
I

ubraky
techntcau report section
naval postgraduate school
MONT!

I NlA 93g4Q

NPS52-81-001

NAVAL POSTGRADUATE SCHOOL

Monterey, California

*]

I

\

%

The Naval Postgraduate School
SECURE ARCHIVAL STORAGE SYSTEM

Part II

- Segment and Process Management Implementation

Lyle A. Cox* Roger R. Schell, and Sonja L. Perdue

March 1981

FEDDOCS
D 208.14/2.-NPS-52-81-Q01

Approved for public release; distribution unlimited

red for:

of Naval Research
gton, Virginia 22217

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral J. J. Ekelund D# A> schrady
Superintendent Acting Provo^

This research was partially supported by grants from the Office of Naval
Research, Project No. 427-001, monitored by Mr. Joel Trimble, and the Naval
Postgraduate School Research Foundation.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUMBER

NPS52-81-001

2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

The Naval Postgraduate School
SECURE ARCHIVAL STORAGE SYSTEM
Part II - Segment and Process Management

Implementation

5. TYPE OF REPORT & PERIOD COVERED

Technical Report

6. PERFORMING ORG. REPORT NUMBER

7. AUTHORfs; 8. CONTRACT OR GRANT NUMBERf«)

Lyle A Cox, Roger R„ Schell, and
Sonja U Perdue

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Naval Postgraduate School
Monterey, CA 93940

10. PROGRAM ELEMENT. PROJECT. TASK
AREA 4 WORK UNIT NUMBERS

61152N; RR000-01-10
NaeO148lWRl0034

II. CONTROLLING OFFICE NAME AND ADDRESS

Naval Postgraduate School
Monterey, CA 93940

12. REPORT DATE

March 1981
13. NUMBER OF PAGES

451
U. MONITORING AGENCY NAME 4 A0DRESS(7f different from Controlling Office)

Chief of Naval Research
Arlington, Virginia 22217

15. SECURITY CLASS, (ot thte report)

Unclassified

15*. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION ST ATEMEN T (of thla Report)

Approved for public release; distribution unlimited,,

17. DISTRIBUTION STATEMENT 'ot the abatrmet entered In Block 20, If different from Report)

18. SUPFLHMEN TARY NOTES

19. KEY WORDS (Continue on reverae aide it neeeeaary and Identify by block number)

Security Kernel, Microcomputers, Archival Storage, Computer Networks,
Operating Systems, Computer Security

20. ABSTRACT 'Continue on reverae aide It neceeemry and Identify by block number)

The security kernel technology has provided the technical foundation
for highly reliable protection of computerized information,, However, the
operating system implementations face two significant challenges: providing
(1) adequate computational resources for applications tasks, and (2) a

clean, straightforward structure whose correctness can oe easily reviewed.
This paper presents the experience on an ongoing security kernel implement-
ation using the Advanced Micro Devices 4116 single-board computer based on

dd ,;
F

aT73 1473 EDITION OF 1 NOV 65 IS OBSOLETE
S/N 0102-314- 6601 Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Dmtm Entered)

Ilnrlassifipd
.L'-umTY CLASSIFICATION OF THIS PtGEfWfisn Data Entered)

20.

the Z8002 microprocessor. The performance issues of process switching
domain changing, and multiprocessor bus contention are explicityly
addressed,, The strictly hierarchical (i.e., loop-free) structure prov
a series of increasingly capable, separately usable operating system
subsets. Security enforcement is structured in two layers: the basic
kernel rigorously enforces a non-discretionary (viz., lattice model)
policy, while an upper layer provides the access refinements for a

discretionary policy.

SECURITY CLASSIFICATION OF THIS PAGE(TWian Data I

The Naval Postgraduate School

SECURE ARCHIVAL STORAGE SYSTEM

Part II

-Segment and Process Management Implementation-

by

Roger R. Schell, Lyle A. Cox, and Sonja L. Perdue

March 1981

Report number: NPS52-81-001

THE STROCrORE OF A SECURITY KERNEL POR A Z8000
MULTIPROCESSOR

LYLE A. COX, Jr., and ROGER R. SCHELL, Col., (JSAF

Department of Computer Science

Naval Postgraduate School

Monterey, California

ABSTRACT

The security kernel technology has provided the technical

foundation for highly reliable protection of computerized

information. However, the operating system implementations

face two significant challenges: providing (1) adeguate

computational resources for applications tasks, and (2) a

clean, straightforward structure whose correctness can be

easily reviewed. This paper presents the experience of an

ongoing security kernel implementation using the Advanced

Micro Devices 4116 single-board computer based on the Z8002

microprocessor. The performance issues of process switch-

ing, domain changing, and multiprocessor bus contention are

explicitly addressed. The strictly hierarchical (i.e.,

- ii -

loop-free) structure provides a series of increasingly capa-

ble, separately usable operating system subsets. Security

enforcement is structured in two layers: the basic kernel

rigorously enforces a non-discretionary (viz., lattice mo-

del) policy, while an upper layer provides the access re-

finements for a discretionary policy.

BACKGROUND

For the last two and a half years the Naval Postgraduate

School has been conducting a research and development pro-

ject involving security Jcernel based operating systems de-

signed foe multiple processor implementations. As this work

continues we feel that it is important to report on our pro-

gress and experiences, especially in the area of micropro-

cessor implementations.

This effort has come to be known as the "SASS" or Secure

Archival Storage System project [1]. In fact, this is a

misnomer, as SASS is but a single instance of a more general

family of secure operating systems designed early in the

project [2]. while SASS has been the object of the majority

of the research reported it is not the only implementation.

Another operating system of this family has also been writ-

ten to support a signal processing system that uses multiple

Intel 8086 processors [3].

- iii -

SASS has been oar principal testbed for exploring the im-

plementation and performance issues related to these types

of operating systems. SASS itself was designed to be a com-

prehensive multiuser, multilevel secure file storage system.

As designed, it will consist of a small number of

Z8000-based [U] single board computers sharing a single Mul-

tibus with storage devices and input/output devices. SASS

will interface via bidirectional lines to a number of "host"

systems, as illustrated in Figure 1. SASS will provide each

host with a hierarchical file system. This system can be

used to store and retrieve files, and share files with other

hosts. This design will allow SASS to serve as a central

hub of a data secure network of computers with diverse se-

curity authorization for sensitive information. SASS pro-

vides archival, shared storage while insuring that each in-

terfaced host processor can access only that information

appropriate to its security authorizations.

- iv -

TOP SECRET SECRET CONFIDENTIAL

[
HOST 3

J

UNCLASSIFIED/
CONFIDENTIAL

(
HOST 4)

iT T
SUPERVISOR

KERNEL

SASS

MAIN
MEMORY

SECONDARY
STORAGE

Figure 1: SASS System Interfaces

- v -

STRUCTURE

For this family of operating systems the security kernel

technology has been used not only to effect security but

also to provide the underlying organizational framework for

the operating system. The SASS, one member of this family,

is in the final stages of implementation. This development

experience has highlighted the importance of several fea-

tures that are key to this family:

- The pervasive, yet systematizing impact of the security

kernel methodology [5].

- The design simplicity that accompanies a loop-free mo-

dularization that is highly compatible with the resource

sharing and multiprogramming functions.

- The significance of a high degree of configuration in-

dependence, particularly for the ability to use the latest

microprocessors for testbed implementation.

Independent of security, this particular kernel structure

is attractive as a canonical operating system interface. It

appears adequate for a wide range of functionality and ca-

pacity, and it evidences a high degree of independence from

hardware idiosyncrasies. These operating system features

will be discussed further below.

- vi -

Security Kernel Approach

Members of this operating system family are organized

with three distinct extended machine layers: (1) the secur-

ity kernel, (2) ths supervisor, and (3) the applications.

This is illustrated in Figure 2. The concept of a hierarchy

of extended machines is, to be sure, not new; however, the

security kernel significantly constrains the organization.

In particular, for reason of security all the management of

physical resources must be within the kernel itself. Furth-

ermore, confidence is increased by keeping the kernel as

small and simple as possible. This means that much of what

is commonly thought of as the operating system is provided

outside the kernel in the supervisor layer. For this parti-

cular family member there is no major applications layer

(viz. , within SASS itself) , since the applications are con-

tained in the individual hosts.

The basic family of operating systems requires the ker-

nels to provide extended virtual machines that specifically

support both asynchronous processes and segmented address

spaces. Within SASS, the kernel virtualizes processors, all

levels of storage, and input/output. The kernel creates

virtualized objects -- processes, segments, and devices. It

is this "pure" virtual interface that is attractive as the

- vii -

Applications

Supervisor

Security Kernel

Bare Hardware

Figure 2: Extended Machine Layers

- Till -

basis for canonical operating system features. The SASS su-

pervisor is in turn built upon the kernel, using these vir-

tualized objects to construct the file system.

Both the kernel and the supervisor have certain responsi-

bilities for system security. The kernel manages all physi-

cal resources, and the kernel is distributed (i.e., includ-

ed) in the address space of every process. At this level,

isolation of the kernel — protection from users and the su-

pervisor — must be provided by hardware enforced domains.

The design of the system is strictly hierarchical (viz., the

kernel is more privileged than the supervisor) so protection

rings, as defined for Multics [6], are a satisfactory domain

implementation.

The kernel has the responsibility for the enforcement of

access limitations: that is, the kernel provides the mechan-

ism for supporting non-discretionary security policy. The

SASS kernel can support any such policy which can be ex-

pressed by a lattice of access classes [7]. Every object —
process, segment, or device -- has a non-forgable label that

denotes its access class. This non-discretionary security

has been parameterized in SASS such that exactly one module

has knowledge of the interpretation of this label in terms

of a specific policy. Thus, only this single module need be

tailored to support a particular policy.

- ix -

SASS provides discretionary security (shared access

within the bounds of non-discretionary policy based on indi-

vidual user identification) via the supervisor and the file

structure. This discretionary security is completely out-

side of the kernel (in contrast with the KSOS [8] approach).

The supervisor handles the "Secure Beader- Writer Problem"

with a non-exclusionary approach (one writer, retry on read)

to provide synchronization between processes of different

access classes. This control of interprocess communication

is implemented via kernel primitives using Reed f s event-

counts and sequencers [9],

The SASS supervisor capabilities are achieved by associ-

ating two processes with each host link. These processes

access that portion of the SASS file structure associated

with that host. One of these processes provides I/O tran-

smission and link management, while the other, a file manag-

er, is responsible for the file system structure of its as-

sociated host. Communication between these processes (as is

communication between all processes) is achieved using

shared segments -- a mailbox. Synchronization is provided

by the kernel (with eventcounts and sequencers).

The complementary kernel/supervisor approach to security

has several advantages for SASS: the size and the complexi-

- x -

ty of the kernel can be minimized, and, given reliable host

authentication, any host weaknesses will not impact the re-

liable enforcement of the non-discretionary security policy.

The security kernel approach constrains not only the in-

terface but also the detailed design and implementation of

internal state variables. The problem is to prevent indi-

rect information paths between processes with different ac-

cess classes. We address this problem using essentially the

approach detailed by Millen [10], although without the rigor

of a proof. Internal state variables, e.g., shared resource

tables, are assigned an access class, and it is confirmed

that its values will not be reflected to processes of an in-

consistent access class. The most apparent result is that

the "success code" (returned in response to tne invocation

of kernel primitives) primarily reflects the state of the

per-process virtual resources, not the shared physical re-

sources.

- xi -

Loo£ Free Organization

Another aspect of the design that has helped to keep the

security kernel simple and understandable is the loop-free

structure of SASS. The loop-free design supports the soft-

ware engineering concept of "information hiding" [11], as

there are really no global data structures within SASS. The

kernel is internally organized into four distinct layers, as

illustrated in Figure 3; these layers, that will be de-

scribed below, are termed (1) segment and event managers,

(2) traffic controller, (3) memory manager, and (4) inner

traffic controller.

In practice we have been guite doctrinaire in enforcement

of the loop-free structure for this organization. While

many operating systems claim to be modular or well-struc-

tured, we empirically validate this claim. He "peel-off"

the upper layers one at a time by literally removing the

code and data, and then demonstrate that the remainder can

be loaded and run as a functionally intact, but obviously

limited, operating system subset. The function of each lay-

er will now be described, proceeding from the bottom upward.

