

the kernel must be invoked on every attempt to access

information. Every reference must be checked by either

software or hardware that is provided with sufficient

information to make correct decisions on granting or denying

access. Finally, the kernel must be subject to

certification. "Subject to certification" implies that the

kernel's correctness must be proveable in a rigorous manner

using- a mathematical model as the basis for the criteria to

be met.

In developing a secure system the approach to be

followed should consist of the following: determine the

security policy to be enforced, develop a mathematical model

consistent with desired security policy, design a security

kernel based on the mathematical model, implement the design

A-30

using available hardware and required software. A computer

system is said to be "secure" with respect to some specific

security policy. A security policy consists of the external

laws, rules and regulations that establish what access is to

be permitted. There are two distinct types of security

policy: non-discretionary and discretionary.

N0N-DISC3JBTI0NAar POLICT involves checking the

requested (viz., the object's) access class (oac) with the

access class of the (subject) requestor (sac) to insure they

are compatible- Each system contains a lattice structure [12]

that defines the relationships between different access

classes. The following defines the access permitted:

sac=oac, read/write permitted

sac>oac, read permitted

sac<oac r no access

The lattice can be totally ordered (all classes related) or

it can be partially ordered (not all classes related). An

example of a policy with totally ordered classes would be

the government classification (unclassified, confidential,

secret, top secret) of information, oac and the access class

of its' users, sac, called the user's clearance. Tor such a

lattice policy the system must insure that access to

classified information is always confined to cleared users.

DISCH5TI0NA3.T POLICT involves checking an access

control list (ACL). If the user requesting access is not

included on the ACL then the access is not permitted. This

allows users to specify who can access their files. This

A-31

policy really lies within the non-discretionary structure

and provides further refinement. This policy would reflect

the "need to know ' rule of DOD.

There are many distinct system designs which

correspond to the almost endless number of policies?

however, the current state of the art allows a simple,

uniform mechanism for nearly all practical policies. The

implication is that the kernel designer does not have to

concern himself with the particular security policy of a

specific customer. He must, however, consider the two broad

classes of policy: discretionary and non-discretionary.

2- Mathematical Model

.i mathematical model [13] is a powerful design tool

for formally translating the requirements of security policy

into a precise representation of the behavior of the

corresponding security kernel. The mathematical model is a

finite state machine model that gives a set of rules of

operation for making a state transition. If the system is

initialized to a secure state, then the rules of operation

guarantee that all subsequent states are secure. Previous

research [14] has proven that security kernels whose design

is based on mathematical models can be certified correct.

Two of the basic elements of the model are subjects

and objects. The model defines types of accesses that a

subject may have to an object. These access types are read

and/or write. The state of the system with respect to

A-32

non-discretionary and discretionary security is represented

by four sets (b, m, f, h). This design implements

non-discretionary security policy in the kernel (sets b, f)

and the discretionary policy in the supervisor (sets m, h).

The folowing discussion pertaias to non-discretionary

securi ty.

b - represents the current access relationships that

exists between all subjects and objects. This set is

represented by the segment descriptor list, viz., the

contents of the hardware registers in the MMU (memory

management unit) .

f - gives the access class of all subjects and

objects in the system. This set is distributed in this

design: the process's access class is founi in the active

process table (APT) and the segments access class is in the

active segment table (AST).

The desired properties of the system are then

realized in the form of rules. These rules enforce the

desired security policy by manipulating *he sets which may

or may not change the state of the system. If the state of

the system is changed it must guarantee that the new state

is secure.

The discretionary security policy is enforced in the

supervisor. This design decision was made because cf the

lesser importance of "need to Irnow" controls to the

military, and to 'seep the iernel small for ease of

verification .

A-33

The sets which, are used to enforce the discretionary

policy are m and h.

m - corresponds to an access matrix which represents

the potential access of the subjects to objects (implements

the "need to '-mow" security policy). This set is represented

by the access control list for the segment (object).

h - indicates how the objects are hierarchically

organized, in a directory tree structure. The hierarchical

tree structure consists of nodes, leaves, and a root from

which the tree eminates. The nodes represent a directory

segment (list of attributes for other segments) and the

leaves represent non-directory segments (data or procedure).

A user is free to create either directory or non-directory

segments. The ability to add directories implies that a

user, if he chooses, can add to the overall system hierarchy

a subtree of arbitrary depth.

3 . Properties And Conditions

There are a few basic security properties which

need to be considered:

SIMPLS SECURITT CONDITION- this condition addresses

the problem of security compromise. If in set b all subjects

have an access class greater than or equal to the access

class of their objects, this condition is satisfied. This

insures the subject only reads information at or below the

class for which it is cleared.

CONFINEMENT - this property addresses ootential

A-34

(rather than actual) security compromises. If all subjects

could be trusted to perform in a proper manner (with respect

to security) , then this property would not be needed. The

fact is that unless a program is proven to behave in a

certain fashion as described by the mathematical model or

formal specification, we cannot make any statements

concerning its behavior. We must therefore make the

assumption that the programs will attempt to violate

security regulations. Subjects are therefore assumed to be

untrustworthy. The potential for a security compromise

occurs when a subject has simultaneous read access which is

at class a and write access at class b (class a >ciass b).

For example, the potential for compromise is realized if two

events occur: (1) the subject reads secret information from

the secret object and writes it into the unclassified

object. (2) a second subject whose access class is

unclassified gains access to this (nominally unclassified)

object and reads the secret information. There are two ways

of preventing this type of situation from occurring: high

water mark and confinement property.

High Water Mark - upgrade the class of the file to

the highest class requested. This solution, while

technically correct, would over classify information so that

it would not be available to normally cleared subjects.

Confinement Property (^-Property) - this property

requires that all objects to which a subject has write

access have the same access class as the subject and that

A-35

all objects to which it has read access have an access class

less than or equal to the access class of the subject. Since

a subject will always have write access to some object if it

is to perform a computation, we define the current access

class to be that class at which the subject wishes to have

wnte access. Since all subjects are assumed untrustworthy

with respect to security requirements, the confinement

property eliminates the certification requirement outside

the security kernel. This eliminates the immense job of

certifying the supervisor and the user programs. This

property is enforced in the kernel by not allowing any

subject write access to an object with a lower access class.

COMPATIBILITY PR0P2RTT - If an object in the

hierarchical structure is inferior (child) to an object

(parent) and the access class of the parent is greater than

that of the child, then a subject with an access class the

same as the child can never access that information since it

can not access the access control list which is kept in the

parent. In order to avoid this problem we introduce the

concept of "compatibility". A hierarchy is compatible if

access classes are non-decreasing as one moves down the

hierarchy from the root. The access class of an object in

the hierarchy must always be greater than or equal to the

access class of its parent. Since the root has no parent its

security attributes are implied (viz., are the "lowest" of

any object). In this design, compatibility is enforced in the

kernel, but not in the traditional sense of enforcing the

A-36

access relationship of the parent/child hierarchical

structure. There is no hierarchical structure in the kernel.

When the segment is created the compatibility is implicitly

enforced before the request is allowed.

The reference monitor is an abstraction of the

hardware and software mechanisms that mediate all attempts

by subjects to access objects. The decision to permit or

deny access is determined by the security kernel. The

mathematical model is an interpretation of the reference

monitor abstraction and describes the behavior of a secure

system in terms of four component data bases (b, m, f, h)

and rules of operation* These rules specify how the data

base may be charged, they represent an "authorize"

operation. The security kernel can only allow subjects to

access objects as permitted by its representation of the

model's set b. The data base of the security kernel must

correspond to the model's lata base and can only change as

permitted by the model's rules.

The reference monitor of a physical computer system

is realized by a combination of software and hardware. The

portion required in software depends on the capabilities and

limitations of the hardware. There may be objects to which

the hardware can not properly control access and there may

be alternative representations of the same security state.

Either one of these situations require a kernel function

that does not change the security state. In the former case

there would be one or more functions to permit interpretive

A-37

access to an object; in the latter there would he functions

for changing- the representations of the security state

without changing the actual state.

Thus the functions of the security kernel

software [21 fall into three classes that correspond to the

fundamental operations of authorize, access, and null: (1)

functions that correspond to the rules of the model, thus

changing the security state; (2) functions that implement a

part of the reference monitor by allowing interpretive

access to objects as permitted by the current security

state, thus complementing the hardware access controls and

(3) functions that change the representation of the current

security state .

£ Segmentation

The mathematical model addresses abstract subjects

and objects. In this design subjects are the processes and

the principal information objects are segments. Processes

(subjects) can only access segments (objects) as permitted

by the access controls. Svery segment has associated with it

logical attributes (access class, size, read/write

permission) which are made visible at the time of actual

reference to the information. By including access control as

part of the logical attributes, a way to control access to

the information in the system has been provided. Only

"authorized" accesses are allowed.

Segmentation provides the mechanism so that all

A-38

online information stored in the system is directly

addressable by a processor and hence available for direct

reference by any computation. A basic advantage of direct

addressability is that users can physically share a single

copy. A concern which arises from sharing is that

information may be passed illegally between users. This is

prevented by the enforcement of the confinement property and

the simple security condition. The copying of data is no

longer mandatory as many users can share a single copy with

controlled access.

5 . Hardware Requirements

There are no absolute hardware requirements for

secure computer systems, any hardware is theoretically

acceptible. Given the current state of the technology,

however, certain hardware features are essential if we are

to build efficient secure systems [2]. These essential

features reduce and simplify the software portion of the

security kernel . Reduction and simplification of software at

the expense of additional hardware is necessary because

producing proveably correct software and hardware in the

security kernel is a necessity to achieve computer security.

One of the essential features is support for a

segmented memory. Segmentation allows all information in the

system to be stored in one type of object, the segment.

Saving1 to support only a single object type simplifies the

kernel. Segmentation allows all information in the system to

A- 39

be ccmpartmentallized into individual packages called

segments. Every segment has associated with it access

controls as previously ment loned. Only authorized accesses

as delineated in the access control list and allowed by the

access class are permitted. The address of information is

composed of two parts (segment *, offset). It is necessary

to efficiently resolve the two dimensional address into an

absolute address, therefore segmentation should be

implemented in hardware.

The other essential hardware feature is multiple

execution domains. This feature is used in most contemporary

systems -to protect operating systems from applications

programs. Strictly speaking only two execution domains are

necessary (one for the kernel and one for everything else),

but in practice it will still be desireabie to continue to

protect the operating system from applications software so

three domains (kernel, supervisor, user) will be used in

this design.

A-40

III. DESIGN

A. DESIGN TECHNIQUES

When designing an operating system there are several

approaches to consider: top down, bottom up and middle out.

Although most designs begin as top down or bottom up they

generally end up as middle out. In the design there are

several design choices available to the designer. In some

cases a certain design choice will preclude the ability to

utilize a specific design later on in the system design,

while in other cases a specific design choice could be a

driving force to dictate other design choices. Tor example

in the SYSTEM the design choice was made to ieep the kernel

relatively small to reduce the verification process. This

particular choice became a heavily weighted factor when, for

example, deciding where to support the demand memory

management which ended up in the supervisor. Following are

some of the design techniques that contributed to the

SYSTEM.

1. Resource Virtualiza tion

By using virtual processors and virtual memory

throughout the upper levels of the design, most of the

design is independent of the physical configuration. The

SYSTEM provides the virtual to real binding in the kernel.

This permits changing the configuration to ^eet user or

A-41

maintenance requirements without major changes to the

system. Since the processes are assigned virtual processors

there is no effect on the user when real processors are

added or deleted (except for the change in performance). Of

particular interest was the ability to add and delete

processors to the SYSTEM. More important was to develop a

design that allowed good capacity growth with the addition

of processors. In general, configuration independence

implies that the hardware (processors, memory and

peripherals) can he reconfigured without causing any

problems visible to the user.

2. Distributed System

The SYSTEM is distributed logically and physically.

Logically, portions of the operating system are distributed

within the address space of the users process within the

supervisor and iernel domains. The use of domains permits

the process to maintain its security attributes while

interacting with the operating system.

The physical distribution of segments among the

individual local memories provides performance (provides

high speed memory access and limits 3US contention). The

physical distribution allows the tradeoff of memory (viz.,

multiple copies) for performance. Although one of the

potential benefits of segmentation is sharing of pure

procedures the choice was made to disregard this benefit

when possible (no user has write access). This allows the

A-42

segment (viz., a copy) to reside in local memory to reduce

3US contention. The initial hypothesis is that the memory

wasted (much of it possibly ROM) is a small price to pay to

allow performance to grow well with the addition of

processors. This addresses the problem that in typical

multiprocessor systems capacity scales poorly because of

increase load on the BUS. However, this choice is not

fundamental to the design and could "be changed to eliminate

multiple copies.

Similarly for processors, processing is distributed

to processors to eliminate the dependency on a single

controlling unit. The system wide data bases are kept in

global memory providing access to all processors.

3. Multiple Protection Domains

The foremost consideration in the design of the

SYST2M was security. This is acheived by use of the security

fcernel technology, and segmentation provides one of the keys

to providing security* within the system. The set of segments

that are accessible is defined as a domain. The conventional

two state system does not provide the desired support for a

secure system. For this reason the 2-state (and associated 2

domains) is generalized to a hierarchical n-domain

system[6] . In the design, of the SYSTEM (a minimum of)

3-domains were considered adequate - user, supervisor and

fcernel. In addition,, the design permits that, based on user

application, a number of user domains could be supported.

A-43

Each domain is in concept similar to a ring[6]. The

authorized access of a process is determined by the current

ring of execution. The access within the different rings

form a set of nested domains. Ring (kernel) is the largest

set and ring n-1 is the smallest.

The ring- structure with the associated controls

provides a means for regulating the information that passes

between domains (rings). Cross-ring calls and parameter

passing are well def ined[15] . When the proper controls are

used they allow outer rings to make requests to inner rings,

but also protect the inner rings from unintentional or

intentional tampering. The ring structure when combined with

segmentation provides mechanism for the design of an

effective secure system by protecting the secure kernel.

4* Multiorocessing

The process structure provides the essentials for

parallel processing: support for a set of assynchroncus

processes that can communicate with each other. Parallel

processing does not require a multi-processor environment.

However, in a mul ti -processor environment parallel

processing can provide faster completion of a job.

There are many applications for parallel processing

within tactical as well as non-tactical systems. Whenever a

job depends on a mixture of asynchronous and synchronous

tasks and time is a factor, parallel processing is a

possible solution to getting the job done in the allocated

A-44

time. By using several processors working on the same job,

each doing seperate tasks, the overall time required to io

the job can he reduced (provided the job has been structured

into explicit processes). In microprocessors where

processors are relatively inexpensive and slow, parallel

processing may be the answer to keeping the cost down while

still being able to complete the job in the required time.

The above discussion provides some of the major reasons why

the SYSTEM was designed to support parallel processing on

multiple processors.

5 . 'Cache' Memory Strategy

A cache memory is generally thought of as a small

amount of high speed memory that is utilized with a large

low speed main memory in a system tc construct a memory

system that appears to be a larger high speed memory. This

appearance of a high speed memory is generally possible as a

result of locality of reference [15 ,
p. 301] .

In a multiprocessor environment, where each

processor has its own cache memory, problems arise when

accessing shared memory. The main problem being that shared,

writable memory cannot be put in a cache. Segmentation

allows the assignment of attributes to segments, which

provides a way to identify cacheable segments (those

segments that are not writable and shared).

In a multi-microprocessor system where 3US

contention can become a problem a cache memory strategy

A-45

could be quite effective in reducing the number of requests

to the main memory, even though the cache and shared memory

are the same speed. The main advantage is avoiding access to

the system BUS rather than the increase in speed of the

actual memory access. The SYSTEM uses the strategy of a

cache in the form of a local memory per processor. Now

rather than being a copy of what is in global memory the

local memory (cache) becomes the place where the data is

stored instead of global memory (note that with a cache,

global memory need not contain a copy while the information

is in the cache)

.

Each processor has its own local memory which is

relatively large in size where cacheable segments are

stored. This means that large blocks of data will be moved

when a process is removed from one processor and

(subsequently) loaded on another processor. In addition a

global memory is utilized for shared writable segments

(unencacheable segments). Segmentation allows the STSTEM to

utilize the concept of caches and main memory but in the

form of local and global memory. The overall reason is the

same (speed up memory access), but in the STST3M this is

achieved by reducing the BUS contention through directing

most access to local memory.

6 . Multiprogramming

In a system where there are more processes than

processors there must be a means of switching processors

A-46

from process to process. Some reasons for switching process

are: current process completes, a higher priority process is

ready, current process is blocked, or current process is

waiting I/C. Whatever the reason for switching, there are

certain things that must he done in performing the switch:

first, save the address space of the old process as well as

the current execution point represented by a portion of the

processor state, and secondly, reloading the address space

and previous execution point of the new process. The process

svitch must occur in a specific sequence to insure the new

process resumes execution at the same point and in the same

logical state as when it was previously switched. In the

STSTZi* re-establishing the local memory to its previous

state becomes part of the process switch (when switching

user processes) .

Eecause of the overhead (unloading and loading ail

the MMU registers) associated with process switches,

provisions are included to make the processes semi-dedicated

to a processor and thus make the requirement for memory

switches infrequent. In order to make the process switch

totally hidden outside the kernel r the segments that were in

memory the last time the process was executing must be

loaded in memory prior to allowing tne process to resume

execution. The lack of a "DSR" [5, p. 12] is a problem, cut

saving copies of the MMU, that can be reloaded when required

reduces the severity of the problem.

7. Family of Operating Systems

A-47

The design in this thesis is not really for a single

operating system, out rather for a whole family of operating

systems. For anj specific system the family member chosen

depends on the functions required. A tactical system which

is static in nature does not require many of the user

services supported by the SYSTEM. For this reason the family

member that consists of only the kernel could be the

specific operating system chosen for a tactical system. A

general purpose time sharing system, on the other hand, is

very dynamic in nature, utilizing large address spaces,

variable number of users, etc. The family member that

supports dynamic linking, a hierarchical file system and

demand memory management cculd be the specific operating

system for the general purpose time sharing system.

Operating system sub-setting refers to she ability

to form meaningful sub-sets of an operating system. In the

design of the S7STIM a sub-setting capability was one of the

goals. The structure is such that many of the services

provided by the SYSTEM can be eliminated without effecting

the usefulness of the remaining system. That is the SISTSM

can be tailored to fit a number of specific requirements.

This is made possible primarily by utilizing a loop free

structure^] within the design. For explanation purposes

consider the operating system to be composed of modules. In

a loop f-ree structure the dependency is inward or downward

(toward the hardware), depending on your point of view. A

module only depends on another module at a lower level.

A- 48

Recuiring a loop free dependency structure allows system

correctness to be established one module at a time.

Modifying a module would only effect the modules above which

depend on it.

The design choice to keep the kernel relatively small

and put the common user services in the supervisor lends

itself to sub-setting. The security kernel would not be

changed in any of the sub-sets ani thus would not require

re-verification. The supervisor supported services (dynamic

linking, discretionary security, demand memory management,

hierarchical file system) could be removed to meet the needs

of the specific use of the system. This makes the sub-sets

of the SYSTEM suitable for tactical application, where there

is generally no need for demand memory management or dynamic

linking (static environment), as well as for general purpose

application where all the features can be utilized. It

should be noted that any of these meaningful sub-sets would

be a secure system since the kernel remains unchanged in

every sub-set. Sub-sets of the kernel can also be

constructed; however, this would require reverif icat ion of

the kernel.

5. Levels Of Abstraction

Abstraction is a way of avoiding complexity and a

tool by which a finite piece of reasoning can cover a myriad

of cases [17]. The purpose of abstracting is not to be vague,

but to create a semantic level in which one can be

A-49

absolutely precise. Levels of abstraction have been

demonstrated to be a powerful design methodology for complex

systems. In general, the use of levels of abstraction leads

to a better design with greater clarity and fewer errors. A

level is defined not only by the abstraction that it

supports (for example, a segmented virtual memory) but also

by the resources employed to realize that abstraction. Lower

levels (closer to the machine) are not aware of the

abstractions or resources of higher levels? higher levels

may apply the resources of lower levels only by appealing to

the functions of the lower levels. This pair of restrictions

reduces the number of interactions among parts of a system

and makes them more explicit.

Each level of abstraction creates a virtual machine

environment. Programs above some level do not need to know

how the virtual machine of that level is implemented. For

example, if a level of abstraction creates sequential

processes and multiplexes one or more hardware processors

among them, then at higher levels the number of physical

processors in the system is not important. 3y the rules of

abstraction calls to a procedure at a different level must

always be made in a downward direction and the corresponding

return in the upward direction. Note that at least two of

the levels (kernel and supervisor) define virtual machines

with rigidly enforced (via hardware) invocation of 'extended

instruction", i.e. the kernel and supervisor calls.

A- 50

3. PROPOSED DESIGN

The SYSTEM is composed of two parts, the supervisor and

the kernel. The supervisor provides operating system

services while the kernel manages physical resources. This

division also contributes to the ability to sub-set without

affecting the kernel. The supervisor, which consists of

procedures, is distributed and exists within the supervisor

domain of each user process. The kernel is male up of both

procedures and system processes. The procedures are part of

the distributed operating system and exist within the kernel

domain of each user process. The system processes are not

distributed but are separate processes-

1 . Notat i on

The following is an explanation of the notation used

in the following discussions. When a CALL is used the name

of the module is given followed by the parameters within

parenthesis. When a name in quotes appears as the first

parameter in the parantheses it is used to specify the entry

within the module. 7or example CALL INNER_TC
(

'UNLOAD '

,

SEGMENT,*, WRITTEN) the module name is INNSR_TC, 'UNLOAD'

specifies the entry point and SEGMENT,* and WRITTEN are the

parameters. When a SIGNAL is used the first name in quotes

specifies the process for whom the signal is intended, the

second name in quotes (optional) specifies the specific

function requested of that process and the remaining names

represent parameters. For example SIGNAL ('MEMORY_MANAGER '

,

A- 51

'OUT', SEGMENTJ*, WRITTEN) the signal is meant for the

memory manager process, 'OUT' is the requested function and

SEGPENT_* and WRITTEN are parameters. WAIT is used when a

process cannot continue execution until it receives a signal

from another process. WAIT(?E0CESS_ID , MSG). The return

parameters ?R0CESS_ID and MSG are used to indicate the

process that sent the signal and the message sent. It should

he noted that the above notation is only used to simplify

the understanding of what is happening. In an actual

implementation the parameters need not be passed in

precisely this fashion.

2 . System Overview

The following is an overview of the SYSTEM'S modules

and processes and how they function. Figure 2 represents the

modules that exist in the distributed supervisor and the

distributed kernel. The levels are used to indicate the

dependencies that exist between these modules. The

supervisor is made up of four levels of abstraction. It

should be noted that all data within the supervisor is per

process .

The linker, a level 1 module called LINKER, exists

in a segmented virtual memory and provides the mechanisms of

dynamic linking. He is invoked by CALL

LINOR(SYM30LIC_NAME). It should be noted that the call

could be by link fault as in MULTICS [6] . The linker keeps

track of snapped links in the linkage segment (figure 3).

A-52

USER

SUPERVISOR

LINKER

INNER TC

STSTIM LEVELS

FIGURE 2

A-53

The linger utilizes the CALL S3AF.CE(SYMB0LIC_NAMS,

SEGtvENT_#) to obtain the segment number for unsnapped links.

The searcher, a level 2 module called SCARCE, is

invoked by SEASCH(SYt*BOLIC_WAME, SEGMENT^*) and is required

to return the segment number of the segment specified by the

symbolic name. By applying- the 'search rules' the symbolic

name is converted to a path name in the hierarchical file

system. The searcher gets the desired segment number by the

CALL SEG_5ND(?ATE_NAME, 5 EG<MENT_*) .

The segment handler, a level 3 module called

SEG_HND, is invoked by CALL SEG_HND (?ATH_NAMS , SEGMENTJ*)

and is responsible for returning the appropriate segment

number. The segment handler utilizes the Segment Table

(figure 4) as its data base. To maintain the data base he

uses the CALL SEG_MGR('MAIBJCNOVN* , ?AR_5EG_*, ENTRY_*,

ACCESS, SEGPENT_*, SIZE) to the kernel to obtain a segment

number tor a segment and the CALL DISC_SEC(SEGMENTJ*

,

ENTRY_#, ACCESS) to determine the authorized access

(discretionary). The segment handier is also invoked by the

virtual faults, SEG_HND('SEG_EA*JLT' , S3GMENT_#) and

SEG_SND(>SM_?AUL?' r SEGMENTJ*) . The 'SEG_FAULT' is a

discretionary security access check and is handled by a CALL

DISC_SEC(SEGMEMT_£ f ENTRY_#) . The 'MSM_JAULT' is a request

to bring a segment into memory and is handled by a CALL

f*IM_END(SEGMEN?_*, SIZE).

The memory handler and discretionary security, level

4 modules called MEr"_SND and DISC_SEC respectively, are

A- 54

SYM3CLIC_NAME SSGMENT_# OFFSET

TEST1

TEST2

THESIS

4

5

6

LINKAGE SEGMENT (?EH SEGMENT)

FIGURE 3

SEGMENT * DISC-SEC

ACCESS

SIZE PARENT

SEGMENT #

SNTRT «

SEGMENT TA3LE

FIGURE 4:

EREE ALLOCATED

BASE

BASS

BASE

SIZE

SIZE

SIZE

BASE

BASE

SIZE

SIZE

SEGMENT_*

SEGMENT *

MEMORY MA? (LOCAL)

FIGURE 5

A-55

invoiced by HSM_HND(SEGMENT_#- f SIZE) and DISC,SEC(SEGMENT,* ,

ENTRY,*, ACCESS) respectively. The memory handler provides

the dynamic memory management utilizing- the Memory Map data

base (figure 5). The memory handler uses the CALL

SEG_MGR('SWA?_IN', SEGMENT,*, BASE,ADDRESS) in the kernel to

brin* a segment into memory and the CALL SEG_MGR('SVAP,0UT '

,

SEGMENT,*) to remove a segment. The discretionary security

checks the access control lists to determine the authorized

access of the process (discretionary).

The distributed kernel is composed of three levels*

The segment manager, a kernel level 1 module called SEG_MGR,

is invoked by the CALL SEG_MGR('MAKE_KNOWN', ?AR_SEG,*-,

SNTRT,*, ACCESS, SEGMENT,*), CALL SEG_MG?.('SWAP_IN ' ,

SEGMENT,*, BASE_ADDRSSS) and CALL SSG,MGR('SWAP,0UT'

,

SEGMENT,*). The segment manager maintains the Known Segment

Table (figure 6) as a per process data base. The segment

manager determines allowable access by the CALL

NON,DISC_SEC(UNIQUE,ID, ACCESS) and assigns segment numbers

by the CALL INNER_TC('ASSIGN ' , SEGMENT,*, ACCESS). The

segment manager brings segments into memory by

SIGNAL('MEMORY,MANAGER', 'IN', SEGMENT,*, UNIQUE, ID,

5ASE,ADDRESS) and removes segments from memory by

SIGNAL('MEMORT,MANAGER', 'OUT', SEGMENT,*).

The non-discretionary security, a kernel level 2

module called NON,DISC_SEC, is responsible for determining

the authorized access for a given segment. Non-discretionary

security is invoked by the CALL NON_DISC,SEC (UNIQUE, ID

,

A- 56

UNIQUE ID 5EGM3NT_#

KNOWN SEGMENT TAELS (KST) ENTRY

FIGURE 5

PROCESS ID STATE AFFINITY PRIORITY LCC EX STATS VIRTUAL

PROCESSOR #

ACTIVE PROCESS TABLE ENTRY

FIGURE 7

VIP.TUAL VIRTUAL PROCESS ID

PROCESSOR^* PROCESSOR

PRIORITY

1 3

2 7

3 4

4r 13

PROCESSOR TA3LE

FIGURE 3

A- 57

ACCESS) .

The traffic controller, a kernel level 2 module

called TRAE?IC_CONT, is responsible for multiplexing user

processes to virtual processors. The traffic controller

utilizes the Active Process Table (figure 7) as its data

base. traffic controller is invoked by the CALL

TRAFPIC_CONT('BLOCK', MSG, WA£ING_ID) and CALL

TRAF?IC_CONT('WAOUP*, ??.0CESS_ID, MSG). The traffic

controller uses the S IGNAL
(

'MEMORY_MANAGER' , 'LOAD',

7IRT_tfEM_MAP) and SIGNAL ('MEMORY_MAN4GER ' , 'UNLOAD',

WRIT_3IT_MAP) to load and unload the processes' segments in

memory on the virtual processors. The traffic controller

uses the CALL INNSR_TC('L0AD_MMU' f ?RCCESS_ID) AND CALL

INNER_TC('UNLOAD_M^CT') to load or unload the memory

management registers of the virtual processors. The traffic

controller uses the CALL INNER_TC ('IDLE') to remove a

virtual processor from contention for rescources. Actually

the virtual processor is assigned the lowest priority

available and the idle process is loaded.

The inner traffic controller, a kernel level 3

module called INNER_TC, provides the multiplexing of virtual

processors to real processors. The inner traffic controller

uses the Processor Table (figure 3) as its data base.

The non-distributed kernel consists of two system

processes. The memory manager process maintains the Active

Segment Table (figure 9) and Global Memory Map (figure 10)

as data bases. 3asically it loads segments into memory. The

A- 58

UNIQUE ID GLOBAL

ADDRESS

WRITTEN

3IT

PROCESSOR

3IT MAP

CONNECTED

PROCESSES

WRITSA3LS

3IT

AST GLOBAL

7IRTUAL

PROCESSCR_ID

SSGMSNT_* UN I QUE _ ID ACCESS A3S ADDRESS

AST LOCAL (PER PROCESSOR)

ACTIVE SEGMENT TAELS

EIGURE 9

———————^———

—

ERSE ALLOCATED

3ASE

3ASE

SIZS

SIZE

3ASS

3ASE

3ASE

SIZE

SIZE

SIZE

SSGMSNT_*

SSGMSNT_#

SEGMENT #

GL03AL MEMORT MA?

7IGURE 10

A--59

memory manager process is responsible for putting segments

in local/global memory based on user's access.

The I/O manager process processes all the external

I/O, this includes I/O to and from the user terminals. The

terminals can be thought of as being hard wired. Specific

terminals have specific access classes? therefore no kernel

passwords are required to determine access class.

The next three sections provide a detailed

discussion of the design.

3. Supervisor

The supervisor can be invoiced by the following

external (user) calls:

SUP_CREATE_SEGMENTUCCESS_CLASS ,SIZE)

SUP_DELETE_SEGMENT(SEGMENT_*)

LINKER (SYMBOLIC.MAME)

SUP_BLOC£(MSS)

SUPJtfAOUP (PROCESSED ,MSG)

SUP_CRSATE_PRCCESS(PROCESSED, ADDR2SS_S?ACE

)

SUPJ)ESTROY_PROCESS(PROCESSED)

a- Linger (Supervisor)

The linker exists in a segmented virtual memory

environment. It is only aware of symbolic names and segment

numbers. The choice was made to provide dynamic linking and

not assign segment numbers to segments at compile or load

time,* therefore there is a requirement to resolve external

references at run time. In general it is the linker's job to

A- 60

intervene on a procedure's external references and direct

the reference to the appropriate segment. To accomplish this

the linker utilizes a "linkage segment" (each process has a

linkage segment). The linkage segment contains an entry for

each segment known to the process.

Each external reference results in a call to the

linker with a parameter that on first reference permits

finding the symbolic name of the desired segment.

LINK2R(SYM3CLIC_NAME) The linker searches for

the entry corresponding to the symbolic name. If found it

transfers to the segment number and offset specified in the

linkage segment. If not found (first reference) it must

first determine the segment number and offset. To obtain the

segment number the linker calls the searcher passing as a

parameter the symbolic name. S3A?.CH(SYMBOLIC_NAMS,

3EGtf2NT_*) The parameter returned is the segment number. The

linger completes the entry in the linkage segment and

transfers control to the desired segment,

b. Searcher (Supervisor)

The searcher is aware of the hierarchical file

system and a set of search rules. It is involked by

SEARCH(SYM30LIC_NAMS, SEGMENT^*) . The searcher has the task

of resolving a symbolic name into a path name. The searcher

recieves as a parameter a symbolic name which is processed

and eventually the segment number of the symbolically named

segment is returned. To accomplish this the searcher applies

the 'search rules '[6]. The search rules are a list of path

A-61

names and a simple technique that convert the symbolic name

to a path name (note that this is independent of security).

The searcher utilizes a calling directory and working

directory [6, p. 230], Once the path name is determined the

searcher calls the segment handler passing the path name as

a parameter. S3G_END(PATH_NAtfS, SEGMENT^*) The parameter

returned is the segment number. The searcher returns passing

the segment number as a parameter to the linker,

c. Segment Handier (Supervisor)

The segment handler understands the hierarchical

file system, parent, entry number, access control lists, and

segment numbers. The segment handler deals with virtual

segment faults (access checks) and virtual memory faults. He

is involked by the call SIG_HND(?ATH_NAME, SEGMENT.*) . The

segment handler gets assistance in performing his tasks by

utilizing the following calls: MEM_HND(SEGMENTJ*, SIZE) to

request a segment be put in virtual memory,

DISC_SEC(SEGMENT_#-, SNTRYJ*) a function to determine the

authorized access (discretionary security) to a segment,

S2G_MGR('MAKS_INCWN', ?AR_S3G_#, 3NTRY_tf, ACCESS, SEGMENTJ*)

a kernel call used to determine the segment number and size

of the segment indicated by the parent segment number and

entry number.

The segment handler maintains a segment table

with information that is necessary to control segments at

the supervisor level (figure ±) . The segment number is

unique within the process. Parent segment number is the

A- 62

segment number of the parent and entry number is the entry

within the parent for the segment. Access is that access

authorized by the discretionary security policy. Size is the

memory required by the segment. The segment handler is

required to convert path names to segment numbers as well as

to handle virtual segment faults (discretionary security

checks) and virtual memory faults. To accomplish these tasks

the segment handler has three entry points: SEG_HND

,

r*2.
M_FAULT and S2^_?AULT.

S2G_HND(?ATH_NAM2, S3GMENTJ*) The segment

handler receives as a parameter the path name of the desired

segment. One -of the design characteristics of the

hierarchical file system is that access to a segment

requires read access to every segment on the path of the

segment. One by one the segments on the path name must be

made known and the access established. To do this a

recursive algorithm can be utilized that will process each

entry within the path name until the path name is resolved.

The segment number assigned to the desired segment is

returned

.

SEG_SND('MEM_7AULT', SEGMENTjt) A virtual memory

fault is utilized to support the dynamic memory management

outside the kernel. When a segment that is not in memory is

referenced a virtual memory fault (hardware initiated, the

kernel provides the software interpretation of the fault and

provides a transfer vector to the supervisor) is generated

to the segment handier. The segment handler uses the Segment

A- 63

Table to determine the SEGMENT,* and the SIZE of the

segment. The memory handler is called, MEM_HND(SEGMENTJ*

,

SIZE) .

SEG_HND('SSG_?AULT', SEGMENT,*) A virtual

segment fault is used to tell the supervisor that the ACL

for the segment referenced has "been changed since the last

time the segment had "been referenced. The segment handler

must re-establish the discretionary security. This is done

by checking the Segment Table for the parent's segment

number and entry number, calling DISC_SEC (SEGMENT,*

,

ENT3T,*, ACCESS), check the new access, update the Segment

Table and return.

d. Memory Handler (Supervisor)

It is the job of the memory handler to provide

the dynamic memory management within a filed size linear

virtual memory. The memory handler utilizes two kernel calls

'SWAP_IN' and 'SWAPJ3UT' to perform his tasks.

SEG,MGR('SWA?_IN', SEGMENT,*, BASE_ADDRESS) is used to

request that a segment be brought into memory.

SEG_MGR('SWAPJ3UT', SEGMENT,*) is used to remove a segment

from memory.