- £11 -

Supervisor

Parameter

Table

Known
Segment Table

Segment

Manager
Event

Manager

Active

Process

Table

Virtual

Processor

Table

mT
Kernel

Hardware

Figure 3: Internal Kernel Organization

- xiii -

l£££I Traffic Controller. Processor multiplexing has two

layers, similar to those proposed for Multics [12]. Each

physical processor has a fixed number of "virtual proces-

sors" that are multiplexed onto it. Two of these virtual

processors are dedicated to system services: an idle virtu-

al processor and a memory manager process to manage the as-

ynchronous access to secondary storage devices. The remain-

ing virtual processors (currently two per physical

processor) are available to the (upper level) traffic cont-

roller. The inner traffic controller provides signal and

wait synchronization primitives that include a message that

is passed between virtual processors. In terms of tradi-

tional jargon, the inner traffic controller provides multi-

programming by scheduling virtual processors to run on the

CPU they are (permanently) associated with. Note that this

structure implies that the security kernel is interruptible,

viz., is not a critical section; however, the inner traffic

controller itself is not interruptible. In addition, this

layer provides all the multiprocessing interactions between

individual physical processors, using a hardware "preempt"

interrupt.

Memory Manager. This layer manages the multiplexing of the

physical storage resources, viz., "disk" and "core". Phis

layer also manages the segment descriptors in the memory

management unit (MMU) image for each process. Most of the

functions of this layer are executed by the per-CPU memory

- xiv -

manager processes, with synchronization provided by inner

traffic controller signal and wait primitives. The single

board computers have per-processor, local memory; there is

also additional global memory that is addressable by all

processes. The memory manager insures that (only) shared

segments are in global memory.

This policy can reguire some transfers between local and

global memory; however, the low transaction rate of the ar-

chival storage system is not demanding, and this structure

minimizes bus transfer reguirements under expected operating

conditions.

Traffic Controller. The variable number of processes (two

per host) are multiplexed onto virtual processors defined by

the inner traffic controller. Each process has an affinity

to the physical processor whose local memory contains a por-

tion of its address space at the time of the process sche-

duling decision. As indicated earlier, the traffic cont-

roller layer uses Reed*s advance and await mechanism [9] to

provide interprocess communication.

Segment and Event Managers. All entries into the kernel

pass through the segment/event manager layer. The explicit

non-discretionary security checks are made at this level by

comparing the access class labels of subjects and objects.

This layer uses a per-process known segment table to convert

- xv -

process local names (viz., segment number) for objects into

system-wide names. Each segment has associated with it two

eventcounts and a sequencer; thus, segment numbers also

serve as their names. The segment manager provides for the

creation and deletion of segments and their entry into and

removal from a process address space.

Gate Keeper. A process invoices a security kernel function

using the traditional trap mechanism. The Z8000 "system

call" instruction causes a trap, and the gate keeper is

merely the trap handler. All parameters and return values

are "passed by value" in CPU registers; this simplifies se-

curity validation. The gate keeper merely calls the parti-

cular procedure that corresponds to the requested function.

Microprocessor Testbed

One important aspect of this research has been the actual

implementation and testing of the concepts developed. Trad-

itionally the implementation of multiple processor struc-

tures has been an expensive undertaking. Recently the de-

velopment of sophisticated microprocessors that feature

multiple operating modes, advanced addressing, support of

multiple processor configurations, and a standard bus co-

nfiguration with peripheral support have all made the imple-

mentation of advanced operating systems on microprocessor

devices possible, and economically feasible.

- xvi -

The processors of SASS all share the same bus; aach

processor is a commercial single board computer with on-

board random access memory. These processors also share a

global memory, and certain peripheral devices. This co-

nfiguration is illustrated in Figure 4.

In general, security Icernel based operating systems find

three processor-supported execution domains (operating

states) highly desirable: for the Icernel, supervisor, and

applications. This is true of the operating system family

discussed here. Currently there are no single chip proces-

sors that support three states. This is not a significant

problem for SASS, since it is the hosts rather than the SASS

system processors that execute user application programs.

Under these circumstances a two mode (kernel and supervisor)

machine is sufficient. Such architectures are currently

available as microprocessors, in particular the 29000.

Accordingly, we are implementing a multiple microproces-

sor system to test the SASS concept. The current hardware

in use is the AMD 4116 single board computer £13] in a stan-

dard Multibus backplane. This configuration has a signifi-

cant limitation: it does not include the hardware Memory

Manager Unit., as described in [2]«

- xvii -

SASS BOUNDARY

LOCAL
MEM CPU • • • LOCAL

MEM CPU

SECONDARY
MEM

(e.g.,

hard disk)

GLOBAL
MEM

• • •

SECONDARY
MEM

(e.g.,

hard disk)

Figure 4: Multiprocessor Configuration

- xviii -

Currently we simulate in software the memory management

unit, so the kernel is not protected from the supervisor as

the original design specified. Hardware protection in the

form of addressing limitations is available, and has been

used in some of the experiments to assure the integrity of

the Icernel. In this configuration, the hardware protects

one half of the local memory from any access when the CPU is

operating in the normal mode. Any attempt to access memory

which is thus protected generates an interrupt and the fault

detection software traps the access. This is adequate for

current tests, but a complete memory management system is

clearly more desirable. Our experiences on this testbed in

terms of performance and software development are discussed

further below.

THE SASS EXPERIENCE

The lessons learned to this point fall into two broad ca-

tegories: programming (software engineering) experiences,

and performance experiences. We will discuss both of these

issues belDw.

Programming E xp eriences

The nature of this research effort has been hignly struc-

tured, emphasizing modularity at every opportunity. The

software design is strictly "top-down". This has been a

- xix -

matter of good design practice, and of necessity. Since the

majority of the work has been performed by a succession of

Master's degree students [14,15,16,17,18,19] during their

brief six to nine months of research each, the clear defini-

tion of software modules has been key to the success of the

effort. We have found that the high degree of modularity

has allowed the students to work on the project with a mini-

mum of "start-up" time, and a maximum of productive effort

and learning.

The actual implementation is proceeding in an essentially

bottom up manner, with test harnesses and stubs being writ-

ten as necessary for testing. The SASS modules were speci-

fied in a pseudo-language resembling current higher level

languages. The SASS modules as implemented were coded in

PLZ-ASM [20], the Z8000 structured assembly language. Me

found that the pseudo-code specifications of modules were

adeguate, and that the translation from this code to the

structured assembly language was straightforward.

The structured assembly language of the Zilog Z8000 sup-

ported many of the constructs usually thought to be unique

to higher level languages, including typed record struc-

tures, DO-loops, IF-THEN-ELSE, and CASE. In fact, our pro-

grammers think of this assembly language as a higher level

language. Approximately 40 percent of the statements writ-

- xx -

ten in SASS are equivalent to statements in modern program-

ming languages.

Despite the qualities of the structured assembler, it was

selected by default. When the decision was made, the proto-

type hardware boards were just becoming available. There

was virtually no software support available. In particular,

no higher level language was available. The software envi-

ronment was (by modern standards) very primitive, with no

tools for operating system development available. Neverthe-

less, the progression from microprocessor development system

to commercial single board computer system has been surpris-

ingly smooth (an opinion that some students might dispute).

The software development environment has grown slowly. Yet,

this has not proved to be a handicap.

- xxi -

Performance Issues

In the programming for the SASS, we have generally treat-

ed performance as a secondary issue, in deference to more

basic concerns such as security and modularity. However, we

have addressed performance on a design level where perfor-

mance is strongly related to architectural choices.

Obviously, one basic design choice is the use of multi-

processing as a way to increase processing capacity. Howev-

er, bus contention is a major performance concern in the

multiprocessor configurations, since all processors share a

single Multibus. If, for example, all code and data were

located in global memory, then even two or three processors

would saturate the bus. However, in reality only shared,

writable segments need be in global memory. Our use of a

purely virtual, segmented memory permits the kernel to det-

ermine exactly which are the shared, writable segments. As

noted before, the memory manager layer totally controls the

allocation to global memory, and thus markedly controls bus

contention.

In the current SASS implementation we use the "Normal"

and "System" modes of the Z8000 hardware, with the system

mode dedicated to the security kernel. The domain changes

automatically generate a switch of the stack within the

- xxii -

hardware. This is particularly important to the efficiency

with which we can switch domains while maintaining the in-

tegrity of the kernel.

In SASS a process switch is achieved by switching the

stack. SASS saves the process history in the stack, so a

switch requires only the stack exchange. Preempt hardware

interrupts can initiate scheduler changes, and associated

virtual interrupts to the virtual processors. This sequence

is relatively efficient given the Zilog architecture. The

process switching performance question is nore interesting

in the context of processor multiplexing.

The multiprogramming time is the interval from the time

the inner traffic controller signal primitive is invoked in

one virtual processor until there is a return from a (pend-

ing) wait invocation in a different virtual processor. This

includes both process switching and message passing opera-

tions.

For interprocess communication, the read and ticket calls

(from the normal mode) include a system call though the gate

keeper to the kernel, the non-discretionary security checks,

and access to the eventcount or sequencer value; however, no

process switch is involved. The synchronization time in-

cludes the interval from the invocation of the system call

- xxiii -

(in normal mode) for advance in one process until the return

from a (blocking) await invocation in a different process.

This includes the security checks and scheduling of both a

virtual and a physical processor.

A set of measurements on the current implementation are

summarized in Table 1. There has been no effort to "tune"

the system to improve performance. Me find these results

within our range of expectations for a single chip micropro-

cessor.

Function XiSli (milliseconds)

Multiprogramming 0.5
signal/wait pair

Synchronization 2.3
advance/await pair

Read (Eventcount) 0.6

Ticket (Sequencer) 0.6

Table 1. Performance Measurements

- XXIV -

SUMMARY

A modern operating system featuring kernel based securi-

ty, segmented memory and multiple processors has been de-

signed and is being implemented using modern microproces-

sors. To date our focus on methodical design has paid off:

the implementation of a carefully designed, simple structure

using elementary software development tools has proceeded

well.

The initial testbed implementation is running and prelim-

inary data is now available regarding the operating perfor-

mance of such systems implemented on microprocessors of ad-

vanced architectures. Data gathered suggests that the

security kernel is indeed an attractive structure for a mo-

dern operating system. There is a wide range of applica-

tions where sophisticated operating systems can be imple-

mented upon microprocessors, and attractive performance can

be achieved, particularly through the use of multiple pro-

cessors.

- XXV -

ACKNOWLEDGMENTS

The authors would like to acknowledge the many long hours

of work and dedicated effort contributed by E. E. Moore, A.

V. Gary, S. L. Reitz, J. T. Wells, and A. a. Strickler, the

students of the SASS project. Without their dedication,

ideas and effort, this project would never have been able to

progress. Specifically, we would like to acknowledge the

contributions of Ms. C. Yamanaka and Ms. N. Seydel, whose

typing and assistance were invaluable. This research was

partially supported by grants from the Office of Naval Re-

search, Project No. 427-00 1, monitored by Mr. Joel Trimble,

and the Naval Postgraduate School Research Foundation.

- XXVI -

REFERENCES

[1] Schell, R. R. and Cox, L. A. "A Secure Archival Storage

System," PROCEEDINGS OF COMPCON FALL, September 1980.

[2] 0*Connell, J. S. and Richardson, L. D., Di stributed,

Secure Design for a Multi-microprocessor Operating Sys-

tem, Master of Science Thesis, Naval Postgraduate

School, June 1979.

[3] Schell R. R. , Kodres, U. a.. Amir, U., Wasson, J., and

Tao, T. F., "Processing of Infrared Images by Multiple

Microcomputer System, Proceedings SPIE Symposium,

"Real-Time Signal Processing III," Vol. 241, (1980),

pp. 267-278.

[4] Peuto, B. L., "Architecture of a New Microprocessor,"

Computer, Vol. 12, No. 2, February 1979, p. 10.

[5] Schell, R. R., "Security Kernels: A Methodical Design

of System Security," USE Technical Papers (Spring Con-

ference, 1979), March, 1979, pp. 245-250.

[6] Schroeder, M. D. and Saltzer, J. H. , "A Hardware Archi-

tecture for Implementing Protection Rings," Communica-

tions of the ACM, Vol. 15, No. 3, March 1972, pp.

157-170.

[71 Denning, D. F. , "A Lattice Model of Secure Information

Flow," Communications of The ACM, Vol. 19, May 1976,

pp. 236-242.

- xxvii -

[8] McCauley E. J. and Drongowslci, P. J., "KSOS - The De-

sign of a Secure Operating System," Proceedings of the

National Computer Conference, 1979, pp. 345-371.

[9] Reed, P. D. and Kanodia, R. K., "Synchronization with

Eventcounts and Seguencers," Communications of the ACM,

Vol. 22, No. 2, February, 1979, pp. 115-124.

[10] Millen, J. K. , "Security Kernel Validation in Prac-

tice," Communica tions of the ACM, Vol. 19, No. 5, May

1976, pp. 243-250.

[11] Parnas, D. L. , "On the Criteria to be Used in Decompos-

ing Systems into Modules," Communications of the ACM,

Vol. 15, No. 12, December 1972, pp. 1053-1058.

[12] Schroeder, M. D. et. al., "The Multics Kernel Design

Project," Proc. Sixth ACM Symposium on Operating Sys-

tems Principles, November 1977, pp. 43-56.

[13] Advanced Micro Devices, Am 96/4116, Am Z8000 16-Bit Mo-

noBoard Computer User's Manual, 1980.

[14] Parks, E. J., The Design of a Secure File S torage Sys-

tem, Master of Seience Thesis, Naval Postgraduate

School, December 1979.

[15] Coleman, A. R. , Security Kernel Design for a Micropro-

2§§so£- Based, Multilevel Archival Storage System, Bas-

- xxviii -

ter of Science Thesis, Naval Postgraduate School, De-

cember 1979.

[16] Moore, E. E. and Gary, A. V., The Design and Implemen-

tation of the Memory. Manager for a Secure Ar chival Sto-

mas Systems, Master of Science Thesis, Naval Postgrad-

uate School, June 1980.

[17] Reitz, S. L. , An Implementation of Multiprogramming and

££2cess Management for a Security Kernel Operating Sys-

tem, Master of Science Thesis, Naval Postgraduate

School, June 1980.

[18] Wells, J. T., Implementation of Segment Mana gement for

a Secure Archi val Storage System, Master of Science

Thesis, Naval Postgraduate School, September 1980.

[19] Strickler, A. R., IfiEiementation of Process Mana gem ent

f°£ i Secure Ar chival Storage S_ystem, Master of Science

Thesis, Naval Postgraduate School, March 198 1.

[20] ZILOG, Inc, Z8000 PLZ/ASM Assembly Language Programming

Manual, April 1979.

- XXIX -

FOREWORD

This technical report contains edited segments of four mas-

ters 1 theses:

The Design and Implementation of the. Memory Manag-
er £2£ ^ Secure Archi val St oracle System by E. E.

Moore and A. 7. Gary

kQ Implementation of Multiprogramming a&d Process
Management for a Secu rity Ke.rnei 2E§£ating System
by S. L. Reitz

Implementation of Segment Management for a Secure
Archival Storage System by J. T. Wells

Imglementation of Process Management for a S ecure
archival Storage System by A. E. Strickler

which describe the development and implementation of the Na-

val Postgraduate School Secure Archival Storage System

(SASS) . These theses are based upon the design outlined in

the Naval Postgraduate School SECURE ARCHIVAL STORAGE SYSTEM

Part I - Design - by R. R. Schell and L. A. Cox [17]. This

design is updated and presented in detail.

Some sections of each thesis have been excluded in order

to eliminate repetition and bulk. Similarly, the program

listings in this report represent the current state of the

project and do not pertain to any one thesis. An attempt

has been made to footnote some discrepancies between the

- XXX -

system described by these theses and the current state.

However, there may be some details described herein which do

not correspond to the current SASS system. Consequently,

the reader is advised to consult the individual thesis if

more detail on a particular phase of the development is re-

quired. A program description document, providing greater

clarification of SASS organization and listings, is also

available.

- XXXI -

CONTENTS

THE STRUCTURE OF A SECURITY KERNEL FOR A Z8000
MULTIPROCESSOR ii

FOREWORD XXX

PART A — INTRODUCTION

Chapter 2I£®

I. BACKGROUND 2

II. BASIC CONCEPTS/DEFINITIONS 6

PROCESS 6

INFORMATION SECURITY 8

SEGMENTATION 13
PROTECTION DOMAINS 15

ABSTRACTION 16

PART B ~ SECURE ARCHIVAL STORAGE SYSTEM DESIGN

ChajDter E§c[e

III. BASIC SASS OVERVIEW 18

IV. SUPERVISOR 23

FILE MANAGER PROCESS 24

INPUT/OUTPUT PROCESS 25

V. GATE KEEPER 26

VI. DISTRIBUTED KERNEL 28

SE3MENT MANAGER 29

EVENT MANAGER 32
NON-DISCRETIONARY SECURITY MODULE 33
TRAFFIC CONTROLLER . 33
INNER TRAFFIC CONTROLLER 38
DISTRIBUTED MEMORY MANAGER 41

- xxxii -

VII. NON-DISTRIBUTED KERNEL 43

MEMORY MANAGER PROCESS 43

VIII. SYSTEM HARDWARE 48

IX. SUMMARY 52

PART C — THE DESIGN AND IMPLEMENTATION OF THE MEMORY
MANAGER POR A SECURE ARCHIVAL STORAGE SYSTEM

Chapter page

X. INTRODUCTION 54

XI. MEMORY MANAGER PROCESS DETAILED DESIGN 57

INTRODUCTION 57

DESIGN PARAMETERS AND DECISIONS 60
DATA BASES 63

Global Active Segment Table 63
Local Active Segment Table 68
Alias Table 69
Memory Management Unit Image 71
Memory Allocation/Deallocation Bit Maps ... 74

BASIC FUNCTIONS 75
Create an Alias Table Entry 78
Delete an Alias Table Entry 80
Activate a Segment 83
Deactivate a Segment 37
Swap a Segment In 91
Swap a Segment Out 95
Deactivate All Segments 98
Move a Segment to Global Memory 99
Move a Segment to Local Memory 101
Update the MMU Image 102

SUMMARY 103

XII. STATUS OF RESEARCH 105

CONCLUSIONS 105
FOLLOW ON WORK 107

PART D — AN IMPLEMENTATION OF MULTIPROGRAMMING AND
PROCESS MANAGEMENT FOR A SECURITY KERNEL OPERATING SYSTEM

- XXXlll -

Chapter £§<!©

XIII. INTRODUCTION 109

XIV. IMPLEMENTATION 112

DEVELOPMENTAL SUPPORT 112
INNER TRAFFIC CONTROLLER 114

Virtual Processor Table (VPT) 114
Level- 1 Scheduling 118

Getwork 119
Virtual Processor Instruction Set 126

Wait 127
Signal 130
SHAP_VDBR 131
IDLE" 133
SET_VPREEMPT 134
TEST_VPREEMPT 135

TRAFFIC CONTROLLER 138
Active Process Table (APT) 138
Level-2 Scheduling 141

TC_GETWORK 14 1

TC_PREEMPT_HANDLER 143
Eventcounts 145

Advance 145
Await 146
Read 146
Ticket 146

SYSTEM INITIALIZATION 147

XV. CONCLUSION 151

RECOMMENDATIONS 151
FOLLOH ON WORK 152

PART E — IMPLEMENTATION OF SEGMENT MANAGEMENT FOR A

SECURE ARCHIVAL STORAGE SYSTEM

Chapter pa ge

XVI. INTRODUCTION 154

XVII. SEGMENT MANAGEMENT FUNCTIONS 155

SEGMENT MANAGER 155
Function . 155
Database 156

NON-DISCRETIONARY SECURITY MODULE 160
MEMORY MANAGER 161

Function 161
Databases 162

- xxxiv -

SUMMARY 166

XVIII. SEGMENT MANAGEMENT IMPLEMENTATION 167

IMPLEMENTATION ISSUES 167
Interprocess Messages 168
Structures as Arguments 170
Reentrant Code 170
Process Structure of the Memory Manager . . 171
Per-Process Known Segment Table 172
DBR Handle 172

SE3MENT MANAGER MODULE 173
Create a Segment 174
Delete a Segment 177
Make a Segment Known 178
Make a Segment Unknown (Terminate) 181
Swap a Segment In 182
Swap a Segment Out 183

NON-DISCRETIONARY SECURITY MODULE 183
Equal Classification Check 186
Greater or Equal Classification Check . . . 186

DISTRIBUTED MEMORY MANAGER MODULE 187
Description of Procedures 188
Interprocess Communication 190

SUMMARY 192

XIX. CONCLUSIONS AND FOLLOW ON WORK 193

PART F — IMPLEMENTATION OF PROCESS MANAGEMENT FOR A

SECURE ARCHIVAL STORAGE SYSTEM

Chapter pa ge

XX. INTRODUCTION 196

XXI. IMPLEMENTATION ISSUES 198

DATABASE INITIALIZATION 198

Inner Traffic Controller Initialization . . 199
Traffic Controller Initialization 202
Additional Initialization Requirements . . . 205

PREEMPT INTERRUPTS 206
Physical Preempt Handler 207
Virtual Preempt Handler 209

IDLE PROCESSES 213
ADDITIONAL KERNEL REFINEMENTS 215
SUMMARY 217

XXII. PROCESS MANAGEMENT IMPLEMENTATION 218

EVENT MANAGER MODULE 220

- xxxv -

Support Procedures 221
Read 223
Ticket 223
Await 224
Advance 225

TRAFFIC CONTROLLER MODULE 225
TC_Getvork 226
TC_Await 227
TC_Advance 228
Virtual_Preempt_Handler 233
Remaining Procedures 233

DISTRIBUTED MEMORY MANAGER MODULE 234
MM_Read_Eventcount 235
MM_Advance 235
MM_Ticket 236
MM_Allocate 236

GATE KEEPER MODULES 238
User_Gate Module 239
Kernel_Gate_Keeper Module 242

SUMMARY ." 243

XXIII. CONCLUSION 244

FOLLOW ON WORK 245

Appendix gage

A. EVENT MANAGER LISTINGS 247

B. TRAFFIC CONTROLLER LISTINGS 258

C. DISTRIBUTED MEMORY MANAGER LISTINGS 287

D. GATE_KEEPER LISTINGS 308

E. BOOTSTRAP_LOADER LISTINGS 317

F. LIBRARY FUNCTION LISTINGS 330

G. INNER TRAFFIC CONTROLLER LISTINGS 335

H. SEGMENT MANAGER LISTINGS 364

I. NON-DISCRETIONARY SECURITY LISTINGS 335

J. MEMORY MANAGER LISTINGS 387

LIST OF REFERENCES 404

- xxxvi -

INITIAL DISTRIBUTION LIST 406

- XiXVll -

LIST OF FIGURES

1. SASS System Interfaces v

2. Extended Machine Layers viii

3. Internal Kernel Organization xiii

4. Multiprocessor Configuration xviii

5. SASS System 20

6. System Overview (Dual Host) 22

7. Known Segment Table (KST) 31

8. Active Process Table (APT) 35

9. Virtual Processor Table (VPT) 39

10. Extended Instruction Set 46

11. Kernel Databases 47

12. Memory Management Unit (MMU) Image 50

13. SASS H/W System Overview 59

14. Global Active Segment Table 64

15. Alias Table Creation 67

16. Local Active Segment Table 69

17. Alias Table 70

18. Memory Management Unit Image 73

19. Memory Allocation/Deallocation Map 75

20. Memory Manager Mainline Code 77

21. Create Entry Pseudo-code 79

- xxxviii -

22. Delete Entry Pseudo-code 82

23. Activate Pseudo-code 86

24. Deactivate Pseudo-code 90

25. Swap_In Pseudo-code 94

26. Swap_0ut Pseudo-code 97

27. Deactivate All Pseudo-code 99

28. Move To Global Pseudo-code 100

29. Move To Local Pseudo-code 101

30. Opdate Pseudo-code 102

31. Success Codes 104

32. SASS SYSTEM 111

33. MM0_IMAGE 113

34. Virtual Processor Table 115

35. Virtual Processor States 117

36. SHAP_DBE 120

37. Kernel Stack Segments 124

38. GETWORK 125

39. Active Process Table 140

40. Initialized Stack 148

41. Known Segment Table 159

42. Memory Management Onit Image 165

43. Memory Manager-CPU Table 166

44. Initial Process Stack 210

45. Implementation Module Structure 219

46. TC_ADVANCE Algorithm 230

47. Program Status Area 241

- xxxix -

PABT A

IHTRODOCTION

Chapter I

BACKGROUND

This chapter is an updated excerpt from Implemen-
tation 2l Segment Management £fi£ I. Secure Archival
Storage System by J. T. Wells f2QJ.