The memory handler is tasked by the segment

handler to put a segment into memory and provided with the

SEGMENT,* and SIZE of this segment. The data base utilized

is a Memory Map (figure 5) which indicates free areas and

allocated areas. Each process has a memory map which is used

to keep track of the virtual memory allocated to the

A-64

process .

To provide the demand memory management there

are many suitable algori thms [16, p .155] . First fit, best fit

and worst fit are among the possible choices for allocating

free areas. A least recently used algorithm is generally

used for deallocating memory. The used bit is available to

provide information to the dealocation scheme. The CALL

INN2R_TC('(JSTJJSED_BITS' t US2D_3ITS) returns an array of the

status of all the used bits. The CALL

INN2R_TC('SET_tJS2D_3ITS ', US£D_BITS) provides an array of

the desired value of the used bits. This provides the

mechanism for an approximating efficient Least Recently Used

algorithm for dealocation [15] . Allocated areas (figure 5)

are identified by (32ar*2NT_*, 3AS2_ADDRESS , SIZE). When

tasked, the memory handler searches for a free area large

enough for the segment. If there is no free area large

enough, the memory handler must utilize the CALL

5ZG_MOH('SVA?_0UT', SEGMENT_#) to establish a large enough

free area. The memory map is updated and the CALL

SEG_MGE('SWAP_IN'„ SIGMEMT_* t 3A32_ADDR3S3) is generated.

The memory map is updated and the memory handler returns.

e. Discretionary Security (Supervisor)

This module is only aware of access control

lists (figure 11) and how to search one to determine the

access to be given the current process. The input parameter

is the segment number (of the directory) and entry number of

the ACL for the desired segment. The discretionary security

A-65

searches the ACL for the ?ROCESS_ID of the calling process

and thereby determines the access, which is returned.

4. Distributed Kernel

There is a gate mechanism (domain change) through

which all kernel and supervisor calls pass. Checks are made

to determine proper (complete) parameters and the call is

directed to the proper module. The kernel is the

"priviledged mode" and can execute priviledged instructions.

Calls coming from outside the kernel are:

MAO_KNOtfN(PAR-SEG_#, ENTRY,*, ACCESS, S"EGMENT_#)

SWAP_IN(SEGMENT_#, BASE_ADDRESS

)

SWA?_OUT(SEGMENT,*)

SET,SEG_?AULT(SEGMENT,*)

BLOCK MSG,WAKING_ID)

WAKSUP(PROCESSED, MSG)

CRSATE_PROCESS(PROCESS _ID t ADDRESS _S?ACE)

START_PR0CES3(?R0CSSS_ID, EXECUTION_PO INT

)

STOP_?ROCESS (PROCESSED)

DESTPOY_PROCESS (PROCESSED)

CREATE_SEGMENT(?AR_SEG,* t ENTRY,*, ACCESS_CLASS ,

SIZE)

DELETE_SEGMENT(UNIQUE_rD)

INNER_TC('GETJJSED_BITS', USED,BITS)

INNER_TC('SETJJSED_3rTS', USED_BITS

)

a- Segment Manager (Kernel)

The segment manager's environment is a segmented

A- 66

physical memory. The segment manager assigns segment numbers

and is responsible for maintaining the status of all

segments known to a process. The segment manager's primary

data base is the Inown Segment Table (1ST) (figure 6). The

unique_ID is a unique, system wide identifier assigned to

each segment. They are assigned from an available list of

integers (can be reused when a segment is deleted). Each

segment also has an alias that is the unique_ID of and the

entry number in its parent. This provides a means of

determining the unique_ID of a segment from the segment

number of and entry number in the parent.

It should be noted that the reason for the alias is

to prevent the unique_IS from leaving the kernel. The alias

chosen is derivable from information known to the

supervisor, because it relates to the hierarchical file

system. This information is per process and not system wide

in nature. Although the hierarchical structure of the file

system can be derived from the kernel's alias data base, the

contention is that the file system in the kernel is a flat

one. This method also eliminates the confinement problem.

The kernel only requires that the access class of a segment,

when created must be at or above the access class of the

process creating1 the segment.

Tne segment manager can be invoiked by several

calls

:

SEG_MGR('MAO^NCWN", ?AR_S3G_#, ENTRT_#, ACCESS,

SEGMENT *)

A- 67

SEG_MGR('SST_SEG_FAULT', SEGMENT,*)

SEG_MGR('S»AP_IN', SEGMENT,*, BASS_ADDRSSS

)

SEG_MGR('SWAP_OUT\ SEGMENT,*)

The CALL SEG,MGR('MAKE_KNOWN ' , ?AR_SEG_*,

ENTRY,*, ACCESS, SEGMENT_*) . The tasic is to assign a segment

number to the segment specified. ?AR,SEG_* and ENTRY,* are

the segment number of the parent directory and the entry

within that directory. The parent segment number is used to

determine the unique_ID of the parent from the 1ST and this

combined with the entry number forms an alias for the

desired segnent. The segment manager searches the KST to

determine if the segment has already been assigned a segment

number (already known). If this is the case the segment

number already assigned is returned. If the segment is not

known then a 1ST entry must be made. The procedure is as

follows: use the ?AR,SEG,* and the SST to determine the

unique_ID of the parent. Combine the unique_ID of the parent

and the entry number to derive the alias of the segment. CTse

the alias to determine the unique_ID of the desired segment

from the alias table (figure 12). CALL

NON,DISC_SEC(tJNIQu*E_ID, ACCESS) to determine the authorized

access. The access granted is the desired access or the

authorized access, whichever is less. Assign a segment

number. Fill in KST entry. CALL INNSR_TC
(

'ALD_SSG '

,

SEGMENT,*, ACCESS). Return assigned segment number.

The CALL SEG_MGR('SET,SEG__TAULT '
, SEGMENTJ*) .

This call is used when the access control list for a segment

A- 68

il: ACL

'CCONNELL'ULL ACCESS), 'RICHARDSON '(ALL ACCESS)

'JONES'(READ ACCESS), 'ALLjDTHERS ' (NO ACCESS)

ACCESS CONTROL LIST

EI SURE 11

UNIQUE ID

ALIAS

(PARENT

UNIQUS_ID)

(ENTRY ft)

15

13

7

12

7

12

1

7

3

2

1

ALIAS TA3LE

FIGURE 12

MACHINE REGISTERS

softwar:

FAULTS

ACCESS RELATIVE

3ASE ADDRESS

L0C_2X_STAT"

FIGURE 13

A-69

is changed. The segment manager determines the urique.ID of

the segment specified and does a SIGNAL ('MEMORY.MANAGER'

,

'SET.SEG.EAULT', UNIQUE.ID).

The CALL SSG_MGR('SWAP.IN ' , SEGMENT.*,

BASE.ADDRESS) . A request to load the specified segment into

memory at the indicated base address (relative). The segment

manager locates the appropriate KST entry and does a

SIGNAL ('MEMORY.MANAGER', 'IN', SEGMENT.*, UNIQUE.ID,

BASE.ADDRESS) and a WAIT (PRCC2SS_ID , A3S.ADD, BOUND). The

memory manager process loads the segment in memory and

returns the absolute address and bound of the segment. The

segment manager notifies the inner traffic controller of the

update in segment information CALL INNER.TC
(

'LOAD '

,

SEGMENT.*,. A3S.ADD, 30UND). The segment manager returns.

The CALL SEG_MGR('SWA?_0UT' , SEGMENT.*). The

segment manager is tasked with removing the segment from

memory. He does a CALL INNER.TC
(

'UNLOAD ' , SEGMENT.*,

WRITTEN) to obtain the value of the written bit and then to

unload the segment from memory a S IGNAL ['MEMORY.MANAGER '

,

'OUT', SEGMENT.*, WRITTEN), WAIT('MEMORY.MAN AGER ') and then

returns.

b. Non-Discretionary Security (Kernel)

The purpose of the non-discretionary security is

to enforce the non-discretionary security policy by checking

the access class of the process against the access class of

the desired segment. The access is determined as a result of

this comparison. The non-discretionary security module is

A-IO

invoiced by the CALL NON_DISC_SEC(UNIQUS_ID) . An algorithm is

used for interpreting the lattice for comparing the access

classes and determining the authorized access. The

non-discretionary security module returns passing the

access .

C. Traffic Controller (Kernel)

The job of the traffic controller is to schedule

and control processes. The traffic controller utilizes an

Active Process Table (system vide) (figure 7) and a Virtual

Processor Table (figure 8) to maintain the necessary

information about each process. Each virtual processor has a

priority (this priority is used by the inner traffic

controller when the virtual processors are multiplexed on

the physical processors). PHOCSSS_ID is a unique identifier

for each process, which can be napped to the user. STATS

refers to the present state of a process (ready, block,

stop, run). AF7INITT is used to specify a binding of a

process to a virtual processor either ^oy virtue of

dissimilar processor characteristics (strong) or the process

has segments in local memory of a processor (weak). PRIORITY

is used to determine a scheduling behavior. L0C_2X_STATE

provides the means for keeping track of the execution state

of the process and is a pointer to a storage area that

contains information about the execution state (figure 13).

The traffic controller schedules the processes

to run on virtual processors. There is a virtual processor

for every loaded process. Each virtual processor has a low

A- 71

priority process (IDL2) so that the processor is never

stopped. The traffic controller provides the BLOCK and

WAKEUP functions as a means of providing inter-process

communication. -

The traffic controller would have a priority

driven scheduling algorithm to determine what process to

schedule. This could he a simple first come first served

algorithm or it could he a complex time sharing algorithm to

dynamically change process priority. The method utilized in

this thesis is that the traffic controller works on the

premise of scheduling the ready process with the highest

priority and the proper affinity whenever a virtual

processor is available.

Whenever a process blocks itself it is in fact a

call to the traffic controller. The traffic controller

changes the state of the process to blocked. The traffic

controller now has the option of reassigning the virtual

processor to another user process or scheduling the idle

process (CALL INN22_TC('IDL3')) . In the latter case there is

no loading or unloading of the process involved and this can

he beneficial to control thrashing. Since there are other

virtual processors competing for the processor the traffic

controller scheduling algorithm will try to leave the

process loaded'. When the process is put back in the run

state it will be in contention for the processor. If another

process is to be assigned to the virtual processor then the

old process must be unloaded. First the status of the

A-72

written bits are determined (CALL INNSR_TC ('VRITTEN_3ITS '
))

.

The execution state of the old process is unloaded (CALL

INNER_TC('UNLOAD_MMU', PROCESSED, LOC_EX_STATE)) .

SIGNAK 'MEMORT_MANAGER', 'UNLOAD', WRIT_BIT_MA?) and

WAIT('MEMORY_MANAGER', VIRT_MEM_MA?) are generated, the

virtual memory map of the process is returned "by the manager

process process. The execution state and the virtual memory

map of the old process are saved. Nov the new process can he

loaded. The virtual memory map of the new process is passed

to the memory manager process, a S IGNAL('h"EMORY_MANAGER '

,

'LOAD', VIRT_M2M_*AP) and WAIT
(

'MEMORY ^MANAGER '
,

ABS_ADD_MAP) are generated. A map indicating the absolute

address of the loaded segments is returned by the memory

manager process. The execution state of the new process is

loaded (CALL INNERJTC('LOAD '
, LOC_EX_STATE , A3S_ADD_MA?)) .

This completes the process of switching user processes on a

virtual processor.

The TRAF7IC_C0NT("rfAOUP", PROCESSED) is also

a call to the traffic controller. If the process specified

by ?R0CESS_ID is in the blocked state the traffic controller

puts that process in the ready state, he checis the

priorities of the running processes and if there is a lower

priority process in the run state the virtual processor it

is running on is sent a pre-empt interupt CALL

INNSR_TC('?R3_IMPT_INT', VIRT_?RO_ID) and the traffic

controller returns. The pre-empt interupt forces the

ore-emuted virtual nrocessor to transfer control to the

A-73

traffic controller. The traffic controller puts this process

in the ready state and then schedules the highest priority

process, subject to affinity, as indicated above. If the

idle process was running on the virtual processor and if the

process loaded in that virtual processor is in the ready

state it could be assigned the virtual processor by the CALL

INNER_TC('UNIDLE', VIRJ>R0_ID). This has the effect of

unloading the idle process and loading the process that was

previously loaded. It should be noted that except for the

special case of the idle process, switching processes is

lengthy and, if done too frequently, could lead to thrashing

problems .

The traffic controller can be invoiced by the

calls: 'ST0P_PR0CSSS', 'CREATE_?RGCSSS '
, 'START_?ROCESS '

,

and 'DESTR0Y_?50CESS '.

'CREATE_?ROCESS ', ?ARAMETER_LIST is used to

begin a new process. An entry for the process is made in the

active process table.

'3TOP_?ROCESS ' is used to put a process in the

STOPPED STATE and the process is removed from the active

process table and put in the stopped process table (SPT).

The SPT is similar to the APT but it is referenced

infrequently.

'START_?EOCESS' is used to move a process from

the stopped process table (ST?) to the active process table

and also from the stopped state to the ready state.

'DESTROY_?ROCESS' is used to terminate the life

A-74

of a process. The process is removed from the APT or S?T and

the memory manager process is signaled to disconnect the

process from any connected segments.

d. Inner Traffic Controller (Kernel)

The inner traffic controller multiplexes the

virtual processors with the physical processors [18] . There

is a many to one correspondence from the virtual processors

of the traffic controller to the physical processors. In

addition there are the virtual processors assigned the

system processes. The inner traffic controller uses the data

case shown in figure 14. He is also responsible for the

mapping registers (hardware segment descriptors) which

contain the information shown in figure 15. Sach physical

processor has only specific virtual processors that can be

multiplexed on it. Sach virtual processor has a priority and

a state (running, ready and wait). The inner traffic

controller allows the virtual processor with the highest

priority in the ready state to run on the processor. The

wait pending bit[3,p.30] is used to avoid a race condition

between the signal and wait primitives. The inner traffic

controller is able to swap the virtual processors in and out

of the processors by loading and unloading the appropriate

execution state and mapping registers.

The inner traffic controller provides

inner-process as well as intra-process services. Ee is

invoked by a number of calls requesting information

contained in the mapping registers or providing information

A- 75

VIRTUAL

PROCESSOR #

STATS PRIORITY COPY' MMU REG SOFTWARE

FAULTS

PROCESSOR MA?

FIGURE 14

ACCESS

BIT

FAULT

3IT

WRITTEN

3IT

USED

3IT

BASE

ADDRESS

BOUND

MAPPING REGISTERS

FIGURE 15

A- 76

to update the mapping registers. To supplement the hardware

fault within the memory management registers the inner

traffic controller maintains a set of software faults for

each segment (segment fault, memory fault). This allows the

inner traffic controller to interpret the hardware fault and

generate an appropriate virtual fault.

INNER_TC('ASSIGU', SEGMENT_#, ACCESS) - a new

segment number has been assigned with the indicated access.

Load the appropriate register with the access, set the fault

hit and the software memory fault.

INNERJECl'LOAD', SEGMENT,*, A3S_ADD, 3CUND) - a

segment has been loaded into memory, load the appropriate

addresses in the mapping register and reset the memory

software fault and fault bit if appropriate.

INN3R_TC('UNLOAC', SEGMENTJ*, WRITTEN) - the

segment is being removed from memory, set the memory

software fault and the fault bit and return the value of the

written bit.

INNER_TC('VRITTEN_3ITS', BITS) - an array

reflecting the value of the written bits is returned.

INNSR_TC('GET_'JSED_3ITS' t USED_3ITS) - an array

reflecting the value of the used bits is returned.

INNER_TC('SET_US3D_3ITS', US3D_3ITS) - an array

is received reflecting the desired value of the used bits.

The inner traffic controller sets the used bits to the

desired values. The hypothesized hardware used bits are also

set by hardware whenever a segment is referenced.

A- 77

INNE?._TC('LOAD_MMU', LOC_EX_STATE, AES_ADD_tfAP)

- a request to load a virtual processor with a new process

and create the memory management unit registers.

INNSR_TC('UNLOAD_MMU', LOC_EX_STATE) - a request

to unload a virtual processor and save the execution state

in the indicated location.

INNER_TC('SET_SSG_FAULT', PROCESSED, SEGMENT_#)

- a request to set the software segment fault in the data

case (figure 14)

.

INNER_TC('IDLE') - a request to load the idle

process and reduce the priority of the virtual processor to

the lowest possible.

INNER_TC('PRE_2MPT_INT', YIRT_?R0_ID) - a

request to generate a virtual pre_empt interupt to the

indicated virtual processor* The inner traffic controller

determines which physical processor the virtual processor is

in and sends an appropriate hardware interrupt to that

processor. If the virtual processor is in the wait state the

interupt is held pending until the virtual processor is put

in the ready state*

INNE2_TC('UNIDLE', 7IRT_P?.0_ID) - a request to

unload the idle process, reinstate the loaded process and

restore the priority of the virtual processor.

The inner traffic controller is also invoked by

the signal and wait. Signal and wait provide the

synchronization between the system processes and the user

processes. The inner traffic controller utilizes the signal

A- 78

and wait primitives to change the state of the virtual

processors and thereby control the multiplexing of the

virtual processors to the real processors, based on their

priorities .

5 . Non-Distributed Kernel

The non-distributed kernel consists of the system

processes. These processes have the characteristic that they

function asynchronous to each user process. The system

processes, as they are called, can reside in the local

memory of each processor but their shared data bases will

reside in global memory.

a. Memory Manager (System Process)

The memory manager process utilizes the Active

Segment Table (figure 9) as a data base. The portion of the

AST that contains system wide information will reside in

global memory. The portion of the AST that only relates to a

single processor can be distributed and will reside in local

memory.

The memory manager process is responsible for

two basic tasks: requests to brins- segments into memory and

requests to remove segments from memory. Other processes

task him by use of the signal and wait primitives. The

memory manager process has four tasks (entries): IN, OUT,

LOAD, and UNLOAD. The IN and OUT are requests to load and

remove a single segment. The LOAD and UNLOAD are requests to

load and unload a number of segments.

A-79

The task to load a segment requires several

considerations. Is the segment currently active (AST entry)?

If it is, is it presently residing in global memory? If it

is not in global memory does the access of the added process

reauire that it be moved to global memory? How to alert the

processes with copies? The AST provides all the necessary

answers to render the proper decision as to where to load

the segment

.

At this time a better look: at the AST is called

for. It should be noted that every segment that presently

resides in memory is active and its address can be

determined from the AST. The virtual processo-r that it is in

can also be determined as well as the segment number by

which it is known within that virtual processor.

When a segment must be loaded into global memory

(based on user access) there is a need to notify processors

with a copy, of the segment, of the segments relocation.

After the segment has been loaded in global memory, the

memory manager process, tasked to load the segment, can

determine form the AST in which processors the segment is

presently loaded. These processors are sent

SIGNAL ('MSMORT_rtANAGER*, 'MOVE', UNIQUE_ID, ABS_ADD) where

ABS_ADR is the global address of the segment. Each memory

manager process that receives the signaK 'move') will check

his local AST to determine which processes have the segment

loaded and the segment number assigned and then CALL

INNER_TC('CHANGS_ADD', ?R0CSSS_ID, SEGFfENTj*, A3S_ADD) for

A- 80

each process that has the segment in local memory. The inner

traffic controller will update the mapping register to

reflect the new absolute address.

- If a user requests access, and another user

already has write access, there is a need to get the current

copy moved to global memory. In this case the memory manager

process attempting- to load the segment must

SIGNAL! 'WEMORTJ1ANAGER', 'MCV2_IT' , UNIQUE_ID) and

WAIT(PROCE5S_ID, MSG). The processor with the current copy

of the segment was determined from the AST. The memory

manager process with the current copy, after receiving the

signal! 'move_i
t
') , will relocate the segment in global

memory, CALL INNERJTC ('CHANGE_ADD', ?R0CZSS_ID, S2Gf«2NT_*,

ABSJLDD) and SIGNALC 'MEM0RY_MANAG2R' , 'MOVED', UNIQUE_ID,

ABS_ADD). It should be noted that there is some

synchronization required between the memory manager process

and the inner traffic controller to insure the segment had

not been written in during the time it toolc to move it and

change the address.

As segments are loaded and unloaded the AST is

updated appropriately. When a segment is removed from memory

if it has been written in the segment is copied bacic to

secondary storage.

The AST also provides a method of notifying

processes of segment faults. If the memory manager process

(for each processor connected with a loaded connected

process) is notified when the access control list for a

A- 81

segment is changed by SIGNAL
('MEM0RT_MANAG2R',

'SET_SEG-_FAULT ', UNI0U5_ID) then every loaded connected

process can be notified by CALL INNER_TC
('SST_SEG_FAULT '

,

PR0C3SS_ID, SEGM1!NT_#). For processes that are not loaded,

the traffic controller is similarly called to set the

software segment fault (figure 13). This means that the

software segment fault will have to be set for connected

processes when a segment is removed from the AST.

b. I/O Manager

The T/C manager is responsible for the external

I/O. There could be more than one I/O manager process,

conceivably one for each external device? corresponding

kernel calls must be provided. For example there could be an

I/O manager that handles all the external I/O to and from

the user terminals. It is sufficent, at this point, to say

that the I/O manager exists and handles external I/O.

6. Follow On Work:

It should be re-emphasized that this is a design

and not an implementation. Although the detail is left for

further work, the design proposed forms a substantial basis

upon which an implementation can be realized. The system

process structure is provided for in the design? however,

the system processes have been treated lightly and require

additional work. The user interface (supervisor calls)

presented is by no means an exhaustive list and could use

further extension for additional supervisor services.

A- 82

17. CONCLUSION

The state of the art techniques and design methodology

used to design secure operating system for multiple mini and

mail processors have been found applicable to the multiple

microprocessor environment. The principal conclusion is that

the operating system design in this thesis will make it

possible to more effectively use modern microprocessors than

has been possible in the past.

One question that is addressed concerns the operating

system's ability to scale. Systems now available can support

four or five microprocessors. Increasing that number of

microprocessors quietly brings serious degradation because

of the increased bus contention. The expected scaling factor

is much better for this design. The bus contention has been

significantly reduced - segmentation permits effectively

using local memory instead of global memory.

This design supports a family of operating systems, not

just one designed for a specific application. Sub-sets of

this system can be constructed to provide the desired

functions because the design used a loop free structure.

Included family members range from a core resident tactical

system to a virtual memory time sharing system.

Configuration independence is supported in this design.

One or many physical processors can be added or subtracted

from the system without affecting the workability of the

A-83

system. Similarly memory can be added or subtracted.

Security has been designed into this system. It was not

added on as an afterthought. This design used a security

kernel based upon a mathematical model to insure the

security. A secure multilevel environment is provided by

this system.

Commercial devices will soon be widely available to

implement this operating system. The Zilog Z3000 series,

microprocessor, for example will provide the segmentation

and multiple domains necessary for an effective system. The

present data buses are compatible and when used with this

operating system allow a significant number of processors to

be effectively used.

A- 84

LIST 0? REFERENCES

1. 'Architecture of a New Microprocessor', Computer , v. 12
No 2, p. 10, 'February 1979.

2. Mitre Corporation Report 2934, The Design and Specifi-
cation Of A Security Kernel for the PDP-11/45 .

by w'.L. Schiller, May 1975.

3. Saltzer, J.H., Traffic Control in a Multiplexed Computer
System

.

Ph.D. Thesis, Massachusetts Institute of
Technology, 1966.

4. Lipner, S.3., "A Comment Cn The Confinement Property",
Operating System Review , 7.9, p. 192-195, November
1975.

5. Schroeder, M.D., **A Hardware Architecture for Implement-
ing Protection Rings", Communications of the AC.*) .

v.15 No. 3, p. 157-170, March 1972.

6. Organictc, E.I., The Multics System: An Txamina

t

ion of
Its Structure . MIT Press, 1972.

7. Dijkstra, B.W», "The Structure of the 'THE' Multi-
programming System", Communications of the ACM .

v.ll, p. 341-346, May 1963.

3. Janson, P.A., "Dynamic Linking And Environment Initial-
ization In A Multi-Domain Process", Operating
System Review , v. 9 No. 5, p. 43-50, November 1975.

9. Schroeder, M.D., Clark, D.D., and Saltzer, J.H., The
^ulti^s kernel Design P^o *ect . paper presented at
ACM Symposium, November 1977.

10. LtCol Schell, R.R., "Computer Security: The Achilles'
Heel of the Electronic Air Force? , Air University
Review , v. XXX No. 2, January 1979.

11. Millen, J.K., "Security Kernel 7alidation In Practice',
Communications of the ACM, v. 19, p. 244-250, May 1975

12. Denning, D.F., 'A Lattice Model Of Secure Information
Flow", Communications of the AC.M . v. 19, o. 236-242,
May 1976.

13. Mitre Corporation Report 2SD-TR-73-27S , v. 2. Secure
Computer Systems: a Mathematical Model, by L.J.
Lapadula and D.3. Bell, November 1973.

V-85

14. Mitre Corporation MTR-2932, A Software 7a Illation
Technique for Certification, Part I: The
Methodology , by 3ell, D.S. and Burke, E.L.,
November 1974.

15. Honeywell, Multics Processor Manual , d .6-1 , Order
Number AL39-, Rev. 0, April 1976.

16. Madnlck, S.2. and Donovan, J.J., Operating Systems ,

McGraw Hill, 1974.

17. Dijkstra, E.W., 'The Humble Programmer', Commrmi cations
of the ACM , v.15, p. 359-866, October 1972.

13. Reed, D.P., Processor Multiplexing In g Layered
Operating System . Master's Thesis, Massachusetts
Institute of Technology, MIT/LCS/TR-164, 1976.

19. Janson, P. A., Using Type Extension To Organize Virtual
Memory Mechanisms . Ph.D. Thesis, Massachusetts
Institute of Technology, MIT/LCS/TR-167, 1976.

A-86

NPS52-80-002 APPENDIX B

Aooroved for oublic release; distribution unlimited

SECURITY KERNEL DS5ICJN
EOR A MICROPROCESSOR-BASED, MULTILEVEL,

ARCHIVAL STORAGE SYSTEM

by

Aaron Ray Coleman
Captain, United States Army
3AM t Auburn University, 1972

Submitted in partial fulfillment of the
reouirements for the degree of

MASTER OE SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 1979

Dean of Inf ormat io/iand Policy Sciences

B-l

ABSTRACT

This thesis is a detailed design of a security kernel

for an archival file storage system. Microprocessor

technology is used to address a major part of the problem

of information security in a distributed computer system.

Utilizing multiprogramming techniques for processor

efficiency, segmentation for controlled sharing, and a

loop-free structure for avoiding intermodule dependencies,

the Archival Storage System is designed for implementation

on the Zilog Z8?01 microprocessor with a memory management

unit. The concepts of a process structure and a

distributed kernel are used in providing management of the

shared hardware resources of the system. The security

kernel primitives create a virtual machine environment and

provide information security in accordance with a

non-discretionary security policy.

B-2

TABLE OF CONTENTS

INTRODUCTION B- 8

A. BACKGROUND B- 9

3. BASIC CONCEPTS b-10

1. Definition of a Process b-ii

2. Multiple Protection Domains b-12

3. Segmentation b-13

4. Information Security b-14

C. STRUCTURE 0? THE THESIS b-18

DETAILED DESIGN B-22

A. HARDWARE REQUIREMENTS B-22

3. PROPOSED KERNEL DESIGN B-25

1. Notation B~ 25

2. Kernel Overview B-2€

3. Gate Keeper Module b-33

4. Segment Manager Module B~ 3€

a. Known Segment Table B~ 36

b. Creation and Deletion of Segments .b-39

c. Managing the Segmented Address

Space b-45

d. Moving Segments into Memory B-51

5. Traffic Controller Module b-55

a. Active Process Table b-5E

b. Interprocess Communication

Primitives b-59

c. Process Scheduling Algorithm b-63

d. Message Queue Operators b-67

b-3

6. Non-Discretionary Security Module b-69

7. Inner Traffic Controller Module B-73

a. Virtual Processor Table b-74

b. Kernel Interprocess Communication

Primitives b-74

c. Service Functions b-80

8. Memory Manager Module b-81

a. Memory Management Scheme b-82

b. Active Segment Table b-85

c. Aliasing Scheme b-90

d. Storage Allocation B-92

9. Input-Output Manager b-93

III. CONCLUSION AND FOLLOW ON VOHS B-95

APPENDIX A - GATE KEEPER LISTING B-98

APPENDIX 3 - SUCCESS AND ERROR CODES B-102

LIST OF REFERENCES B-104

B-4

LIST 0? FIGURES

1. Process View £-20

2. Hierarchical View 3-27

3. Process States 3-29

4. Program Status Area 3-35

5. Parameter Table b-37

6. Known Segment Table b-40

7. Create Segment Procedure b-42

S. Delete Segment Procedure b-44

9. Make Known Procedure b-46

10. Terminate Procedure b-50

11. Swap In Procedure 3-52

12. Swap Out Procedure b-53

13. Active Process Table 3-56

14. 31oc'rC Procedure 3-60

15. Wake Up Procedure b-62

16. Enter P.eady Queue Procedure b-64

17. Schedule Heady Process Procedure b-65

18. Ready Queue b-66

19. Message Queue b-68

20. Insert Message Procedure b-70

21. Get First Message Procedure b-71

22. Non-Discretionary Security Procedure b-72

23. Virtual Processor Table b-75

24 . MMU Image .b-76

25 . S ignal Procedure b-78

26. Wait Procedure b-79

b-5

27. Memory Allocation Map b-84

28. Global Active Segment Table b-8€

29. Local Active Segment Table b-8€

33. Alias Table b-91

B-6

ACKNOWLEDGE MSN

T

This research is sponsored in part by Office of Naval

Research Project Number NR 337-005, monitored by Mr. Joel

Trimble.

There are several persons who have aided me greatly in

the preparation of this thesis whom I expressly want to

thanfc. My thesis advisor, Lt. Col. Roger Schell, tutored

me in many long sessions and used many hours of his time

reading my drafts. My mother-in-law, Iva Jewel Tucker,

edited and styled every word I wrote and forced me to

consider the exact meaning of each word.

Finally, and most importantly, I want to than'i my

wife, JoAnn. She assisted me in more ways than I can

enumerate and always provided encouragement when all

seemed impossible.

B-'

I. INTRODUCTION

This detailed design of a security kernel provides a

basis for implementation of an archival file storage

operating system. The system is intended to store files

for an array of computer hosts at multiple information

security levels. The design presents algorithms and data

structures which can be implemented on microprocessor

hardware available today, to provide economical and secure

storage. Controlled sharing of information and multilevel

security were the key design goals. Multiprogramming is

the technique used to improve efficiency of the system

which is primarily performing input and output operations.

A loop-free structure is used to avoid undesirable

dependency loops [1] . This allows modules to be changed

without introducing changes in other modules.

There are two components of the Archival Storage

System: 1) the Supervisor and 2) the Security Kernel [2].

The Supervisor (the subject of separate research [3])

supports all user services: 1) hierarchical file system,

2) discretionary access controls, and 3) protocols for

communication. The Supervisor operates outside the Kernel

domain on a virtual machine created by the Kernel

primitives. The Supervisor's privilege-restricted domain

has access only to a subset of the machine instructions,

thus needing the Kernel primitives to accomplish tasks

such as input or output.

The Security Kernel described in this thesis manages

B-8

the real resources of the hardware system: 1) memory, 2)

microprocessor, 3) external devices, and 4) input/output

ports. It is also responsible for mediating all

non-discretionary access to information. The Kernel

operates in the most privileged domain of the machine and

therefore has access to all machine instructions.

A. BACKGROUND

Microprocessors have become affordable, prolific, and

powerful computing resources. The result of these

attributes is the use of microprocessors in applications

previously requiring much larger and more expensive

processors. Additionally, new applications which can now

be economically computerized are being seriously explored.

Conversely, software has become more costly.

Microprocessor operating systems and applications programs

continue to be highly specialized, thus failing to

reasonably exploit the potential of the microprocessor.

The specialization of software for microprocessors also

perpetuates problems such as I/C format incompatibilities

which occur when information exchange among processors is

desired.

Information security on microprocessors has been

completely ignored to date, or handled with ad-hoc

attempts at a solution. However, this issue is becoming

increasingly important as the uses of microprocessors

continue to be expanded. 7or example, the Department of

the Navy is investigating the use of microprocessors on

B-9

small ships for automating shipboard administrative

functions [4] . Information security for such functions is

a major requirement which cannot presently he met.

Proposing a solution to the above problems, a

high-level design for a secure operating system for

microprocessor-based systems has been outlined by

O'Connell and fiichardson [5]. The design goals of that

operating system were configuration independence,

distributed processing, multiple protection domains,

multiprocessing, and multiprogramming. 3ecause such a

broad, general operating system is not always required,

the design provided for a family of operating systems. A

family member could use a subset of functions for a

specific application while allowing later extensions. This

thesis presents the detailed design for such a family

member

.

3. BASIC CONCEPTS

The Archival Storage System can be the nucleus of a

secure, distributed multiprocessor system. It provides

"data warehouse' facilities for multiple host computers in

the network. A host may be operating at a single security

level, or simultaneously at several security levels

without affecting the Archival Storage System. Information

storage with multilevel security is provided for each host

connected to a port of the warehouse. Additionally, the

data warehouse is the mechanism for providing controlled

sharing among the hosts. Thus, we can apply microprocessor

B-IO

technology to address a significant part of the larger

multilevel security problem [6] for distributed systems.

A subset of the O'Connell and Richardson design has

been selected as the basis for the detailed design of the

Archival Storage System. (The subset chosen omits the

provisions for multiprocessors, dynamic linking, demand

segmentation, "transient" processes, and a user domain.)

The Supervisor, protocols, and interfaces to the host

computers are presented in a parallel thesis by Paris [3]

while detailed design of the Security Kernel is presented

In this thesis.

There are two components of the Archival Storage

System Security Kernel which reside in the privileged

domain of the machine: l)the distributed kernel and 2) the

kernel processes. ?rom a logical view, some kernel

procedures are distributed among all the Supervisor

processes in the system, with the remaining procedures

forming kernel processes. These kernel processes perform

functions that are asynchronous to the supervisor

processes and are responsible for the shared resources of

the system (processes, processor, memory, input/output).

1 . Definition of a Process

A sequential process can be conceptualized as an

execution point and an address space which is a logical

rather than physical entity. All procedures that are in

the flow (or locus) of control are in the address space.

In a distributed operating system, the locus of execution

B-ll

includes those operating system functions which are

logically part of the user process. The distributed

operating system is divided into procedures which are

called in normal fashion, hut are located in the

privileged domain.

2. Multiple Protection Domains

One requirement for design of a security kernel is

isolation of the kernel procedures to make them

tamperproof. A way this can be achieved is to arrange the

process address space into hardware or software protection

domains. Domains need not be hierarchical, but in this

case they are. Hierarchical domains are commonly called

protection rings [7].

2ach level in the hierarchy is more privileged

than the preceding level. In the Archival Storage System

only two domains are necessary. Other levels must be added

to protect the Supervisor if the design is extended to

include user applications. The distributed lernel resides

in the most privileged domain and may access any segment

within the address space of a process. All systemwide

databases are in the kernel domain. Violation of the

confinement principle described by Lampson [9] and Lipner

[9] would occur if such information could be passed to

other domains.

The Supervisor operates in the outer or least

privileged protection domain where access to segments and

external devices is restricted. Only those databases which

B-12

are "process local" may be accessed. This does not prevent

sharing since different segment numbers and access rights

for each process can be interpreted and enforced by the

kernel. Sach Supervisor process is required to remain at a

specified security level within its domain.

Protection domains may be created by either

hardware or software. Software implementations of

protection domains (as in the early Multics [10]) are

feasible, but result in a degradation of efficiency. This

performance loss is unacceptable in many applications. In

large processors a hardware ring mechanism is sometimes

used to provide the implementation [7] . This general ring

mechanism is not available in current microprocessors, but

two domain machines are available. When supplemented by

ring-crossing software, this will provide the desired

multiple domains .