O'Connell and Richardson provided the design for a fami-

ly of secure, distributed, multi-microprocessor operating

systems from which the subset, SASS, was later derived [7],

In their work, two of the primary motivations were to pro-

vide a system that (1) effectively coordinated the process-

ing power of microprocessors and (2) provided information

security.

The basis for emphasis on utilization of microprocessors

is not purely that of replacing software with more powerful

(and faster) hardware (microprocessors) but is also an eco-

nomic issue. Software development and computing operations

are becoming more and more expensive, putting further pres-

sure on system designers to increasingly utilize people

solely for system functions that computers cannot perform in

a cost effactive manner. Microcomputers, on the other hand,

are becoming less and less expensive and are, therefore, in-

creasingly being used for more functions.

The need for information security has been gradually re-

cognized as the uses of computers have expanded. As security

- 2 -

needs for specific computer systems have been recognized,

attempts have been made to modify the existing systems to

provide the desired security. The results have been systems

that could not be certified as secure and/or which have

failed to resist penetration efforts, i.e. systems which, in

effect, did not provide adeguate information security. It

has become clear that, in order to be certifiably secure, a

computer system must have security designed in from first

principles [10,11]. Such is the case with SASS. Information

security was and continues to be a chief design feature.

Integral to the design goal of information security were two

related goals. One of these goals was to provide multilev-

el controlled access to a consolidated warehouse of data for

a network of multiple host computers. The other key goal was

to provide for controlled sharing among the computer hosts.

A brief background of prior work relative to SASS fol-

lows. O'Connell and Richardson originated the design of a

secure family of operating systems. Their design provided

two basic parts for their system — the supervisor (to pro-

vide operating system services) and the kernel (to provide

for physical resource management) . The design of the SASS

supervisor was completed by Parks [9]. No implementation or

further design effort on the supervior has followed, to

date. The initial design of the kernel was completed by

Coleman [2]. That design described the kernel in terms of

seven modules:

- 3 -

1. Sate Keeper Module — provided for ring-crossing me-
chanism and thus isolation of the kernel.

2. Segment Manager Module — provided for management of
segmented virtual memory.

3. Traffic Controller Module — multiplexed processes
onto virtual processors and supports the inter- pro-
cess communication primitives Block and Makeup.

4. Non-Discretionary Security Module — mediated non-
discretionary security access attempts.

5. Inner Traffic Controller Module — multiplexed virtu-
al processors onto real processors and provided the
Kernel synchronization primitives Signal and Hait.

6. Memory Manager Module — managed main memory and sec-
ondary storage.

7. Input-Output Manager -- managed the moving of infor-
mation to external devices outside the boundaries of
the SASS.

Refinement of the kernel design and partial implementation

was completed by Gary and Moore [5] in conjunction with

Reitz [12]. The resultant description of the kernel as a re-

sult of their work was:

1. Gate Keeper Module

2. Segment Manager Module

3. Event Manager Module — worked with the Traffic Cont-
roller to manage the event data associated with the
IPC mechanism of eventcounts and sequencers.

4. Non-Discretionary Security Module

5. Traffic Controller Module — replaced Block and Wake-
up with Advance and Await (to implement Supervisor
IPC mechanism of eventcounts and sequencers).

6. Memory Manager Module

7. Inner Traffic Controller Module

- 4 -

Reitz implemented the Traffic Controller Module and Inner

Traffic Controller Module. Gary and Moore completed a de-

tailed design of the Memory Manager, originated the Memory

Manager code (written predominantly in PLZ/SYS) , selected a

thread of the code, hand compiled it into PLZ/ASM and ran it

on the Z8000 developmental module. Wells provided the im-

plementation of the Segment Manager and Non-Discretionary

Security Modules as well as partial implementation of Dis-

tributed Memory Manager functions. StricJcler refined and

implemented the process management functions for the SASS

(written in PLZ/ASM)

.

- 5 -

Chapter II

BASIC CONCEPTS/DEFINITIONS

This chapter is an excerpt from Implementat ion of
process Management for a Secure 4L£hival storage
Sisteo by A. E. Stricicler [19]. Minor changes
have been made for integration into report.

This section provides an overview of several concepts

essential to the SASS design. Readers familiar with SASS or

with secure operating system principles may wish to skip to

the next section.

A. PROCESS

The notion of a process has been viewed in many ways in

computer science literature. Organick [8] defines a process

as a set of related procedures and data undergoing execution

and manipulation, respectively, by one of possibly several

processors of a computer. Sadnick and Donovan [6] view a

process as the locus of points of a processor executing a

collection of programs. Reed [10] describes a process as

the sequence of actions taken by some processor. In other

words, it is the past, present, and future "history" of the

states of the processor. In the SASS design, a process is

viewed as a logical entity entirely characterized by an ad-

dress space and an execution point. A process* address

space consists of the set of all memory locations accessible

- 6 -

by the process daring its execution. This may be viewed as

a set of procedures and data related to the process. The

execution point is defined by the state of the processor at

any given instant of process execution.

As a logical entity, a process may have logical attri-

butes associated with it, such as a security access class, a

unigue identifier, and an execution state. This notion of

logical attributes should not be confused with the more typ-

ical notion of physical attributes, such as location in me-

mory, page size, etc. In SASS, a process is given a securi-

ty access class, at the time of its creation, to specify

what authorization it possesses in terms of information ac-

cess (to be discussed in the next section) . It is also giv-

en a unigue identifier that provides for its identification

by the system and is utilized for interaction among process-

es. A process may exist in one of three execution states:

1) running, 2) ready, and 3) blocked. In order to execute,

a process must be mapped onto (bound to) a physical proces-

sor in the system. Such a process is said to be in the

"running" state. A process that is not mapped onto a physi-

cal processor, but is otherwise ready to execute, is in the

"ready" state. A process in the "blocked" state is waiting

for some event to occur in the system and cannot continue

execution until the event occurs. At that time, the process

is placed into the ready state.

- 7 -

B. INFORMATION SECURITY

There is an ever increasing demand for computer systems

that can provide controlled access to the data it stores.

In this thesis, "information security" is defined as the

process of controlling access to information based upon

proper authorization. The critical need for information se-

curity should be clear. Banks and other commercial enter-

prises risk the theft or loss of funds. Insurance and cre-

dit companies are bound by law to protect the private or

otherwise personal information they maintain on their cus-

tomers. Oniversities and scientific institutions must pre-

vent the unauthorized use of their often over-burdened sys-

tems. The Department of Defense and other government

agencies must face the very real possibility that classified

information is being compromised or that weapon systems are

being tampered with. In fact, security related problems can

be found at virtually every level of computer usage.

The security of computer systems processing sensitive

information can be achieved by two means: external security

controls and internal security controls. In the first case,

security is achieved by encapsulating the computer and all

its trusted users within a single security perimeter estab-

lishe by physical means (e.g., armed guards, fences, etc.)

This means of security is often undesirable due to its added

cost of implementation, the inherent risk of error-prone ma-

nual procedures, and the problem of trustworthy but error-

- 8 -

prone users. Also, sinca all security controls are external

to the computer system, the computer is incapable of secure-

ly handling data at differing security levels or users with

differing degrees of authorization. This restriction great-

ly limits the utility of modern computers. Internal securi-

ty controls rely upon the computer system to internally dis-

tinguish between multiple levels of information

classification and user authorization. This is clearly a

more desirable and flexible approach to information securi-

ty. This does not mean, however, that external security is

not needed. The optimal approach would be to utilize inter-

nal security controls to maintain information security and

external security controls to provide physical protection of

our system against sabotage, theft, or destruction. The

primary concern of this thesis is information security and

will therefore center its discussion on the achievement of

information security through implementation of the security

kernel concept.

One might argue that a "totally secure" computer system

is one that allows no access to its classified or otherwise

sensitive information. Such a system would not be of much

value to its users. Therefore, when we say that a system

provides information security, it is only secure with res-

pect to some specific external security policy established

by laws, directives, or regulations. There are two distinct

aspects of security policy: non-discretionary and discre-

- 9 -

tionary. Each user (subject) of the system is given a label

denoting what classification or level of access the user is

authorized. Likewise, all information or segments (objects)

within the system are labelled with their classification or

level of sensitivity. The non-discretionary security me-

chanism is responsible for comparing the authorization of a

subject with the classification of an object and determining

what access, if any, should be granted. The DOD security

classification system provides an example of the non-discre-

tionary security policy and is the policy implemented in

SASS. The discretionary security policy is a refinement of

the non-discretionary policy. As such, it adds a higher de-

gree of restriction by allowing a subject to specify or res-

trict who may have access to his files. It must be empha-

sized that the discretionary policy is contained within the

non-discretionary policy and in no way undermines or substi-

tutes for it. This prevents a subject from granting access

that would violate the non-discretionary policy. An example

of discretionary security is provided by the DOD "need to

know" policy. In SASS, the discretionary policy is imple-

mented within the supervisor [9] by means of an Access Con-

trol List (ACL) . There is an ACL maintained for every file

in the system, which provides a list of all users authorized

access to that file. Every attempt by a user to access a

file is first checked against the ACL and then checked

against the non-discretionary security policy. The "least"

- 10 -

or "most restrictive" access found in these checks is then

granted to the user.

The relationship between the labels associated with the

subject's access class (sac) and the object's access class

(oac) is defined by a lattice model of secure information

flow [12] as follows (" | " denotes "no relationship"):

1. sac = oac, read and write access permitted

2. sac > oac, read access permitted

3. sac < oac, write access permitted

4. sac | oac, no access permitted

In order to understand how these access levels are deter-

mined, it is necessary to gain an awareness of and consider-

ation for several basic security properties.

The "Simple Security Property" deals with "read" access.

It states that a subject may have read access only to those

object's whose classification is less than or equal to the

classification of the subject. This prevents a subject from

reading any object possessing a classification higher than

his own.

The "Confinement Property" (also known as "*-property ")

governs "write" access. It states that a user may be grant-

ed write access only to those objects whose classification

is greater than or equal to the classification of the sub-

ject. This prevents a user from writing information of a

higher classification (e.g.. Secret) into a file of a lower

classification (e.g., Unclassified). It is noted that while

- 11 -

this property allows a user to write into a file possessing

a classification higher than his own, it does not allow him

access to any of the data in that file. The SASS design

does not allow a user to "write up" to higher classified

files. Therefore, in SASS, "sac < oac" denotes "no access

permitted.

"

The "Compatibility Property" deals with the creation of

objects in a hierarchical structure. In SASS, objects (seg-

ments) are hierarchically organized in a tree structure.

This structure consists of nodes with a root node from which

the tree eminates. The Compatibility Property states that

the classification of objects must be non-decreasing as we

move down the hierarchical structure. This prevents a pa-

rent node from creating a child node of a lower classifica-

tion.

Several prereg uisites must be met in order to insure

that the security kernel design provides a secure environ-

ment. Firstly, every attempt to access data must invoke the

Kernel. In addition, the Kernel must be isolated and tam-

perproof. Finally, the Kernel design must be verifiable.

This implies that the mathematical model, upon which the

Kernel is based, must be proved secure and that the Kernel

is shown is to correctly implement this model.

- 12 -

C. SEGMENT ATIQH

Segmentation is a key element of a security Kernel based

system. A segment can be defined as a logical grouping of

information, such as a procedure, file or data area [6 J.

Therefore, we can redefine a process' address space as the

collection of ail segments addressable by that process.

Segmentation is the technique applied to effect management

of those segments within an address space. In a segmented

environment, all references within an address space require

two components: 1) a segment specifier (number) and 2) the

location (offset) within the segment.