3 . Segmentation

A segment is defined as a logical grouping of

information [ill , while segmentation is a technique for

managing segments within an address space. A process's

address space consists of a collection of procedures and

data segments. All address specifications require the

segment specification and the offset within the segment

'.i.e., a two-dimensional address). Segments are therefore

distinctly visible to the user. Unliie pages, segments are

arbitrarily sized and logical units with logical

attributes to describe them.

B-13

Attributes of segments are contained in a

structure called a segment descriptor. The descriptor

associates segments with address in memory, size, and

access allowed. Maintaining all of the descriptors of the

segments of a process in a descriptor list allows the

address space of the process to he easily managed.

Segmentation offers benefits as a memory

management scheme. The key advantage is the ability of

multiple processes to share segments without the

requirement of maintaining multiple copies in memory.

Other favorable characteristics of segmentation are

control of memory waste due to fragmentation, creation of

user virtual memory, dynamic linking of modules, and

enforcement of controlled segment access.

Segmentation eliminates the need to duplicate a

segment when shared. Havinar only one copy saves memory and

eliminates the problem of conflicting data which occurs

when multiple copies are maintained. Even more central to

segmentation is the ability of cooperating processes to

communicate with each other through shared segments.

Inter-process synchronization and communication are

necessary functions in a multiprogramming environment.

4. Information Security

Most users of computer systems are required to

safeguard information from unauthorized access. Examples

abound: government (classified information), corporations

(trade secrets), banking (electronic funds transfer), and

B-14

all users of personal data (privacy act). This reauirement

is not relaxed when microprocessors are used instead of

(or in support of) large computer systems. Dedicating a

device to a specific security level (dedicated mode) [6]

is a method commonly used to meet the security

requirement. This solution is unsatisfactory for any user

with a reauirement to utilize data at more than one access

class .

Another solution to the problem of accessing

information at different security levels is to operate in

the multilevel mode. In this case both users and

information at different security classes exist

simultaneously on the same computer system. Users are not

permitted to access information unless authorized by the

security policy in effect.

In the dedicated mode ail security measures are

external to the computer system (e.g., perimeter fencing,

guards, door locks, etc.). When a multilevel mode

environment is used, controls must be internal as well as

external. Attempts at internal controls have been tried by

adding security measures to existing- systems with

unsatisfactory results. Numerous cases are documented of

penetrations (i.e., unauthorized access) of these systems

[5] . Intuition rather than sound design was the

methodology used in these unsuccessful attempts at

securi ty

.

Internal controls must be designed into a system

B-15

from its conception. The approach to designing these

controls is the security kernel methodology- The first

step using the security kernel methodology is to define

the security requirements. From this definition a

conceptual design is created. The conceptual design is

actually a mathematical model which can he rigorously

proven and provides the oasis for testing (certifying) [2]

all subsequent implementations.

Three things are reauisite before a system can he

secure using the security kernel concept: 1) The kernel

must he isolated or tamperproof. Obviously if a penetrator

can change the kernel software, then the behavior of the

kernel can be modified. 2) The kernel must be invoked on

every attempt to access information. This requirement can

be met by initial software interpretation of access on the

first call to a segment. Thereafter, hardware can enforce

the access criteria. 3) The kernel must be subject to

certification. Proof of the mathematical model must be

followed by thorough testing of the implementation to

insure that each input yields the desired output. Since

hardware and software are involved, both must be tested

before the kernel car. be certified.

As previously stated, the first step in the design

of the secure computer system is to define the security

requirements. A properly designed computer system is then

secure with respect to that definition or policy. A

security policy consists of the external laws, rules, and

B-16

regulations that establish what access is to be permitted.

Two distinct types of security policy eiist: 1)

non-discretionary and 2) discretionary.

Non-discretionary policy involves comparing the

requested (i.e., the information object's) access class

(oac) with the access class of the requestor (i.e., the

subject) (sac) to insure that they are compatible. 7or

example, in the Department of Defense security policy a

secret cleared individual (subject) may have access to

documents (objects) which are classified as secret,

confidential, or unclassified.

The relationships between different access classes

can be represented by a lattice structure [12] . This

lattice structure is totally ordered if all classes are

related. #hen the classes are either related or disjoint

the lattice is partially ordered. The lattice structure

interprets the authorized access based on the

relationships between two labels. The lattice structure

abstraction is important because it seems to represent

most practical security policies. 3y changing the

interpretation of labels in the non-discretionary security

module, a different policy can be implemented so that, for

example, Privacy Act requirements are as enforceable as

Department of Defense security policies.

The following interpretation defines the access

permitted in a computer system (where "%" is defined to

mean unrelated) in terms of subject access class (sac) and

B-17

object access class (oac):

sac = oac, read/write permitted

sac > oac, read permitted (read down)

sac < oac, write permitted (write up)

sac % oac, no access

DOD security policy is represented by a partially ordered

lattice since security classifications are composed of a

classification level and a category (e.g., secret,

cryptographic or confidential, nuclear).

Discretionary controls provide a refinement of the

non-discretionary access. A common example of

discretionary controls involves checking an access control

list before allowing an access. This allows authorized

subjects ; users) to specify who may use that segment

within the confines of the non-discretionary policy. The

DOD "need-to-know" rule is an example of discretionary

policy. In the Archival Storage System non-discretionary

policy is enforced by the Supervisor, based on both the

host and the user.

C. STRUCTURE C? THE THESIS

This thesis presents the detailed design of a portion

of the security kernel for an archival file storage

facility (distributed kernel procedures and memory manager

process). Levels of abstraction are used to reduce the

complexity of the hierarchical Archival Storage System.

Level 2 contains the Supervisor and operates in the

virtual environment created by the lernel. The Supervisor

B-18

does not control the hardware of the system hut applies

the hardware resources only by appealing to the functions

of the Kernel. Calls to procedures at different levels may

only he made in a downward direction and corresponding

returns only in an upward direction (i.e., the Kernel may

not call upon the Supervisor tc accomplish any task). This

restriction, rigidly enforced at all levels of atstraction

in the design, reduces the number and type of interactions

of the system.

Figure 1 shews the process structure of the system

with the distributed and non-distributed kernel. The

asynchronous Memory Manager and I/O Manager are kernel

processes. The remaining kernel procedures are distributed

in all the supervisor processes.

In the next chapter the details of the design are

presented. Although this is not an implementation, the

Zilog ZS001 Microprocessor [13] with the ZS010 MMU Memory

Management Unit is used as the hardware base for this

research. Choices made during the design process were

often influenced by the hardware features available. The

ZS020 family of devices is not mandatory for implementing

the Archival Storage System. Cther microprocessors exist

which are capable of supporting a secure system.

Algorithms and data structures are presented in tne

high level language PLZ/ST5 [14] . PLZ/SY5 is a

Pascal-like, block-structured language. Designed by Zilog,

the language can be compiled to ZS000 instruction code.

3-19

Calls
-> Interprocess Communication

Figure 1. Process View

B-20

PLZ/ASM [15] is used where .machine level instructions for

direct hardware manipulation are required. These two

languages for the Z8000 are used "because of the capability

of linking modules of either language to the other.

Additionally, PLZ/ASM has the same high level data

structures and structured control mechanisms present in

PLZ/STS.

The conclusions reached during this research are

presented in the last chapter. Topics for further research

and implementation are identified, including those in the

area of secure systems. With this multilevel data-store, a

secure distributed microprocessor system can he

implemented using communications lines to interface

distributed processors of the network to the "lata

warehouse
."

B-21

II. DETAILED DESIGN

A. HARDWARE REQUIREMENTS

Theoretically any processor hardware is usable for

secure computer systems. However, in practice certain

hardware features are essential for efficiency. In

addition, complexity of the software portion of the

security kernel is highly dependent upon the capabilities

of the hardware. Because simplification of the kernel

results in an easier proof of correctness, it is

worthwhile to use additional hardware to achieve security.

One essential hardware feature is a segmentation

mechanism. Segmentation allows the use of one uniform type

of information object, the segment. Kernel software which

deals with logical objects is then simplified. Paging

hardware without segmentation does not provide a correct

structure for objects, since pages are physical objects

with physical attributes. For example, an access right is

a logical attribute. Applying an access right to a

physical object fas is the case for ISM 370 protection

"locks" [11]) obscures the purpose of the attribute, is

out of context, and adds complexity to the supporting

mechanism.

A segment address consists of a segment name and an

offset within the segment. This logical address must be

transformed into an absolute address before it can be

used. While software is capable of making this

transformation, hardware can perform the mapping more

B-22

efficiently and simultaneously check access while doing

the mapping.

Multiple execution domains are also considered

essential in hardware. This feature is used in current

computer systems to protect the operating system from

applications programs, hut until recently this feature has

not been available in microprocessor hardware. In the

initial Archival Storage System implementation only two

domains are necessary since applications programs do not

exist inside the boundaries of the system. Protecting the

Kernel from the Supervisor is the only domain protection

required. If user utilities are added to the design, then

another domain will he necessary to protect the Supervisor

from user tampering.

With the introduction of Zilog's Z3000, the above

hardware features are available in the microprocessor

category. The design of the Archival Storage System is

targeted toward a hardware system based upon the Z8001

segmented microprocessor [16] and the ZS010 MMU Memory

Management Unit [1?"!. The ZS001 is a 16-bit two-domain

microprocessor which produces a 23-bit segmented address.

The ZS010 MMU maps the 22-bit logical address into a

24-bit absolute address and allows the capability of

addressing up to 128 segments of 64K bytes each in the

two-dimensional memory space.

In addition to the address mapping hardware, the MMU

also provides memory access protection. Segment access may

B-23

be set to write (read implied), read, or execute only.

When an unauthorized access is attempted, the MMU prevents

the access, then sends a trap (or fault) signal to the

microprocessor. A trap is an internal interrupt which is

synchronous rather than asynchronous to the cycling of the

processor and must be resolved by the processor before

processing can continue.

The microprocessor also supports two protection

domains. The MMU provides the implementation of two

hardware rings by checking for system or user status on

each access to a segment. The bit in the MMU which

specifies system or normal mode, thus specifies which

segments are accessible in just the Kernel ring and which

segments are also accessible in the Supervisor ring. Thus

a process must cross into the Kernel ring to access the

Kernel primitives. If more than two rings are rea.uired, an

additional MMU (up to eight total) may be employed per

ring.

The hardware also supports resource control by

limiting the use of certain machine instructions. In the

system mode all machine instructions can be executed. When

in user mode, the hardware will not allow the use of

input/output instructions, certain machine control

instructions, or special input/output instructions (used

to load and control the MMU). Thus the Kernel can control

the microprocessor, the main memory (through the MMU), and

all external devices.

B-24

Hardware features other than those described above are

indicated from a performance standpoint. For instance, a

direct memory access (DMA) device could make memory to

memory, memory to port, or port to memory transfers faster

than similar transfers under direct CPU control. This

would allow the CPU to continue with other tasks while the

DMA is processing the data transfers. Protection of memory

can still "be realized by routing the DMA through the MMU.

The DMA would have to be "smart" enough to handle an

access violation trap or the Kernel would have to

guarantee, by MMU set-up, that the DMA would not violate

the security policy. This type of hardware is not crucial

to the design at this level, and the decision on its use

is left to the implementor.

The MMU does lack a descriptor base register

capability [10]. Process switches without this facility

require at least selective unloading and loading of the

descriptor registers in the MMU, and a process switch

would take roughly two (2) milliseconds to accomplish in

this manner. It is evident that process switching may lead

to thrashing problems if done too often. There are ways

the implementor might avoid this problem (e.g., dedicating

an MMU to each process, then switching MMUs rather than

leading/unloading a single MMU).

3. PROPOSED S25MEL DESIGN

1. Notation

Notation is important in making algorithms

B-25

understandable. It should not, however, require more

thought to understand the notation than the central

concept. Since this thesis presents a detailed design, a

notation as close as possible to an actual language which

can compile to ZS000 machine code was desired. PLZ

languages are used as a notation to illustrate the data

structures and procedures. However, the code as shown in

the figures cannot be directly implemented. Among other

changes, procedure order has been rearranged to make

explanation of the modules more logical. This change would

violate a PLZ/STS implementation rule that procedures must

be declared before they can be invoked.

The details of the actual PLZ/STS language

implementation may be different from that assumed in this

thesis. In particular, the specific method of parameter

passing between PLZ/ASM and PLZ/STS is unknown at this

time. The implementor should carefully investigate how

passing of parameters in the actual language

implementation affects the interfaces between modules.

Because of the terminology used in the Z3000

Microprocessor specifications, the Supervisor may be

referred to as operating in the normal or user mode. If

the term system mode is used, it refers to the Kernel

domain of execution.

2 . Kernel Overview

The distributed Kernel modules exist on three

levels (figure 2). 3ach module creates a different level

B-26

Protocols
A

4/—

Host Computer

Protocols

3L
Supervisor Interprocess

Communication
7*

Supervisor

segment
^anager

_V
Son Discretionary
Security

i

i

v
Traffic
Controll

Inner Traffic Controller

ZS000 HARDWAR3

Kernel

level 3

level 2

level 1

Figure 2. Hierarchical View

B-27

of abstraction [191 . At level 1 or the innermost level is

the InnerJTraff ic_Controller . Its primary task: is the

control of virtual processors and the multiplexing of

virtual processors onto the real processor. The

Inner_Traff ic_Controller uses the Virtual Processor Table

as a management tool for this multiplexing of virtual

processors .

At level 2 is the Traf

f

ic_Controller . The

Traff ic_Controller creates the sequential process

abstraction [17] . A process can be in one of two states:

1) blocked or 2) unblocked. ¥hen blocked, it must wait for

the occurrence of some event. Since the process cannot

proceed until that event occurs, the virtual processor is

freed and then allocated to another process. When

unblocked a process is either ready or running. In the

ready state, the process can run when a virtual processor

is assigned to it. The readv state can be entered from

either the running or blocked state (figure 3).

The Non_Discretionary_Securi ty Module is also on

level 2. This module is charged with interpretation of the

security policy in effect. It compares the two labels

which are passed to it and determines the relationship of

the labels based on a lattice structure known to the

module. This relationship is then used by the kernel to

determine authorized access to objects (segments or

parts). It is emphasized that the Kernel makes decisions

about access based on relationships (=, <, >, not related)

B-28

C KUNMING J

Scheduled

Block

Wake-up
Higher
Pri ori ty
Process c BL0CI2D

v/ake-uo

J

r ^TTA^T J

Figure 3. Process States

B-29

and not on the labels themselves. The

Non_Discretionary_Security Module is the only module in

the Kernel which makes any interpretation of security

labels. This allows most of the practical security

policies to be implemented simply by changing the

Mon_Discret ionary_Security Module.

At level 3 is the Segrent_Manager . Using the MMU

mapping to real memory provided by the hardware, the

Segment_Manager creates a segmented virtual memory for the

process. 3ecause of the limitations of the hardware (lack

of a paging mechanism), segments are not dynamically

allocated real memory. The size of a requested segment is

fixed (or determined) at the time it is created and may

not change. The Supervisor has several options in order to

handle the problem of growing segment size: 1) Allocate

the maximum size to every segment which is wasteful of

memory, 2) copy the segment into a larger segment whenever

the size changes which is wasteful of processor cycles, 3)

create a "super-segment" as a collection of segments, or

4) some combination of the above. 3y requiring the

Supervisor to handle this problem, the initial Kernel

implementation is simpler.

The whole segment must be swapped into main memory

in order to be used. The MMU supports segments ranging in

size from 256 bytes to 64S bytes in multiples of 256

bytes. Additionally, the hardware forces another

constraint on the design. Without paging, two allocation

B-30

schemes are available to the designer: 1) a demand

segmentation memory management scheme (load the segment in

response to a fault) or 2) a partitioned allocation

scheme. In this design a partitioned allocation scheme is

used to make the Kernel less complex. Part of the burden

of memory management is then forced on the Supervisor. The

Supervisor of each process is given a fixed amount of

linear "virtual core*. Linear 'virtual core" is

distinguished from the two-dimensional virtual memory

created by the segmentation. The Supervisor, by requests

to the Kernel, may fill virtual core with segments as it

chooses. The Supervisor of each process must manage its

own virtual core and fit any segments it uses within the

boundaries of this virtual core. The partitioned

allocation portion of the memory management scheme is

supported by the Memory_Manager process of the

non-distributed Kernel.

The non-distributed portion of the Kernel resides

in two kernel processes: 1) Memory_Manager and 2)

I/0_Manager. These two processes are responsible for

actions which are not logically part of the supervisor

processes because they can function asynchronously to the

processes. The Memory_Manager moves segments within the

physical memory space of the system. These transfers may

be nain memory to main memory, mam memory to secondary

storage, or secondary storage to main memory. Main memory

to main memory moves are made because of a design decision

B-31

to restrict sharing of the sane copy of a segment unless

at least one of the sharing processes has write permission

to the segment. Whenever two processes share a segment and

neither has write access, two copies of the segment will

exist—one in each virtual processor local memory. This

trade-off results in less complexity in the kernel and

when the design is expanded to a multiprocessor

implementation, bus contention is minimized [51 . The

problems associated with the existence of multiple copies

in memory are not present since the segment is not

writeable.

Whenever a segment is to be shared and is

writeable, then the segment must be moved to the real

processor global memory. Movement of the segment is easily

accomplished by updating the appropriate MMUs to reflect

the new location of the segment. This concept of a process

local and global memory is analogous to processor local

and global memories in multiprocessor systems. In those

systems, each real processor owns a local memory, while

the system controls the global memory used by all

processors for shared information.

The I/0_Manager is responsible for routing

segments across the system boundary, viz., moving data

between external ports of the system and main memory. The

I/0_Manager does not try to interpret the data, but simply

provides a transfer service. All the ports have specific

security classifications and are hard-wired. This allows

B-32

the I/C_Manager to function without requiring labels or

other security mechanisms to determine access class.

Having all Hosts at a fixed security level is a design

choice for the Archival Storage System. Hosts can be at

multiple levels if the design is modified to accept

"trusted" labels. In the present design the Host computer

is required to be at the level of the port and to handle

data consistent with the security policy in effect.

Since the hardware does not completely support the

ring structure, software (Gate_Keeper) is needed for the

ring-crossing mechanism and thus isolation of the Kernel.

All calls to the distributed Kernel and interprocess

communication with the non-distributed Kernel from the

Supervisor must pass through the Gate_Keeper. The function

of the Gate_Keeper is to provide the sole entry point or

gate into the Kernel ring, validate the call and

arguments, and transfer the call to the appropriate kernel

rrodule. If a call is made incorrectly the Gate_Keeper sets

a return message to an error code, and returns without

further action. The Gatekeeper is the ring-crossing

mechanism of the Archival Storage System.

3. Gate Keeper Module

The Gate_Keeper Module (shown in Appendix A rather

than as a figure because of its length) consists of

procedures and primary data structures and is the sole

entry point into the Kernel from the Supervisor. The

Gate_Keeper Module is written in PLZ/ASM since it is a

B-33

trap handler. (The user registers must be saved when the

handler is invoked which requires access to the hardware.)

When the Supervisor wishes to invoke the Kernel it must

put the argument list and space for any return message in

a segment with read/write access in the Supervisor ring.

When the system call is made, the pointer to the arguments

is required to he in a double register. The system call

instruction is then executed, with the function-code .for

the requested Kernel procedure as a parameter within the

instruction. This causes the machine to save the program

counter, flags and control word, and the instruction

itself on the system (kernel) stack. An unconditional jump

(hardware initiated) is then made to the Program Status

Area (a vector table) (figure 4) where the machine state

for the system call instruction is fetched. The Program

Status Area is established at system generation and

consists of "frames" which contain the machine state and

location of the interrupt and trap handlers. The processor

then begins execution in the Kernel ring.

The Gate_Keeper first saves the user processor

registers and retrieves the pointer to the argument list.

If the argument list is located in a read/write segment of

the calling (Supervisor) ring, a copy of the argument list

is put onto the system stack. However, if the area

indicated by the calling ring is not in the read/write

address space of the process, the Gate_Keeper will not

return an error code. (There is no place to return it!)

B-34

Frames-

«•<

Em o t y
yew
Segment *

Offset

Reserved

3

Unimplemented
last ruction
Trap

16

Privileged
Instruction
Trap

- 24

System
Call
Inst rue ti on

4 32

Segment
Trap

40

Non-Maskable
Interrupt
Vectored Int

Figure 4 Program Status Area

B-35

The (Jate_Keeper restores the user environment and makes a

normal return.

The Gate_Keeper uses a table (figure 5) to check:

the range of the function code. If the Gate_Ieeper now

discovers an error during the validation process, it sets

the return message to an error code, copies the argument

list hack to the user area, and returns in the usual way.

If the call is valid, the Gate_Ieeper calls the

appropriate module (e.g., Segment_Manager) at the

requested entry point into the module.

When the module has completed the requested task

it returns to the Sate_£eeper. The return message is then

copied to the user's return argument, and a return to the

user ring- occurs. All entries into and exits from the

Kernel are through the Gate_Keeper.

Parameter passing- to and from the Kernel is hy

value only. Since implementation details of how ?LZ

modules pass parameters are unknown, the decision on the

precise mechanism for argument passing is left for the

inplementor. It may he best to align the method of

parameter passing as closely as possible to the method

used by the PLZ/SIS language.

4. Segment Manager Module

The Segment_Manager is responsible for managing

the segmented physical memory and uses the

Inown_Segment_Table (KT) as its primary database. In

keeping with the loop-free structure and since the

B-36

Function Code

Junction Number of
Parameters

Para-1
Length

Para-2
Length

» • • Return
Para
Length

Create_
Segment

Delete_
Segment

tfake_
Known

Termina te

Swap_In

S vap_Out

31ocic

WakeJJp

Figure 5. Parameter Table

B-37

Segment_Manager is the 011I7 module at level 3 of the

Kernel, only calls external to the Kernel domain may be

made to the Segment__Manager . There are six entries into

the Segment ^Manager in this implementation:

1) Create_Segmert

2) Delete_Segment

3) Make_Knovn

4) Terminate

5) Swap_In

6) Svap_0ut

a. Known Segment Table

The data structure used by the Segment_Manager

to manage segments is the Known Segment Table (EST). The

KST is a "process local" data structure and contains an

entry for each segment which the process has declared an

intention to use (viz-, "made-known"). The segments may or

may not be located in main memory. If a segment has an

entry in the KST, then the segment is described as known

to the process. In this design it will also have an entry

in the Active Segment Table (AST—a Memory_Manager

database explained later) and can be described as active.

The KST (figure 5) is indexed by the segment numbers

(Segment_#) which are assigned by the Segment_Manager . The

Segment_# also corresponds to the MMU descriptor register

for the segment. The ASTI_* is the Active Segment Table

entry number and is obtained from the Pemo ry_Manager . The

AST2 # is the "handle" which is oassed to the

B-38

Memory_Manager when necessary to identify a particular

active segment. The Size field is an integer which is the

size of the segment in bytes divided by 256. All segments

are created in multiples of 256 bytes because of MMU

constraints. An upper bound (Max_Segment_5 ize) is placed

on the segment Size by the design (explained later). A

flag known as In_Core is used to indicate whether the

segment is in main memory or on secondary storage.

The last field in the 1ST entry is the access

class of the segment. This is a label which indicates the

security classification of the segment. Interpretation of

the Class to determine an access mode (read or read/write)

is performed by the software (by a call to

Non_Discretionary_Security) on first reference? thereafter

the access mode is enforced by the MMU.

Figure 6 shows both the logical view and the

?LZ variable declaration for the 1ST. Max_IST_Size is

hardware dependent and is equal to the maximum number of

segments which can be -napped by the MMU. To access an

element of the database the following notation is used:

KST [Segment,*]. A5TE_*

If Segment,* is equal to 103 then the above statement will

reference the AST!_* field of the KST entry for segment

number 103.

b. Creation and Deletion of Segments

Create_Segment and Delet=_Segment are two of

the six Supervisor entries into the Segment_Manager

.

B-39

— Segment_#

AST2_# Size
Access
Mode

In
Core Class

Known Segment Table Logical View

Type
SST_2ntry Record [AST:2_* AST Index

Size Integer
Access_Mode Integer
In_Core Byte
Class Longword]

Internal ! Internal to the Segnert (Manager !

KST Array [Max_KST_Size KST_Entry]

Known Segment Table Database Definition

Figure 5. Known Segment Table

B-40

Create_Segment (figure 7) is the function which adds a new

segment to the Archival Storage System after validating

the parameters which are passed. The creation of a segment

is accomplished by requesting the Memory_Manager process

to make an entry in the Alias Table and to allocate

storage on secondary media.

The Alias Table is a database which is

maintained by the Memory_Manager . It is a result of the

aliasing scheme used by the lemel to prevent passing

systemwide information (such as the unique identification

of a segment) out of the lernel [20]. The alias of a

segment is the segment number of a "mentor" segment (a

process local variable) and the entry number in the

Alias_Table. The principal implication of the aliasing

scheme is that a mentor segment must be inown before a

segment can be created. The Alias Table will be further

explained in a succeeding section.

The arguments which must be passed to

Create_Segment are the i

Mentcr_Segment_- , the desired

2ntry_* (in the Alias_Table) , the Class of the segment (a

label), and the desired Size of the segment. The KST is

searched to insure that the Mentor segment is inown. Mext,

Non_Discretionary_Security nust be called to determine if

the segment is compatible [2]. (To be compatible, a mentor

segment classification must be less than or equal to the

created segment.) The compatibility chec£ can be performed

in the Sea:ment_Manager or the ^emory^Manager . In addition

3-41

Create Segment Procedure (Mentor_Segment_# Integer
Entry_# Integer
Class Longvord
Size Integer)

Returns (Success_Code Integer)

Entry
Do

If £ST[Mentor_Segment_#] .ASTE_# = Null
Then Success Code := Mentor Seg Not Found

Exit
Fi
If Non Disc Security(?rocess_Class ,

£ST [Mentor_Segment_#] .Class) <> Equal
Then Success Code := Not Allowed

Exit
Fi
Compat_Checlr := Non_Disc_Security(Class ,

KST[Mentor_Segment_#] .Class)
If Com?at_ChecJr - Less_Than
Orif Compat_Checlc = Not_Related
Then Success_Code := Not Compatible

Exit
Fi
If Size > Max_Segment_Size
Then Success Code :- Segment Too Large

Exit
Fi
Signal (Memory_Manager

,

Create Entry,
KST [Mentor_Segment_*T.ASTE_#,Sntry_#, Class, Size)

Success_Code := Wait
Od

End Create_Segment

Figure 7. Create_Segment Procedure

B-42

to the compatibility check, a check must be made to

determine if the process access class is equal to the

access class of the Alias_Table since adding an entry

implies write permission to the Alias_Table. A check is

then made on the Size parameter to insure that it is in

the range of 256 bytes to 321 bytes. The maximum size of a

segment is determined by the size of the design of the

secondary storage page table and the hardware constrains

the segment to multiples of 256.

If an error is discovered during any of the

preceding checks, then an appropriate error code is

returned (e.g., ?arent_Segment_Mot_?ound) . If there are no

errors, the Segment_Manager Signals the tfemory_^anager

with a request to make an entry in the Aiias_Table. The

Segment_Manager must Wait for a success code from the

Memoryj^anager sir.ce the 5ntry_* can only be checked for a

duplication by the Memory_Manager . When the Memory_Manager

Signals the Se«?ment_Manager that the task has been

completed, the Segment_Macager returns the 5uccess_Code to

the process. Mote that the segment has only been created

and if the Supervisor now wishes to reference the segment

it must first request the seg-nent be entered into the KST

(tfake_Known)

.

Delete_Segment (figure S) accomplishes the

reverse of Create_Segment , that is the removal of a

directory entry. The two input parameters for

Delete_Segment are Mentcr_Segment_* and 2ntry_*. Again,

B-43

Delete_Segment Procedure (Mentor_Segment_# Integer
Entry_# Integer)

Returns (Success_Code Integer)

Entry
Do

If KST[Mentor_Segment_#] .ASTS_# = Null
Then Success Code := Mentor Seg Not Found

Exit
Pi
If Non_Disc_Security(Process_Class

,

KST[Mentor_Segment_#] .Class) = Equal
Then Signal (Memory Manager .Delete Entry,

1ST [Mentor_Segment_#] 7aSTI_#, 2ntry_#)
Success_Code := Wait

Else Success~Code := Not Allowed
n

Od

End Delete_Segment

Figure 8. Delete_Segent Procedure

B-44

the mentor segment must be known before the

Segment_m"anager can honor the request. Since the mentor

segment must be known, compatibility was checked when the

segment was created. The process access class must also be

equal to the access class of the mentor segment since

deleting an entry implies write permission. When all

security checks have been made, the 3egment_Manager

Signals the Memory_Manager to delete the entry from the

Alias_Table. The Segment_Manager Waits for the

Memory_Manager to complete the task and it returns the

Success_Code from the Memory_Manager to the Supervisor

process. The Wait is necessary because an error occurs if

the Mentor_Sesrment is not empty prior to the deletion.

c. Managing the Segmented Address Space

A process must declare an intention to use a

segment before it can reference the segment. This

declaration introduces the segment into the address space

of the process. The way the Supervisor declares its

intention to use a segment is to ask that a Segment_# be

assigned. This results in an entry in the

£nown_Segment_Table. Make_Known is the entry point into

the Segment_Manager to accomplish an entry in the £ST.

A call to Make_Inown (figure 9) requires three

parameters: 1) Mentcr_Segment_* , 2) 3ntry_**, and 3)

Access_Mode_Desired. Segment_# is the value which the

Segment_Manager returns to the Supervisor process and is

the index to the KST entry and to the segment descriptor

B-45

Make_£novn Procedure (Mentor_Segment_# Integer
Entry_#~ Integer"*
Access_Mode_Desired Access Jlode)

Returns (Segment_# Integer
Access_Mode_Allowed Access_Mode
Success_Code Integer)

Local Index Integer
4STE_# Word
Class Longvord
Size Integer

Entry
Get Seg #: Do

If 1ST [Mentor Segment_#] .ASTS# = Null
Then Success_Code := Mentor_Not_Inovn

Exit From Get_SegJ*
Else Signal (Memory Manager .Activate ,

KST [Mentor_Segment_#] . ASTE_# ,Sntry_*)
ASTS_#, Class, Size, Success_Code~:= Vait"
If Success Code * Segment Found
Then Index":-

Search: Do
If KST [Index] .ASTE_# = ASTS_#
Then Segment^* := Index

Success_Code := Already_Knovn
Access_Mode Allowed :-

£ST[Segment_*] .Access_Mode
Exit From Get Seg #

Fi
Index * 1

If Index > Max_Number_Of_Segments
Then Exit From~Search~

Fi
Repeat From Search

Od ISearch!

Figure 9. Malce_5nown Procedure

B-46

Index :=

Find Entry: Do
If KST [Index] .ASTE # = Null
Then If Non_Disc_Security(Process_Class

,

Class! = Less_Than
Orlf Non Disc Security(Process Class,

Class) ~ Not_Related
Then Access_Mode_Allowed := Null
Else If Non~Disc~Security(Process_Class,

Class)
- - Equal

Then Access_Mode_Allowed :-

Access_Mode_Desired
Else Access Mode_Allowed :- Read
Pi

?i
If Access_Mode_Allowed <> Null
Then Segment #"": = Index

KSTTSegment #] .ASTE # :- ASTE #
KST [Segment**] .Class := Class"
KST[Segment~#] . AccessJIode :-

Access Mode Allowed
KST [Segment_#] .Size :=~5ize
KST[Segment~#] .In_Core :- No

Success_Code :- Segment_Found
Inner_TC('Add_Seg,Segment_*,
Access_Mode_Al lowed)

Else Segment"* :=~Null
Success~Code := Not Allowed

Fi
Exit From Find Entry

Fi
Index +» 1

If Index > Max_Number_Of_Segments
Then Segment_#~:= No_Segments_Avail

Exit From Get Seg *

Fi
Reoeat From Find_Sntry

Od "iFind Entry!
Od !Get_Seg_#!

End Ma^e Known

Figure 9. Maie_Known Procedure (Continued)

B-47

in the MMU hardware. Different processes using the same

segment will not have the same Segment_# for the segment,

since each process has its own KST. Three parameters are

returned from tfake_Known: 1) the assigned Segment_#, 2)

the Access_Mode_Allowed which may he less than

Access_Mode_Requested, and 3) a Success_Code. If the

Success_Code indicates an error the first two parameters

are Null.

Make_Known first Signals the Memory_Manager

and Waits for the ASTE_* of the segment. If more than two

rings were implemented, ring brackets would also be

reauired from the Memory_Manager [10] . A search of the KST

then will reveal if the segment is already known. If it is

known, the assigned Segment^* the Access_ttode_Allowed

(unchanged), and a Success_Code of Already_Known are

returned. Access_ fiode_Allowed cannot he changed for

segments in the address space. If there is no entry in the

KST, an entry is made by filling in the columns of the KST

at the first available Segment_#.

Non_Discretionary_Security is called to interpret the

security labels of the subject and the object. Access to

the segment is then granted with the access allowed equal

to the less privileged of Access_Mode_Desired or

Max_Access_Allowable . If write access is requested but

security allows only read, read is the access granted. A

call must also be made to the Inner_Traf

f

ic_Controller to

add the segment descriptor to the hardware descriptor list

B-48

(MMTJ) and the software image of the descriptor list.

If the maximum number of segments is exceeded

Make_Known will return No_Segment_Available. The process

then has the option of terminating any other segment to

make room for the required segment. (Mote that the maximum

number of segments allowed by the hardware could be

exceeded without using- all of the linear "virtual core"

allocation or conversely.) Terminate is the entry point in

the Segment_tfanager to remove a segment from the 1ST.

Terminate (figure 13) is responsible for

removing the segment from the address space and reflects

this by removing the entry from the K3T. The only argument

which must be passed is the Segment^* to be terminated.

The return argument is a Success_Code . There are four

errors which can be found by the Segment_manager : 1) a

segment which is not known, 2) attempting to terminate a

segment still loaded in the process virtual core, 3)

attempting to terminate a Kernel segment, and 4) passing

an invalid Segment^* (too large). The Memory_Manager is

Signaled to Deactivate the segment (remove the AST entry)

and a Wait occurs until the Deactivate is completed. Note

that the Wait is to insure that a race condition between

the Kemory_Manager and Supervisor process [11] does not

occur. The 1ST entry is deleted by setting the AST_* of

the KST entry to null, calling the

Inner_Traf

f

ic_Controller to delete the segment from the

descriptor segment and returning.

B-49

Terminate Procedure (Segment_# Integer)
Returns (Success_Code Integer)

Entr7
Do

If KST [Segmental .AST3_# = Null
Then Success Code := Segment Mot Known

Silt
Fi
If KST[Segment_#] ,In_Core = Tes
Then Success Code := Segment In Core

Sxit
Fi
If Segment_# <= Number_Kernel_Segments
Then Success Code := Kernel Segment

Sxit
Fi
If Segment^* > Max_Segment_#
Then Success Code 7= Invalid_Segment #

Exit
Fi
Signal(Memor7_Manager,Deactivate t KST [Segmental ,AST3_#)
Success Code 7= Wait
KST[Segment *] .ASTS # : Null
Inner TC (Delete Seg, Segment #)

Od

2nd Terminate

Figure 10. Terminate Procedure

3-50

d. Moving Segments into Memory

Sva?_In (figure 11) and Swap_0ut (figure 12)

are the two procedures in the Segment_Manager which move

segments between main memory and secondary storage.

(Secondary storage is used as a generic term in this

thesis to indicate all memory of a computer system other

than main or core memory. It includes "tertiary" or lower

order memory.) To move a segment from secondary storage to

main memory, a process must call Swap_In with the

Segment_# and 3ase_Address as arguments. 3ase_Address is

the location in the linear virtual core of the process

where the segment is to begin. This is a virtual core

address and does not correspond to a real address in

memory? in fact, memory cannot be addressed at all except

by addressing a segment. The Segment_Manager indexes to

the segment in the KST to retrieve the necessary

attributes for moving the segment. If the segment is not

found, Segment_Not_?ound is returned. After obtaining the

attributes of the segment, the Segment_Manager Signals the

Memory_Manager to do the transfer. A Wait is then executed

until the Memory_Manager can send the Absolute_Address in

real memory to the Segment_Manager . This information is

passed to the Inner_Traf

f

ic_Controller to update the

absolute address in the hardware and software descriptor

lists. This procedure only works because of the design

choice not to unload a process from a virtual processor.