A segment may have several logical and physical attri-

butes associated with it. The logical attributes may in-

clude the segment 1 s classification, size, or permissable ac-

cess (read, write, or execute) . These logical attributes

allow a segment to nicely fit the definition of an object

within the security kernel concept, and thus provide a means

for the enforcement of information security. A segments

physical attributes include the current location of the seg-

ment, whether or not the segment resides in main memory or

secondary storage, and where the segment's attributes are

maintained by a segment descriptor. The segment descriptors

for each segment in a process' address space are contained

within a Descriptor Segment (viz. , the MMU Image in SASS) to

facilitate the memory management of that address space.

- 13 -

Segmentation supports information sharing by allowing a

single segment to exist in the address spaces of multiple

processes. This allows us to forego the maintenance of mul-

tiple copies of the same segment and eliminates the possi-

bility of conflicting data. Controlled access to a segment

is also enforced, since each process can have different at-

tributes (read/write) specified in its segment descriptor.

In the implementation of SkSS, any segment which is shared,

but has "read only" access by every process sharing it, is

placed in the processor local memory supporting each of

these processes rather than in the global memory. This im-

plies the maintenance of multiple copies of some shared seg-

ments. It is noted that the problem of "conflicting data"

is avoided since this only applies to read only segments.

This apparent waste of memory and nonuse of existing sharing

facilities is justified by a design decision to provide max-

imum reduction of bus contention among processors accessing

global memory. This reduction in bus contention is consid-

ered to be of more importance than the saving of memory

space provided by single copy sharing of read only segments.

This decision is also well supported by the occurrence of

decreasing memory costs, which we have experienced in terms

of high speed bus costs.

- 14 -

D. PROTECTION DOMAINS

The requirement for isolating the Kernel from the re-

mainder of the system is achieved by dividing the address

space of each process into a set of hierarchical domains or

protection rings [18]. O^onnell and Richardson [7] defined

three domains in the family of secure operating systems:

the user, the supervisor, and the kernel. Only two domains

are actually necessary in the SASS design since it does not

provide extended user applications. The Kernel resides in

the inner or most privileged domain and has access to all

segments in an address space. System wide data bases are

also maintained within the Kernel domain to insure their ac-

cessibility is only through the Kernel. The Supervisor ex-

ists in the outer or least privileged domain where its ac-

cess to lata or segments within an address space is

restricted.

While protection domains may be created through either

hardware or software mechanisms, a hardware implementation

provides much greater efficiency. Current microprocessor

technology only provides for the implementation of two do-

mains. This two domain restriction does not support O'Con-

nell and Richardson* s complete family design, but it is suf-

ficient to allow hardware implementation of the ring

structure required by the SASS subset.

- 15 -

E. ABSTRACTION

Dijkstra [4] has shown that the notion of abstraction

can be used to reduce the complexity of a problem by apply-

ing a general solution to a number of specific cases. A

structure of increasing levels of abstraction provides a

powerful tool for the design of complex systems and general-

ly leads to a better design with greater clarity and fewer

errors.

Each level of abstraction creates a virtual hierarchical

machine [6] which provides a set of "extended instructions"

to the system. A virtual machine cannot make calls to

another virtual machine at a higher level of abstraction and

in fact is unaware of its existence. This implies that a

level of abstraction is independent of any higher levels.

This independence provides for a loop-free design. Addi-

tionally, a higher level may only make use of the resources

of a lower level by applying the extended instruction set of

the lower level virtual machine. Therefore, once a level of

abstraction is created, any higher level is only interested

in the extended instruction set it provides and is not con-

cerned with the details of its implementation. In SASS,

once a level of abstraction is created for the physical re-

sources of the system, these resources become "virtualized"

making the higher levels of the design independent of the

physical configuration of the system.

- 16 -

PABT B

SECURE ARCHIVAL STORAGE SYSTEM DESIGN

This section is an excerpt from I m£lementation of P rocess
Management for a Se c ure Archival Storage System by A. R.

Strickier [19]. Minor changes have been aade for integra-
tion into this report.

Chapter III

BASIC SASS OVERVIEW

The purpose Df the Secure Archival Storage System is to

provide a secure "data warehouse" or information pool which

can be accessed and shared by a variable set of host compu-

ter systems possessing differing security classifications.

The primary goals of the SASS design are to provide informa-

tion security and controlled sharing of data among system

users.

Figure 5 provides an example of a possible SASS usage.

The system is used exclusively for managing an archival sto-

rage system and does not provide any programming services to

its users. Thus the users of the SASS may only create,

store, retrieve, or modify files within the SASS. The host

computers are hardwired to the system via the I/O ports of

the Z8001 with each connection having a fixed security clas-

sification. Each host must have a separate connection for

each security level it wishes to work on (It is important to

note that Pigure 5 only represents the logical interfacing

of the system. Specifically, the actual connection with the

host system must be interfaced with the Kernel as the I/O

instructions for the port are privileged) . In our example.

Host #1 can create and modify only Top Secret files, but it

- 18 -

can read files which are Top Secret, Secret, Confidential,

or Unclassified. Likewise, Host #2 can create or modify

secret files, using its secret connection or confidential

files, using its confidential connection. Host #2 cannot

create or modify Top Secret or Unclassified files.

In order to provide information security and controlled

sharing of files, the SASS operates in two domains: (1) the

Supervisor domain and (2) the Kernel domain. The SASS ac-

hieves this desired environment through a distributed oper-

ating system design which consists of two primary modules:

the Supervisor and the Security Kernel. Each host system

connected to the SASS has associated with it two processes

within the SASS which perform the data transfer and file

management on behalf of that host. The host computer commu-

nicates directly with its own I/O process and File Manager

process within the SASS.

We can use our notion of abstraction to present a system

overview of the SASS. The SASS consists of four primary

levels of abstraction:

Level 3-The Host Computer Systems

Level 2-The Supervisor

Level 1-The Security Kernel

Level O-The SASS Hardware

A pictorial representation of this abstract system overview

is presented in Figure 6. This representation is limited to

a dual host system for clarity and space restrictions. Note

- 19 -

I 1

I
Hostl

|

SASS

I I I

I Host2 | | Host3 J

Supervisor

Kernel

I

Main
Memory

I 1

| Host4
|

1 I-- 1 1 1 1 1

T| S| C| C| U|

o| 91 01 o| n|

PI c\ n I a| c|

I rl f I fl 11
S| e| i I il a|

e| t| ai d| si
c| 1 e I e| s|

r|
1 n I n| il

e|
1 t| t| fl

t|
1 i | il il

I 1 a 1 a| e|

I 1 11 11 ai

I

i

1

i

.

1 1

i

I

1

i

,

1 i i

1

1
"*-

—

1

1

I 1

1 1

1

l~ —
1
—

i

1 1 1

I

I Secondary
|

I Storage |

I 1

Figure 5: SASS System

- 20 -

that the Sate Keeper module is in actuality the logical

boundary between levels one and two and as such will be de-

scribed separately.

Level 3, the host computer systems, of SASS has already

been addrassed. It should be noted that the SASS design

makes no assumptions about the host computer systems. There-

fore each host may be of a different type or size (i.e.- mi-

cro, mini, or maxi-computer system) . Furthermore, the ne-

cessary physical security of the host systems and their

respective data links with the SASS is assumed.

- 21 -

I 1

I Hostl |

I 1

I
Host2 |

,

—

Level 3

I |
1

Host

Level 2

1
1 1 1 |

Supervisor

, , ,

File |
J
Input/ |

Output! |

I
Input/ 1 I

File |

I 0utput2 1 1 Manager2
|

, j j
^r»^

,

Event I | Non-Discretionary
j

| Segment |

iger |

I Local |

I Memory |

| Global |

I Memory i

1
x

1

I Secondary |

I Storage |

1 I i I

Figure 6: System Overview (Dual Host)

- 22 -

Chapter I?

SUPERVISOR

Level 2 of the SASS system is composed of the Supervisor

domain. As already stated, the SASS consists of two do-

mains. The actual implementation of these domains was

greatly simplified since the Z8001 microprocessor provides

two modes of execution. The system mode, with which the

Kernel was implemented, provides access to all machine in-

structions and all segments within the system. The normal

mode, with which the Supervisor was implemented, only pro-

vides access to a limited subset of machine instructions and

segments within the system. Therefore, the Supervisor oper-

ates in an outer or less privileged domain than the Kernel.

The purpose of tne Supervisor is to manage the data link

between the host computer systems and the SASS by means of

Input/Output control, and to create and manage the file

hierarchy of each host within the SASS. These functions are

accomplished via an Input/Output (I/O) process and a File

Manager (FM) process within the Supervisor. A separate FM

and I/O process are created and dedicated to each host at

the time of system initialization.

- 23 -

A. FILE MANAGE! PROCESS,

The FM process directs the interaction between the host

computer systems and the SASS. It interprets all commands

received from the Host computer and performs the necessary

action upon them through appropriate calls to the Kernel.

The primary functions of the FM process are the management

of the Host's virtual file system and the enforcement of the

discretionary security policy.

The virtual file system of the Host is viewed as a hier-

archy of files which are implemented in a tree structure.

The five basic actions which may be initiated upon a file at

this level are: 1) to create a file, 2) to delete a file, 3)

to read a file, 4) to store a file, and 5) to modify a file.

The FM process utilizes a FM Known Segment Table (FM_KST) as

the primary database to aid in this management.

The FM process maintains an Access Control List (ACL)

through which it enforces the discretionary security in

SASS. The FM process initializes an ACL for every file in

its Host's file system. The ACL is merely a list of all us-

ers that are authorized to access that file. The ACL is

checked upon every attempt to access a file to determine its

authorization. The user (host computer) directs the FM pro-

cess as to what entries or deletions should be made in the

ACL, and as such, specifies who he wishes to have access to

his file. As noted earlier, discretionary security is a re-

finement to the Non-Discretionary Security Policy and there-

- 24 -

fore can only be utilized to add further access restrictions

to those provided by the Non-Discretionary Security. This

prevents a user from granting access to a file to someone

who otherwise would not be authorized access.

B. INPOT/QOTPOT PROCESS

The 1/3 process is responsible for managing the input

and output of all data between the host computer systems and

the SASS. The I/O process is subservient to the FM process

and receives all of its commands from it. Data is transfer-

red between the SASS and Host Computer systems in fixed size

"packets". These packets are broken up into three basic

types: 1) a synchronization packet, 2) a command packet, and

3) a data packet. In order to insure reliable transmission

and receipt of packets between the Host computer and the

SASS, there must exist a protocol between them. Parks [9]

provides a more detailed description of these packets, and a

possible multi-packet protocol.

- 25 -

Chapter 7

GATE KEEPER

The primary objective of the gate keeper is to isolate

the Kernel and make it tamperproof. This goal is accom-

plished by reason of a software ring crossing mechanism pro-

vided by the gate keeper. In terms of SASS, this notion of

"ring-crossing" is merely the transition from the Supervisor

domain to the Kernel domain. As noted earlier, the gate

keeper establishes the logical boundary between the Supervi-

sor and the Kernel, and as a matter of course, it provides a

single software entry point (enforced by hardware) into the

Kernel. Therefore, any call to the Kernel must first pass

through the gate keeper.

The gate keeper acts as a trap handler. Once it is in-

voked by a user (Supervisor) process, the hardware preempt

interrupts are masked, and the user process* registers and

stack pointer are saved (within the kernel domain) . It then

takes the argument list provided by the caller and validates

these passed parameters to insure their correctness. To aid

in the validation of these parameters, the gate keeper uti-

lizes the Parameter Table as a database. The Parameter ta-

ble contains all of the permitted functions provided by the

Kernel. These relate directly to the extended instruction

- 26 -

set (viz.. Supervisor calls) provided by the Kernel (these

extended instructions will be described in the next sec-

tion) . If an invalid call is encountered by the gate keep-

er, ' an error code is returned, and the Kernel is not in-

voked. If a valid call is encountered by the gate keeper,

the arguments and control are passed to the appropriate Ker-

nel module.

Once the Kernel has completed its action on the user re-

guest, it passes the necessary parameters and control back

to the gate keeper. &t this point, the gate keeper deter-

mines if any software virtual preempt interrupts have occur-

red. If they have, then the virtual preempt handler is in-

voked vice the Kernel being exited (virtual interrupt

structure is discussed by Strickler [19]. Correspondingly,

if a software virtual preempt has not occurred, then the re-

turn arguments are passed to the user process. The user

process 1 registers and stack pointer (viz., its execution

point) are restored and control returned to the Supervisor

domain. & detailed description of the Gate Keeper interface

and implementation is provided by Strickler [19].

- 27 -

Chapter VI

DISTRIBUTED KEBNEL

Level 1 of our abstract view of SASS consists of two

components: the distributed Kernel and the non-distributed

Kernel. These two elements comprise the Security Kernel of

the SASS. The Security Kernel has two primary objectives:

1) the management of the system»s hardware resources, and 2)

the enforcement of the non-discretionary security policy.

It executes in the most privileged domain (viz., the system

mode of the Z8001) and has access to all machine instruc-

tions. The following section will provide a brief descrip-

tion of the distributed Kernel, its components, and the ex-

tended instruction set it provides. A discussion of the

non-distributed Kernel will be given in the next section.

The distributed Kernel consists of those Kernel modules

whose segments are contained (distributed) in the address

space of every user (Supervisor) process. Thus, in effect,

the distributed Kernel is shared by all user processes in

the SASS. The distributed Kernel is composed of the Segment

Manager, the Event Manager, the Non-Discretionary Security

Module, the Traffic Controller, the Inner Traffic Controll-

er, and the Distributed Memory Manager Module. The Segment

Manager and the Event Manager are the only "user visible"

- 23 -

modules in the distributed Kernel. In other words, the set

of extended instructions available to user processes invokes

either the Segment Manager or the Event Manager.

A. SEGMENT MANAGER

The objective of the Segment Manager is the management

of a process 1 segmented virtual storage. The Segment Manag-

er is invoiced by calls from the Supervisor domain via the

gate keeper. Calls to the Segment Manager are made by means

of six extended instructions provided by the segment manag-

er. These extended instructions (viz., entry points) are:

1) CREArE_SEGMENT, 2) DELETE_SEGMENT, 3) MAKE_KNOiN, 4)

TERMINATE, 5) SM_SWAP_IN, and 6) SM_SHAP_OUT. The extended

instructions CREATE_SEGMENT and DELETE^SEGMENT add and re-

move segments from the SASS. MAKE_KNOWN and TERMINATE add

and remove segments from the address space of a process.

Finally, SM_SWAP_IN and SM_SSJAP_OUT move segments from sec-

ondary storage to main storage and vice versa.

The primary database utilized by the Segment Manager is

the Known Segment Table (KST) . A representation of the

structure Df the KST is provided in Figure 7. The KST is a

process local database that contains an entry for every seg-

ment in the address space of that process. The KST is in-

dexed by segment number with each record of the KST contain-

ing descriptive information for a particular segment. The

KST provides a mapping mechanism by which the segment number

- 29 -

of a particular segment can be converted into a unique han-

dle for use by the Memory Manager. The Memory Manager will

be discussed in the next chapter.

- 30 -

-Segment #

MM Handle 1 Size | Acess | In | Class | Mentor | Entry
I | Mode | Core

| J Seg No 1 Number

Figure 7: Known Segment Table (KST)

- 31 -

B. EVENT MANAGER

The purpose of the Event Manager is the management of

event data which is associated with interprocess communica-

tions within the SASS. This event data is implemented by

means of eventcounts (a synchronization primitive discussed

by Reed [11]). The Event Manager is invoked, via the Gate

Keeper, by user processes residing in the Supervisor domain.

There are two eventcounts associated with every segment ex-

isting in the Supervisor domain. These eventcounts (viz..

Instance 1 and Instance 2) are maintained in a database re-

siding in the Memory Manager. The Event Manager provides

its management functions through its extended instruction

set READ, TICKET, ADVANCE, and AWAIT, and in conjunction

with the extended instructions TC_ADVANCE and TC_AWAIT pro-

vided by the Traffic Controller (to be discussed next)

.

These extended instructions are based on the mechanism of

eventcounts and sequencers [11]. The Event Manager verifies

the access permission of every interprocess communication

request through the Non-Discretionary Security Module. The

extended instruction READ provides the current value of the

eventcount requested by the caller. TICKET provides a com-

plete time ordering of possibly concurrent events through

the mechanism of sequencers. The Event Manager will be dis-

cussed in more detail by Strickler [19].

- 32 -

C. NJ3N-DISCRETI0NARY SECURITY MODULE

The purpose of the Non-Discretionary Security Module

(NDS) is the enforcement of the non-discret ionary security

policy of the SASS. While the current implementation of

SASS represents the Department of Defense security policy,

any security policy which may be represented through a lat-

tice structure [3] may also be implemented. The NDS is in-

voked via its extended instruction set: CLASS_EQ and

CLASS_GE. The NDS is passed two classifications which it

compares and then analyzes their relationship. CLASS_EQ

will return a true value to the calling procedure only if

the two classifications passed were equal. Ihe CLASS_GE in-

struction will return true if a given classification is ana-

lyzed to be either greater than or equal to another given

classification. The NDS does not utilize a data base as it

works only with the parameters it is passed.

D. TRAFFIC CONTROLLER

The task of processor scheduling is performed by the

traffic: controller. Saltzer [14] defines traffic controller

as the processor multiplexing and control communication sec-

tion of an operating system. The current SASS design uti-

lizes Reed 1 s [10] notion of a two level traffic controller,

consisting of: 1) a Traffic Controller <TC) and 2) an Inner

Traffic Controller (ITC)

.

- 33 -

The primary function of the Traffic Controller is the

scheduling (binding) of user processes onto virtual proces-

sors. A virtual processor (VP) is an abstract data struc-

ture that simulates a physical processor through the preser-

vation of an executing process 1 attributes (viz., the

execution point and address space). Multiple VP*s may exist

for every physical processor in the system. Two VP»s are

permanently bound to Kernel processes (viz., Memory Manager

and Idle) and as such are not in contention for process

scheduling. These processes and their corresponding virtual

processors are invisible to the TC. The remaining virtual

processors are either idle or are temporarily bound to user

processes as scheduled by the TC. The database utilized by

the TC in process scheduling is the Active Process Table

(APT) . Figure 8 provides the structure of the APT.

The APT is a system-wide Kernel database containing an

entry for every user process in the system. Since the cur-

rent SASS design does not provide for dynamic process crea-

tion/deletion, a user process is active for the life of the

system. Therefore, the size of the APT is fixed at the time

of system generation. The APT is logically composed of

three parts: 1) an APT header, 2) the main body of the APT,

and 3) a YP table. The APT header includes: 1) a Lock to

provide for a mutual exclusion mechanism, 2) a Running List

indexed by VP ID to identify the current process running on

each VP, 3) a Ready List, which points to the linked list of

- 34 -

Lock

Running List APT Entry #

VP ID
j

1

¥

Ready List Head APT Entry #

Log_CP(J_No—

|

1

V

Blocked List Head

APT
HEADER

APT Entry #

III III 1 awaited Event

AP | DBR |Access| Priority IState | Af fi-| VP| Handle
Link| Handle JClass | | Inity |ID| Instance

1 1 1 1 1 1 1 1 Count

Log_CPU_No-

|NR OF 7P«S
I

"

|PIRST_7P

rc
—vp
TABLE

Figure 8: Active Process Table (APT)

- 35 -

processes which are ready for scheduling, and H) a Blocked

List, which points to the linked list of processes which are

in the blocked state awaiting the occurrence of some event.

A design decision was made to incorporate a single list

of blocked processes instead of the more traditional notion

of separate lists per eventcount because of its simplicity

and its ease of implementation. This decision does not ap-

preciably affect system performance or efficiency as the

"blocked" list will never be very long. The VP table is in-

dexed by logical CPU number and specifies the number of VP's

associated with the logical CPU and its first VP in the Run-

ning List. The logical CPU number, obtained during system

initialization, provides a simple means of uniquely identif-

ying each physical CPU in the system. The main body of the

APT contains the user process data required for its effi-

cient control and scheduling. NEXT_AP provides the linked

list threading mechanism for process entries. The DBR entry

is a handle identifying the process' Descriptor Segment

which is employed in process switching and memory manage-

ment. The ACCESS_CLASS entry provides every process with a

security label that is utilized by the Event Manager and the

Segment Manager in the enforcement of the Non-Discretionary

Security Policy. The PRIORITY and STATE entries are the

primary data used by the Traffic Controller to effect pro-

cess scheduling. AFFINITY identifies the logical CPU which

is associated with the process. VP ID is utilized to iden-

- 36 -

tify the virtual processor that is currently bound to the

process. Finally, the EVENTCOUNT entries are utilized by

the TC to manage processes which are blocked and awaiting

the occurrence of some event. HANDLE identifies the segment

associated with the event, INSTANCE specifies the event, and

COUNT determines which occurrence of the event is needed.

The Traffic Controller determines the scheduling order

by process priority. Every process is assigned a priority

at the time of its creation. Once scheduled, a process will

run on its VP until it either blocks itself or it is

preempted by a higher priority process. To insure tnat the

TC will always have a process available for scheduling,

there logically exists an "idle" process for every VP visi-

ble to the TC. These "idle" processes exist at the lowest

process priority and, consequently, are scheduled only if

there exists no useful work to be performed.

The Traffic Controller is invoked by the occurrence of a

virtual preempt interrupt or through its extended instruc-

tion set: ADVANCE, AWAIT, PROCESS_CLASS, and

GET_DBR_NUMBER. ADVANCE and AWAIT are used to implement the

IPC mechanism envoked by the Supervisor. PROCESS_CLASS and

GET_DBR_NUMBER are called by the Segment Kanager to ascer-

tain the security label and DBR handle, respectively, of a

named process. A more detailed discussion of the TC is pro-

vided by Strickier [19].

- 37 -

E. INNER TRAFFIC CONTROLLER

The Inner Traffic Controller is the second part of our

two-level traffic controller. Basically, the ITC performs

two functions. It multiplexes virtual processors onto the

actual physical processors, and it provides the primitives

for which inter-VP communication within the Kernel is imple-

mented. A design choice was made to provide each physical

processor in the system with a small fixed set of virtual

processors. Two of these VP*s are permanently bound to the

Kernel processes. The Memory Manager is bound to the high-

est priority VP. Conversely, the Idle Process is bound to

the lowest priority VP and, as a result, will only be sche-

duled if there exists no useful work for the CPU to perform.

The primary database utilized by the ITC is the Virtual Pro-

cessor Table (VPT) . Figure 9 illustrates the VPT.

The VPT is a system wide Kernel database containing en-

tries for every CPU in the system. The VPT is logically

composed of four parts: 1) a header, 2) a VP data table, 3)

a message table, and 4) an external VP list. The header in-

cludes a L3CK (spin lock) that provides a mutual exclusion

mechanism for table access, a RUNNING LIST (indexed by logi-

cal CPU #) that identifies the VP currently running on the

corresponding physical CPU, a READY LIST (indexed by logical

CPU #) which points to the linked list of VP's which are in

the "ready" state and awaiting scheduling on that CPU, and a

FREE LIST which points to the linked list of unused entries

- 38 -

•VP ID

Lock

Running_List

CPU No—

|

I

V

Ready_List

CPO No—

|

I

V

Free List

VPT Entry #

VPT Entry #

VPT
Header

NEXT
READY
VP

DBR STATE IDLE
FLAG

VIRTUAL
PREEMPT

PHYSICAL
PROCESSOR

PRI
EXT
VP
ID

MSG
LIST

MS3 INDEX

NEXT_MSG | SENDER | MSG
EXT VP ID-

I

I
VPT | 1

I Entry I I

1 No | |

I

External
VP

List
Message List

Figure 9: Virtual Processor Table (VPT)

- 39 -

in the message table. The VP data table contains the de-

scriptive data required by the ITC to effectively manage the

virtual processors. The DBE entry points within the MMU Im-

age to the descriptor segment for the process currently run-

ning on the VP. PRI (Priority) , STATE, IDLE_FLAG, and

PREEMPT are the primary data used by the ITC for VP schedul-

ing. PREEMPT indicates whether or not a virtual preempt is

pending for the VP. The IDLE_FLAG is set whenever the TC

has bound an "idle" process to the VP. Normally, a VP with

the IDLE_FLAG set will not be scheduled by the ITC as it has

no useful work to perform. In fact, such a VP will only be

scheduled if the PREEMPT flag is set. This scheduling will

allow the VP to be given (bound) to another process.