If processes are unloaded the Memory_Manager would have to

B-51

Swap_In Procedure (Segment_# Integer
3ase_Address Word)

Returns (Success_Code Integer)

Entry
If KST[Segment_#] .ASTE_# = Null
Then Success Code := Seg Not Found

Exit
Fi
Signal (Memory Manager , In, Segment_#,

EST [Segmental . ASTE_#,Base_Address ,

KST[Segment_i] >Access jMode
)~

Absolute_Address , Sue cess _C ode"": = Wait
If Success_Code * Svapped_In
Then Inner TC (Load, Segment #, Absolute Address,

1ST [Segment^*]". Size)
KST[Segment_#] .In Core :- Tes

Fi
End Swap_In

Figure 11. Svap_In Procedure

B-52

Svap__Out Procedure (Segment_# Integer)
Returns (Success_Code Integer)

Entry
If KST[Segment_#l .AST3J_# = Null
Then Success_Code := Seg_Not_Found

Sxit
5 1

Written := Inner_TC (Unload, Segment.*)
Signal (Memory_Manager,Out ,IST [Segmental .AST3_#, Wri tten)
KST[Segment_#]7ln_Core := No
Success_Code := Swapped_Qut

2nd Swap_Out

Figure 12. Swap_0ut Procedure

B-53

call the Inner_Traff ic_Controller. The parameter returned

to the process indicates if the segment swap-in was

successful.

The move in the other direction—main memory

to secondary storage—is performed by Swap_0ut. The only

input argument is the Segment_# and Success_Code is the

only return argument. After validation of the Segment_#,

the Segment_Manager calls the InnerJTraf

f

ic_Controller to

obtain the status of the hardware changed bit. This is in

turn passed by Signal to the Memory^Manager to make the

change. Success_Code is set to Swap_0ut and the

Segment_Manager returns. If more than one processor is

used in the system, race conditions should be investigated

in this procedure of allowing the Segment_Manager rather

than the ^emory_Manager to call the

Inner_Traf f ic_C on

t

roller.

To this point the usual order for invoicing the

Segment_Manager functions has not been specified. There is

a usual sequence of events. In order: Create_Segment to

make an Alias_Table entry, Make_Known to introduce the

segment into the address space, and Swap_In to move the

segment into the process's virtual core are the steps

necessary before a process can make a reference to a

segment. Conversely, 5wap_0ut, Terminate, and

Delete_3egment is the order to move a segment from main

memory to secondary storage, remove the entry from the KST

and descriptor from the MP.O*, and remove the segment from

B-54

the address space. If the functions are called in any

other order, the usual result is an error condition and no

action is taken. No "harm' results from calls made out of

sequence

.

5 . Traffic Controller Module

The Traffic-controller is responsible for

multiplexing processes onto virtual processors. A virtual

processor is an abstraction which describes a logical

processor. There are multiple virtual processors which

exist on a single physical processor. The

Traf

f

ic_Controller is also the Kernel module which

supports the interprocess communication primitives, Block

and Vake_'Jp. In the Archival Storage System, 31oc£ and

Wake_Up are the last two of the six user entries into the

lernel. There are four other procedures in the

Traff ic_Controiler which implement the scheduling

algorithm and provide message queue services for Block and

WakeJJp.

a. Active Process Table

The database of the Traf

f

ic_Controller is the

Active Process Table (APT) (figure 13). This is a

fixed-size table in the Sernel because of the decision not

to create or destroy processes. When the Archival Storage

System goes through system generation, each process will

be created and an entry made in the APT. The process will

then be active for the life of the system. Sach active

orocess will have a uniaue identifier (?rocess_ID) which

B-55

rProcess ID

Priority State
Wake Up
Waiting
Switch

Priority
Req'd
Virt

Processor

i

,

Figure 13. Active Process Table

B-56

is also the index to the APT. Note that if processes were

created and destroyed, then allowing Process_IDs to leave

the Kernel could create a communication path. In that case

the Process_ID should he "'virtualized" . The State field of

the APT indicates whether a process is blocked, ready, or

running.

An explanation of the interprocess

communication primitives is necessary here. Block and

Wake_0*p [19] are the interprocess communication primitives

used hy cooperating processes in the Supervisor domain.

Invocation of the primitives is actually a call to the

Traff ic_Controller and causes the Traf

f

ic_Controller to

execute the scheduling algorithm. A process calls Wake_tfp

when it has a message or task for another process. Wake_Up

will set the state of a blocked process to ready. If the

process is ready or running it will have no effect on the

status of the process. When a process cannot continue

execution until a reply to a Wake_Up is received, the

process must block itself. Block will set the process

status to blocked.

Within the Kernel Signal and Wait are the

primitives used for communication. They function in the

same manner as Block and Wake_up, but are calls to the

Inner_Traff ic_Controller instead of the

Traff ic_Controller . Signal and Wait are bounded in time

which indicates that they are guaranteed to return. Block

and Wake Up are not bounded since no claims can be made

B-57

about correctness of calls from outside the Kernel. It Is

possible for a user process to call Block erroneously and

never be heard from again.

The Wake-Up Waiting Switch is Saltzer's [19]

mechanism for synchronization' of interprocess

communication primitives. Without the switch a race

condition can occur. For example, the following sequence

of events could happen because processes can run

simul taneously:

1) Process A looks in its work queue

and finds it empty.

2) Process 3 puts a task in A's work queue.

3) B wakes up A.

4) A blocks itself.

At step 3, A was running, so the wake-up sent by B was

ignored. When A called block, a task is in the work queue,

but A missed the wake-up signal, so the task remains

uncompleted. In particular, if A was expecting some event

necessary for A to continue, A may never wake-up.

The Wake-Up Waiting Switch prevents the

occurrence of such a situation by requiring the following

sequence of actions:

Process 3:

1) Process 3 puts task in Process A's

work queue.

2) Wake-up A and turn wake-up waiting

switch on.

Process A:

1) Reset the wake-up waiting switch to off.

2) Look in the work queue and find it empty

3) Call Block, which returns if wake-up

waiting switch is on.

Now, the above sequences can occur in any time

relationship and the wake-up signal will have the desired

effect

.

The Traffic-controller uses the priority field

for determining what process to schedule to run on the

virtual processor. The Reauired_?irtual_?rocessor field is

used to hind a loaded process to a specific virtual

processor. Only two processes run on a virtual

processor— the loaded process and the "idle" process. This

is a direct result of the simplifying design choice (to

have all processes loaded) made for the Archival Storage

System. In general, processes must he loaded and unloaded.

The Idle process is put into the running state whenever

the loaded process clocks itself.

b. Interprocess Communication Primitives

Because the Archival Storage System does not

allow creation or destruction of processes except at

system generation, the only external entry points into the

Traf

f

ic_Controller are Block and Wake_"Jp. As previously

explained, Block and ¥ake_Up are the primitives used by

Supervisor processes for interprocess communication.

Block (figure 14) is called when a process

B-59

Block Procedure
Returns (Process_ID Integer

Message~Message_Type

)

Entry
If APT [Process, ID] .VakeupJfaiting_Switch =

Then APT [Process ID] .Wakeup Waiting Switch
Else APT [?rocess~IDJ .State 1- Blocked

Sched_Read7 Process
?i
?rocess_ID, Message :- Get_First_Message(Message_Queue)

On
:= Off

End 31ock

Figure 14. Block Procedure

B-60

cannot continue until the occurrence of some other event.

After going through the Sate_Keeper, the call enters the

Traffic_Controller. The Wake_Op_Waiting_Switch is

immediately checked. If the switch is on, the switch is

reset to off, and the first message in the Message_Cueue

for the process is retrieved. The Traf

f

ic_Controller then

returns through the Gate_Keeper.

If the Wake_0*p_Waiting_Switch was off then the

state of the process is set to Blocked.

Sched_Ready_Process is called to schedule the highest

priority ready process on the virtual processor. In the

Archival Storage System this is a trivial task, because

the only other process which is loaded on the virtual

processor is the idle process. The idle process can never

block itself, so it must always be either running or

ready. In fact the idle process will only consist of a

halt instruction.

The Traf

f

ic_Controller could have been

collapsed into the I nner_Traf f ic_C oatrolier for this

design, but preservation of generality was a design goal.

Later extensions will be easier to implement since the

basic structure of the Traf fic_Controller is present.

The counterpart of Block is Wake_Up. Wake_'Jp

(figure 15) is used by processes in the Supervisor domain

to pass messages to other processes in the Supervisor

domain. Upon entry into Wake_Up, the message is placed in

the Message Queue of the awakened process. The

B-61

Vake_lTp Procedure (Wakeup_Process_ID Integer
Message~Message JType

)

Returns (Success_Code Integer)

Entry
Do

Success_Code := Insert_Message (Wakeup_?rocess_ID Message)
If Success_Code - Queue_Overf low
Orif Succels Code = Not Allowed
Then Exit
Else APT [Wakeup_?rocess_ID] .Wakeup_Waiting_Switch := On

If APT [Wakeup_Process_IDl .State = 31ocked
Then APT [Wakeup_Process_ID] .State := Ready

Enter_Ready~Queue (Wakeup Process ID)
Fi
APT [Process ID] .State = Ready
Enter_Ready_Queue(Process_ID)
Sched_Ready_?rocess

Fi
Od

End Wake Up

Figure 15. Wake-up Procedure

B-S2

Wake_Up_Waiting_Switch of the process to be awakened is

then set to On. Then if the process state is blocked it is

put into the ReadyJ5ueue and the State is set to ready.

Regardless of the state of the awakened process, the

waking process then puts itself into a Ready State and

Enters the Ready_Queue itself. This is necessary because

the process to be awakened may have a higher priority than

the waking process. Ivery time either Slock or 'Vake_Up is

called the scheduling algorithm is executed

(Sched_Ready_?rocess)

.

c. Process Scheduling Algorithm

inter_Ready_Queue (figure 16) and

Sched_Ready_?rocess (figure 17) are two internal functions

of the Traf

f

ic_Controller. 2n ter_Ready_Cueue is used for

placing a ready process into a first-in, first-out queue

which is organized by priority (figure IS). The

Ready^Queue is designed as a two-dimensional array indexed

by Priority and a top and bottom pointer. The algorithms

for all queue operations are taken from Knuth [21]. When a

Process_ID is to be added to the queue the bottom pointer

for the appropriate priority queue is incremented by one.

If the bottom pointer is at the bottom of the linear array

which implements the queue then it is set to the first

location of the array, thus wrapping around. The physical

length of each queue column is equal to the total number

of processes which can be entered into that queue at any

point in time so that the queue cannot overflow. The

B-63

Enter_Ready_Queue Procedure (Process_ID Integer)

Entry
If Ready_Queue_Bottom [APT [?rocess_ID] .Priority] *

Max_Queue_ Length
Then Ready_Queue_Bottom [APT [Process_ID] .Priority] :=

Else Ready Queue~Bottom [APT [Process ID] .Priori ty] «•» 1

Fi
Peady_Queue[A?T [Process_ID] .Priority, Ready_Queue_Bottom]

:- Proceis_ID

End Enter_Ready_Queue

Figure 16. Enter_Ready_Queue Procedure

B-64

Sched_Ready_?rocess Procedure

Entry
Priority := Max_Priority
Scan: Do

If Ready_Queue Top [Priority] =
Ready~Queue~3ottom [Priority]

Then Priority -- 1

If Priority < Min Priority
Then Exit Prom Scan
Else Repeat From Scan
Fi

Else If Ready_Queue_Top [Priority] = Max_Queue_Length
Then Ready_Queue_Top [Priority] :=

Else Ready~Queue~Too[Priority] +- 1

Pi
Run: If APT [Ready_?rocess_ID] .Reqd_7irt_?rocessor

= ?rocessor_ID
Then APT [Ready_?rocess_IID] .State := Running

Inner_TC (Swap_MMU7Ready_Process_ID)
Else Get_Next_Process(Ready_Queue

)

Repeat From Run
Fi

Fi
Od

End Sched_Ready_?rocess

Figure 17. Sched_Ready_?rocess Procedure

B-65

Priority >

Top [Priority] >

Bottom [Priority]

high low

-

Figure 18. Ready Queue

B-66

?rocess_ID is placed into the array at the location

pointed to by the bottom pointer. The queue is always

entered at the logical bottom and removal takes place from

the logical top.

The procedure which removes the processes from

the top of the queue is Sched_Ready_?rocess. The function

of Sched_Ready_?rocess is to "pass" (as a baton in a relay

race) the current virtual processor to the highest

priority, ready process which can run on this specific

virtual processor. Starting with the ttax_?riority queue,

each queue is scanned until the first ready process that

can run on the virtual processor currently executing in

the Traf

f

ic_Controller is encountered. Each oueue is

tested in turn to determine if it is empty. If the queue

is empty, then the next lower priority queue is scanned.

The existence of an Idle process for each virtual

processor guarantees that a ready process is always found,

so the Traf

f

ic_Controller cannot exit without scheduling a

process. When a ready process is found, then the process

State is set to running (scheduled) and the

Inner_Traff ic_Controller is called to Swap_MMU. This

generally will load the process descriptor segments into

the Virtual_Processor_MMU, but in the design of the

Archival Storage System the MMU of the Idle process is

identical to the MMU of the loaded process.

d. Message Cueue Operators

The Message_Cueue (figure 19) is a

B-67

Process ID

Top[Process_ID]

3ottom[?rocess_ID] *

Message
Frame

Message
Frame

Message
Frame

Message
Frame

TOP

Process ID Process ID

BOTTOM

Figure 19. Message Queue And Pointers

B-68

two-dimensional array of message "frames". It is indexed

in one dimension by the ?rocess_ID and in the other

dimension by a top and bottom pointer. Insert_Message

(figure 20) is the primitive used by WaseJJp to put a

message into another process' message queue. The design

only allows communication between processes of equal

security class since a Success_Code is returned to the

waking process. Get_?irst_Message (figure 21) is the

primitive used by Block to retrieve messages from the

message queue. If the queue is empty, the message

"Queue_2mpty" is returned.

6. Non-Discretionary Security Module

The key to implementing a particular

non-discretionary security policy is in one module. Ey

representing the policy as a partially ordered lattice, an

interpretation algorithm can be written to make a

comparison between two labels and return a relationship.

The relationship can be equal, less than, greater than, or

not related.

The Non_Discretionary_Security Module shown in

figure 22 will determine the relationship of three

categories of classification (Secret, Confidential,

Unclassified). As shown there are no checks for

compartments (e.g., crypto, nuclear, etc.). If a complete

DOD security policy interpretation is desired, the module

can be expanded. Since some DOD specifications require

provisions for eight categories and sixteen compartments,

B-69

Insert Message Procedure (Message Queue_ID Integer
Message~Message_Type

)

Returns (Success_Code Integer)

Entry
If Non_Disc_Security (APT[?rocess_ID] .Class

,

APT[Message Queue ID]. Class) = Equal
Then
If Message_Queue_Bottom [Message_Queue_ID]

= Max_Queue_Length
Then If Message_Queue~Top [Message_Queue_ID]

Then Success_Code := Queue_Overflow
Else Message_Queue 3ottom [Message Queue_ID] :-

Message~Queue [Message_Queue_Td

,

Mes s age_Queue_Bot torn [Message_Queue_ID]

]

:= Message, Process_ID
Success Code := Inserted

Ft
Else If Message_Queue_Bottom[Message_Queue_ID] + 1

Message_Queue_Top[Missage~Queue_ID]
Then Success_Code :- Queue_Overf low
Else Message~Queue Bottom [Message Queue_ID] += 1

Message~Queue"[Message_Queue_Il3

,

Message_Queue_3ottom [Message_Queue_ID]

]

:= Message, Process ID~
Success Code := Inserted

Fi
?i
Else Success Code := Not Allowed
Fi

End Insert__Message

Figure 20. Insert_Message Procedure

B-70

Get_First_Message Procedure (Message_Queue_ID Integer)
Returns (First_Message Message_Type)

Entry
If

The
Els

Message_Queue_Top[Message_Queue_ID] =

Message_Queue_So ttom [Message_Queue_ID]
n First_Message~:= Queue_Empty~
e If Message_Queue_Top [Message_Queue_ID] =

Max_Queue_Lingth
Then Message Queue Top [Message Queue ID] :=

1

Pi

Else Message Queue Top [Message Queue ID] +=
Fi
Firs t_Message := Message_Queue [Message_Queue_ID t

Message_Cueue_Top [Message_Queue_ID]

]

End Flrst_Message

Figure 21. Get_First_Message Procedure

B-71

Non_Disc_Security Procedure (Class_l Longword
Class~2 Longword)

Returns (Relationship Integer)

Entry
If C

Ca
la
se
If

Ca
n
se
If

Ca
Fi

se
If

Unclassified Then
Class_2

Case Unclassified Then Relationship := Equal
Case Confidential, Secret Then Relationship

:= Less_Than
Else Relationship :- Not_Related

Confidential Then
Class,

2

Case Unclassified Then Relationship := Greater_Than
Case Confidential Then Relationship := Equal
Case Secret Then Relationship := LessJThan
Else Relationship := Not_Related

Secret Then
Class,

2

Case Unclassified, Confidential Then
Relationship := Great er_Than

Case Secret Then Relationship := Equal
Else Relationship := Not Related

El
Fi
se

Fi
Relationship :- Not Related

End Non_Disc_Security

Figure 22. Non_Disc_Security Procedure

B-72

a longword was chosen as the data type for representing

the labels. The 32 hits of a longword are more than

sufficient to represent all possible combinations of

categories and compartments.

Similarly, Privacy Act requirements are easily

implemented in Non_Discretionary_5ecuri ty since they can

be represented by a lattice structure. Most other

practical non-discretionary security policies can be

implemented as well.

7. Inner Traffic Controller Module

The Inner_Traff ic_Controller provides the

multiplexing of virtual processors to the real processor

of the system. Zach loaded process will be allocated to a

virtual processor, implying that there is a many to one

correspondence. In order to manage these virtual

processors, the Inner^Traf

f

ic_Controller has direct access

to the machine hardware. The Memory Management Unit and

processor state are loaded and unloaded by the

Inner_Traff ic_Controller, thus accomplishing the

multiplexing to the physical processor.

In addition to managing ths virtual

processors, the Inner_Traff ic_Controller furnishes

inter-process services. Signal and Wait are used by

processes in the kernel ring to communicate with other

lernel rin^ processes and are primitives of the

Inner_Traff ic_Controller.

The main database used to handle the

Inner_Traff ic_Controller functions is the

7irtual_?rocessor_Table . additionally, a software image of

each MMU is maintained for every loaded process.

a. Virtual Processor Table

The Virtuai_Processor_Table (figure 23) is

indexed by the Virtual_Processor-ID. Each virtual

processor can be in one of three states: 1) Running, 2)

Heady, or 3) Waiting. These three states are analogous to

the state of a process and are used for processor

scheduling in the same manner as the Traffic-controller

used the state of a process for scheduling processes.

After the State field is the Signal_?ending_Switch which

functions precisely as the Waice_Up_Wai tiag_Swi ten for

preventing a race condition from occurring with the

interprocess communication primitives. Priority is the

next field which is also analogous to the APT priority.

Loc_Processor_S tate is a pointer to the area

in memory where the MMU software image is maintained as

well as the "save bloc*" for the machine state of the

virtual processor when it is ready or waiting. Figure 24

is an example of the format of the MMU image.

b. Kernel Interprocess Communication Primitives

Signal and Wait function in the same manner as

31oc£ and Walce-Up. The chief distinction between the pairs

is the degree of trust placed on the correctness of use.

Since Signal and Wait are Kernel primitives which are used

only by process operating in the Kernel domain, the calls

B-74

Urt_
Processor
ID

State
Signal
Pending
Switch

Priority
Loc_
Processor
Image

•

Figure 23. Virtual Processor Table

Mapping
Register 1

Mapping
Register 2

AJ

Mapping
Register 128

Machine
State

High Byte"
Low Byte

Limit (Size
Attributes

Tags'
Control Word
egment g

Offset (High)
Offset (Low)

Figure 24. MMU Image

B-76

can be guaranteed to return. The same trust cannot be

placed on the calls to Block and Wake_Up by processes in

the Supervisor ring. The loop free structure implies that

the Kernel neither knows nor cares what happens in the

outer domain (or domains, if present). let, the Kernel

must not allow the security state of the machine to change

except in accordance with the rules of the mathematical

model. Block is restricted to communication among

processes at the same level. The Kernel must call upon

processes operating at different security levels to

accomplish its task: and thus needs a different primitive

since systemwide information is being passed.

With one exception, Signal (figure 25) and

Wait (figure 25) function in the same manner as Waiee_Gp

and Block: do in the Traf f ic_Controller . Since the data

structures in the Inner_Traf

f

ic_Controller function with

virtual processors, the S ignaled_?rocess_ID or ?rocess_ID

(input parameters) must be translated into a

Signaled_?rocessor_ID or Processor_ID . A one-dimensional

table is maintained for this purpose. Because the

Inner_Traf

f

ic_Controller must complete its task before it

returns to the calling procedure and is synchronous to the

progress of the process, the table translation of process

to virtual processor works. The Idle processes will never

try to Signal or Wait and will never cause the scheduling

algorithm to be executed.

It is oossible for the Idle process to be

B-77

Signal Procedure (Signaled Processor_ID Integer
Signal_Message Message_Type)

Returns (Success_Code Integer)

Entry
Do

Signaled_Processor_ID : = Map(Process_ID)
Success_Code :- Insert_Message(Signaled_Processor_ID Messaa
If Success_Code = Queue_Overflov
Orif Success_Code Not~Alloved
Then Exit
Else VPT [Signaled Processor ID] .Signal Pending Switch := C

If VPT [Signaled Processor ID] .State Waiting
Then VPT [Signaled_Processor_ID] .State := Ready

Enter Ready Queue (Signaled_?rocessor_ID)
Ti
VPT [?rocessor_ID] .State = Ready
Enter_ReadyJ3ueue(?rocessor_ID)
Sched_P.eady_?rocessor

Fi
Od

End Signal

Figure 25. Signal Procedure

B-78

Wait Procedure
Returns (Process_ID Integer

Signal_Message Message_Type)

Entry
Processor ID := Ma?(Process ID)
If VPT [Processor ID] .Signal Pending Switch = On
Then VPT [?rocessor_ID] .Signal_?ending Switch := Off
Slse VPT [?rocessor"lDl .State 7= Waiting

Sched Ready_?rocessor
?i
Signal_Message :- Set _First_Sig_Mess (Sig_Queue[?rocessor_ID])

End Wait

Pigure 26. Wait Procedure

B-79

scheduled on each virtual processor in the storage system.

'When that occurs the real processor will come to a

standstill, executing a Halt instruction. At first glance

this would seem to be an error condition, hut in reality

it is not. Since the Archival System is driven by external

events this may at times be a normal state. When a request

is made from a Host, the interrupt handler (an I/0_Manager

entry) will Signal (via the InnerJTraf

f

ic_Controller) the

appropriate process and cause the scheduling algorithm to

be executed.

c. Service Functions

All of the functions of the

Inner_Traff ic_Controller are called from the Kernel ring.

Add_Seg, Delete_Seg, Load, and Unload are service calls to

support the Segment_Manager . These are hardware dependent

functions and the details of their design will be

influenced by the specific characteristics of the MMO and

CPU hardware. Add_Seg makes an entry into an MMU hardware

descriptor and also the MMU software image. This call is

made from Make_Inown and will only set up the descriptor.

Since the segment has not been Swapped_In at this point,

the address fields of the descriptor will be null and the

attribute field of the descriptor will be set to inhibit

the CPU from making access.

Delete_Seg is called from terminate and is

required to remove an entry from the MMU and the software

image. Load will place the absolute location of the

B-80

segment base address into the MMU and change the

attributes to allow the CPU access. Unload removes the

segment base address, inhibits CPU access again and also

retrieves the changed bit from the attribute field. This

changed bit is set when a segment is written and is used

by the Memory_Manager to decide if the segment can be

overwritten or if it must be written back to secondary

storage. A variant of Load and Unload is needed by the

Memory_Manager when doing a local to global move.

Swap_MMU is called from the Traf

f

ic_Controller

and is a result of the scheduling algorithm being

executed. In the general case a process swap would occur

on the virtual processor as a result of this call. In the

Archival Storage System, there are only two processes

which are allowed to run on a virtual processor: 1) the

loaded process or 2) the Idle process. An MMU swap will

still occur conceptually when the idle process is loaded

because it has an MMU image just as any other process.

Actually the idle process's MMU image is exactly the same

as the loaded process, so a physical swap does not take

place.

Other service calls will be made to the

Inner_Traff ic_Controller from the Memory_Manager and

I/C_Manager but are not detailed here. Software faults, as

discussed in O'Connell and Richardson [5], are not needed

in this design.

S. Memory Manager Module

B-81

The Memory_Manager is a non-distributed Kernel

process and is responsible for managing the real memory

resources of the system. The real memory of the system is

both main memory (random access) and secondary storage

(non-random access). The Memory_Manager could be part of

the distributed Kernel in the Archival Storage System

since it is designed for a single microprocessor? however,

the process abstraction is used to maintain the "family

member" character of the design.

a. Memory Management Scheme

The two main tasks of the Memory_Manager are

to bring segments into memory (In) or remove segments from

memory (Out). Partitioned allocation is the scheme

employed to manage the memory resource. Sach loaded

process is given a partition of linear contiguous real

core and is required to manage (via calls to Swap_In and

Swap_0ut) the partition (its linear virtual core) in any

way it chooses. The Memory_Manager checks each 'In'

request against the process's allocation to insure that

the allocation is not exceeded and to insure that

previously allocated memory is not overlayed.

When a shared segment is not writeable (i.e.,

write permission has not been given to any process), the

design allows multiple copies (one per process) of the

segment to exist. This frees the Memory_Manager from the

task of moving the segment to "processor global' memory,

requesting that all MMU images be updated, and reserves

B-82

global memory for segments which are shared and writeable.

Furthermore, the space that can he saved by having one

copy would not be usable by the processes which are

sharing the segment, since each process's Supervisor would

still have the segment in its virtual core.

If a segment is to be shared and is writeable,

then the tfemory_Manager must move it to global memory [5]

.

This insures that all users are sharing the same

information. Again, the actual location of the segment is

invisible to the sharing processes. More memory is

allocated to the segment than it actually uses: viz., one

copy per sharing 'process. However, the alternative to

using memory is a complex algorithm for dynamically

reconfiguring the mapping of each partition whenever a

shared segment is relocated in memory. The tradeoff of

memory size for complexity is indicated in this

application. Segments are placed in memory within the

appropriate partition at the location specified by the

Supervisor call to 3wap_In. A simple bit map icnown as the

Memory_Allocation_Map (figure 27) is used to indicate

which parts of memory are available for use. Each bit of

the map corresponds to a 256-byte page of memory. The term

page is not used here in the classical sense, but is used

to indicate a block: of physical memory. Segments cannot be

divided into pages scattered through core, but must be

allocated to contiguous memory locations.

The primary database of the Memory_Manager is

B-ST3

/

Memory Bit Map

Page 012345678911111.
12 3 4

V-

2222222222
4444555555
6789012345

I/O
Manager

Memory
Manager

#1 Global

Jigure 27. Memory Allocation Map

B-84

the Active_Segment_Table. It provides the Memory_Manager

with the information necessary for managing all segments

in the system which are active.

b. Active Segment Table

There are two sections of the

Active_Segment_Table (AST). That portion of the AST which

contains systemwide information is known as the

Global_Active_5egment_Table (G_AST). Every active segment

in the system will have an entry in the G_AST. The

Memory_Manager also maintains a portion of the AST per

physical processor as the Local_Active_Segment_Table

(L_AST). Only those segments active within the 'physical

processor will he in the L_AST.

When a segment is *Made_£nown" it becomes

active and will have an entry in the G_AST (figure 29) and

in the appropriate LJLST (figure 29). The concatenation of

the segment's Uniaue_ID and the index to the segment's

entry in the G_AST form the AST3_* which is the "handle**

passed by the ^emory_Manager for identifying a specific

active segment. When the tfemory_Manager uses the "handle"

to enter the G_AST, it uses the 2ntry_# of the ASTS_#

portion as the index. In the general case (e.g., demand

activation/deactivat ion) , the Unique_ID of the "handle" is

then compared with the Unique_ID found in the G_AST entry.

If the identification check results in a mismatch, the

G_AST must be searched using the Unique_ID as a key to

find the correct entry. This procedure is necessary

3-85

'ASTS #

LOCK

Unique
ID

Global
Addr

Connected
Processors

Written
Bit

Write-
able
Bit

Alias
Table
ASTE #

#
Entries

Active

Page
Table
Addi

Figure 23. Global Active Segment Table

Unique
ID

Access Absolute
Address

Size
["-—

i

Segment

Figure 29. Local Active Segment Table

B-86

because it is possible that a segment's entry could be

moved in the G_AST before all processes could be notified

of the new AST5_#. If this occurred and a check was not

made, an unauthorized access could then take place. If the

match- is successful when first checked, the proper entry

has been found. In this design all known segments for all

processes are active so this problem cannot occur.

Since the G_AST is a systemwide resource a

lock must be used on the G_AST to prevent a race condition

from occurring [11]. The mechanism used in the design is a

locked/unlocked flag. Synchronization on the lock is

inherent in the functioning of the ttemory_Manager 's

Signal_Message_Queue . Note that this mechanism will not

work if the design is extended to include more than one

processor in the system sharing the single S_A3T.

The Global JLddress field is used only if the

segment is located in global memory. If it is null the

address can be found in the L_AST. The Connected_?rocesses

field is a bit map signifying which processes currently

have the segment active.

The Written flag is used to retain a written

bit when a process Swaps_0ut a segment which is shared and

writeable. For example: Processes A and 3 are sharing a

segment and Process A has write permission. A has written

in the segment and now wants to deactivate the segment.

Process 3 is still using the segment. When A requests the

Deactivate, the Written bit is passed to the

B-87

Memory_Manager . But since B continues to use the segment,

the Memory_Manager will only reset Process A's flag in the

Connected_Process field. The Written hit is then logically

ORed with the G_AST_Writ ten_Flag. When B then Deactivates

the segment, the Written hit it passes indicates that a

write has not taken place. An error would have occurred if

the Written hit from Process A had not heen saved since

the Memory_Manager does not write an unmodified segment

hack to secondary storage.

The Writeable flag is set whenever any process

has write access to the segment. This is the key flag for

deciding (at the time activation is requested) if the

segment must he placed in glohal memory. It cannot

conveniently he used to provide an alternative to the

scenario presented above for Written. Consider that

Processes A, 3, and C all have writeable shared access. If

A Deactivates after writing, the Memory_Mana<*er could

write back to secondary storage at that time, (assuming

the proper synchronization was used to prevent 3 or C from

writing while the transfer took place). Then when 3 or C

Deactivated after writing, another write to secondary

storage would take place. Thus at least one unnecessary

action took place.

The Alias_Table_AST:S_# will be null unless the

segment is a mentor segment. Whenever a mentor segment is

made active its AliasJTable segment is made active at the

same time and will be assigned an AST2_*. (The AliasJTable

B-88

is a Memory_Manager object. The Alias-Table is actually

implemented as a collection of segments.)

In the general case with. demand

activation/deactivation, the #_Entries_Active is a field

which is used for Alias_Table entries only. An Alias_Table

segment must remain active as long as any of its entries

are active, although it need not remain in main memory.

The #_Entries_Active is a counter which is incremented any

time an Alias_Table Entry is activated and decremented

when an Alias_Table Entry is deactivated. Thus the

AliasJTable frame can be deactivated only when the

Connected_Processor map of the mentor segment and the

#_Entries_Active both become zero or null. (Note that the

Connected Processor Map of the Alias_Table segment will

always show only the physical processors whose

Memory_Manager has the Alias_Table in its address space.)

In this design all known segments are active so these

explicit checks upon deactivation are not required.

The remaining field of the G_AST is the

?age_Table_Address . The ?age_Table_Address is the location

in secondary storage of the page table. The page table in

turn provides the location of the segment.

The L_AST portion of the AST is maintained per

physical processor and should not be confused with a

distributed data structure since the L_AST is a

Memory_Manager data structure and not part of the

distributed Kernel. It is searched by Virtual_Processor_ID

B-89

and segment Unique_ID. The remaining four fields are

Access, Absolute_Address , Size, and Segment_#. The Access

is the read or read/write access of the segment available

for use in moving between local and global memory. The

Absolute_Address is- the location of the segment in main

memory. If Absolute_Address is null, the segment is on

secondary storage and has not been moved to main memory,

c. Aliasing Scheme

The Memory_Manager also provides the aliasing

service for the system. Each segment which exists in the

Archival Storage System has a Unique_ID. This Unique_ID is

an integer which uniauely identifies each segment. It is

chosen from a large list of integers. Since the data type

is a longword, the list contains more than four billion

unique integers. To prevent a communication path from

existing when a segment identification must be passed out

of the Kernel, an alias is provided which srirtualizes the

Unique_ID. When a process wishes to create a new segment,

it must pass the Kernel a Mentor_Segment_# and a desired

2ntry_#. The mentor segment can be any segment the

Supervisor wishes, but an entry for the mentor must be in

the Known_Segment_Table of the process. The

Segment_Manager then looks up the ASTE_# of the segment

and Signals the Memory..Manager with the ASTE_# and

Entry_#. The Memory_Manager maintains a flat file system

known as the Alias_Table (figure 30) which is systemwide.

Every active mentor segment has an ASTE_# for a segment of

B-90

-2ntry_#

y

Uniaue
ID

Si2e Access
Class

Page
Table
Address

Alias
Table
Address

Figure 30. Alias Table

B-91

the Alias_Table. When the Memory_Manager receives a Signal

which requires use of the AliasJTable, the Memory_Manager

brings the appropriate Alias_Table segment into memory.

The Sntry__# is then used as an index into the Alias_Table

where the Memory_Manager can determine the Unique_ID and

physical attributes of the indexed segment. A segment

exists for each entry in the AliasJTable.

The attributes found in the Alias_Table are

the segment Size, the location of its secondary storage

Page_Table, the segment Access_Class, and the secondary

storage page table of its Alias_Table segment if it is a

mentor segment. AliasJTable storage is allocated when the

first reauest for an Alias_Table entry is made, and is

deallocated whenever the segment is empty. The

Memory_Manager will not honor a request to delete a

segment if it has an Alias_Table segment. If this deletion

were allowed, storage space would be lost forever since

the AliasJTable segment of the mentor segment and any

segments referred to by that AliasJTable segment would not

be recovered.

d. Storage Allocation

The Memory_Manager is responsible for

controlling storage media as well as main memory. The

storage hardware for this design is anticipated to be a

type cf hard disk using the Winchester technology.

However, the design may be initially implemented on an

eight-inch "floppy"* disk drive using the IBM standard,

B-92

single density format. Using this standard, a single disk

has 77 tracks of 26 sectors each available for storage.

Sach sector stores 123 bytes of information.

Since the Z8000 hardware allows segment sizes

in multiples of 256 bytes, it is convenient to establish a

"page" size as 256 bytes. Using this scheme, a ^age can

then be stored in two sectors of the disk. A page then

becomes convenient as the size of a page table. The page

table is used to record the location of each page of the

segment on the disk. If the location of each page is

stored in unpacked form, a total of 128 page locations can

be stored in a page. Mote, however, that this scheme uses

only 11 of the 16 bits which can contain information (7

bits for the track index, and 4 for the sector index), and

can easily be reduced to 10 bits since every other sector

is not explicitly indexed. This means that 1024 pages can

be addressed by one page of a ?age_Table and is adequate

to store the maximum size segment (256 pages) allowed by

the Z3000 hardware.

k free page bit map is needed in order to

record which pa^es on the disk are available and which are

allocated. This will also reouire one page on the disk.

This scheme allows the disk space to be allocated to

segments from the "free list" and does not require complex

compaction algorithms. If other forms of storage media are

used they can be easily adapted to this scheme.

9. Input_Output Manager Module

3-93

The I/C_Manager is the non-dis tribute! Kernel

process which is concerned with moving information across

the boundaries of the Archival Storage System. It manages

the input and output ports of the system as a resource in

much the same way' as the Memory_Manager handled the memory

resource. The I/0_Manager would use an Attach_Table to

virtualize the system ports. While the I/0_Manager is a

process in the general case, it can be designed and

implemented as a distributed Kernel function.

B-94

HI . CONCLUSION AND FOLLOW ON WORK

The detailed design of the Security Kernel for a data

warehouse has been presented. This design is suitable for

implementation on a Zilog Z3000 microprocessor-based

system. A minimal subset of a family of secure operating

systems has been demonstrated to exist and can be

implemented on microprocessor hardware which is available

today. This design also shows the feasibility of an

Archival Storage System that can be the nucleus of a

distributed, multi-microprocessor computer system by

providing archival storage with multilevel security.

The design illustrates the utility of modern software

engineering techniques. A loop-free structure was

maintained as a design goal, preserving the ability to

modify a module without introducing change in any other

module. An explicit process structure simplifies the

design for asynchronous functions. Functionality of this

family member can be extended by including additional

primitives from the larger set of primitives described by

O'Connell and Richardson [51.

Security of information was a primary goal throughout

the design process. A. mathematical model was used as a

foundation for the Kernel to insure properly designed

security. A multilevel security capability is included for

the storage system. Furthermore, on this base a complete,

multilevel secure, distributed "system" can be constructed

with the storage system as the only component requiring

B-95

multilevel security.

While designed for a single microprocessor with, memory

management unit support, the structure of the high level

design which allows configuration independence was

preserved. The same concepts for reducing "bus contention

in a multiprocessor system while providing data sharing

were used and can he easily extended, e.g., for increased

processing capacity to serve a large number of higher

"bandwidth hosts .

Implementation of the Archival Storage System is an

area for further work. The distributed Kernel data

structures and procedures are described in this thesis.

Additional effort will produce compilable implementation

code and from this code generate a loadable system. The

Kernel non-distributed processes for I/O and physical

memory management have been briefly presented and more

detailed design will be needed prior to implementation.

The Archival Storage System design is a minimal family

member. Additional services to the Supervisor and

generalization of the simplifying assumptions (e. g., to

interface to multilevel hosts) are major areas where

continued research is indicated.

After implementation of the storage system,

substantial work is necessary in performance evaluation.

Hardware choices have been primarily left to the

implementor. Since many of the software design

implications on efficiency are unknown at the present

B-96

time, fine-tuning of both hardware and software will

result in "better system performance.

B-97

APPENDIX A - GATE KEEPER LISTING

Gate_Keeper Procedure

Type
Parameter_Table_2ntry Record [Function^ Address Longvord

N0_Of_?arameters Integer
Para_l_Lengtn Integer
Para_2_Length Integer

?ara_n_Length Integer]

Local
Valid := 1

Invalid :=
Index := 3

Unitialize local variables!

?arameter_Ta ble Array [Max_Function_Code
Parameter Table Entry]

:=[[«Traff ic_Controller>>31ocic~Entry,l] ,

[«Traffic_Controller>>Wake Up_Entry,3]
[«Segment_Manager>>Create_Entry ,5] ,

[<<Segment_Manager>>Lelete_Entry,3] ,

[<<Segment_Manager>>iMake_Inown_2ntry ,6]
r<<Segment_Manager>>Terminate_3ntry , 2] ,

[«SegmentJ*anager»Svap_In_Entry,3j ,

[«Segment_Manager>>Swap_Out_Entry ,2]]

B-98

Entry
DI NVI.VI tDisaole interrupts!
PUSH GRR14,R0 !Save user registers!
PUSH GRR14:,R1
PUSH GRR14.R2
PUSH 3RR14,R3
PUSH 0RR14.R4
PUSH £?RR14,R5
PUSH GRR14.R6
PUSH GRR14.R7
PUSH 0RR14.R3
PUSH QRR14,R9
PUSH GRR14.R10
PUSH 3RR14,R11
PUSH GRR14.R12
PUSH GRR14.R13
LDCTL R2,NS?SEG !Save user stack pointer!
LDCTL R3.NSPCEE
PUSH 3RR14,R2
PUSH GRR14.R3
EI NVI,7I !Enables interrupts!
VALIDATE: DO (Check location of arguments for user

read/write access!
LDL <<DIST KERNEL ID>>ARGUMSNT POINTER, RR2
CALL CHECS~ADDRESS_S?ACE

!Get return'value!
LD3 RH0,«DIST_KERNEL ID>>VALIDITT CODS
LD3 RHl t VALID
CPE RH1,RE0
I? NE THEN EXIT PROM VALIDATE IReturn if invalid!
ELSE LDL RR2,«DIST_XERNEL ID>>ARGUMENT POINTER

LD3 RH0, INDEX
EI

B-99

MOTS STACK: DO !Move argument list to Kernel work space!
CPB RH0,#0
I? SO TEEN POP R4,3RR2

PUSH QRR14: t R4
DEC RH0

ELSE EXIT FROM MOVE STACK
FI
REPEAT PROM MOVE STACK !Lood until all moved!
OD

CALL JUNCTION: DO
LD FUNCTION_CCDS,3RR14(*24) IRetrieved from system call

instruction on system stack!
LD R6, MAX FUNCTION CODE
C? R6,JUNCTIGN_CCDE
IP CT TEEN LD LDL RP.10,«DIST KERNEL ID»MESSA(J3 POINTER

LD R2,INVALID_FUNCTI0N_C0DS
LD 3RR10(0),R2 !Put"error code into message!
EXIT PROM CALL FUNCTION

ELSE LD R6,3RR2(NUMBER OF~*ARGUMENTS)

! Check number of uarameters!
CP R6, FUNCTION TABLE [FUNCTION CODS, NO OF ARGUMENTS]
IF EO THEN CALL FUNCTION TABLE [FUNCTION CODE, FUNCTION]

ELSE LDL RR10,«DIST KERNEL ID»MSSSAGE POINTER
LD R2 f INVALID ARGUMENT^ 1ST
LD ORR10(0),R2
EXIT FROM CAIL FUNCTION

FI
FI
OD !END OF CALL FUNCTION LOOP!

B-lOO

LDB RH1, INDEX !Zero aut user argument
ZERC)_OUl:: DO

C? RH1,#0
IE NE TEEN POP

DEC
R2,GRR14
RH1

ELS E EXIT FROM ZERO OUT
EI
RE?SIT
OD

LDL RR8, <<DIST KERNE L ID>>MESSAGE POINT
LDL RR4, GRR14 (NSTACK ..POINTER)
LDB RH2

,

#0
LDB RH1, #8
MOVE RSIJ MSG: DO I Put message I acic ia

CP PHI ,#0
IF NS THEN LD R2,GRR8<

PUSH GRR4:,R2
INC RH2
DEC RH1

ELSE EXIT EROM MOVE RET MSG

list!

user area!

EI
REPEAT
OD

OD !END OF VALIDATE!
DI NMI.7I IDisable interrupts!
POP R3.3RR14 !Restore user registers!
POP R2.GRR14
LDCTL NS?SSG,R3
LDCTL NS?CF?,R2
POP R13,GR?.14
POP R12.GRR14
PC? R11,GRR14
POP R10.GRR14
POP R9,GRR14
POP R3,GRR14
POP R?,GRR14
POP R6,0RR14
POP R5,GRR14
POP R4.GRR14
POP R3.GRR14
POP R2,GRR14
POP R1.GRR14
POP R0.GRR14
SI MMI,7I ISnable interrupts!
I RET !Restore pre-call cpu state!

End Sate Keener

B-101

APPENDIX 3 - SUCCESS AND ERROR CODES

CODE ENTRY POINT

Invalid_Eunctlo.n_Code Gate_£eeper

Invalid_Argument_Code Gatekeeper

Mentor_Seg_Not_Eound Create_Segment

Delete_Segment

Not_Alloved Create_Segment

Delete_Segment

MakeJCnovn

Vake_Up

No ^Compatible Create_Segment

Segment_Too_Large Create_Segment

No_Segment_#_Avail MakeJCnown

Segment_Found Malce_5novn

Svap_In

Swap_0ut

Segment_Not_£nown Terminate

Segment_In_Core Terminate

Kernel_Segment Terminate

Invalid_Segment_tf Terminate

Swapped_In Swap_In

Swapped_Out Swap_Out

Queue_Empt7 Block

Queue_Overf low Wake_Up

Inserted Wake_Up

B-102

CODE

Not_Related

Greater_Than

Less_Tlian

Equal

ENTRT POINT

Mon_Disc_Security

Non_Disc_Security

Non_Disc_Security

Non Disc Security

B-103

LIST 0? REFERENCES

1. Schroeder, M. D., Clark, D. D., and Saltzer, J. S., The
Multics Kernel Design Pro.iect . paper presented at
ACM Symposium on Operating System Principles, 6th,
November 1977.

2. Mitre Corporation Report 2934, The Design and Speci-
fication of a Security Kernel for the PDP-11/45 ,

by W. L. Schiller, May 1975.

3. Parks, E. J., A Design of a Secure, Multilevel,
Multlprogrammed File Storage System for a Micro-
processor Environment , MS Thesis (in preparation),
Naval Postgraduate School, 1979.

4. Smith, D. L., Method to Evaluate Microcomputers for
Non-Tactical Shipboard Use , MS Thesis, Naval
Postgraduate School, September 1979.

5. O'Connell, J. S., and Richardson, L. D., Pis tributed
Secure Design for a Multi-microprocessor Operating
System . MS Thesis, Naval Postgraduate School, June
1979.

6. Schell, Lt.Col. R. R.. "Computer Security: The
Achilles' Heel of the Electronic Air Force?," Air
University Review , v. XXX no. 2, January 1979.

7. Schroeder, M. D., "A Hardware Architecture for
Implementing Protection Rings," Communications of
the ACM, v. 15 no. 3, p. 157-170, March 1972.

8. Lampson, B. ¥., "a Note on the Confinement Problem,"
Communications of the ACM , v. 16 no. 10,
p. 613-615, October 1973.

9. Lipner, S. 3., "A Comment on the Confinement Property,"
Operating System Review , v. 9, p. 192-195,
November 1975.

12, Organic*, E. I., The Multics System: An Examination of
Its Structure. MIT Press, 1972.

11. Madnick, 5. E. and Donovan, J. J., Operating Systems .

McGraw Hill, 1974.

12. Denning, D. E., "A Lattice Model of Secure Information
Flow,' Communications of the .

a CM . v. 19,
p. 236-242, May 1976.

13. Peuto, B. L., "Architecture of a New Microprocessor,"
Computer , v. 12 no. 2, p. 10, February 1979.

B-104

14. Snook, T., and others, Report on the Programming
Language PLZ/SYS . Springer-Virlag, 1978.

15. Zilog, Inc., 28000 PLZ/ASM Assembly Language Pro-
gramming Manual . 03-3055-01, Revision A, April
1979.

16. Zilog, Inc., Z8001 CPU Z8002 CPU, Preliminary Product
Specification . March 1979.

17. Zilog, Inc., An Introduction to the Z8010 MMU Memory
Management Unit . Tutorial Information, August
1979.

13. Dijicstra, E. W., "The Structure of 'THE' Multi-
programming System," Communications of the
ACM., v. 11 no. 5, p. 341-346, May 1968.

19. Saltzer, J. H., Traffic Control in a Multiplexed
Computer System . Ph.D. Thesis, Massachusetts
Institute of Technology, July 1966.

20. Millen, J. £., "Security Kernel Validation in Practice,"
Communications of the ACM , v. 19 no. 5, ?. 243-250,
May 1976.

21. Enuth, D. E., The Art of Computer Programming:
Volume 1 /"Fundamental Algorithms . Addison-Wesley

,

1963.

B-105

NPS52-80-002 APPENDIX C

Approved for public release; distribution unlimited

THE DESIGN OF A
SECURE FILE STORAGE SYSTEM

by

Edward James Parks
Lieutenant, United States Navy-

PS, United States Naval Academy, 1971

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 1979

Dean of Information and Policy Sciences

c-i

ABSTRACT

A design for a secure, multi-user. File Storage System

is developed. This design, incorporating a concurrently

developed Security Kernel, provides a multilevel secure

flexible file storage serving a distributed system of

dissimilar computers. The Security Kernel is responsible for

non-discretionary [e.g., classification and clearance)

security and the Tile Storage System Supervisor is

responsible for discretionary [e.g., "need to know")

security. Multilevel security is achieved by the controlled

access to consolidated file storage for Host computer

systems. Multiprogramming of surrogate Supervisor processes

operating on behalf of the Host computer systems provides

for system efficiency. fl segmented memory at the Supervisor

level allows controlled data sharing among authorized users.

System integrity is in* epend ori t of the internal security

controls r ">n lark of them) in the iistnihuted systems; the

File Storage System prevents system-wide security side

effects. ^ loop free stnucture alons with system simplicity

and robustness ane design characteristics.

C-2

TABLE OF CONTENTS

I. INTRODUCTION c- 7

A. PRO?L^M DEFINITION C- 6

3. 3ACKGR0UND . .
c~ 11

C. "BASIC DEFINITIONS c-13

1

.

Security c-13

2. Process c-16

3. Segmentation c-16

4 . Multiprogramming c-17

5. Protection Domains c-17

D. SYSTEM REQUIREMENTS C-18

II . DESIGN C-21

A. HARDWARE SELECTION c_21

B. SYSTEM STRUCTURE c" 22

1. System Levels c-22

2. System Protocol c-24

?. Host Environment c-25

a. Directory Files c-31

b. Data Files c-36

c. Multiple Segment File Directory c-36

4 . -est System Commands c-36

C. PROCESS STPUCTUKE c"45

1. Shared Segments Interaction c~47

2. File Management Process c-55

a. File Management Command Handler Module., c-55

t). Directory Control Module c-€l

c. Discretionary Control Module c-68

c-3

d . Segment Handler Module c-71

e. Memory Handler Module c-75

3. I p. put/Out put Process c-78

a. Input Output Command Handler Module c-87

b. File Handler Module c-88

c. Packet Handler Module c-92

III. CONCLUSIONS c-97

A. STATUS OF KE.ASFAECH c" 97

P. FOLLOW ON WORK c-98

APPENDIX A—SYSTEM PARAMETERS C-IOO

.APPENDIX B—SUCCFSS AND FRROR CODES c-101

APPENDIX C—FM/IO COMMAND HANDLER MODULES C-102

LI ST OF REFERENCES C-116

INITIAL DISTRIBUTION JC-118

C-4

LIST OF FIGURES

1. System Configuration c- 9

2. Protection Domains c-19

3. Abstract System View c-23

4. General Supprvisor File Hierarchy Example c-27

5. Virtual File Hierarchy c-30

6. Logical Directory Structure c-32

7. File Discretionary Access Control c-39

3. FM Process Modules c-56

9. Mail_Box Segment c-57

10. Comnand_Handler Module c-58

11. Direct ory_Cor.trol Module c-62

12. Discret i or.ary_Co"t rol Module c-7C

13 . FM_Knovn_ Segnen t_Table c-72

14. Segment_Ha rid ler Module c-72

15. Memory_Handler Module c-76

16. FM_Active_SegTert_Table c-76

17. Memory_Handler Memory Map c-76

18. IC Process Modules c-79

19. Packet Construction c-8i

2C. 1 0__C?mrrard_ Farrier Module c-89

21 . File_HandlPr Module c-89

22.' Packet _Ha*"5 ler v cdule c-93

23. Finit° State Diagram of Packet Transfer c-94

c-5

ACKNOWLEDGEMENT

This research is sponsored in part by Office of Naval

Research Project Number NR 337-005, monitored by Mr. Joel

Trimble.

Special thanks £0 to Lt. Col. Roser Schell and Prof.

Lyle Cox for their invaluable advice and many hours of

assistance.

c-6

I . INTRODUCTION

Lack of data security is a central issue in computer

science today. Data security car. be divided into external

physical asppcts (i.e., guards, fences, etc.) and irt«rnal

system asDects 'i.e., Internal software and hardware

operations)? both of which are necessary for effective

system security. The physical aspect is understood and does

not pose a significant problem today. Continued loses (vi?.,

money, data) die to computer 'error', illustrate that the

second aspect of data security, viz., internal security, has

not been solved and continues to be a problem.

This shortcoming results from the fact that internal

computer security has not been a mandatory desien objective

during hardware and/or software selection and/or production

in most (if net all) contemporary computer systems. This

renders them prone to security violations from accidential

or malicious penetrations [SchelK 1)1 . Ad hoc attempts tc

provide the necessary system security in the later stages of

the system design or implementation have rot generally met

with success.

In contrast, this th c sis presents a design for a

multilevel secure computer operating system, the File

Storage System 7 SS) in which internal com^utPr security is

a primary i Q sirTn objective. There are two ~oals this syst^r-

is designed ti achieve: 1) to provide sharing of data amor.--:

authori?ed users a."±, 2) control access to a consolidated

"warehouse" of data. This controlled access to consolidated

C-7

ft M
data, predicates a star network for the system structure

as depicted in figure 1. It must be noted, however, that the

FSS cannot control the physical security of the Host systems

and that Host systems have the ability to circumvent FSS

security by direct inter-Host communication links. To

preserve data security, all accesses to the FSS consolidated

data must po through the FSS for access validation.

Data sharing among authorized users is accomplished by a

segmented environment which allows controlled direct access

to all on-line data. The Security Kernel (or simply Kernel)

is used to insure that non-discretionary data access is

performed in an absolutely controlled (i.e., secure) manner.

(See [Coleman] for detailed information on the Security

Kernel .

)

A. PROBLEM DEFINITION

'it is illogical to ignore the fact that computers may
disseminate information to anyone who knows how to ask for
it, completely bypassing the expensive controls Placed on
paper circulation." [Schell(l)]

That this fact is ignored is demonstrated by the

estimated 100 million dollars lost yearly by non-secure

computer systems ir the United States [l)eoning(2 >] . It is

obvious that a primary problem/limitation of computer

systems in use today is the lack of data security. ;

s

recuirements to store and access lata by computer increase,

the seriousness of this pro bier /I imitation can net be

ignored.

A system that can simultaneously provide data at

C-8

Secret

'
T ost 1

Unclassified

Host 2

~*T

Confidential

Host 3

V
FSS

Suoervisor

Security Kernel

Disc

Figure 1. System Ccnfi~uration

C-9

different sensitivity (viz., "classification") levels for

users with different access authorizations (viz.,

"clearances") without a security violation is said to be a

multilevel secure system. Because it is usually not

desirable to authorize all system users access to the

highest level of data ('system hish') or provide separate

(without sharing) systems for each level of data, a

multilevel system is highly desirable. \ multilevel system

also allows the maximum amount of controlled data sharing

amors authorized users, a primary ^oal of any data storage

system.

Previous research shows that a viable approach to the

question of internal computer security exists. This

approach, soretimes termed the "security kernel approach"

[Schell(2)] t was introduced by Schell in 1972. It gathers

into one module all elements that effect the system

security. The module, by beins restricted in size, can be

verified correct which in turn allows the total system to be

certifed secure.

The FSS software is comoosed of the Supervisor and the

Kernel. It will provide a multilevel secure consolidated

file storage for distributed Host computer systems. The

non-discretionary security provided by tr.e Kerrel ard the

discretionary security provided by the Supervisor will

implement a wide ran^e of security policies, including t v e

standard Department of Defense !DOD) security policies. Data

sharing is achieved by a segmented memory environment at the

c-io

Supervisor level. The Supervisor uses segments (invisible to

the Host systems) to construct the Host files. Multilevel

security is achieved by the management of files submitted by

the Host systems vhioh erist at distinct security levels.

This allows the construction of a multilevel secure system

which is deperdent en crly on« securp element of the

TSS— the Kernel.

3. BACKGROUND

The dramatic reduction in size and cost alor.^ with the

increase in performance of microprocessors in the last

decade has made their use feasible in areas that have

previously bee^ reserved for mini/Vaxi computers (or rot

computed at all). Whereas security has been notoriously

lacking i~ the larger systems, it has b°en no^-existent i r

microprocessors to date.

2 e cause of their small si? , low '-est, durability, ard,

perhaps most i "ucrtantly, the manpower savings induced (just

to mention a few of many advantages), mi oroprocessors have

hiffh aupeal for use in a military environment. Fowever, the

military also has a" obvious need for security within their

computer systems, whether they are micro, mini, or maxi

cased .

For example, the ^av/ is presently cor.siderir.? systems

or V, oe ne't veneration of non-tactical shiobcarl computers

[Smith] . Thev will be mainly u^ei for data processing in the

areas of:

c-ii

Pay and Personnel

Supply and Finance

Maintenance .

Cost. siz° and speed constraints will soor be met by

commercially available products. Security, however,

continues to bp a problem not adeauately addressed in ar.y

available systems. To preserve data confidentiality (not

only with respect to clearance le^el but also with respect

to the current stipulations of the Privacy Act), security is

a necessary part of any shipboard computer system. Pay

records, for example, should not have the same access level

as maintenance records. In order to store records in a

common data base and to have controlled sharing when

appropriate, the computer must be able to maintain a

multilevel secure environment.

There are several possible approaches to achieve a

secure multilevel environment. Xhe frontal approach, whi~h

is most difficult, is to certify all distributed computers

which have access to the data base as secure. A second

method and the method adopted for the TSS, is to cerfify

only one eleme^* of the FSS secur c—the Security Kernel. -11

access to the TSS that involves non-liscret ior.ary security

will b^ validated by th*3 Kernel. The FSS therefore

guarantees to manage files in a manner consista.it with the

FSS security policies.

The design for the ~SS is one memre" of a family of

systems proposed by O'Ccnnell and Richardson [O'Connell].

C-12

Security, configuration independence, and a looo-free

structure are characteristics of this family of systems.

C. BASIC fFFINITIONS

1. Security

Although any viable secure system includes both

internal and external aspects, relying excessively or

external controls is not desirable in mary cases due to the

added expenses and increased security risks involved in

error-prone manual procedures. External controls also cannot

provide the secure sharing of data that is needed in such

applications as integrated data bases and computer networks,

primary characteristics of the FSS . The use of the Kernel

concept is a demonstratively effective and practical method

for providing the internal computer security controls that

are necessary for a secure multilevel system. This concept

is at the center of the 7 SS design. .

The ba c ic concept behind this approach is that a

small portion of hardware/software, the Kernel, can provide

the internal security controls that are effective asainst

all attacks, fmalicious or accidental) including those never

thought "if by the d9Sis rer. (This al^c means that err n rs in

the JSS Supervisor cannot cause unauthorized! access tc

data.)

System security is the implementation of a security

policy. This policy is a collection of laws, rules, and

regulations that establish the rules for access to the data

C-13

in the system. Such Policies, such as the one established by

the PCD. have two distinct- aspects: discretionary and

non-discretionary security. Non-discretionary security

erternally constrains what access is possible. In the DOD

environment, the familiar non-discretionary security levels

are: top secret, secret, confidential, and unclassified.

Since most contemporary comouter systems do not provide the

data labeling necessary to support non-discretionary

security, all data is implicitly accessible. In the ?SS,

seamen ta tier allows unioue identification and labeling of

data; non-discretionary security is therefore supported. The

Kernel is the one element in the FSS responsible for

enforcing non-discretionary security.

Non-discretionary security involves the comparing of

the access class of a specific object (object access class,

(oac)) with the access class of th Q recuestor (subject

access class, 'sac)) to insure compatibility. In a DOD

environment, for example, a person (subject) with sac of

secret has access to files (objects) at any access class

equal to or less tha^ secret. The relationships between

different access classes are represented by a partially

ordered lattice structure [T n *"i inr(1) 1 . This lattice

represents the authorized access based on the relationships

of two levels. An ** t a ^ u 1 e of the not —related (making the

lattice partially ordered' relationship, occurs because of

DOD compartrrentalization (e.g., secret is not related to

secret .nuclear) . The following accesses are permitted for

C-14

the relationships represented by this lattice structure.

sac = oac

sac > oac

sac < oac

sac O oac

:reai/write access

:read access (read down)

twrite access (write up)

:no access (sac not related to oac)

In each case, the Kernel must know the

identification of the Host system if it is to perform

correct non-discretionary security checks. Unique system

identification is provided by the system port number, which

is hardwired, and known to the Kernel.

Discretionary security provides a refinement to the

non-discretionary security policy and is reflected in the

DOD "need to know" policy. Computer systems which have

"ccess Control Lists (ACL N associated with data, implement

this discretionary policy. The FSS Supervisor is responsible

for the System discretionary security and although this

aspect of the System security is not validated by the Kernel

(and therefore not certified correct), the validity of t'^e

non-discretionary security is not affected.

To implement its asoect of security, the Suoervisor

needs to know the identification of the Best system "user".

This Host system user identification must be passed to the

FSS Suoervisor by the Host system. Since an insecure Host

system cannot be trusted to pass the correct irfcrnatic",

the user identification is only as frood as the Host system

implementation, (i.e., ?SS discretionary security is only as

C-15

good as the Host System's Implementation of discretionary

security.) This implementation may be ?ood on some systems,

(e.g., UNIX [Morris!) but non-existent on other systems

(e.g., CP/m" [Digital"!). It must be remembered that this in

no way affects the enforcement of the non-discretionarv

security by the Kernel.

2. Process

« process can be described as a locus of execution.

The collection r,f locations that may be accessed during this

execution is known as the process' address space [Madnick]

.

A process also has the characteristic that it may be

executed in parallel with other processes, enhancing system

efficiency and allowing the separation of tas^s intc

different processes for desisrn clarity.

The TSS has two processes per Host system. These are

an input/output ^10) process for Supervisor to ^ost data

transfer and communication and a file management (FM)

process that controls and maintains the Supervisor file

structure. Interprocess communication is achieved by the use

of even tcour.ts , seauencers, and synchroni?a t i on primitives

internal to the Kernel (described later).

3. Segmentation

Se^T^e" ta * i on allows for the direct addr°ssinr? of -11

system on-line information and the application of access

control to this information. Mote that direct addressing

C-16

does not mean random access to the on-line inf ormation. On

the contrary, access to segments is controlled by explicit

memory management calls to the Kernel to swap in/out a

segment. A segment can be defined as a logical grouping of

information such as a subroutine, procedure, data area, or

file. Each processes' address space consists of a collection

of segments. In a segmented environment, all address space

references reauirp two components, a segment specifier and

an offset within that segment. Segmentation is used to

provide *he Supervisor domain of each process a virtual

memory of limited size. Segments, as mentioned earlier, are

used by the Supervisor to construct the Host files which

retain the attributes of segments (i.e., access control).

4. Multiprogramming

* mul ti programmed environment is one in which more

than one pnocess is in a state of execution at the sane

time. These processes share orocessor tine, memory, and

other resources among the active processes. In the design

for the FSS • the Supervisor processes are mult iprogrammed in

an asynhcronous manner for system effici°ncy. *

multiprogramming ervironment allows the
'J ost systems to

operate in a logically parallel manner which adds to System

design si^olioity and clarity.

5 . Protection E^nai r s

One of the *ey elements necessary for valid Kernel

C-17

implementation is the isolation of the Kernel from all

possible outside influences. This can he done through the

use of protection domains.

Protection domains are used to arrange process

address spaces into "rings" [Schroeder] of different

privilege. This arrangement is a hierarchical structure with

the most privileged domain being the inner most ring. Figure

2 represents the ring organization in the FSS.

Protection rings may he created by either hardware

or software. Hardware is nore efficient but is not

commercially available in microprocessor devices today. Two

state devices are available, however, and by implementing

the two states as separate rings and providing for software

ring crossing rrecha^isins . the necessary two protection

rings can be created.

D. SYST2M S5QUIR2MiNTS

There are no fixed hardware requirements for the

implementation of the FSS. System efficiency does, however,

depend on an appropriate choice of hardware. Two basic

hardware features that are felt to be necessary for a viable

i^ple^en *a.+ i rr of the FSS are segmentation, and multiple

domains.

S e fT" e r t a * i c n. is necessary 'or -cress c c n t r o 1 a n d data

sharing. a ~vlticle state 'two i~> this c^se) is reressary

for the isolation of the Kernel frrn the renaining (and

uncertified) software.

C-18

Outer Extendi Machir.e
Super visor

Inner Extended Machine
Security Kernel

3 are Machine
Hardvarp

-*/W Sate

S 'W Za t

Figure 2. Protection Domains

C-19

Only the Kernel

instructions and

provides a segment?!

operates. The Supe*-

environment for the
"

iccess to privileged machine

all system input/output. It

ent in which the Supervisor

n turn, provides a virtual file

uter systems.

C-20

II. DFS IGN

A. HARDWARE SFLTCTION

A secure computer system is not dependent on the

hardware or. which it is implemented. However, as mentioned

above, segmentation and multiple domains are considered

necessary for ~SS efficiency.

Segmentation allows the use of one uniform type of

information object, the segment, at the Kernel level. This

simplifies Kernel design, and contributes to keeping Kernel

size small. A segment address consists of a segment name and

offset within the segment. Although this addressing can be

done in software, it is faster and more efficient when done

in hardware. Hardware can also simultaneously check for

authorized access, a necessary feature of a secure system.

Multiple domains are- currently used in some of the

larger machines to protect the operating systems from the

applications programs. Multiple domains have not, until

recently, been available in a microprocessor configuration.

The FSS design reauires only two domains, ore for the Kernel

and one for the Supervisor.

The introduction of ;he Ziloe Z50£2 series

microprocessor meets both the segmentation and multiple

domain recuirements. The FSS is targeted for implementation

on the Z-PTl segmented microrroc°ssor [Zilo-<?(2)l with its

associated Memory Management Unit (MMU) [Zilog'l)]. The

ZS001 is a 16 bit two-domain machine which produces a 23 bit

C-21
<*"

logical address. The Z821P MMU maps the 23 bit logical

address into a 24 bit absolute address and allows the

capability of addressing up to 126 segments (with two MMU's)

of 64K bytes each (9M-bytes total) in a two-dimensional

memory space. (See [Coleman] for further details.) RS-232

bus compatibility is assumed for serial data input/output at

the hardware level. This allows byte synchronization and

byte parity checks to be performed at the hardware level by

the FSS universal asynchronous receiver-transmitter (UART).

B. SYSTEM STRUCTURE

1 . System Levels

Abstraction is a way of avoidin.? complexity and a

mental tool for approaching comolex problems [Di j'rtstra' 2)1 .

The use of abstaction allows the presentation of a system

design that is concise, precise, and easy to understand.

There are four levels of abstraction for the FSS as

presented in figure 3.

Level is the hardware level a^d consists of the

ZF0C1 microprocessor memory and some form of disc storage

(initial implementation nay be with floppy disc).

Level 1, the Kernel, is isolated and Detected f^om

manipulation 'accid°ntial or malicious) by bei~?; placed in

the more privileged domain of the ZF-3?1. Only the Kernel has

access tc system" machine instructions and controls all

access to the system hardware elements 'memory, disc). The

Kernel provides a segmented environment in which the

C-22

Host Systems

Secret
Post 1

Supervisor

10 <

--> ^

Supervisor •at

> ?M ._i

Gate

KeeoerSecurity Kernel Keeper

Security Kernel

'Data Warehouse

cor. trol 'i.e., conn 1
:".

i

cation^

Fi^urf 3. Abstract System View

C-23

Supervisor operates.

Level 2, the Supervisor, operates in the outer (less

privileged) domain of the Z8P01. It has access to "normal"

machine instructions, but must go through the software

Gatekeeper [Coleman] of the Kernel to get access to memcry

(viz., segments) and disc storage. The Supervisor provides a

virtual file hierarchy to each Host system for file storage.

In order to manage the file hierarchy, surrogate processes

(input /output (10) and file management (FM)) are assigned to

each ^ost system. These processes act on the reauests

submitted by the Host computer systems. All processes are

created at system generation time and are not created or

deleted in a dynamic manner.

Level 3 consists of the "ost comouter systems. These

systems are hardwired to the ZS?01 in the 7S3 design. lach

port has a fixed access level so that if a multilevel secure

Host desires to handle data at two levels, it ^ust have two

connections to the FSS. (Note that if the Host is not a true

secure multilevel Host, and does have multiple connections

with distinct levels, then the ?SS security constraints are

ci rcumven ted .

)

2 . System Protocol

Protocol* anp formal specifications which constrain

data exchange between systems and the ^SS. These

specifications allow the FSS to achieve hounded, deadlock

free and. fault tolerant communication. To organize and

C-24

simplify protocol design in the FSS, protocol is logically

divided into a hierarchical structure of two interacting

layers. Level 1 protocol handle? packet (descrited later)

synchroniza tier , error detection, and command type

determination. Level 2 handles the repetitive activity of

data transfer.

Data and commands are transmitted between VSS and

Host via fixed si?? packets. Packet synchronization is

necessary for Host-FSS communication. Error

detection/correction is closely related tc the problem of

packet synchronization; packets not in synchronization will

not be correct. The converse is not true, however. A

synchronized packet may contain transmission errors. There

are several methods for error detection/correction

[Hamming]. A design choice of a simple check sum per packet

(to detect packet errors) was made in the interest of System

simplicity. If an error is detected in a packet, the Host

will be reauested to stop packet transmission and to fce^ir

again with the packet in which the error was detected. Cf

course, the FSS must be able to provide the same service.

This retransmission upon error ^et^ctior strategy. combined

with the byte rarity checks performed at the hardware level

by the UART, will provide the error detection/correction

scheme in the initial FSS design.

3 . Post invironment

The job of the FSS is to provide a service, viz., to

C-25

store files in a secure 'data warehouse . The files are

submitted by various Host computer systems. The virtual

environment provided the Host systems is therefore a primary

design consideration of the overall FSS design. Design goals

are to make this Host environment simple, easy to use and

understand, efficient and robust.

The center of the Host environment is the

hierarchical file structure maintained by the Supervisor of

the FSS. This file structure is a tree organization which

facilitates design abstraction (virtual file systems per

Host) as well as file system searches via tree traversal.

Figure 4 illustrates the overall logical structure of the

Supervisor file system.

A file can be defined, in the case of the FSS , as

one or more Supervisor segments grouped together for the

purpose of access control (security), retrieval (read), and

modification (wnite) [Shaw]. In the FSS the file is the

basic unit of storage at the Host system level.

The hierarchical file system contains two types of

files: 1) lata files, and 2) directory files. Both file

types are constructed from segments (invisible to the Host

systems) at the Supervise level. The characteristics

usually associated with a segmented environment (Supervisor

level) such as data sharing and access control, are

transferred to the file environment (Host level) ty the FSS.

The Host system environment consists of a virtual

file hierarchy maintained for each Host system (i.e., one

C-26

ROOT

Altos Attributes
Unix a ttri"butes

•

ALTOS UN' 17
User l Attributes
User ? attributes
&roup_l

•

•

•

TT ser 1 attributes
User 2 attributes
Grouo 2

•

•

•

Figure 4. "re^^a! Supervisor Tile Fierarchy Fxample

C-27

virtual file system per hardware port). A primary reason for

having multiple virtual file hierarchies is to avoid the

problem of naming conficts which would eventually occur in

the Supervisor hierarchy as the system grew if per-host

virtual file systems did not exist. Multiple directories

also allow the Host systems to group related files into one

directory, simplifying search and Host use. The Supervisor

will control the duplication problem within a virtual file

system by not allowing duplicate file names in a single

directory file. Pathnames are required to uniauely identify

files in the Supervisor file systems and must be included in

the Host reouest.

Access to the Supervisor file hierarchy is

controlled in both a discretionary and non-discretionary

manner. The non-discretionary access is controlled by the

Kernel which will prevent a Host system from reading up or

writing down (confinement property). Discretionary access to

the files is handled by the Supervisor which compares the

Host. user (Host user combination) with the file ACL.