PHYSICAL PROCESSOR contains an entry from the Processor Data

Segment (PRDS) that identifies the physical processor that

the VP is executing on. EXT_VP_ID is the identifier by

which the VP is known by the Traffic Controller. I design

choice was made to have the EXT_VP_ID equate to an offset

into the External VP List. The External VP List specifies

the actual VP ID (viz., VPT entry number) for each external

VP identifier. This precluded the necessity for run time

calculation of offsets for the EXT_VP_ID. NEXT_READY_VP

provides the threading mechanism for the "Ready" linked

list, and MSG_LIST points to the first entry in the Message

Table containing a message for that VP. The Message Table

provides storage for the messages generated in the course of

- 40 -

Inter-Virtual Processor communications. MSG contains the

actual communication being passed, while SENDER identifies

the VP which initiated the communication. NEXT_MSG provides

a threading mechanism for multiple messages pending for a

single VP.

The ITC is invoked by means of its extended instruction

set: WAIT, SIGNAL, SWAP_VDBR, IDLE, SET_PREEMPT, and

RUNNING_VP. WAIT and SIGNAL are the primitives employed in

implementing the Inter-VP communication. SHAP_VDBR, IDLE,

SET_PREEMPT, and RUNNING_VP are all invoiced by the Traffic

Controller. SWAP_VDBR provides the means by which a user

process is temporarily bound to a virtual processor. IDLE

binds the "Idle" process to a VP (the implication of this

instruction will be discussed later) . SET_PREEMPT provides

the means of indicating that a virtual preempt interrupt is

pending on a VP (specified by the TC) by setting the PREEMPT

flag for that VP in the VPT. RUNNING_VP provides the TC

with the external VP ID of the virtual processor currently

running on the physical processor.

F. DISTRIBUTED BEHORI MANAGER

The Distributed Memory Manager provides an interface

structure between the Segment Manager and the Memory Manager

Process. This interfacing is necessitated by the fact that

the Memory Manager Process does not reside in the Distribut-

ed Kernel and conseguently is not included in the user pro-

- 41 -

cess* address space. The primary functions performed in

this module are the establishment of Inter-VP Communication

between the VP bound to its user process and the VP perma-

nently bound to the Memory Manager Process, the manipulation

of event data, and the dynamic allocation of available memo-

ry. The Distributed Memory Manager Module is invoked by the

Segment Manager through its extended instruction set:

MM_CREATE_ENTRY, MM_DELETE_ENTRY, MM_ACTIVATE,

MM_DEACTIVATE, MM_SWAP_IN, and MM_SWAP_OUT. These extended

instructions are utilized on a one to one basis by the ex-

tended instruction set of the Segment Manager (e.g.,

SM_SWAP_IN utilizes (calls) MM_SHAP_IN). Wells [20] pro-

vides a more detailed description of this portion of the

Distributed Memory Manager and the extended instruction set

associated with it.

The Distributed Memory Manager is also invoked through

its remaining extended instructions: MM_READ_EVENTC00NT r

MM_TICKET, MM_ADVANCE, and MM_ALL0CATE. These Distributed

Memory Manager functions are discussed in detail by Strick-

ler [19].

- 42 -

Chapter ?II

NON-DISTRIBOTED KERNEL

The Non-Distributed Kernel is the second element resid-

ing in Level 1 of our abstract system view of the SASS. The

sole component of the Non-Distributed Kernel is the Memory

Manager Process.

A. MEMOS! MANAGER PROCESS

The primary purpose of the Memory Manager Process is the

management of all memory resources within the SASS. These

include the local and global main memories, as well as the

hard-disk based secondary storage. A dedicated Memory Man-

ager Process exists for every CPU in the system. Each CPU

possesses a local memory where process local segments and

shared, non-writeable segments are stored. There is aiso a

global memory, to which every CPU has access, where the

shared, writeable segments are stored. It is necessary to

store these shared, writeable segments in the global memory

to ensure that a current copy exists for every access.

The Memory Manager Process is tasked by other processes

within the Kernel domain (via Signal and Wait) to perform

memory management functions. These basic functions include

the allocation/deallocation of local and global memory and

- 43 -

of secondary storage, and the transfer of segments between

the local and global memory and between secondary storage

and the main memories. The extended instruction set provid-

ed by tha Memory Manager Process includes: CREATE_ENrRY,

DELETE_ENTRY, ACTIVATE, DEACTIVATE, SWAP.IN, and SWAP_3UT.

These instructions correspond one to one with those of the

Distributed Memory Manager Module. The system wide data

bases utilized by all Memory Manager Processes are the Glo-

bal Active Segment Table (G_AST) , the Alias Table, the Disk

Bit Map, and the Global Memory Bit Map. The processor local

databases used by each Memory Manager Process are the Local

Active Segment Table (L_AST) , and the Local Memory Bit Map.

Gary and Moore [5] provide a detailed description of the Me-

mory Manager, its extended instruction set, and its databas-

es.

A summary of the extended instruction set created by the

components of tha Security Kernel is provided by Figure 10.

One might question the prudence of omitting

PHYS_PREEMPT_HANDLER and VIRT_PREEMPT_HANDLER (viz., the

handler routines for physical and virtual interrupts) from

the extended instruction set as both of these interrupts may

be raised (viz. , initiated) from within the Kernel. A deci-

sion was made to not classify these handlers as "extended

instructions" since they are only executed as the result of

a physical or virtual interrupt and as such cannot be di-

rectly invoiced (viz. , "called") by any module in the system.

- 44 -

A summary of the databases utilized by Kernel modules is

presented in Figure 11.

- 45 -

MODULE

Segment Manager

Event Manager

Non- Discretionary
Security

Traffic Controller

Inner Traffic
Controller

Distributed
Memory Manager

Non- Distributed
Memory Manager

INSTRUCTION SET

Create_Segment* Delete_Segment*

Make_Known* Terminate*

SM_Swap_In* SM_Swap_Out*

Read* Ticket*

Advance* Await*

Class_EQ Class_GE

TC_Advance TC_Await

Process_Class

Signal

Swap_VDBR

Set_Preempt

Running_VP

MM_Create_Entry MM_Delate_Entry

MM_Activate MM_Deactivat

e

MM_Swap_In MM_Swap_Out

Create_Entry Delete_Entry

Activate Deactivate

Swap_In Swap_Out

Wait

Idle

Test_Preempt

* Denotes user visible instructions

Figure 10: Extended Instruction Set

- 46 -

MODULE DATABASE

Gate Keeper Parameter Table

Segment Manager Known_Segment_Table (KST)

Traffic Controller Active_Process_Table (APT)

Inner Traffic Virtual_Processor_Table (VPT)

Controller
Memory_Management_Unit Image

(MMU)
Memory Manager Global_Ac"tive_Segment_Table (G_AST)

Local_Active_Segment_Table (L_AST)

Disk_Bit_Map

Global_Memory_Bit_Map

Local_Memory_Bit_Map

Figure 11: Kernel Databases

- 47 -

Chapter VIII

SYSTEM HABDHABE

Level of the SASS consists of the system hardware.

This hardware includes: 1) the CPU, 2) the local memory, 3)

the global memory, 4) the secondary storage (viz. hard

disk) , and 5) the I/O ports connecting the Host computer

systems to the SASS. Since the SASS design allows for a

multiprocessor environment, there may exist multiple CPO*s

and local memories. The target machine selected for the in-

itial implementation of the system is the Zilog Z8001 micro-

processor [22]. The Z8001 is a general purpose 16-bit, re-

gister oriented machine that has sixteen 16-bit general

purpose registers. It can directly address 8M bytes of me-

mory, extensible to 48M bytes. The Z8001 architecture sup-

ports memory segmentation and two-domain operations. The

memory segmentation capability is provided externally by the

Zilog Z8010 Memory Management On it (MMO) . The Z8010 MMU

[23] provides management of the Z8001 addressable memory,

dynamic segment relocation, and memory protection. Memory

segments are variable in size from 256 bytes to 64K bytes

and are identified by a set of 64 Segment Descriptor Regis-

ters, which supply the information needed to map logical me-

mory addresses to physcal memory addresses. Each of the 64

- 48 -

Descriptor Registers contains a 16-bit base address field,

an 8-bit limit field, and an 8-bit attribute field. Unfor-

tunately, the Z8001 hardware was not available for use dur-

ing system development. Therefore, all work to date has

been completed through utilization of the Z8002 non-segment-

ed version of the Z8000 microprocessor family [22]. The ac-

tual hardware used in this implementation is the Advanced

Micro Computers Am96/4116 MonoBoard Computer [1] containing

the AmZ8002 sixteen bit non-segmented microprocessor. This

computer provides 32K bytes of on-board RAH, 8k. bytes of

PROM/ROM space, two RS232 serial I/O ports, 24 parallel I/O

lines, and a standard INTEL Multibus interface. The general

structure of the design has been preserved by simulation of

the segmentation hardware in software. This software MMU

Image (see Figure 12) is created as a database within the

Inner Traffic Controller.

The MMU Image is a processor-local database indexed by

DBR_No. Each DBR_No represents one record within the MMU

Image. Each record is an exact software copy of the Segment

Descriptor Register set in the hardware MMU. Each element

of this software MMU Image is in the same form utilized by

the special I/O instructions to load the hardware MMU. Bach

DBR record is indexed by segment number (Segment_No) . Each

Segment_No entry is composed of three fields: Base_Addr,

Limit, and Attributes. Base_Addr is a 16-bit field which

contains the base address of the segment in physcal memory.

- 49 -

Segment
No.

I

I

I

I

V

DBH_NO >

Base_Addr | Limit | Attributes |

1 • • •

,

!

I

V

(entries for one DBR #)

Figure 12: Memory Management Unit (MMU) Image

- 50 -

Limit is an 8-bit field that specifies the number of conti-

guous blocks of memory occupied by the segment. Attributes

is an 8-bit field representing the eight flags which specify

the segment's attributes (e.g., "read", "execute", "write",

etc.) .

- 51 -

Chapter IX

SUMMARY

An extended overview of the current SASS design has been

presented. The four major levels of abstraction comprising

the SASS system have been identified, and the major compo-

nents of each level have been discussed. The extended in-

struction set provided by the SASS Kernel was also defined.

The actual details of this implementation are described by

Strickler [19].

- 52 -

PART C

THE DESIGN AND IMPLEMENTATION OP THE MEMORY
MANAGES FOR A SECURE ARCHIVAL STORAGE SYSTEM

This section contains updated excerpts from a Naval Postgra-
duaduate School MS Thesis by E. E. Moore and A. V„ Gary [5].
The origins of these excerpts are:

INTRODUCTION from Chapter I

MEMORY MANAGER PROCESS DETAILED DESIGN from Chapter III
STATUS OF RESEARCH from Chapter IV

Minor changes have been made for integration into this report

Chapter X

INTRODUCTION

This thesis addresses the design and partial implementa-

tion of a memory manager for a member of the family of se-

cure, distributed, multi-microprocessor operating systems

designed by Hichardson and O'Connell £7]. The memory manag-

er is responsible for the secure management of the main me-

mory and secondary storage. The memory manager design was

approached and conducted with distributed processing, multi-

processing, configuration independence, ease of change, and

internal computer security as primary goals. The problems

faced in the design were:

1) Developing a process which would securely man-

age files in a multi-processor environment.

2) Ensuring that if secondary storage was inadver-

tantly damaged, it could usually be recreated.

3) Minimizing secondary storage accesses.

4) Proper parameter passing during interprocess

communication.

5) Developing a process with a loop-free structure

which is configuration independent.

- 54 -

6) Designing databases which optiiize the memory

management functions.

The proper design and implementation of a memory manage-

ment process is vital because it serves as the interface

between the physical storage of files in a storage system

and the logical hierarchical file structure as viewed by the

user (viz., the file system supervisor design by Parks [9].

If the memory manager process does not function properly,

the security of that system cannot be guaranteed.

The secure family of operating systems designed qy Sich-

ardson and , Connell is composed of two primary modules, the

supervisor and the security kernel. A subset of that system

was utilized in the design of the Secure Archival Storage

System (SASS) . The design of the SASS supervisor was ad-

dressed by Parks [9], while the security kernel was ad-

dressed concurrently by Coleman [2]. The SASS security ker-

nel design is composed of two parts, the distributed kernel

and the non-distributed kernel. The design of the distribut-

ed kernel was conducted by Coleman [2], and processor man-

agement was implemented by Reitz [12]. This thesis presents

the design and implementation of the non-distributed kernel.