Reauested access is permitted only if the Host. user is

explicitly permitted access by the file ACL.

vach a ost system virtual file hierarchy is

constructed from data files ar.-i directory files which, as

mention°d above, are constructed of Supervisor segments.

Although dynamic growth and shrinkage are usual segment

attributes, a design choice for System simplification was

made to fix segment size at three increments, SMALL (512

C-28

bytes), MEDIUM (2K bytes), ard LARGS (SK bytes). These sizes

were chosen as a compromise between expected file sizes,

Supervisor buffer retirements , and minimizing the number of

software ring crossings that would be required during a data

file 'read' or 'store* operation. "Fecausp segr-ent size is

limited ard there exists the likelihood of en oour tering

files larger than the maximum segment size, the concept of a

multiple segment file (msf) is known to th 13 Supervisor.

Figure 5 depicts the general tree structure of a

Supervisor virtual file hierarchy. Directory files are

represented by sauares and data files by circles. Data

files, as their name implies, contain data only. Directory

files are constructed of a header and zero or more

"entries". There are two types of entries, branch entries

and link en tri es

.

Pranch entries contain the attributes of the file

which they identify. In figure 5, for example, the

attributes of directory file User_l (entry name, ACL, size,

type, etc.) are contaired in directory file Host_l, branch

entry User_l. One branch entry designates one Supervisor

segmen t

.

8 link entry, represented by the dotted 1

1

:. e in

figure 5, is composed of a" 'entry name (lirk nam e^ a r d a

pathname. (« pathname is the concatenation of entry names

starting fro* the root directory proceeding

seouential order to the specified file.) Like a branch

entry, a link entry is used to access a specific file. For

C-29

Host 1

r

Use" 1

User ?

Group l

•

•

•

User 1 User ? Group 1

User 1

Tile 1

Link: 1 ^

•

•

•

File 1 •«.

File 2

File 3
•

•

•

File 1 File 1

isure ?. Virtual *ile hierarchy 'logical view)

C-30

example, in figure 5, the pathname contained in the link

entry is Fost_l>User_3>Dir_l . Unlike a branch entry,

however. the link entry does not contain any file

attributes. Access is controlled as the .Supervisor traverses

the specified path to the requested file.

The use of link entries allows sharing of files

among Host systems and among Host system users. Loops which

might be generated by two links which reference each other,

are prevented by the Supervisor. (Loous could present a tree

traversal problem to the Supervisor.)

Each file has a file name (Sntry__Mame—unique per

directory file) given by the Host system at file creation

time. This file name and its pathname are used to uniauely

locate the file in the Host's virtual file system. By

traversing the virtual hierarchy, the Supervisor can locate

the reauested file if it exists in the system. In either

case (viz., whether the file exists or not), aoprooriete

action can be taken by the Supervisor.

a. Directory File

Figure 5 is a logical representation of a file

directory. lach directory file, is made up of a header aH

zero or tots fixed size branch /I ink entries. A fixed

directory size of Lt'Ml { B'i bytes) was chosen to insure a

reasonalble amount of directory soace for Kcst system use.

This could cose a "space" problem, especially for secondary

storage. (Adeauate main memory can be installed for required

C-31

Directory File

' Header

)

Entry Cou^t-1 "byte

>CL Count-? bytes

(Branch Er. try)
rntrv_Nane-l-° bytes
Brar:Ch_Lirk_Switch-l byte
ACL_Ptr-? bytes
v ile_Size-4 bytes
Da*a_rir_Svi tch-1 byte

"^ile'Created—16 bytes
Last_UDdate-16 bytes
Access Class-1 byte

(Link Entry)
Entry~Name-lS bytes

Branch Lirk_Switch-l byte
Link-129 bytes
Link Created-16 bytes

Tisure 6. Loeical Directory Structure

C-32

buffer space.) The Kernel, which stores segments as pages,

may want to compact' segments by not storing on secondary

storage pages which contain all "zeros". This would greatly

reduce the amount of wasted space on secondary storage.

(Another equally viable solution, but not s°lected for this

design, is to have multiple seempnt directories in the

Supervisor similar to multiple segment data files.) The

directory file header contains the following information:

Entry_Count: This is the number of branch/link

entries in the directory.

ACL__Count: This is a count of the number of

ACL_EN'THY elements left in a "dooI" of such elements.

If the entry is a branch entry, it will contain

the following el c rioT]t s:

Tntry_Name: rntry name is the file name. The

Host systems a^e responsible for supplying these names but,

as mentioned above, will be prevented by the Supevisor from

having duplicate names (file names) in ore directory file.

Access_Class : This element contains the file

access level .

3ranch_Link_Swi ten : This element will identify

the entny as a branch ent^v which in turn specifies the

entry forma t

.

ACL ?*r: This element will point to a r '>. CL for

the branch entry. The TSS has only three distinct

di sere f i ^na ry access modes: 1) 'null access as the na^e

implies, declares that no access is to be allowed to the

C-33

specified Host. user combination, 2) "read" access allows a

qualified Host. user to read a file only (i.e., no write

access), 3) "write" access allows a Host. user write access

to a file (also implicit read access). The actual ACL will

be a list of authorized users ir the form Host. user with ar

associated access mode. A 'don't care* authorization (in

this case a *) , will allow general access in that category.

Tor example, *.user would allow the specified 'user* to

access this file from any connected Host system with a

specified access mode. This ACL for entry "user" can easily

be expanded to ir elude other categories such as "project" to

further refine the discretionary access allowed to a file.

File_Size: This information is necessary for

proper management of the Host REAP_?III and STCR"2_FILS

commands by the Supervisor, viz., it allows the Supervi^o^

to calculate the number of segments that nai-ce up a multiple

segment file. It will be supplied by the Host system in t v e

STCRE_FIL2 command request (in bits).

Data_Dir_Switch : This switch tells the

Supervisor the type of file to which the branch points

'data, directory). This is r.eressary due to the differs:

file formats.

Fi le_Crea tM : This °lf"ri ort is used for ^er.eral

audit pur coses, i.e., to have a permanent record cf the file

creator ar\i the ti-e cf creatior.

LastJJpdate: This ele-npnt will identify the last

Host and user to store into the file. This identification

C-34

will be of the form Hos t . us^r .date, time. This will allow the

FSS to have a limited audit capability. The confinement

property prevents the FSS from also keeping track of read

accesses since processes at higher levels can read at lower

levels but cannot write the audit information. Also rote,

that the Last_Update information for upgraded directories

nay not be accurate for the samp reason.

If the entry is a link entry, it contains only

four elemerts. These are: 1) Entry_Name to identify the

file, 2) ?ranch_Link_Switch to identify the entry type, 3)

Link, a pathrane to uniouely identify a file, and 4)

Create JTirne , the time of link initiation alms with the

Host. user who created the link. All attribute checking is

done as the Supervisor traverses the specified path.

A FSS design choice is to limit all pathlengths

to 129 bytes. This places some restrictions on the Host in

that long file names will socn consume the bytes available

for a pathname, however, this restriction can be overcome by

pathnames which contain several link entries, which can

themselves be 12P bytes. With 32 branch/link entries per

directory, there are an average of 32 ACL entries (3 bytes

each) available to each brarch entry. (Remember ,1 irk entries

do not have ACL entries.) Figure 5 contains the initial

field sizes for the directory construction. The primary

factor in calculating the si:e of branch/link entries is the

size of the link pathname. This increase* the size of li^k

entries to 163 bytes and although space is wasted in branch

C-35

entries, the simplification of System design resulting from

a fixed size of branch/li.nic entry is felt to be sufficient

Justification in the initial design.

b. Tata v iles

Data files are always "leaf" nodes in the file

hierarchy and contain only data.

c. Multiple Segment File Directory

A msf directory is a Supervisor construct

(invisible to Host systems) to manage files larger than the

maximum fixed segment size. Because the number of segments

that will be required by the Supervisor to store a file can

be calculated from the file size information passed by the

Host, a msf directory need only be a segment of size zero.

This makes the Kernel' alias table (which is a fixed

size— see [Coleman!) the limiting factor in the maximum file

size. The alias table has the same number of entries as a

Supervisor directory (viz., 32) which limits maximum Host

file size to 256K bytes. Files that exceed the maximum file

size must be split by the Host svstem. an attempt to store a

file that is 'too* large will result is an error condition

resoon5e to the Host ar^ a r une^ecutei ccmrani.

4. Host System Commands

The Host commands provide the only interface that a

Host system has with the FSS. Each command is interpreted by

C-36

the FSS and acted upon by surrogate Supervisor processes;

the Post system has no direct access to the 7SS. There is

one acknowledgement between the Host and FSS at this level.

This is a command complete" acknowledgement that informs

the Eost svster that the Supervisor has complete* action or.

its reauest. If an error condition occurs, the appropriate

error code is returned in the acknowledgement.

8 nother asnect of the Host environment reeds to be

defined also. The Host environment can be divided into two

states! they are the "old" state, before the FSS has acted

upon the Host request, and the "new" state, which occurs

after action has been completed by the FSS. The specific

state of the FSS at any instant is indeterminate at the Host

level if more than one Host is accessing the same file of

the FSS at o^e tine. That is, since Supervisor processes

execute in a completely asynchronous manner, the FSS state

may change after a Host command is sent but before the FSS

acts on the command. This will not affect the performance of

the System or validity of its security; Host commands will

be executed as a single, atomic operation in the FSS state

in which they are received and interpreted. The Host will

get some "correct" response for some state existing between

the sending of the 'Jost command and the FSS acfcrovledsrenen t

on the ^are cmvraM. This allow? several Hosts to safely

synchronize their actions external to the FSS.

The follrwir.fr is considered to be a minimal subset

of commands available to the Host System for adeouate file

C-37

control. Figure 7 illustrates the required discretionary

access attributes. T^e files are referenced in the Host

command descriptions startinr fron the root of the Hcst

virtual file system. Tne pathname specifies the parent

directors file (containing access attributes of the file),

and the file (data or directory) to which the u ost command

refers. All commands require a pathname for unique file

identification, Tach command also reauires the specif icatior.

of the Host system "user" in order for the Supervisor to

perform discretionary security checks. This 'userid' will he

supplied by the Host system or the Host system user, which

ever is appropriate.

CEEATE_EILE <pathname, access_class . file_type

(directory, data)>. This command reauests that the

Supervisor create a branch entry in the specified directory

under the specified file name at the specified access class.

An initial access mode of write, will be ^iven to file

creator and may be altered by the use of the *DD_.fl CL_ENTRY

and DELE?E_ACL_ENTRY commands. This is the only Host command

where file access class is specified. It is T:sed ir this

command to create upgraded directory files, if desired.

'Data files may not be upgraded—described later.) In the

initial implementation (with single level Hosts), there will

be ro utsradei directories within a Host virtual file

system. Irit.Ial data file size is zero; initial directory

file size is LARGH (FK bytes). Actions taken:

1) The Supervisor locates the root of the virtual

C-38

Tir A

Dir

Di sc^et ior.a~y
Access
At t. ritrJtes

Dir 3

File 1

Discretionary
Access
a t tributes

File 1

Figure 7. File Discretionary Access Control

C-39

file system for this Host and does a tree traversal to

locate the parent directory file.

2) If the parent directory file is not found or

found but write access to the parent directory file is not

allowed, ar appropriate error code is returned ("file rot

found' or 'write rot permitted').

3) If the directory file is found, and room exists

in the directory, the new file is entered in a branch. *s

mentioned above, no duplicate file names will be allowed by

the Supervisor.

CREATT_LINK (pathname, link ,userid>. This command

reauests that the Supervisor create a link in the specified

directory under the specified file name. As already

mentioned, the Supervisor will not allow links to form

loops. This is done by restricting the maximum number of

files in one pathname to 64 files. (This figure is reached

by allowing a maximum pathlength of 128 bytes and having

file names of ore character. File name delimitors of one

character, viz. ">", will give a maximum pathlength of 64

files.) 3y keeping track of the path, traversed, the

Suoervisor is able to determine if and when a loop i

s

formed. Actions taken:

1) The Suoervisor locates the root of the virtval

file system for this Host and does a tree traversal to

locate the parent directory file.

2) If the parent directory file is not found or

found but write access to the parent directory file is not

C-40

allowed, an appropriate error code is returned.

3) If the parent directory file is found and room

exists in the directory, the link is entered in a link

entry.

DELETS_FILF Pathname ,userid>. This command

reaves ts that the Supervisor delete the sppcified file from

the virtual file hierarchy. ?or design simplicity, only

terminal files (including msf's), can be deleted. This means

that directories must be empty in order to be deleted.

Actions taken:

1) The Supervisor locates the root of the virtual

file system for this Host and does a tree traversal to

locate the parent directory file.

2) If parent directory file is not found or found

but write access to the parent directory file is not

permitted, an appropriate error code is returned.

3) Otherwise, if the file is located, it is deleted

by the Supervisor.

?.EAD_FIL5 <pathname, command _ type (directory , data,

size) ,userid>. This command reauests that the Supervisor

trarsmit to the Host either a data file, directory file

'selected elements only^, or the Tr ile_Size, Last_Update, and

5 ccess_Class fentry data) elements associated with a

particular file. *-n explanation of the last parameter, to

transmit e^try data only, r eeds s^e explanation.

Branch entry elements can be logically divided into

C-41

tvo categories with respect to discretionary security. The

first category, which includes ?r.try_Name,

Branch_LinV-_Svitch Access_Class , ard ACL_Ptr are branch

entry attributes which cannot be altered by a Host process

unless the process has discretionary write access to the

directory which contains the file branch entry.

The second category, which contains File_Size and

Last_Update, are attributes which 'belong* to the file and

must be updated when the file is updated. A situation may

exist where a Drocess may not have any discreti orary access

to a directory but may have discretionary read access to a

file in the directory (plus implicit access to the rest of

the directory during the "search"). In order to read this

file, the Host system will need to know file size in order

to prepare to receive it. This is the situation where the

READ_TILE (size) command is needed. Actions taken: (for data

file)

1) The Supervisor locatps the root of the virtual

file system for this Host and does a tree traversal to

locate the desired directory file.

2) If the file is not found or found but read access

to the file is not allowed, an approoriate error message is

re turn ed

.

3) Otherwise, the file is transmitted to the

reouesting Host System.

'f or direc tory f i le

)

1) Same.

C-42

2) Same.

3) If the directory file is found and read access

allowed, selected elements of the branch/lin* entries are

returned to the Host.

(for file size)

1) The Supervisor locates the root of th*3 virtual

file system for this Host and does a tree traversal to

locate the desired file.

2) If the file is not found or found out read access

to the file is not permitted, an appropriate error cede is

returned .

3) Otherwise, the File_Size and Last_Update elements

are returned to the Host.

STCE5_?ILE <pathname, f ile_si7e ,userid>. Thi?

command reauests that the supervisor store the specified

file in the FSS. Actions taken:

1) The Supervisor locates the root of the virtual

file system for this Host and does a tree traversal to

locate the data file.

2) If the data file is not found or found but write

access to the data file not allowed, an appropriate error

code is returned. Mote that Host systems can store only data

files; directories are 'built' by t v e Supervisor.

3) Otherwise, a store operation is performed by th°

FSS.

READ AC1 ^oathrame ,userid> . This command is used by

C-43

the Host systerrs in conjunction with the ADD_ACL_ENTRY and

D*
,L?T£_ACL_'FNTRY to adjust (give/rescind) the access mode

(read/write) allowed to a Host/Host user to a specific file.

Actions taken:

1) The Supervisor locates the the root of the

virtual file system for this Fost and does a tree traversal

to locate the parent directory file.

2) If the file is not found or is found but read

access is net allowed to the parent directory file, an

appropriate error code is returned.

3) Otherwise, the supervisor returns the file 4CL

for Host system user examination.

ADD_ ACL_ENTRY < pathname, ACL_2rtry ,userid>. This

command reauests the Supervisor to add to the soecified file

ACL the specified ACL_Entry (Host. user combination, plus

associated access mode). As with the previous commands, the

access is checked for correctness by- both the Supervisor and

the Kernel before any action is taken.

DSLETE_ACL_ENTRY ^pathname, «CL_Entry ,userid>. This

command reauests that an ACL_2rtry be deleted fnon a file

fi CL. Again, appropriate discretionary and non-discretionary

checks are made before any action is taken by the FSS.

ABORT. This command reauests the Supervisor to quit

execution of the present command and return the file system

to its original state. Th°re are only certain locations in

the execution of Host con-rands that the Supervisor is able

C-44

to interupt. If an ABORT command is received after an

operation has teen completed but before the final Host

acknowledgement is sent, the original command completion

will be acknowledged and the abort command will be ignored.

Otherwise, action of the command will be halted and the

Supervisor will wait for another Host command. All Host

commands (including A?OF.T) will be explicitly acknowledged

with either a 'command comnlete" message or an appropriate

error code.

C. PROCESS STRUCTURE

There are two Supervisor processes which act on behalf

of each Host system (hardware port). The input/cutput (10)

process and the file management (FM) process. The 10 process

is responsible for communication and data transfer (via

packets) between the Supervisor and the Host system. The FM

process is responsible for managing the per-Host virtual

file systems and providing overall FSS control. a.ll Host

commands are interpreted by the FM process? the 10 process

acts in a "slave" mode to the rM process. Acting together,

the FM and 10 orrcesses interpret and execute the file

management reauests of the Host systems. Kernel orimitives

F.FAD, »P: fl \Cy. fcV*IT, and TICXFT used in conjunction with

eventccunts and seauencer (described later), are used to

synchronize Host surrogate orocess execution.

Both the ? M and 10 processes call on Kernel primitives

to perform actual segment manipulation. The normal order in

C-45

which these calls are made is fixed by the Kernel design. To

add a segment to a process memory, the order of Kernel calls

is: 1) Gatekeeper. Create_Segment , 2) Gatekeeper .Make JCaovn,

and 3) Gatekeeper. Swa p_In . To delete a segment from a

process memory, the order of Kernel calls is: 1)

Gatekeeper .Swap_0ut , 2) Gatekeeper. Terminate, and 3)

Gatekeeper. Delete_Segment . The Suuervisor procedures use

these invokation orders.

There are three levels of abstraction for a Host

surrogate process. They are: 1) the level at which Host

commands are known, 2) the level at which files are known,

and 3) the level at which Supervisor segments or packets are

known. These levels of abstraction should be kept in mind

when reading the FM and 10 process descriptions.

A design choice to simplify file system maintenance and

control is to allow upgrading of only directories (e.g.,

unclassified to secret). This will eliminate the possibility

of having a secret file in an unclassified directory, a

situation which would prevent updating of the file branch

data by the secret process since writing "down" is not

allowed. This restriction is not felt to exclude any

significant FSS capabilities ann* provides for a simplified

implementation .

The modular construction of the FSS enhances System

structure, ill data bases, except the files themselves, are

module local. Cod^ is expected to be written in PLZ/STS

[Snook], which is a high level pascal-like structured

C-46

programming language. Pecause of the its length, code is

located in Appendix C. The code listed in this appendix

gives the interprocess and intermodule control structure of

the FSS.

1 . Shared Segment Interactions

Supervisor process execution occurs in a completely

asynchronous manner. When a process is refered to in the

« following discussions, the two Host surrogate processes are

being referenced; these surrogate processes have the same

clearance levels as the Host they represent.

As already mentioned, the task of the FSS is to

provide a service. To be of maximum benefit, this service

should be unambiguous, easy to use, and robust.

The ^a.^r proble m that the FSS must handle for

proper System security is the confinement problem, viz., to

prevent a process from reading a file with a higher

classification or writing ;i.e., storing or updating) a file

with a lower classification. This job is handled entirely by

the Kernel.

Another problem closely related to the confirement

problem which also irvoles the Supervisor, is the

"readers/wri t er c " prnbl°n [Court ois! . 1^ order to preserve

file integrety, reading and writing of a shared file cannot

be allowed at the sa^p time. Since a primary objective of

the FSS is to provide for the sharing of files, this problem

will certainly occur and must be handled properly for System

C-47

viaMlity.

Both the confinement problem and the readers/writers

problem can be solved in one of two ways. Mutual exclusion,

a mechanise which forces a time ordering on the execution of

critical r°£ions, forces concurrent processes into a total

•order execution sequence. This is counterproductive to the

purpose of a process structure, which inherently allows

concurrent execution of processes.

a second and relatively new method is the use of

eventcounts and seauencer [Reed] to control access to

critical regions. This method preserves the idea of

concurrent processing' to a much greater extent. An

eventcount is a object that keeps count of the number of

events (in the case of the ?SS, segment read/write accessps)

that have occured so far in the execution of the System

procedures. These eventcounts are associated with the

Supervisor segments. They are accessed only via Kernel calls

and can be thought of as non-decreasing integer values. Each

Supervisor segment has two eventcounts associated with it,

one to keep track of the read accesses and one to keep track

of the write accesses.

A Kernel primitive ADVANCE signals the occurrence of

an event (read/write segment access) associated with a

particular segment eventcount. The value of an eventcount is

the number of *DV fi ^CE operations that have been uerformed on

it. A process can observe the value of an eventcount by

either HEAD^Seg_#, E), which returns the value directly, or

C-48

by AWAIT!Seg_# f T, t), which returns when the eventcount

reaches the specific value t.

A sequencer is also necessary to solve the

confinement and readers/writers problems. Some

synchronization problems reauire arbitration (e.g., two

write accesses to the same segment); eventcounts alone do

not have the ability to discriminate between two events that

happen in an uncontrolled (i.e., concurrent) manner. A

seauencer, like eventcounts, can be thought of as a

non-decreasing integer variable that is initially zero. Each

Supervisor segment has associated with it one seauencer. The

only operation on a seauencer is a Kernel primitive

operation called TICKET (Seg_#, S), which, when applied to a

sequencer, returns a non-negative integer value. (Similar to

getting a ticket and waiting to be served at a barber shou.)

Two uses of TICK7T(Seg_*,S) will return two different values

corresponding to the relative 'time'' of call.

The segment number associated with these

synchronization primitives informs the Kernel of which

segment is being referenced. The use *f eventcounts and

seauencer can be illustrated by examining the following two

urocedures 'read O as not equal). The FSS imole^ents these

functions in the Direct ony_ Control module located in the FM

orccess .

C-49

PROCEDUEE reader
"PEGIN INT^G^R v:

abort: w := READ(Seg_# ,S) ; 'get reader eventcount!
AW.aiT(S<=g_*,C,w) ; !walt until write complete!
'read file';
if RFAD(Sp«_#,S) <> w THEN GOTO abortfread again!

END

PROCTDUR* writer
BEGIN INTEGER ft

ADV*NCE(Seg tf ,S)» fincrement reader eventcount!
t ;- TICKETTSeg_*,T); ?get sequencer!
AWAIT(S°g_* ,C, t) J !wait for write to complete!
'read and update file';
ADV *KCr{Seg_#, C) ; lincrement writer eventcount!

END

The Kernel will enforce the confinement property and

prevent the application of the ADVANCE and TICKET primitives

to segments with an access class less than the Host access

class. Not to do so, would allow a communication path to be

created between two different access levels. The two

eventccunts a Supervisor segment will have associated with

it (in the Kernel) are a write eventcount, C, and a read

eventcount, S. Each segment will also have a sequencer, T,

associated with it. Eventcounts and sequencer are initially

7ero.

These eventcounts and sequencers, with their

associated Kernel primitives, are used by the ESS to oerfcrm

the synchronization functions of "lock ar.d Vakeup ("Coleman 1
,

described i n the original Kernel design. Eventcourts ard

seouencers provide a clearer picture of t^e process

interaction as well as explicit control of the

'readers /writers ' problem. Even more importantly, they

C-50

permit the synchronization between processes of different

access levels. This is essential in order to permit a high

level Host to read files of a lower level.

Th°re are two groups of Host reauests. They can be

'classified as read reauests (e.g., ?.Y.*.D_?I IE, -E a D_ACl) and

write requests (e.g., CREATE_FILE, STORE_FILS). These

categories can he further subdivided into read data file,

read directory file and write data file, write directory

file subcategories. rach category tyoe must be handled in a

proper manner by the Supervisor to irsure file integrity.

Each category will be discussed in turn beginning with the

read file category.

There two conditions which might develop over which

a process has nc control; file update by another process,

and file deletion by another process. *n example of file

update might occur while a secret process is traversing a

file hierarchy and is in the middle of searching the

directory for an Entry_Name when another process (at the

directory access level) updates the directory. Since the

secret process will READ th*3 s pgment "reader" °ve n tcour.t , S,

before and after the search, it will icnow that the data it

had obtained is possibly invalid. Although th<=re does rot

aDDear to be a problem with allowing the 'reading' process

to re-read the directory file until 5 "good" . ead is

achieved, a closer ova^ination of this condition should te

ma^e at implementation time, viz., is it possible for a

'writing* process to alter the pathname of a 'reading*

C-51

process so that an inconsistant state is achieved for the

reading process? a possible solution could reauire a process

which suffers a "cad" read to begin the traversal over,

beginning at the root directory.

When a directory is being read to pass directory

data back to a Host, the directory data is out in a buffer

and sent from there.

A single segment buffer nay bp to small to hold a

data file 'e.g., maximum file size of 256K bytes).

Therefore, to present the Eost with only valid data, a data

file "buffer" is needed at the process level. Since this

buffer will be at the process access level, it can be locked

by the process to insure that no other process interfers

during the reading ooeration once the data file is in the

buffer file. This cooying of the data file is done by the FM

process and the 10 process will read, the file from the

buffer file when transfering the file to a Host system. The

choice of making a cooy of a data file is awkward but

considered necessary in order to provide the Host with only

atomic operations, i.e., to prevent the situation from

occuring where half of a ten segment msf is transmitted to

the Hos* a^d the file is either updated nr, deleted.

The other condition which may arise daring a file

read is a file deletion. This situation occurs wh A n one

orocess is reading a file and another orccess deletes tne

same file. The first pmcpss, not knowing that the file

(segment) has been deleted, will try to reference the file

C-52

again. A hardware segment fault will occur and cause a

transfer of control to the Kernel. Note that in this

situation, it is the higher access class process which will

suffer the fault while it is reading a lower access class

file. To handle this problem, viz., the Supervisor segment

fault, a fault handler must be part of the distributed

Supervisor. _A Kprrei primitive also reeds definir^. This

primitive, la tekeeper.On_vaul t (
Taul t _cond it ion, Intry_pt),

is called ir the initialization of the Supervisor process

where it is possible for a segment fault to occur. A call to

a Superivsor condition establisher is also necessary. This

will place a specific condition handler on a 'condition

stack". If a fault occurs, the Kernel returns to the

Supervisor fault hardier with a 'segment fault' error

condition. This fault handler in turn transfers control to

the condition handler at the top of the 'condition stack'

which can make a normal return from all procedures. When the

error condition is detected (from the return code) by the

appropriate Supervisor level, action is taken, viz., the

Host command in re-initiated. Since the file (segment(s))

has been delete, this reinvocation nay well result in a

'segment net found' error condition being returned from the

Kernel and a "file not found" enror condition bein<? relayei

to the Host. V,
:

h <=Ti *he Supervisor e^its the "se.grpnt fault" a

'revert" command is necessary to remove the condition

han.'ilen fn^m th° condition stack.

Another side benefit of having the Supervisor do all

C-53

the actual file reading (and therefore take all the segment

faults) is that it prevents a hardware fault from occurin*?

during the actual data transfer in the Kernel during 10

process execution. this condition would force the handling

of the fault in the Kernel domain— a difficult task.

Writing a file is a more straight foreward task and

presents fewer problems. This is because a writing process

has the sane access class as the file ard can prevent all

other access to the file (segment(s)) it is concerned with.

To alter a directory (C?.EATE_FIL2, DFLETF_FILF . etc), a

process will get a ticket to the directory and perform the

necessary manipulation when its number is called. In order

to store a file, more care must be taken. If a process were

allowed to store directly into the old file, the possibility

exists that a software or hardware error misht result in a

partially updated file- and loss of file integrity. To

prevent this from occurring, a data file is first stored

into a temporary file set up by the FM process. This also

allows the original file to continue to be read by other

processes while the store operation is going- on, a

significant advantage if the data file is Ions. A-fter the

file is st^r^d by the 10 process, the F^ process gets a

ticket to the fil^ directory and when its turn cones, makes

the "eces^rv directory updates, viz., the temporary file

name is sub si tut ed for the old file 7ntry_'Jame, Last_Upiate

information charred, ard the old file deleted. (If the file

is a msf, each segment is, of course, deleted.)

C-54

2 . File Management Process

The FM process is composed of the five modules

depicted is figure S (with associated Kernel calls). The FM

process is the controller of the FSS and directs all

interaction between the FSS and a Host system. Each module

which makes up this process will he described along with the

procedures which nake up th° individual modules.

a. File Management Command Handler Module

As depicted in figure 3, the FM_Comnand_Handler

module ;see Appendix C, p. 134) is at the top of the FM

process hierarchy. This is the level of abstraction at which

Host commands are "known". This module is responsible for

interprocess communication and synchronization (with the 10

process) and Host command interpretation. Interprocess

communication is achieved by the Kernel primitives TICKFT,

ADVANCE and AWAIT which act on an event count associated with

the shared mail_box segment. Figure 9 shows the logical

construction ard he data base description of the m a11_bcr.

figure 1 * is a list of the procedures contained within ^n-3

?M_Command_Eandler module and their input and output

na rame ters

.

The ?M Cmd_Hnd procedure is the entry procedure

into the FM Command Handler noiule. This is the control

procedure of the module and is responsible for routing Host

commands to specific FM_Command_Handler procedures for

action. When notified by the 10 process that a command

C-55

Mail Box

Segrner.t__Har.dler
Module

Gatekeeper .

r*ake__Kncwn

Gatekeeper

.

Terminate
~"7

\ t

Me ,nrry_Hardler
Module

Gate ke pdpt .

Swa P_ In
Gate ^eeoer .

Swa P. Cut

FM_Command_Handler Initialization
Module

Gatekeeper.
^1 Ticket

Ga tekeeper.
Ad varce

Gatekeeper,
await

<r

Gatekeeper.
On Fault

-T

Di rectory_Cortrol
Module

Gatekeeper
?ead

Ga tekeeper
Advance

Gatekeeper
Await

Ga tekeeper
Ticket

"A"

2i sere t i cr.arv__
Security Module

Gatekeeper

.

Create_3e<?men t

Gatekeeper

.

delete Segment

Figure 8. ™ Process Modules

C-56

c ommar d_Buf fer

Di r_rata_3uf fer

ACL. Buffer

Mss__3uf fer

Mail Hot Segment

Mail 3^ T Record [

Command Puffer *rray
Ti^ Buffer Array
ACL^Buffer Array
Ms*~?uffer Record

: "bytes]
"Max Entry] Dir Tata
;MaxlACL_Size] ACL_£ntry
[Inst byte
Pathname string
Tile_size lword
Success code byte]

Figure 9. Mail_3ox Segment

C-57

PHOCFDURF INPUT

FM Cmd Hrd Host Cmd

FM_Cmd, Pathname
Delete_File Userid

FM_Cmd_ Pathname
Create_Filp File_Type

Userid

FM_Cmd_ Pathname
Creati_Link Link

Userid

OUTPUT

Mail_3ox.Msr. Inst
Mail_3ox.Ms2.Sr.cc.Code

Mail_3ox.Msr. Inst
Mail_Box.Ms5.Succ_Code

Mail_Box.MS£. Inst
Mail Box .Ms^-.Succ Code

Mail Box. Ms?. Inst
Mail~3ox.Mss.Succ Code

FM_Cmd_ Pathname
Read_File ?ile_Ty?e

Userid

",

M_C'nd_ Pathname
Store~File File_Size

Userid

~M_rmd_
Head ACL

Pathname
U s e r i d

Mail_Box.Mss. Inst
Mail_Fox .Msg.Succ Code
Mail_Box.Ms£.File_Size

Mail_~ox .
M S£. Inst

Mail_?.ox . Ms£ . Succ_Code
Mai 1_ Box .Ms^.File_Si?e

Mail_ r :x .Msa.Tnst
Mai!_:-o^. v sr.5':co_Co J e

Mail Box. Ms*. File Size

FM_Cnd_
*dd_ACI.
Entry

Pathname
ACL Tntry
Userid

FM_Cmd_ Pathname
Delete_;CL_ ACL_?ntry
Entry Userid

Mail_3ox.Ms£. Inst
Mail~~"ox .Msg.Succ Code

Mail_3ox.Ms5.Inst
Mail ?ox.Msg.Succ Code

Figure IF". Command. Handler Module
prfl^c^ifp I^pn* /Ou*pn t p^ra^eters

C-58

packet, is lr. the T»all_box, th» FM process retrieves the

command and "begins appropriate action. The ^ost command

fe.p., STORE_FILF, aEAP_FILE) Is actually an entry into a

case statement which directs the correct FM_Command_"andler

procedure to take action. Zach Host command has associated

with it, at this level, its own procedure.

Because the procedures of th*1 module are

relatively straight forward, they will net he discussed ir.

detail. The pe^eral functions of all the procedures in this

module are to pass instructions to t^e 10 process and to the

Birectory_Co r, t rol module, the "workhorse" of the FM process.

Some explanation of Host command parameters is

in order, however. These parameters (described below) are:

pathname

link

file type

co^^and tyre

file size

access le^el

v s e r i d

?
n I entry.

I 1" all h p st commands, the pathname passed by the

'-"est is f he pathname 'relative to the 'root' directory of

the :.'rs f virtual *ile system) of the file of interest,

whether a directory or data file, "rem the pathname, the 7 V

process is able to extract the pathname of the parent

directory which it must brins into the FM process memory to

C-59

check for proper discretionary access. The complete

oathname, in terns of the FSS file system, is oassed to the

Di rectcry_Cort rol module for actual directory manipulation.

a pathname and file size (for the 'buffer file') is returned

(dir_pathoame, dir_f ile_ si ze) by the Directory_Control

module during a ^ost RF a D_FILF or STORS^IIF reauest. This

new pathname and file size is passed to the 10 process where

the actual data transfer takes place for these operations.

Sinoe discretionary security checks are made in the FM

process and all input/output "buffers" (e.g., temporary data

file, mail_boT segment) are under positive FM process

control, the 10 process need not be concerned with

discretionary security or the possibility of a "segment

fault '

.

A link is a pathname which a Host passes in the

CP.EATF_LINK command.

Tile type is used for the CRF4TF_FILF Host

command and is necessary because of the different file

formats.

Command type is used in the REAE__?ILE Host

command to speoify the tyre of 'read' the FSS is to conduct,

i.e., to read a -Mr^ctory file, a lata file, or only a data

file size.

File size is passed by t^.e Host durinr

STC.-E_FI!I reouests. m
r i s irformation is necessary for the

FM process to create a temporary file of sufficient size to

store a Host. file. File size is relayed to the 10 process so

C-60
#>

that the 10 process can go directly to the data file without

having to chpck the directory file for file size. File size

is in hits.

Access level is -e^ded for thp CREATE_FIL3

command. This allows for upgraded directories (remember,

data files cannot be upgraded).

The identification of the Host system user is

necessary for the FSS to perform discretionary security

checks. This is orovided by the Host system through the

userid parameter.

£CL_5>try is used with the ADD_«CL_ENTEY and

DTLFT^A CL_FNTRY commands to give/rescind discretionary

access to files.

b. Directory Control Module

The Directory_Cont rol module, as the na-np

imolies. i^es the directory manipulation and maintenance.

Fisure 11 lists the procedures which make up this module.

along with their input/output parameters.

This i* the level of the FM process at which

files are known. The Directory_Contorl module nandles trie

readers/writers problem with the appropriate use of the

Kernel syncronization primitives ?.EAD, ADVANCE, A '.v AIT. and

TICKFT. It handles the sesrmert fault condition by a call to

the condition establisher when the possibility of a segment

fault exists. The 10 nro^ess uses the same primitives while

performing its portion of the data file read and store

C-61

P?OC£DUP~

Dir_Cntrl_
Eirec torv

DirJJntrl.
Data

Dir Cntrl
Update

I.MPUT

Command_Type
Usrrid
Pathname
?ile_Type
A?ce«;<_Level
Link
ACL_?ntry

C 0Tnard_Type
Userid
Pathname
File__Si?e

Comma nd_Type
Use-id
Pathname

OUTPUT

Dir Succ Code

Dir_Succ_Code
Dir_?athname
Dir~File Size

Dir Succ Code

Figure 11. Directory_Control Module
P-oce3ures Input /Output Parameters

C-62

operations, viz., the tree traversal when locating the data

file read buffer or the temporary storage file. Js

previously mentioned, the IC process will rot face the

oroble^ of file deletion while reading and will therefore

not have to establish a condition handler.

Logically, u ost reauests reouire four basic

actiors to be perf^r^ed at this level. They are: 1) to brinr

a directory file into process memory for a read and/or write

ooeration, 2) to delete a file, 3) to create a file, or 4^

to copy a data file into a data file buffer. All other file

mainterance functions such as mana^ir.,2; memory or mana^ir.fT

the limited number of segments available to a process, ar°

performed by subordinated modules. There are three

procedures in this module.

The Pi r_Cntrl_Bi rectory procedure is the

Di rectory_Cort r^l module procedure which handles Host

commands which reauire that the parent directory be brought

into process memory in order that reauired discretionary

security checks can be made. These Host commands are:

rilL TT?_7ILE

CF?.fl T?_JFILE

oh?*! 7 LINT

=FAr_FIL? (dir, sire)

ADD. ACL_ENT3Y

tjylTTT^.* CLIENT? Y.

To oerform these tasks, the parent directory

C-63

segment (which contains the file "branch/link entry) must be

brought into rrooess memory to check for prooer

discretionary access. If access is permitted, the

Seamen t_ Handler module is called with a pathname of a

segment reauired to be brought into process memeory.

For action or. a DFLF7F_FIL!i: command,

discretionary write access to the directory is reauired

since the branch y
l ink entry of the file must b° removed from

the directory v^en t^e file is delete!. (Note that this

raises the possibility of a Host having write access to a

file but not able to delete it because he does not have

write access to the directory.) If the parent directory file

is not found or found but write access to the directory rot

permitted an appropriate error code is returned, viz., "file

not found" or "write access not permitted".

If an error condition does not arise, the

directorv is brought into p^coes^ n"em nr y u r i a check of the

file attributes is made to determine file type (data,

directory, link). If it is a data file or link entry, it can

be deleted because it is a terminal node in the file

hierarchv. If it is a directory, the (directory) file itself

must be brought into process memory to see if the directory

is empty • v i 7 . , c v er\r of Fntry Count and presence of a

Supervisor temoorary file'. If it is not empty, an error

code of "not terminal file" is returned to the Host. If the

directory is empty, it can be deleted.

If no error condition occurs during the

C-64
y*^»

preceding checks, the file may (subject to check by the

Kernel) be dele^d. The Dir_Cr. trl_Directory procedure will

call on Ses_ trnd_ v'ake_ TJnaidres5able procedure which will in

turn call Mem_R*H_Swapcut procedure to remove the segment

from process memory if it is in memory. (Remember the actual

order: Swap_0u f
. Terminate, Delete.) Ne^t, the Kerr el

primitive, ^ate^eeper .Delete_Segment is called to delete the

file from the TSS . N«te that in the case of msf's, th c se

steps must be repeated until all segments of the file are

deleted. *t this time, the branch entry is removed from the

directory by zeroing all branch entry elements (to allow for

Kernel secondary storage compaction of iisc pages of 7eros).

The 10 process is then instructed to acknowledge the Rost

with "file deleted". This f~ees the entry for future use.

The deletion of a link requires the same

discretionary wri to access to the directory. 1* this case,

no further checks are necessary and the link entry elements

are zeroed in t.h° directory, freeing the entry for re-use.

Tor the "R^ATF^IL" command, analogous action is

taken by the Dir_Cr.t.rl_Di rectory procedure, viz., to chec 1'

discretionary write access to the directory which will

contain the file branch e r ^v.

Once this check has been satisfactorily

corrple + ed, b* a r^^p oTi^ts in the lireotcry, the Kernel call

la teke^per . f re a *e Segment is made to create the file. The

i n i*ial file c i7o i= zero for data files since the

Supervisor has no prior knowledge of the size of the file

c-65

that will be stored in the branch entry. As explained

earlier, a file size of LARGE (SK bytes) was selected for

the fixed directory size.

The CRFATF_LINK reauest is a r*ain analogous, the

only difference beir*! that instead of a branch entry bein^

made in the directory, a lirk entry is made. As previously

mentioned, the Supervisor will not allow a loop state.

Checks will «"t be nade at link creation time? however, the

Supervisor will 'abort " a file search if it encounters this

error condition during tree traversal.

The R7AD_7IL"F ^dir) command reouires read access

to a directory file. If no error condition arises during

discretionary security checks, selected directory data

(e.g., Sntry_Mame, 7ile_Size, etc.) is trans.fered to the

Host system via the mail_box segment (viz.,

Dir_Data_Buf fer) . This selected directory data for each

'occupied'' branch/lirk entry is trar.sfered during the

READ_FILE <dir) command. For the READ_FILE (size) request,

only selected directory data for a specific data file is

transfered. The TC and FM orpcesses use appropriate Kernel

synchronization primitives to assrre that the information in

the mail_box segment is valid.

The las f thr^e Host reauests handled by the

?ir_Cntrl_Direct ory procedure are related. Asain,

aocropriate discretionary ac r e«s checks must be ^ade in the

parent directory. If no error condition arises, t::e action

taker is straight foreward. In the case of the ?.E?D .^CL

C-66

command, the file *CL is transfered to the mail_box

4CL_buffer and the procdure returns to the

FM_Commar.d_^andler module. In the case of the

,

fl DD(DFLTrE N'_ACL_ZMTRY commands, the action is completed ty

the Dir__Cntrl_ r)irectory procedure and the appropriate

Di r_Succ_Code returned.

The M^Cr. trl^ata procedure is nesponsible for

trarsf erirg tf/fr^m a Host a reauested data file if

necessary urecond it ions are net (viz., discretionary and

non-discretionary security). In order to read c^ store a

file, a Host -nust have the proper discretionary access to

the file. To check this, the parent directory which contains

the file branch entry must he brought into memory. This is

done by the Ser^e^t _Eandler module. If the proper access is

not allowed, a" erro 7* code is returned to t'^ c

FM__Command_Kandl° T' ^odul° for relay to the Host system. If

the proper access is allowed, a copy of the file is made in

the case of the ?.E£D_?IL2 command, or a temporary file is

created in the case of the STORE_FILE command. The pathname

and file size of the data ^iles to be transfered are passed

to the 10 process which will perform the actual dat=>

transfer. tfp°n a successful transmission of the data by th°

10 process. t
u e 7rv orocess instructs the 10 process *

ac'-rn^wled^e the H^sf with a "r°ad complete' or "st r ~ c

oomplete', as ^pnno^ria te

.

The Dir_Cntrl_Data procedure will ma'^e

appropriate use of Kernel synchronization primitives (e.g.,

C-67

AWAIT, R'AD, etc.) when copying a data file into the data

file read buffer or setting up a temporary file for the

store operation. After the file transfer has taker. place in

the 10 process, thp IC proc°ss returns a success cole to the

?M process. The 10 process will return to the F M process

when one of three conditions erist: 1) either the read or

store operation is successful and complete, or 2) a command

packet is receive*? (viz., an abort cowman -!), cr 3) a

'time-out ' occurs and the 10 process was not able to

complete the c^n-Taiii.

Tor a store operation, the Dir_Cn trl_Update

procedure is ^alled to update the directory data (viz.,

exchange the temporary file *ntry_Name with the old file

Entry_'Jare^ aM deletes the old file. (The temporary file

should be deleted by this procedure if, upon attempting to

update the file, the old'file cannot be found.)

Since each directory segment has only one

temporary file for file update, some delay may be

experienced by ^ost systems if several try to store large

files irto th° «.a^p director?/". This ^oes not appear to be a

major problem si^c3 most users are anticipated to be

operating fro** * viPir fvi directory files.

The r.trl Update pnoceiure is also use! to

free the temporary storage file in the c a
»
c <= of a Host abort

command

.

c. Discretionary Security Module

C-68

The Msc-etion.any_Security module is responsible

for checking Host user discretionary access to a specific

file and adding and deleting ACL_entries . All file flCL's are

logically located in this nodule. This is the only othpr

module besides the !Urectory_Con t rol module where a segment

fault night. occur. Appropriate use cf the condition

establishen must be made before any attempt to read an ACL

so that a pn^p«r reMirn is pyecuted to the Dinect0r.7_C0n.tn0l

module in the event of a fault. There ane four procedures

which make up this nodule as depicted in figure 12.

The t>i sc_Sec_ChecK_Access procedure, as the name

implies, checks f«r a specific usen discretionary access to

a specific file. * success code returns, indicating the

result of the check. This discretionary ~hpck is only made

on the specific file which is r^cvir^i in. a Host command,

i.e., a design choice was made not to make discretionary

access checks during the tree traversal search fon the

specified file. This makes explicit in one ACL who has

access to a file, which contnibutes to clean security

semantics. (This also eliminated the Question of what to do

if an intenmediate directory was encountered durin ile

search to which the process lid not have reai access.)

The "M s o Se^ fl dd_'CL_Int ny pnocedune adds a

.CL entry to file ACL and net urns a success code to

indicate *.h° artio r taken. 3 s noted previously, a directory

has a limited number of ACL_entry elements. The Supervisor

only guanantees one *CL_entny element pen branch entry (for

C-69

?^OC?DUR r

Disc_Sec_
Check Access

INPUT

ACL
«CL Entry
Userid

OUTPUT

Disc Succ cole

Disc_Sec
*dd AC! ""Entry

fiCL

»CL_?ntry
Userld

Disc Succ Code

Disc_Sec_
Delete ACL Entry

ACL
ACL_"Sntry
Userid

Disc Succ Code

Disc_Sec
Get Entry

ACL_EntT-y
Userid

Disc Succ Code

figure 1? . Msc T,Ptior.ary_Security Module
Procedure In "out /Cut. put Parameters

C-70

the file creator). If another ACL_entry is reauired and the

!t.CL_entry "r>ool" is empty, an *CL_er.try element will have to

he explicitly freed from a file by the Host before a file

8 CL can be added to.

The T^isc_Sec_ T^elete_.a ', L_^ntr.7 procedure performs

the straight foreword task of deleting ar 4 CL_entrv from a

file ACL. This prociure returns a success code when deletion

is complete .

The last procedure of this module is the

Disc_Sec_Get_£CL procedure. It is usel during the lr.tial

creation of a file by the Directory __Control nodule to get an

initial ACL_Intry element.

d. Segment handler Module

The Segment ^Handler module is the abstraction

level at which Supervisor segments ar? <?.o.m. This module

works in con .ivrctior. with th ° ^errc r, y Handler module

'describe! later) to either bring a segment into process

memory f'd'.. M,= vp_y~n W n
t Svap_In.) or to terminate a segment

(viz., Swap_Cut, Terminate'1

. This module is responsible for

rai^ t ai"1 1 i e? the FM^KST f^nvr sp^prt, tabl c—^i^ur 13) data

base. The data has° elements of the FM_KST are the pathname

of a segment Vm-ivn +r the p^^^e^s, th c segment number

~> >[^es_P] of the terminal file in this pathname, ^oie (i.e.,

neai or ,-'ri Mr-^
, a^n" the usp bit. ^ece^sary for a I VJ removal

algorithm (approximation) . Tn prevent the situation where a

segment has been deleted by one process but is still

C-71

Pathname See__* "lode Use

TitrvTP 13. TM KST

SegJ*nd_
Make Addressable

I MPUT

Pathname

CUT 01 '!

Se<c_s

Sefo_5ucc_Ccde

Se^_Hnd_ Pathname
Make Uradd rpssable

Ses Succ Code

Tigure 14-. Segment

_

T7and ler Module
?r^^pdn'%o I" put /Output ?^raT°ters

C-72

indicated as "in memory" "by another process, each new Host

command will initiate a Kernel call, Gatekeeper. Swap_In

(Seff_#, Ease_.6 d3r) , to confirm the existence of a segment. (

Kernel return of "segmpnt not found" will indicate that the

segment has been deleted. The TSS must then clear its date

structures o* invalid data and traverse th° virtual

hierarchy from the root directory to insure that the segment

is truely gone an-i that it has not been renamed by another

process i.e., f ^ cover the unlikely situation wher° a

pathname has teen deleted and then re-created with the same

filenames. This would associate different segment numbers

with the same pathname.

Fi^'irp l-i is a list of the ' procdur°s of this

module along with their input/output parameters. This module

receives a file segment pathname and returns when it has

been brought into p-ocess memory or an error condition

arises. The possible error condition that might be returned

from this module is 'file not found'. This module has twe

tasks, and therefore two procedures. To make a segment

addressable by the -ost process (viz., brin^ it into process

memory) or to na v " a segment unaidressable by a Test process

•viz., to remove the segment from onoc-ss memory). The

sroce dunes which h^n-lle these tasks 3ne the

Se£_Hnd_Kake_AddressaMe 'i.e., bring a segment mt: process

memory' and 3^°" ?"d Nake Ur.addressable (i.e., remote a

segment from orocess memory) procedures. 'Mote that to ma-ce

a segment addnessable also reauires making the segment

C-73

known' and that making a segment unaddressable requires

"terminating" the segment.) Both tasks are accomplished by

appropriate use of Kernel primitives and accompanied by

calls to the tfe^ory^Rar dl«r module to Swap_In or Swap_0ut a

segment.

This module is also responsible for segment

management. Segment management is necessary because each MMU

allows the addressing of only 64 sements. ttith one MMU in

the initial TSS implementation and several segments taken by

the Supervisor and Kernel segments, the number available to

the Supervisor processes will be somewhat less

(MAX_KNOWN_SEG) thai 64. This number must be managed in a

dynamic manner without interfering with process execution.

The Se^_End_Mak°_Addressable procedu 1" is the

more involved of the two module procedures. If a reauest to

make a segment known is received, the FM_KST is checked to

see if it is already known. If it is, the LRU bit is set and

the Memory..Hardier module is called to assure that the

segment is in process memory. If it is not already Known to

the process, it must be made known by the Kernel call,

Gatekeeper .Make_Kr.own (Par_seg_^, entry_*, node). But this

can only be done i F
r> no cess segment limit is not exoeedei.

If the addition of a segment will cause an overflow, a

s°f? r~ert rust be removed by the 3e* Hrd fade "Jr.aidressable

procedure. Once this is ionr, the desired s a ^ment oan be

made known, the FM_KST updated, and the Menory_Eandler

module called to bring it into process memory.

C-74

The Seg_Hnd_Make_Unaddressable procedure is

straight forever*!. This procedure may he called to either

delete a specific segment or to delete the LRU segment. If

called to ~enove a specific segment, actior is taker, to

remove the segment 'described below). If called to remove

the LBU segment, a LPU removal algorithm f approximation) is

uspd to determine which segment will be remove^. When this

has been done, the Memo^y^andler module is called to

Sv;ap_Cut the segment from process memory. A returned success

code indicates that the segment has been removed by the

Kernel call Gatekeeper .Swap^Out (Seg_#). A call is then made

to termirate the selected segment. The Kernel call,

Gatekeeper. Terminate (?ar_Sp£_*, !!ntry_K#), will cause rhe

segment to be deleted from the Kernel KST. Removing the

segment pathname from the ?iM_KST will complete the acti~*"

taken by this pr^cMure.

e# y e rr>nry Handler Module

This module operates in a "slave" node to the

Seamen t_Eardler module and consist of two procedures. Th°se

orocedures are listed in figure 15 along with their

input /output paramp* e~s . The job of this module is t:

dynamically manage a fixed size linear virtual memory. I:

does this by s we "Doing in and oi>t of process me", o*, y segments

as reauirei

.

Wher the Mem_Hnd_Swap_In procedure is called,

the FM «ST. figure 1? , (active segment table) is checked to

C-75

PROCTDURF

Mem_E iri_Swap_I ,
i

INPUT

Sep_»
Seg_Size

OUTPUT

Mem Succ Code

Men_Hnd_Svap_Out. Se£_# Mem Succ Code

Figure 15. Memory_Handler Module
Procedure Input/Output Parameters

Sez_# Size Base_Addr Use

Figure 16. FM AST

7 i 2 • • • "Base_Addr

SEG_#

Figure l 7 . Mem_Map

C-76

see if it is already in memory. If it is, its LRU bit is set

and Gatekeeper .Swau_In 'Se*_#, 3ase_»ddr) is called to

Insure that the sp^e^t has not been delete! by another

Drocess since last use. If the segment is not in memory, tre

M*M_MAP data structure, <"i^urp 17, is chpcked to find room

for a segment of t*p reauired size. Anguemerts car be made

for both a first-fit and best-fit memory management scheme

[Shaw], a first-fit scheme is chosen for the "FSS d'je to t h e

simpler implon-ora t ion and the reduced memory fragmentation.

If room cannot be found, Mem.JTiid _Swap_Cut is called

iterativelv until enough room erist for the segment to be

brought into process memory. a 'Kernel call,

Gatekeeper .Swapi* (Se*?_ tf
, 3ase_Addr), is used tc move + he

segment into process memory when room exists.

Mem_Hnd_Swap_Cut may either be called to remove

a specific segment or to remove the L?.U segment from process

memory. If the reauest is to remove a specific segment, the

task is straight foreward: a call is made to the Kernel

primitivp Gate^epper .Swap_Cut (Seg_#). If the reauest is to

remove a suecific segment, a LRU algorithm (approximation)

is used to dsterrni^e which se^re"* to r op,ove. When this is

done the l'ernel call is made a r d the Memory^ar iler date

bas ,nc a r= u'oda^e^ *^ reflect the seg^e^t removal.

*- preliminary analysis of memory reauirement?

indicates that ^dt o c e ^ c linpar virtual Tpf n ry will n eed to be

at least ?\7. bytes. The driving factor in this calculation

is the fact that two data segments (possibly SK bytes each)

C-77

may be required in process memory during the copying of a

data file into the data file "buffer". A 24K "byte memory

would allow for the worst rase, viz., one SS byte segment

positioned in the middle of linear memory? room would still

exist for the two 3K byte segments.

3. Input/Outout Process

The 10 nrocess is the second of the two processes

which act on behalf of a Host system to provide a requested

file management service. The 10 process acts in a slave mode

to the 5T process! i t receives its commands from the FM

process via the shared mail_box segment described in

connection with the FM process.

The 10 r^ocess is responsible, as the nsme implies,

for all input and output between the Supervisor and the Host

systems. The 10 process is composed of five modules as

depicted in figure 19. (along with Kernel calls). Two of

these modules, 5°^ rnent_"andler and Memo^y^Handler , are the

same modules as ^scribed i* th p FM process and will not be

discussed further. Their task is to brin^ into the virtual

memory of the 10 p^oces^ the data segments into and fror

which "ost files are stored or read. Note ' that since

discretionary security ch°c v s xr° io^e in the F!^ process,

the IC process does not have to repeat these checks.

lir-ec* invocation of the ?ac>et_ Handler module from

the IC_Command_ rrandler module is possible to send Host

"acknowledgements". If a file is to be read or stored, the

C-78

Mail Bot IO_Co rnmard_Handler
Module

Gatpvppper
Ticket

Gatekeeper
Ad va n cp

Gatekeeper
await

v
?ilp_Ha"^ ler
Module

Gatekeeper
Read

Gatekeeper
Await

Se^ment_-andler
Module

Gatekeeper.
Make_Known

Gatekeeper

.

Terminate
7K

Mer.orv Hardier
Module"*

Gatexeeper

.

S va p_I"
Ga tekeer c r

.

Swap Out

?acket_Haniler
Module"

Gatekeeper

.

Setup
Gatekeeper

.

Send_Packet
Gatekeeper

.

Store^Packet
Gatekeeper.

Chan^e_3vte_
Counter

Tiffurp IP. 10 Process Module

C-79

File__Handler module is first called to perform the read or

store operation.

The 10 process is also responsible for FSS-Host

Drotocol. Pata is transferee between Host and 7SS via fixed

size "packets". Therp are thr°e formats for these packets:

1) a synchronization packet format, 2) a command packet

format and, 3^ a T*ata packet format. Figure 19 gives the

logical construction of the data and command packets. The

synchronization packe* is left for later design in

connection with the design for a Host interface. The packet

size of 521 bytPS for data and command packets was chosen to

maximize lata transfer efficiency at the expense of

increasing the commas packet size. Because 512 bytes is the

size of the smallest Supervisor segment, this was chosen as

the "unit" of data transfer.

i protocol must pxist that insures reliable

transmission and reception *f packets by both the sender and

receiver in the FSS-Host packet exchange. The simplest

protocol that will handle packet transmission is to transmit

packets one at a time anfl wait for packet acknowledgement

before sending the nert packet. The following diagram

illustrates this simple Drotocol.

Packet ' n)
—

>

Packet 'n+O —

:

<~ tc't

Ti^P

3

C-80

DJT.4 PACKET

Packet JType
Packet _ Mumber
Data
Check Sum

Byte
Lwori
512 Bytes
Lword

COMMflMT) PACKET

Packet_Type
Packet_\'umber
n ost_rmd
Pathname
Filename
Link
Access_Levpl
File_Type
ACL_'ntry
Userid
Check_Sum.
Padding

Byte
Lword

'

Byte
123 Byte
IS 3yte
125 Byte
Byte
Byte
3 *yte
Byte
Lword
231 Byte

Figure IP. Packet Construction.

C-81

Operatic ir. this fashion is extremely inefficient,

especially in the transmission of large data files! it does

not allow the sender to send oackets before an

acknowledgement is received nor does it allow the receiver

to accept r^^c that one packet at a tine (i.e.. read ah°ad

and write behind). A multi-packet protocol is necessary to

take advantage of 3 ^ead ahead and write behind scheme.

In specif inr a multi-packet protocol, some means of

distinguishing individual packets must be established. This

is done by ?ivin<? each packet a seauence number carried in

the packet header. The receiver returns acknowledgements

indicating the seauence number of the packet(s) neceived and

accepted {i.e., no errors detected). The number of packets

that nay be transmitted before an acknowledgement is

received is called the packet "window width". Packet

transmission is controlled by an algorithm which uses packet

seauence numbers and the window width. At System

initialization time and anytime a command racket is

received, the seauence number of the FSS is reset to zero.

Thus the first seauence number expected by the FSS upon

system initiation 'and afterwards upon command completion)

is zero.

? Tr an explanation of how the oac^cet window works,

let N f t) deicte th° transmitted seaue^cp number of the

current packet and let \T (t-l^ denote the next exoected

seauence number. The window width is denoted by W. .At the

start of communication, e.g., when a Host sends a command to

C-82

the FSS , the Host is allowed to transmit packets bearing

sequence numbers in the ranee fl'NUKW. The receiver expects

the packets to arrive ir correct s^auertial order. As they

arrive, packets are checked for correctness 'at both the

hardware (USAPT) and software level); an incorrect packet is

discarded and may be considered 'lost*. Let the seauenre

number of a particular correctly received packet be S . If

S = Nft-t l) (i.e., the expected packet), then the racket is

received in the correct seouence ard it should be accepted

by the receiver and ar acknowledgement sent with the proper

seouence number (in this case, S) to the sender. If

S<^N(t + l), then the packet is a repetition of a packet

previously received by the receiver; the second transmission

may be due to either a lost or delayed acknowledgement. The

receiver should generate another acknowledgement and send it

to the sender ard otherwise ignore the packet. If S>N(t+l),

then the packet is ahead of seouence, indicating that an

earily packet has bee'1 lost; such a packet should be ignored

and. an "error" acknowledgement sent so the packet can be

retransmitted .

The arrival of acknowledgements at the sender also

nepds to be ii scu** ed . As each acknowledgement arrives, f n-?

sender can delete the copy it has retained of

corresponding Dacket. As packets are acknowledged, fresh

packets ca~ b^ transmitted, i.e., wren packet ? has be a
r.

acknowledged , ?^ cket W can be sent. Acknowledgements can get

lost in transmission as well as packets. If a received

C-83

acknowledgement does not refer to the earliest transmitted

packet awaiting ackn owl ei cement, the", in this protocol, the

sender may safely delete all packets up to and including

that ref priced by the acknowledgement. Against each copy of

a transmitted packet will te noted a time (i.e., the

ti^e-ont) by which time the packet rust he acknowledged

.

Failing such an acknowledgement, the packet must te

retransmitted with its original seauence number. A packet

will only te received in seauential order, so it will te

necessary to re^ra^s^it not only the earliest unacknowledged

packet, tut also all later packets. The following figure

illustrates this protocol. The aueues should be considered

as circular wit* automatic wrao-around.

Packet ? —

>

<— Ack 3,

HI ^4f

In this figure, the sender is node A and the

receiver is node E. Mode A has sent out oackets 3,4, and 5,

the last of vhiob is still in transit to 8. \'od Q 3 has

received all oacket* uo to and including 4. -It has just

acknowledged 3 znl 4 and is ready to accept 5,6, and ? when

they arr in ord^r. When nnde A receives acknowledgement

for 3 and 4. it will be able to transmit successfully

packets 6 and 7.

This protocol insures that packets are handled in

C-84

sequential order which will insure that the data is received

and stored correctly. It also assures positive control over

the receipt and transmission of packets; a necessary

requirement to prevent buffer overflow and loss of data.

The r ernel controls all the hardware assets, as

erplained in Chapter 1. Kernel calls are therefore r.ecessarv

to transfer packets between the FSS and the Host systems.

The format of these Kernel oalls are:

Gatekeeper .Setup (Buff_Addr, Mode, Status)

Gatekeeper .Send_?acket ''Offset, Status)

Gatekeeper .Store_?acket (Offset, Status)

Gatekeeper. Cbanee_Byte_Coun ter '#_of_Bytes, Status)

iach hardware port, is virtualized into a^ input and

an output port. raoh victual port has associated with it a

unit control block (UC3) at the Kernel level. The elements

of these UC? 's are

t

Byte_Counter : This element is used to keep track of

the number of bytes that have been transmitted or received.

This counter is modulo "packet size" so that once packets

are synchronized, they should remain so. It can be altered

by the Ch3 n
f
*o _?y t e_Cou^t en call in rr^er t<" «s°t f h° 7SS a n d

"J ost back into racket synchronization.

Buffer Address: This is the starting address in the

Input/out buffer wv e^e rackets will be olared (in c omnium) or

taken from (outroin^). It is initialized by th*3 Setup Kernel

call.

C-85

?uf fer_Length: This element is the length (in

packets) of the Input/output buffer. This allows the Kernel

to perform automatic wrap around at the end of the buffer.

V/ird^w_Wid th : This element is used by the input port

UC3 to prevent buffer over flow. Each invocation of

Store_Packet will advance the window and allow another

packet to be stored into the 10 buffer. If a Host system

violates protocol by sending too many packets, the Kernel

will dump them to a "bit bucket". This element is used by

the output port to control the number of packets that the

FSS is able to send to a Host before receiving an

acknowled<?emen t . 41thoue*h this parameter (viz., window

width) may be different for the various Host systems, it

should rot change often and car therefore be set at system

initiali zat ion

.

Fo** a s^nre operation (FSS to receive packets), a

Setup call is used to set the input UC3 base address to the

initial storage location in the 10 buffer. A Setup call is

also required to set the output QCB with the base address in

the 10 buffer from which acknowledgments will be sent. It

should be noted here that the IC buffer in the IC pnocess is

t v e location that p^c>ets ane c^eck^d for enrors and

enpacketed" or "d eoaoketed "
. It is just a intermdiate stop

for data and neither t
v e final destination no 7* origin of

d a t a .

Subseaupr-t Kernel calls to Store_?acket will return

the location of the next oacket in the 10 buffer to be

C-36

processed. The Kernel will store ahead into the 10 buffer

during the store operation hut will not over write the

buffer. That is, each call to the Kernel will indicate that

a new packet location is oner. The 10 process will control

which packets 'and h^w ma^y) are se n t to thp FSS by proper

use of acknowledgements 'for both correct and incorrect

packets) .

Two Setup calls are also necessary for a send

operation. They again set the virtual input/output ports for

the transfer of packets from the 7SS to a Host. Subseauent

calls to Send_Packet indicate that a Packet is ready to be

transmitted. The 10 process knows when it can discard a

packet by the acknowledgments it receives from the Host

system.

The Chan£e_"°yte_Counter primitive is used by the

synchronization procedure to shift a UCB byte counter in

order to bring packet transmission back into

synchronization. (Synchronisation may be required during a

temporary communication interruption or system start up.)

The following is a description of the three 'Vv"

modules which make uo the 10 process.

a. I»i put /Output Command Handler v ^dule

«t the top of the IC process module hierarchy is

the I0_C ^rari _Fa^-' l^r module t* * UppendiT c, p. 117). This

module is responsible for the interface with the F M orocess.

Communication between the processes is via the mail_boT

C-37

shared segment and synchronization is through the use of an

eventcount ard the Kernel primitives TICKET, 'DVANCE and

AWAIT. The oroeedures of this module along with their

input/ou*put para^Pters are listed in figure 2?.

The IO^md^nd procedure, like the
"

5'M_Cmd_ u nd

procedure a case statemert, routes FK process i n structiors

to a specific IO_ r'ommand_"andler procedure for action.

The procedure involved when the Host command is

not a RT.»D_?IL* or STOR'^IL? reauest is the IC_Cmd_Hnd_Ack

procedure. This procedure is able to invoke the

?acket_Handler module directly for performing directed (by

the Ff! process) Host acknowledgement and/or data transfer

from the shared mail_box segment.

The IO_Cnd_H-'!_Send and IO_Cmd_Hnd_Store

procedures are relatively straight forward. They provide the

IC-FM process interface required for <= .~.IAD_FI15 or

3T0? 7
_
rIL T "os* reouest. Both procedures call the

File_Handler module to perform the actual file manipulation.

b. file handler Module

The FlleJEandler module is required for file

manipulation in the 10 process and is the level in toe IC

process a* whioh files at^ k^owr. The procedures which ma!-re

up this module along with their input/output parameters are

listed in fi^ir fl 21. a s mp»nt. iorel ahoyp, th^re ane only two

Host reauests that renuire the 10 nrocess to bring data

files into process memory. These are ilFAD^FILZ and

C-88

PFOCEDUKE INPUT OUTPUT

IO_Cmd_Hnd Mailbox .Ms*. Inst Output returned

IO_Cmd Mail Box.Ms^.Succ Code from subordinate
und_Ac* modules.

IO_Cmd_ Mail Bot .Ms/?. Pathname
*?rd_Ser.d Mailbox.MS2.?ile_Size

IC Crd_ Mail ^OT.Msff. Pathname
Hnd Store Mail Box .Ms^?. File Size

Figure 2?. IO_Ccmmand_Ear.'iler Module
Procedure Inout/Output parameters

PROCEDURE INPUT OUTPUT

File_Hnd_ Mailbox. Ms*. Pathname 7ile_Succ_Coie
Ser.d_File Mail~BoT.Ms*.File_Size

File_Fnd_ MailJ^ox.Ms*. Pathname File_Succ_Code
St^re File Mail 3or.Msr.File Size

Figure 21. File_Fandler Module
p nr re^u r *= I*i du *" 'Out put Para^^ters

C-89

ST0R3_?ILT. Note that since file size is passed from the FM

process, and the ^he access to the data files involved is

controlled in the ?m process, data file segments can be

brought directly into 10 process memory a^d any requirement

for the 10 process to access directory files (other than

tree traversal) is eliminated . Because the terminal nodes in

the tree traversal are controlled by the F*! Drocess, the

paths to these terminal -odes will not b*= alterable until

control is released by the rM process.

Th° File_Handler module consist of two

procedures, File_Hnd_Send_'pile (for Host command RF4D_FILF)

and File_Hrd_Store_File (for Host command STORF_FILE) . Both

procedures oDerate in a similar manner. Upon receiving a

pathname and file si"?e *rom the FM process, these procedures

use the Segment_ TJaniler procedures to brin^ the necessary

data file (segment. (s)). into process menory. A call is then

made to the Packet JFandler module to transfer data from/to

specified segments.

The order of events in the reading and storing

of data files follows the following seau°nces. For a

R?M)-?IL 1P operation. the order of actions ta.-cen by the

Supervisor are:

1) discretionary a^l non-ii scretionary checks

are made in the FM process.

2) «. copy is made of the data file into a

per-process data file buffer.

Z) The pathname of the data file to be read

C-90

(remember, directory data is read by the FM process) is

passed to the 10 process along with the file size. The 10

process can determine the file size from the file directory

tut by passing file size to the 10 process, this step is

elimirated for the 10 process.

4) The read takes place in the 10 process.

5> The 10 process returns to the FM process with

a success code of "read complete" or an appropriate error

code. The cly reason for a read operation to fail in the 10

process is the receipt of an abort command from the Host or

a 'time out' which would occur if the Host stopped sending

for some unexplained reason.

6) The FM process instructs the 10 process to

acknowledge the "read complete" or to send the appropriate

error code. The data file read buffer is then free for

further use.

If th° operation is a ST0H2 FILF operation the

following steps are taken by the Supervisor:

1) Discretionary and non-discretionary security

checks are made by the FM process.

?,) A temporary **ile is created by the Supervisor

large enoi.g v to store the file in. a purooriate use of the

synchronization primitives prevpnts this temporary file from

being vs d by rrcre than one process at a time.

3) Th^ pathname of the temporary file is sent to

the 10 process *rd t v e 10 process stones the file into the

temporary file.

C-91

4) The 10 process returns a success code to the

?M process and the ?M process updates the directory to

reflect the new file (viz., Entry_Name of temporary file is

changed to the old file ^ntry_Name) . The old file is then

deleted by the ?M process.

5) The TM process then instructs the 10 process

to acknowledge the "store complete". There is no reason a

store operation should fail other than an explicit abort

reauest by the Host system or hardware failure.

c. Packet Handler Module

The ?acket_Handler module does the actual

transfer of data between the FSS and the Host system and is

the 10 process level at which the concept of "packet" is

known. The procedures of this module along with their

input /output parameters are listed in figure 22. The tasks

that this module must perform are: 1) synchronization of

packets. 2^ error detection, 3^ packet acknowledgement, and

4) transfer of data to/from Supervisor segments. Figure 23

is a finite state diagram of packet transfer.

The synchronization task is performed, on the

system I?L and wh<s * D ve r packet synchronization is lost

thereafter, "rror detection and reauest for retransmission

upon error detection a^e ^n^ pi

i

rectory functions which a~e

performed on every racket received from a Host.

Pac l'>=f transfer during synchronization

procedures is in croups of three. This allows the

C-92
*"

PPOCTDUr.T INPUT OUTPUT

Pk_End_Sync Sy*c Od Packet Sync

P*_Hnd_ Packet Pk Succ_Code
Ack Mail_Eo7.Msr.Succ_Code

Pk_Hnd Data Packet
Send

Pk Hnd_ Packet Data
Store

'isure ??.. Packet_Handler Module
Procedure In out /Cut put Parameters

C-93

Ti^u-e 23. finite Statp Maarram of Packet Transfer

C-94

synchronization procedure to begin synchronization in the

middle of the first packet and still have two rackets to

confirm synchronization when it is achieved.

Packet transfer of command packets occurs one at

a time. The reason for this is that each command packet must

he acted uuon in a synchronous manner. Data packet read

ahead and write behind is permitted to increase the transfer

rate of data packets. The number of oackets that are allowed

to be sent or stored depends on the IC buffer size. The

?acket_Eandler module is also responsible for data

"enpacketing" and "depacketing" for the FSS.

The ?k_Hnd_Sync procedure is used to synchronize

packet transmission. It is explicitly called at I?L and

whenever the packet synchronization is lost by the Host

system. It is invoked implicitly by the FSS whenever a

packet is not able to be decoded (viz., the packet tyue and

packet check-sum are incorrect).

The ?k_End_.»ck procedure is used to send

acknowledgements to the Host systems. This procedure will

always be called ^ror^ thP IO_CoT»mand_Handler module which

will reauire the ?acket_Eandler module to either acknowledge

the Host vi *h a SLp rific ^essa-re or to send seme data

located in a mail_box segment buffer to the Host.

The Pk Hnd Send procedure is used to transfer

data segments from the FSS to a Host system. This procedure

is called from the File_Handler module which makes sure that

the correct data segment is in process memory for the

C-95

trarsfer. The segment number alontf with the number of hits

that are reauired to he transferee! are passed to this

procedure from the File_Eandler module. This procedure then

transfers the segment until the specified number of bits

have been transmitted. A success code is returned when

action is complete.

The Pk_ TT nd_S tore procedure works in a manner

completely analogous to the ?k_Hnd_Eead procedure.

C-96

III. CONCLUSIONS

k. ST«TUS O v Rr S T »HCH

This design applies state of the art software and

hardware to solve the secure multilevel computer problem ir

a file storage system. It presents an inexpensive hut highly

Dowerful design for a system "based on a micro-computer tut

not restricted to a rr>irro-cnnput p n environment, i.e., there

is ro restictior on the type of Fost comouter system

serviced "by the FSS. Implementation of this design on ZS?'Z2

hardware along with the analysis of FSS design parameters

(Appendix a) are tas^s left to be done.

There are two major classes of apulications for the FSS.

One application uses the FSS as a system file system (e.g..

for distributed micros^. This implies that the total system

is multilevel secure with only one secure component (vi?..

the Kernel). It must he noted, however, that in this

configuration, the distributed Hosts (i.e., the micros) have

no autonomous life.

The other class of applications, involves using the FSS

as one el°ment of a net of autonomous Fost systems. Ir this

configurate-, the FSS pr^vidps facilities fc" cent re lief

data sharing and romm^irat ion.

An obvious direct application of the FSS, is for

shipboard use (e.g., for the SN\fi ?-II system [Smith]) or for

use at other installations wh°re data would he mor<=

efficiently used if controlled data sharing were allowed.

C-97

A major design choice of the FSS which allowed the

Kernel to he kept small (and therefore more easily

verifiable^, was the elimination of the discretionary

security from the Kernel domain to the Supervisor domain.

The implication of this choice is that each Host svstem is

responsible for its own discretionary security? not an

unreasonable '•eouest or design choice.

The ne^t major task to he accomplished in this project

is ?SS implementation. This will not be a trival task, but

it is felt that the designs presented in this thesis and the

companion work done by Coleman provide a solid basis.

5. ?OILOW ON YORK

This desir* i^ a specific implementation of one member

of a family of operating systems based on the Security

Kernel concept discussed by O'Ccr.nell and Richardson

[O'Connelll. There are obvious areas that this design could

be expanded and generalized; areas that should be examined

after a successful first implementation. Some of these areas

are

:

operator ter~i r al interface fur.cior.

s

e x "oa r d e i H *> s t c o > IB " A
; C

mar of
t
different user r.r?s in diffenent :iosts to

common "user" in the r SS

data conpac^io'" onto secondary st^ra f;
Q

multilevel ^osts

moving discretionary security into the Kernel domain

C-98
*»

dynamic process creation/deletion.

These are just a few of the many possible areas for

e r parsior that could he explored. Oe arpa not mentioned ir

the list tut an area that should he looked at during the

initial i rrpiP-n°r ta t icn is for a way to prevent the

Supervisor from suffering a "segment fault*. The oresent

arrar^emen* , wi*h a faul f handler, is not efficient or

'elegant'. Since the deletio r of a segment is controlled ty

the ^elete_Se^'T, ^ T, t Kernel primitive, a method of leaving an

'orphan' cooy ir. process memory would eliminate the fault

condition. The only operation that, would he defined on this

'orphan' would he a ^elete_ Segment command by a process to

remove it from process memory. After it had teen, deleted by

all processes, the cooy could be destroyed. - variation of

this scheme would, up^ a Kernel Swa?__Ir call, sv-p i - *
-

process memory a per-process copy of the desired segment.

Swap_Cut would be used to *ree process memory.

C-99

APP*NT)IX a—SYSTTM PARAMETERS

S*ALL

LA ROE

MAX_?ILE_SIZE

MAX.EMTRY

ACL_POOI

Pathlength

Entry_Nane

Known Segments

Segment size

Segment size

Sp^nor t S i 7,9

Max file size

Max Mr entries

Max *cl.?ntries
per directory

Max

Size

Mar per process

512 bytes

2K bytes

SK bytes

25FK bytes

32

1024

129 bytes

IP bytes

c-ioo
/0*

CODE

APPENDIX B

—

SUCCESS AND E.^ROR COPES

LOCATION

vile Deleted
Tile Created
Link_Created
Store_ Complete
?ead_Conplete
8 CL_Reed_Complete
ACL Ertry Added
aCLJEntry~Deleted
Cmd_A torted
Cmd Packet Expected
Ille?al_C!nd
Ille£al_ rmi_?ormat

File Not FouM
Not Terni'nal 7 ile

?M_Command_Haniler
Module

Directory C n rtrol
Module

Vri te_Acces s_Not_A.ll owed
Fead Access Not Allowed

Li scretionary_Securi ty
Module

Time_0ut
No_Sync
?acket_Ack
Packet v rror

Pac'icet_Handler
Module

C-101

APPENDIX C

FM_COMtfA.ND_HANDLEE MODULE

CONSTANT
FALSE :=

TPUE := 1

NULL :=

EXTERNAL

DIP. CNTBL DIRECTORY PROCEDURE 'KSG 3YTE
USERID PYT*
PATHNAME STRING
FILE TYPE BYTE
ACCESS L 7VEL BYTE
LINK STRING
ACL ENTRY ACL TYPE)

RFTURMS ' DIR_SUCC_CODE ? YTE)
!for host ends that require parent directory:
delete_f ile .

create~f ile ,

create_ll^V-

,

read_acl

,

add_acl_entry .

delete__acl_e ,,itry!

DIR CNTRL DATA. PROCEDURE fMSG BYTE
USERTD PYTE
PATHNAME S THING)
FILE_SIZE LWOP.D)

RETURNS ^DIP._SU^C_CODE ^YTE
DIR_PATENAME STRING)

'.for host cnds~that access data file:
read_f ile,
store_file!

DIR CNTRL UPDATE PROCEDURE MSG BYTE
USERID PYtv
PA TUN AME STRING)

BYTE)^ETUPNS 'DI c ,.SUCC_CODE
!to update directory after io rrcc°ss
acts o^ h^st c^ds: ~ead_file, ?tT n_f:1°
abort !

C-102

GL03AL Imodule entry point!

FM CMD HND PROCEDURE ?case statement on Host cmls!
ENTRY
DO

MAIL. POX. MSG .INST := RPAD CMP
MAIL" BOX. MSG. PATHNAME := NULL
MAIL BOX.MSG.FIL? SIZE := NULL
MAILJPOX.^-.SU^^OP*' := NULL
t := GATSKEEPER. TICKET ;MAIL_BOX, C)
G*TEKE rPEF . ADVANCE (MAIL_BOX. S)
GAT^FEP^R.^WAIT (M»IL ?OX, C, 't+2))
IF MAIL BOX. MSG. INST = CMP ?K_R2ADY

THIN
ITT n ST_nMT>

CASS PELET* FILE TEEN F v CMP_HNE DELFTS FILE
CASF C-EATF~FIIE THEN FM~CMD_END~C?EATE_EILE
CA. S* CR T »T V_LINT TH^N FM~CMP_UND~CRE AT V_LINK
CASE HEAD FILE THEN FM_CMB END REAP FILE
CASE STOKE *ILE THEN FM_CMD_HND STOP? FILE
CAS T R T *D

'

tr l THFN ?M_CMP_HND_RE»D_»CL
CASE ArD ACL ENTRY THEN FM CMD_HND APD ACL_EN'TRY
CASE DELlTE *CL_ENT?Y TK2N~FM_CMD HND DELATE *CL ENTRY
CASF A^ORT T CV N FM CMrt_~ND APORT

ELSE
MAIL_BOX. MSG. INST := ACK_FCST
MAILJPOX .MSG .? S TEN^7 : = nu__
MAIL_3CX. MSG.EILE_SI7 V := NULL
MAIL BOX. MSG .S v CC_r n̂ v

: = Et EC?. CODE (ILLEG'-L C WP)

t :="C-«T rK TT ? 7R .TICKET (MAIL ^OX, C)

GATEKEEPER .ADVANCE (MAIL_BOx7 C)
GATEKEEPER. "WAIT (MAIL BOX, C, (t+2))

FI
ELSE

MAIL BOX. MSG. INST := a C 7 HOST
MAIL BOX. MSG. PATHNAME :=~NULL
MAIL"30X.MSG.FIL T_SIZE := NULL
MAIL_BCX.M3G.SUCC CODE := EPROR CODE (CMD_?K_EX?ECTED

)

t : = ~G B T rK"r
'

!:
'P'

r
?. .TICKET 'M*IL "POX, C)

GATEKEEPER .ADVANCE (MAIL_EOx7 C)

GATIXEEPE?. . AV«IT (MAIL BOX. C, ft+2))
EI

OD

C-103

INTERNAL
MSG = ?YT 7

FM CMD HND DEISTS TILE PROCEDURE
ENTFY

MSG := D^L^T^ ^TL?
DIR CNTRL DIRECTORY (MSG

USFF.ID
PATHN^M^
NULL !file_type!
NULL laccess level!
NULL fllrk!
NULL) !acl_entry!

Iretur^s dir_siicc_rode!
l v DIR SUCC CO 7)' = TRUE

THEN
MAIL BOX. MSG. INST := ACK_HCST
MAIL POX.MSG. PATHNAME := NULL
MAIL~BCX.MSG.FILE_SIZE := NULL
MAIL~BOX.MSG.SUCC_CODE := FILE_DSLETED
t := G A T^K'^P^R. TICKET 'MAIL ^OX , C)
GATEKEEPER. ADVANCE (MAIL_3CX7 C)
GATEKEEPER. AW A IT (MAILBOX, C, (t+2))

ELSE
MAIL_3CX. MSG.INST := ACK_HOST
MAIL_BCX. MSG. PATHNAME := NULL
MAIL_BOX.-M SG .EIL^_SIZ^ := NULL
MAIL_BCX.MSG.SUCC_CODE : = ERRCR_CODE (D H_SUCC_CODE

)

Iflle not found; write access to directory
not serin tted !

t := GATEKEEPER. TICKET 'MAIL_3CX, C)

GATEKEEPER . "D7:

A

NCE fMAIL_BOX. C)
GATEKEEPER."/: A IT (MAIL POX, 3, (t+2))

FI
END FM CMD END DELETE FILE

C-104

FM_CMD FND CP.EATE_FILE PROCEDURE
ENTRY
MSG := CREATE_FILE
DIR_CNTRL_DI?ECTORY (MSG

US^RIP
PATRMAME
FILE TYPE
ACnvss_L^V^L
NULL Ilink!
NULL^ !acl_entry!

Ireturns dir succ code!
IF LIR_SUCC_CCrE = TRUE

THEN
MAIL POX. MSG. INST := »GKJTOST
MAIL* 3CX. MSG. PATHNAME := NULL
MAILBOX. MSG. FILF_SIZE := NULL
MAIL'POX.wSG.SUf^OD 7 := VI L 7_CREATFD
t := GATFKEFPF J

. TICKET (MAIL_30X, C)
GATEKEEPER. a D7ANCE (MAIL_BOX, C)

GATFFFEPER.»WMT (M»IL_°OX. C. U+2))
ELSE

MAIL_BOX. MSG .INST := *CK_FOST
MAIL_?OX. MSG. PATHNAME ?= NULL
MAIL_BOX.MSG.FILF_SIZF : = NULL
MAIL_BOX. M SG.SUCC_C0DE r= E??.OR_CODE ' DIR_SUCC_CODE)
ldir°ctory not found: vrite access to directory
not permitted? directory pull!

t := GATEKEEPER. TICKET (MAIL_30X. C)

GATFyr? P rR .
sr> V a K

i
nr (MAIL T0X"~ C)

GATEKEEPER. A* A IT (MAIL 3CX , C, (t + 2))
FI

END FM CMP HNT? CFEAT T FIL*

C-105

FM CMD_CRFAT 7 LINK PROCEDURE
ENTRY

MSG := CREATE LINK
DIR_CNTRL_!?IR*TTORY (MSG

USERID
PATHNAME
NULL ffile type!
NULL laccess level!
LINK
NULL) !acl_entry!

!returns dir_succ code!
IF DIF_SUCC_CODE = TRUF

TF VN

MAIL_BOX.MSG.IMST := ACK HOST
MAIL_>OX. MSG. PATHNAME : = NULL
M AIL_?OX.MSG.viL^_SIZ? := NULL
MAIL_BCX.MSG.SUCC_CCDE : = LINK_CREATES
t := GATEKE"PE?. TICKET 'MAIL BOX, C)
GATEKEEPER. »DV « NC? '^ILJPOXT C)

GATEKEEPER. AWAIT (MAIL_BOX, C :t+2))
ELSE

MAIL BOX. MSG. INST := *rK_HOST
MAIL_BCX. MSG. PATHNAME : = NULL
MAIL BOX.MSG.FIL T_SIZF := NULL
MAIL'flQX.^SG.SUC^COP 7 '- TRROR_CO^F (EIR_SUCC_COPE)
Idirectory n ot f n urdJ write access to directory
not permitted! directory full!

t := GAT^K^P^R. TICKET r MAIL_'CX, C)

GATEKEEPER .A TV A NC 7 (MA II "OX \ C)
GATEKEr ?EP. .

i>iIT 'MAIL BOX, C. ' t +2)

)

FI

END FM CMD HME CREATE LINK

C-106

FM_CMD READ FILE PROCEDURE
FNTPY

IF FILE TYPF = DAT*
THIN
MSG := PEAD_FILS
DIR CNTRL ^T 8 (MSG

USERID
PATHNAME
NULL) !file_size!

Ireturns dir_succ code, dir_Dathname, dir file_size!
IF DIP_SUCC_CODE = TRUE

MAIL_BOX. MSG.lNST := READ FILE
MAIL BOX. MSG. PATHNAME := DIR PATHNAME
MAILBOX .MSG.TILE SIZ r -.= DIR_FILE SIZE
MAIL_30X.MSG.SUCC_rODF :^ NULL
t := GATE^EFPE 1*. TICKET <>«IL_BOX, C)
GATFK^PER.^V'NC* 'M*IL *OX, C)
GATEKEEPER. AWAIT (MAIL_30X, C, (t+2))
IF MAIL 30X.MSG.SUCC CODE = TRUE

THEN
MSG := U?rATF_READ
DIR_CNTRL_UPDATE 'MSG

USTRIP
PATHNAME)

! update will not fail !

M»IL_'D OX. MSG.INST := ACF HOST
MA I L_B CX. MSG. PATH NAME := NULL
MAIL_BOX.MSG.FILE_SIZE := NULL
MAIL_*D OX .

M SG .SU r T rCD"5, •= Read COMPLETE
t := GATEKEEPER .TTC^^T (MAILBOX, C)

GATEKEEPER. ADVANCE >'MAIL_BOX, C)

GATEK^^P^R.

»

WAIT (M«IL_POX, C)
ELSE

MAI L_30X. MSG. INST := ACK_HOST
MAIL

'

c OX.MSG.?»T u N a MV := NULL
MAIL_30X.MSG.FILE_SIZE := NULL
MAIL_BOX.MSG.SUCC~CODE := M AI L_BCX .MSG . SUCC_CODE
!error code returned from io process!
!file rot found by in process!
file read aborted by write?
file read aborted by file deletion;
cp3 pac'^t receive*!

t := G'?Er E?P7 ? .TICKET 'M*IL BOX, C)
GATEKEEor-^sT^KTE ' M si* VQX , C)

SAT5KFFPFR.AWAIT (MAIL BOX, C, (t+2))
EI

ELSE
M ? IL_BOX. MSG. INST := 8 CK_HCSr
MATL_ r CY ."SG .P-'THN^e : = NULL
MAIL irx. v SG.FILE_SIZE := NULL
MAIL_BOX.MSG.SUCC_CODF := ERROR_CODE (D IR_SUCC_CODE

)

Ifile not found;
read access to file not permitted!

C-107

t := GATS7FFPEP.TICKET (MAIL_30X, C)
GAT*7T*P*P.»tiv«NC? 'WIL POX"i C)
GATEKEEPER. AWAIT (MAIL_BOX, C, (t+2))

FI
FLSF

IF FILE TYP" = DIRECTORY
THEN

blH CNTRL_riRECTCRY (MSG
US IF ID
PAT~NAMF)
NULL lfile_type!
MULL !access_ievel !

NULL riink!
MULL) !acl_entry!

Jreturrs dir_succ_code !

IF ^IR SUCC CODE = TRU7
THEN"
MAIL_BOX.MSS.INST := ACK_H0ST
MAIL POX. MSG. PATHNAME t= NULL
MAIL_BCX. VSG.FILE_SIZE := NULL
MAIL_B0X.MSG.SUCC~CCDE := DI~_HSAD_COMPLETE
Idir data transfered from dir_buffer;
ack" owl ?H **PTigr t s pn t!

t : = GATEKEEPER .TICKET 'M*IL_BOX, D
ZhTVYTrvpvft .\^yi.yrT 'MAIL ""OX" C)
GATEKEEPER .AWAIT 'MAIL_30X, C, (t+2))

ELSE
MAIL ~CX. MSG. INST := AC^_ IT05T
MAIL BOX. MSG. PATHNAME := NULL
MAIL~BOX.MSG.FILE STZE := NULL
MI«IL_POX.MSG.SUCC_CODF := ERR0R_C0DE (DIR_SUCC_COr~)

Idirecto'-v rot fourd,
read access to directory not permitted!

t := GAT~~T"P~R .TICTFT 'MAIL_B0X, G)

GATEKEEPER.ADVANCE 'MAIL_SOX, C)
GATEKEEPER. AW AIT 'M*-IL_BOX, C, (t+2))

FI
ELSE

MSG := ?" 5 D ENTPY_D*T»
DIR TNTRL PIP^TORY 'MSG

USERID
PATKN A ME
NULL .'file type!
NULL !acceis lpvel

!

NULL !lirk!
NULL^ !acl_entryl

! returns iir succ code!
IF DI?_SUCC_C0!>S = TRUE

T~ r N

MAIL BOX. MSG. IMST := ACK_HOST
MAIL BOX. MSG. PATHNAME :=~NULL
MATL_BOX.MSG.FILF SIZ" := NULL
MAIL_B0X.MSG.SUCC_CODE := ENTR Y_READ_CCM?LETE

*#>

C-108

en
ac

t :

GAT
GAT

ELSE
M«T

MAI
MAI
M«.I

!fi
t :

GAT
FI

try data transfered from dir_buffer?
)cnovled*?emen t sent!
= GATEXEEPER .TICKET 'MAIL_BOX, C)
EKFFPFF.*DV»NCF 'MAIL_ROX, C)

SKEEPER .AWAIT (MAIL ?OX, C, (t+2))

LJ»OZ. M S rr.INST := AT HOST
L BOX. MSG. PATHNAME :=~NULL
L1B0X.MSG.FILF_ST7F := MULL
L_POX .msg .SUCC~(W : = FRROR_CODF
le n^t fon^dJ read access to file
= G4T?F?FPF?.TIC rFT (M*IL_BCX, C)
TVP-pprp .ativANC* (MAIL ^OX, C)

EEEEPFR. AWAIT (MAIL 30X , C, (t+2))

(DiR_succ_cor^)
not Dermittei!

FI

FI
END FM CMD HMD READ FILE

C-109

FM_CMD_HND_STORF_FILE PROCEDURE
ENTRY

MSG := STOR* ^IL^
DIR CNTRL_rATA (MSG

USE? ID
paT CT M a Mv
FILE_SIZE)

Ireturns d i r_"Da th na ^e ? dir_succ_ccde!
IF T)IR_SUrC_',0^' = TRUE

THEN
MAIL BOX. MSG. INST := STORE FILE
MAILBOX. MSG .P^T^NAM* • = DIR_PATHNAME
MAIL_30X.MSG.FILE_SIZE := FILE_SIZE
MAIL_BOX.MSG.SUCC COD 7 := NULL
t := GST^K^P^R .TICKET 'M*IL_POX, C)
GATEKEEPER. ADVANCF (MAIL BOX ~, C)

GATEKEEPER. *V*IT (MAIL BOX, C, (t+2))
IF M*IL POX.MSG.SUCC TOD 7 = TRUE

THEN
MSG := UPDATE STORE
DIR_CNTRL_UPDATE (MSG

USERID
PATHNAME)

Iupdate will not fail !

MAIL_BCX.MSG.INST := ACK_HCST
MAIL_BOX. MSG. PATHNAME := NULL
MA.IL_BOX.MSG.FTLF_STZ r, := NULL
MAIL_30X.VSG.SUCC CODE := STORE COMPLETE
t : = G'-TT^FYPF- .TICKET ' *** IL_30X , C

)

GA T^trPT^n ,
s ny a VC-V /Ma IL T 0X, C)

GATEKEEPER. AWAIT (MAIL 3CX , C, (t+2))

ELSE
MAIL_?OX. MSG.INST := * rir

_
TT OST

MAIL BOX. MSG. PATHNAME := NULL .

MAIL"?OX.MSG.FIL? SIZ' := NULL
MAIL_BCX.MSG.SUCC_COD^ := MAIL_30X .MSG .SUCC_CODE
terror returned from io process?
cmd packet received: improper number of data oackets!

t := GATEKEEPER. TICFET (MAIL BOX, C)
GATEKFF?EF.. ft DVANCE 'MHL_BOX. C)
GATFK^FpT'R.iWAIT (M»ILJ?OX, C, (t+2))

EI
ELSE
MAILBOX .MSG. INST := ACK HOST
MAIL 30X.MSG.?ATFNA V F :=~NULL
MAIL~BOX. MSG. FILE SIZE := NULL
MAIL_?CX.MS r'- .SUT_rC^ := ^RROR^O 7^ (D^SUC^COD?)
Ifile nr»* f/^undt write access to file not permitted!
t :- GATFKEFPEP.TICKFT 'MAIL_ECX, C)
a i^vrtrvw?

m i^Y i^rv fvaiL PCX, 0)
gatekeeper, await (mail pcx, c, (t+2))

FI
END FM CMD HND STOR* FILF

G-llO

EM_CMD_RND_RF.4.D »CL PROCEDURE
ENTRY

MSG := READ *CL
DIR CNTRL DIRECTORY (MSG

USE? ID
PATHNAME
NULL Ifile type!
NULL laccess level!
NULL !lln!r!
NULL> !acl_entry!

Iretums dir sncc_code!
IF DIR SUCC_CODE = THUS

T
T
-?FN

MAIL_3CX.MSG.INST := ACK_HOST
M*IL_30X -MSG .?i.THN.4MF := NULL
M A I L ^OX-MSG.^IL^SIZ^ r= MULL
MAIL~3CX.MSG.SUCC_COE 7 := ACL_RSAD_CCM?LETE
!acl data trar.sfered from acl_buffer;
host acknowledgement sent!

t := GATEKEEPER. TICKET (MAIL_30X, C)
GATFKEEPEF. a DVANCE (M*IL__BOX. C)
GATEKEEPER .AWAIT (MAIL "°OX , C, ft +2))

ELSE
MAIL_30X. MSG. INST := ACK HOST
MJIL_?OX .MSG. PATHNAME :=""NULL
M AIL 3CX. MSG. FILE SIZE := MULL
MA_IL_EOX."mSG.'sUCC_CODE := E?ROR_CODE (DIR_SUCC_CODE

)

Ifile not found; reed access to directory file
pot ,noT»'n^t, *o^*

t := GATEKEEPEF. TICKET (MA.IL_BOX, C)
GATTK^PER. a DV.«NCTT 'M»IL_POX, C)

GATEKEEPER. AWAIT (MAIL_BCX, C, (t+2))
EI

END FM C M D FN!) ?F fl D ACL

C-lll

FM CMD_HND ADD «^L *NTRY PROCEDURE
ENTRY

MSG := ADD *CL ENTRY
DIR CNTRL DIRr^TORY (MSG

USERID
PATHNAME
MULL !file type!
NULL laccess level!
NULL !lir»>!
ACL_*NT*IY)

!retur^s dir s*icc cofle!

IF DIR SUCC CODE = TFUE
TF rN~
MAIL BOX. v

S<"r. INST := AC? HOST
MAIL BOX. MSG. PATHNAME :« NULL
MAIL POX. MSG. "FILE SIZE := NULL
MAIL'SOX.MS^.SUCC'CCDE : = ACL ENTRY ADPED
t : =~G A TFr^EPFP. TICKET (MAIL 30X, C)
GAT T K rEP rR .ADV aM^" r M'IL ?CX , ?)

GATEKEEPER. AWAIT (MAIL BOX, C, (t-^2))
ELSE
MAILBOX .

W SC-. INST := «r^_~OST
MAIL_30X.MSG .PATHNAME := NULL.
MAIL~B0X.MS5.TILI SIZE := MULL
MAIL POX .

V S- .SU r, n"'C nD r '= rRROR COD 1
! DIR^SUCC_COD 7

!file r»rtt fourtd? writ? ^rc r-ss to directory lot
permitted! acl_er.try "1)001" encty'

t := rT n>vvY;-7vpvz) .TICK"7 ? 'MAIL 'OX, C)

GATEKEEPER .ADVANCE (MAIL PCX 7 C)
GATEOFPSF. 9 WA.IT (MAIL BOX, C. (t+2))

EI

END FM CMD HNr ADD ACL ENTRY

C-112

FM CMD HNDJJELSTE ACL ENTRY PROCEDURE
ENTRY

WSG := DELFT7 *CL ^NTRY
DIR CNTRL DIRECTORY (MSG

USERID

NULL !file_type!
NULL !access level!
NULL llirk!
ACL_ENTRY)

!returns dir succ rode!
IF DIR_SUCC cov.t = TRUT

THEN
MAIL BOX. MSG. INST := A CK HOST
M AIL~FOX ."S-.PiT^N*^ := NULL
MAIL_30X..MSS.EILE_SIZE := NULL
MAIL BOX.^SG.SUCC_CODE := ACLJENTPY DELETED
t :»~G.*T TK TTP ,pR. TICKET 'M*IL ^OX, C)
GATEKEEPER. ADVANCE (MAIL PCX, C)

GATEKEEPER. AWAIT (M.4IL_BOX. C, (t*2))
ELSE

MAIL_BOX. v SG.lNST := »Cr_HOST
MAIL^CX-MST. PATHNAME := NULL
MAIL~PCX.MSG.EIL X, _SIZ T '.- NULL
MAILBOX. M SG.SUCC_CODF := ERRCR_CODE (DIR_SUCC_CODE
!file not found? writ? access to directory rot
permitted

!

t := GATEKEEPER. TICKET 'MAIL "*OX, C)

GATEKEEPER . PDVANCE (M fi IL BCX*i C)
GATEETEPTR.AWAIT (MAILBOX. C, (t+2))

EI
END FM CMD HND DELETE ACL ENTRY

C-113

FM_CMD HND_A?ORT PROCEDURE
ENTRY

MSG := A'ORT
DIP CNTP.L UPDATE 'MSS

USERI*)
PATHNAME)

Isto^e c^rt "p«^ t.o free t.pr»prrary file!
MAIL *OX. MSI. IMST := ACK_ TT0ST
MAIL 30X. MSG. PATHNAME :- MULL
M;iL~30X.MSG. r ILF_SIZ v :^ NULL
M/IL~?OX.MST.SUrr_COD v := CMP ^PORTED
t := GATEKE5??-. TICKET (MAIL POX, C)
GATEKE?PER.«D T7«NCE fMAIL_ROX~.' C)
G«TT!K?TpTH.iy»IT (MHt_P0X, C, ft +2))

END FM_CMP_ENr_A3C?.T

END FM COMMAND HANDLER

C-114

IO_COMMAND_HANDLER MODULE

EXTERNAL

PK_HND STORF ?ROC 7THJRF <S V
" # LWORD

SIZE LWORD) ! number cf tits!
RETURNS (PK_SUCC_CODF ?YT r

)

PK_HND_SFND PRO^rrjRF (S 7G_# LWORD
SIZE LWO-.D) !ruTib«r cf bits!

RETURNS '?K_SUfC_':0?E *YTF)

?IC_HNr_ACK_HCST PROCEDURE (VSG 3YTE)

FILE ^ND SFND_FIL 7 PROC^UR 7 (PATHNAME STRING
RETURNS (FILE_SUCC_CODE BYTE)

FILE_HND_STO?E FILE PROCEDURE fP.ATHNa.ME STRING)
RETURNS (EILE_SUCC_CODE 3YTE)

INTERNAL

10 CMD HMD PROC^UR 7

ENTRY
t := TICKET (M»IL 30X . C^
AWAIT ,M aH_-coX, C, (t*l) >

DC
IF MAIL_BOX.VSG.INST

CAS 7 R 74 - CM D T^^N ?T U H T
) R^AD CMD

CASE ACK ECST THEN ?K_HND~ACK_EOS

T

i

r M»IL_30X.FsG.3UCC_C0DZ)
CAS 7 SFND_FIL7 TH 7N 7 IL 7_

tTND_RF* D FILE
(MAIL_3CX . MSG . PATHNAME
(MAIL_30X.MSG.EILE_SIZE)

CAS 7 STOR 7 7 IL 7 THEN 7IL 7 ^ND STORF FILE
(MAIL_30X .MSG. PATHNAME
MAIL BOX.MSG.FILE_SIZE)

FI
t := TICFFT

' MAIL_30X, C)

ADVANCE (MAIL BOX"] C)

4W fl TT r M«IL ^OX, r
,

f (t-1-?)

CD
END IO.CMD_HND

END 10 COMv «ND ^NDL 7
?.

C-115

LIST OF REFERENCES

COLEMAN, A. A., Security Kerr.pl Desl.gr ^or a

Micro crocessor-'Pased Multilevel, "rchival Storage System MS
Thesis, Naval Postgraduate School, December 1979.

COURTOIS. P. J.. Peynans, *., and Parnas, D. L., 'Concurrent
Control with "Headers" and "Writers', Communications of the
^CM , v. 14 no. 5 p.«67-663. October 1971.

DA VIES, D. V., and others, Computer Networks and Their
Protocols . John Wiley S Sons, 1979.

DTTMST Communications Agency NIC 7104, Arpanet Protocol
Handbook , by Me^wor 1^ Information Center, January 1978.

DENNING(l), D. ?.,
*

a Lattice Model of Secure Information
Flow," Communications of th° ACM , v. 19 p. 235-242, Mav
1976.

DENNING{2), D. E. and Denning, P. J., "Data Security," j>CM

Computing Surveys . v. 11 nr. 3, p. 227-242, May 1976.

DIGITAL Research, CP/M Interface Guide , 1973.

DIJXSTHA'l). E. W.. "The Structure of 'The' Mult iprogamning
System," Communications of the ACM , v. 11 no. 5, p. 341-346,
May 1968.""""

DIJKSTRA ! 2) ,
?

. W.. 'The ^umble Programmer,' Communl cat ions
of the ACM ,

v. 15 no. 10-, p. P59-26R, October 1372.

HABFPMANN, A. N.. Intnodvction to Operating- System Design ,

Science Research Associates , Inc . , 1976

.

HAMMING. D. 7., Coding and Information Theory . Prentice
Hall, Inc., I960.

HANSON, 3., Oper at.lnr System Design , Printice-Hall , Inc.,
1973.

HONEYWELL, Th^ Multlcs Virjuaj. Memory , Ju-« 1972.

MflDNICK, S. T
. and Donovan, J. J.. Operating Systems ,

McGrav
Hill, 1974.

M0RRIS. R. arA Thompson, r., Passwond Security, A Case
Hi s t^rv , paper presented to 3ell Labratories, April 3, 1973.

MI-TR.T Corporation Peoort ? 334, The Design e^d Specification
of a Security Kernel for the FTP-11/45 , by T. T. Schiller ,

May .1.975,

O'CONNFLL, J. S., and Richardson, L. D., Distributed Secure

C-116
<*»

Design for a Mult l-mlcroprocessor Operating System , MS
Thesis, Naval Postgraduate Schorl, June 1979.

ORGANIC?. r
. I., The Multlcs System: an Examination of Its

Struc* uro, MIT Press, 1972.

PEED, ?. D., and Kanodia, P. K. , 'Synchronization with
Fventcounts and Seouencers ," ^o^municat ions of the ACM , v.

" 22 no. 2 p. 115-124, February 1971T
~~

S^ITR, ts. Method to Evaluate Microcomputers for
No^-Tact \ ra I SMur^ard 'Js° , MS Thesis, Naval Pcst^raduatP
School , Sec tern be r

1

Qr?
9 .

SCHELL'l), Lt.Col. P. P., "'Computer Ser-arity: The Achillas'
Heel of the Electronic Mr Force?,'* Ajr University "evi^v ,

v .XXX no. 2, January 1979.

SCHELLY), Lt.Crl. P. P., Se^nrl'v Kej^elsj '> Methodical
^esi^n of System Security US r Technical Papers (Spring
Conference, 1979). pp 24b-2o7, March 1979.

SC^RCFT'FR, M. T> . ,
'

\ hardware architecture for Implementing
Protection Rings," Communications of the ACM , v. 15 no. 3,
p. 157-170, March 1972""

SHAW, A. C., The Logical ?°;ign of Operating Systems ,

Prentice Hall, I^c, 1974.

SNOOK. T.. and others. ?.°oor* on the Programming Language
PLZ/SYS . Springer-Virlag, 1976.

ZILOG(l), Inc., »r introduction to the Z c ?l^ M MU Memory
Kgragere^t U^l*. Tutcrial I^f^r^ation , August 1979.

Priliminary ProductZIL0Gf2)

,

Inc .

.

ZP^^l CPU,
Specification, varch 1979.

C-117

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Documentation Center 2

Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142 2

Naval Postgraduate School
Monterey, California 93940

3. Office of Research Administration 1

Code 01 2A

Naval Postgraduate School
Monterey, California 93940

4. Chairman, Code 52Bz 4

Computer Science Department
Naval Postgraduate School
Monterey, California 93940

5. LTCOL Roger R. Schell, Code 52Sj 15

Computer Science Department
Naval Postgraduate School
Monterey, California 93940

6. Lyle A. Cox, Jr., Code 52C1 5

Computer Science Department
Naval Postgraduate School
Monterey, California 93940

7. Uno R. Kodres, Code 52Kr 2

Computer Science Department
Naval Postgraduate School
Monterey, California 93940

8. I. Larry Avrunin, Code 18 1

DTNSRDC
Bethesda, MD 20084

9. R. P. Crabb, Code 9134 1

Naval Ocean Systems Center
San Diego, CA 92152

10. G. H. Gleissner, Code 18 1

DTNSRDC
Bethesda, MD 20084

11. Kathryn Heninger , Code 7503 1

Naval Research Lab
Washington, D.C. 20375

C-118

12. Ronald P. Kasik, Code 4451
Naval Underwater Systems Center
Newport, RI 02840

13. Dr. J. McGraw
U.C. - L.L.L. (1-794)

P.O. Box 808
Livermore, California 94550

14. George Mebus, Code 5033
NADC
Warminster, PA 18974

15. Joel Trimble, Code 221
Office of Naval Research
800 North Quincy
Arlington, Virginia 22217

16. Mark Underwood, Code P204
NPRDC
San Diego, CA 92152

17. Michael Wallace, Code 1823
DTNSRDC
Bethesda, MD 20084

18. Walter P. Warner, Code K70
NSWC
Dahlgren, VA 22448

19. John Zenor, Code 31302

Naval Weapons Center
China Lake, CA 93555

20. Chief of Naval Research
Arlington, Virginia 22217

C-119

U194182

DUDLEY KNOX LIBRARY - RESEARCH REPORTS

5 6853 01071278 9

U19A18