In the SASS design, the non-distributed kernel consists

solely of the memory manager.

The design of the memory manager and its data bases was

completed. The initial code was written in PLZ/SZS, but

could not be compiled due to the lack of a PLZ/SYS compiler.

- 55 -

A thread of the high level code was selected, hand compiled

into PLZ/ASM, and run on the Z3000 developmental module.

- 56 -

Chapter XI

MEMORY. MANAGES PROCESS DETAILED DESIGN

A . INTRODUCTION

The memory manager is responsible for the management of

both main memory (local and global) and secondary storage.

It is a non-distributed portion of the kernel with one memo-

ry manager process existing per physical processor. The me-

mory managsr is tasked (via signal and wait) to perform me-

mory management functions on behalf of other processes in

the system. The major tasks of the memory manager are : 1)

the allocation and deallocation of secondary storage, 2) the

allocation and deallocation of global and local memory, 3)

segment transfer from local to global memory (and vice ver-

sa) , and 4) segment transfer from secondary storage to main

memory (and vice versa) . There are ten service calls (via

signal) which task the memory manager Process to perform

these functions. The ten service calls are:

CREATE_ENTRI
DELETE_ENTRY
ACTIVATE
DEACTIVATE
SWAP_IN
S8AP~00T
deactivate_all*
move_to_global*
move"to_local*
UPDATE*

- 57 -

Upon completion of the service request, the memory manager

returns The results of the operation to the waiting process

(via signal) . It then blocks itself until it is tasked to

perform another service. The hardware configuration managed

by the memory manager process is depicted in Figure 13. The

shared data bases used by all memory manager processes are

the Global Active Segment Table (G_ASr) , the Alias Table,

the Disk Bit Map, and the Global Memory Bit Map. The proces-

sor local data bases used by each process are the Local Ac-

tive Segment Table (L_AST) , the Memory Management Unit Imag-

es and the Local Memory Bit Map.

* In the current state these service calls are not implemented
therefore, there are currently six service calls.

- 58 -

Figure 13: SASS H/H System Overview

- 59 -

B. DESIGN PARMEXI1S AND DECISIONS

Several factors were identified during the design of the

memory manager process that refined the initial kernel de-

sign of Coleman [2]. The two areas that were modified, were

the management of the MMU images and the management of core

memory. Both of these functions were managed outside of the

memory manager in the initial design. The inclusion of

these functions in the memory manager process significantly

improved the logical structure of the overall system de-

sign. Additional design parameters were established to fa-

cilitate the initial implementation. These design parame-

ters need to be addressed before the detailed design of the

memory manager process is presented.

It was decided to make the block/page size of both main

memory and secondary storage egual in size. This was to sim-

plify the mapping algorithm from secondary storage to main

memory (and vice versa) . In the initial design the block/

page size was set to 512 bytes.

The size of the page table for a segment was set at one

page (non-paged page table) . This was to simplify implemen-

tation, and had a direct bearing on the maximum segment size

supported in the memory manager. For example, a page size

cf 256 bytes will address a maximum segment size of 32,768

bytes, while a page size of 512 bytes will address a segment

size of 131,072 bytes.

- 60 -

The size of the alias table was set to one page

(non-paged alias table) . The number of entries that the

alias table will support is limited by the size of the page

table (viz. , a page size of 512 bytes will support up to 42

entries in the Alias Table)

.

In the original design, the main memory allocation was

external to the memory manager. This was due to the parti-

tioned memory management scheme outlined by Parks [9] and

Coleman [2]. In the current design, all address assignment

and segment transfer are managed by the memory manager. This

design choice enhanced the generality of the design, and

provided support for any memory management scheme (either in

the memory manager or at a higher level of abstraction)

.

However, the current design still has a maximum core const-

raint for each process.

Dynamic memory management is not implemented in this de-

sign. Each process is allocated a fixed size of physical

core. However, it is not a linear allocation of physical

memory. The design supports the maximum sharing of segments

in local and global memory. All segments that are not

shared, or shared and do not violate the readers/writers

problem will reside in local memory to eliminate the global

bus contention. The need to compact the memory (because of

fragmentation) should be minimal in this design due to the

maximum sharing of segments. If contiguous memory is not

available, the memory manager will compact main memory. Aft-

er compaction, the memory can be allocated.

- 61 -

The design decision to represent memory as one

contiguous block (not partitioned) was made to support a dy-

namic memory management scheme. Without dynamic memory man-

agement, the process* total physical memory can not exceed

the systems main memory. The supervisor knows the size of

the segments and the size of the process* virtual core,

therefore it can manage the swap in and swap out to ensure

that the process* virtual core has not been exceeded.

In the original design, the user*s process inner-traffic

controller maintained the software images of the memory man-

agement unit. This design required the memory manager to re-

turn the appropriate memory management data (viz. , segment

location) to the kernel of the user's process. In the cur-

rent design, the software images of the MHU are maintained

by the memory manager. A descriptor base pointer is provid-

ed for the inner-traffic controller to multiplex the process

address spaces. The HMU image data base does not need to be

locked (to prevent race conditions) due to the fact that

process interrupts are masked in the kernel. Thus, if the

memory manager (a kernel process) is running then no other

process can access the MMU image.

The system initialization process has not been addressed

to date. However, this design has made some assumptions

about the initial state of the system. Since the memory

manager handles the transfer of segments from secondary sto-

rage to main memory, it is likely to be one of the first

- 62 -

1

processes created. The memory manager^ core image will con-

sist of its pure code and data sections. The minimal ini-

tialization of the memory manager 1 s data bases are entries

for the system root and the supervisors segments in the

G_AST and L_AST (s) , and the initializaton of the MMU images

with the kernel segments. The current design does not call

for an entry in the G_AST or L_AST for the kernel segments.

However, when system generation is designed this will have

to be readdressed.

The original [2] memory manager databases have been re-

fined by this thesis to facilitate the memory management

functions. The major refinements of the global and local ac-

tive segment tables are outlined in the following section.

C. DATA BASES

1 • Global Active Segment Table

The Global Active Segment Table (see Pigure 14) is a

system wide, shared data base used by memory manager pro-

cesses to manage all active segments. A lock/unlock mechan-

ism is utilized to prevent any race conditions from occur-

ring. The signalling process locks the G_AST before it

signals the memory manager. This is done to prevent a dead-

ly embrace from occurring between memory manager processes,

and also to simplify synchronization between memory manag-

ers. The entire G_AST is locked in this design to simplify

the implementation (vice locking each individual entry)

.

- 63 -

Index #

Uniqua
ID

Global
Addr

Processors
L_ASTE_#

#0 I «1

Flag Bits

Written
Bit

Writable
Bit

/
G_ASTE_#/

Parent/
/
/

/

/

* Field indicates a two processor environment

/ # Active | No. I Page(Alias | Seq- |Inst- Inst-|
/In Memory Active

I
Size|Table| Table| uencerj ancel ance2|

/ I

Depend. I Loc | Loc | | 1

/ I I 1

/ I i I

/ t I i

/ I i

/ I I I

/ I

/ I I 1 i

/ 1 1 1

Figure 14: Global Active Segment Table

- 64 -

The G_AST size is fixed at compile time. The size of

he G_AST is the product of the G_AST record size, the maxi-

mum number of processes and the number of authorized known

segments per process. Although the G_AST is of fixed size,

it is plausible to dynamically manage the entries as pro-

posed by Richardson and O'Connell [7]. The current memory

manager design could be extended to include this dynamic

management.

The Onique_Id field is a unique segment identification

number in the G_AST. This field is four bytes wide and will

provide over four billion identification numbers. A design

choice was made not to manage the reallocation of the uni-

que_id*s. Thus when a segment is deleted from the system,

the unique_id is not reused.

The Global_Address field is used to indicate if a seg-

ment resides in global or local memory. If not null, it con-

tains the global memory base address of a segment. A null

entry indicates that the segment might be in local memo-

ry (s) .

The Processors_L_ASTE_# field is used as a connected

processors list. The field is an array structure, indexed

by Processor_Id. It identifies which L_AST the segment is

active in, and provides the index into each of these tables.

The design choice of maintaining an entry in the L_AST for

all locally active segments implies that if all entries in

the Processors_L_ASTE_# field are null, the segment is not

- 65 -

active and can be removed from the G_AST (viz., no proces-

sors are connected) .

The Flag_Bits field consists of the written bit, and

the writable bit. The written bit is set when a segment is

swapped out of memory, and the MMU image indicates that it

has been written into. The writable bit is set during seg-

ment loading to indicate that some process has write access

to that segment.

If an active segment is a leaf, the G_ASTE_#_Parent

field provides a back pointer to the G_AST index of its pa-

rent. This back pointer to the parent is important during

the creation of a segment. If a request is received to

create a segment which has a leaf segment as its parent,

then an alias table has to be created for that parent.

Also, the alias table of the parent's parent needs to be up-

dated to reflect the existence of the newly created alias

table (sea Figure 15) . The indirect pointer shown is the

back pointer to the parent via the G_AST.

The No_Active_In_Memory field is a count of the number

of processes that have the segment in global memory. It is

used during swap out to determine if the segment can be re-

moved from global memory.

The No_Active_Dependents field is a count of the number

of active leaf segments that are dependent on this entry

(viz., require that this segment remain in the G_AST) . Each

time a process activates or deactivates a dependent segment

this field is incremented or decremented.

- 66 -

Mentor

Segment
Alias

Table

Mentor

Segment .'

\

Direct Pointer «

Indirect Pointer

Cieated — —

•

Figure 15: Alias Table Creation

- 67 -

The Size field is the size of the segment in bytes. The

Page_Table_location field is the disk location of the page

table for a segment, and the Alias_Table_Location field is

the disk location of the alias table for the segment. The

Alias_Table field can be null to indicate that no alias ta-

ble exists for the segment.

The last three fields are used in the management of ev-

entcounts and seguencers [12]. The Seguencer field is used

to issue a service number for a segment. The Instance_1

field and Instance_2 field are eventcounts (i.e., are used

to indicate the next number of occurances of some event)

.

2. Local Active Segmen t Table

The Local Active Segment Table (see Figure 16) is a

processor local data base. The L_AST contains the character-

istics (viz., segment number, access) of each locally active

segment. An entry exists for each segment that is active in

a process "loaded" on this CPU and in local memory. The

first field of the L_AST contains the memory address of the

segment. If the segment is not in memory, this field is

used to indicate whether the L_AST entry is available or ac-

tive. The Segment_No/Access field is a combination of seg-

ment number and authorized access. It is an array of records

data structure that is indexed by DBB_#. The first record

element (viz., most significant bit) is used to indicate the

access (read or read/write) permitted to that segment. The

- 68 -

second record element (viz., the next seven bits) is used to

indicate the segment number. A null segment number indi-

cates that the process does not have the segment active.

Index #

Memory

Addr

Segment_#/Access_Auth

DBR_0 DBR_1 DBR_2 DBR_3 DBR_4 DBR_5

Figure 16: Local Active Segment Table

3. Alias Table

The alias table (see Figure 17) is a memory manager data

base which is associated with each non leaf segment in the

kernel. An aliasing scheme is used to prevent passing sys-

temwide information (unigue_id.) out of the kernel. Seg-

ments can only be created through a mentor segment and entry

- 69 -

number into the mentor's alias table. When a segment is

created, an entry must be made in its mentor segments alias

table. Thus the mentor segment must be known before that

segment can be created.

Entry_#

Unigue_ID Size Class Page Table
Location

Alias Table
Location

Figure 17: Alias Table

The alias table consists of a header and an array struc-

ture of entries. The header has two "pointers" (viz., disk

addresses) , one that links the alias table to its associated

segment and one that links the alias table to the mentor

segment's alias table. The header is provided to support the

re-construction of the file system after a system crash due

- 70 -

to device I/O errors. It is not used at all during normal

operations. Each entry in the array structure consists of

five fields for identifying the created segments. The Uni-

que_Id field contains the unique identification number for

the segment. The Size field is used to record the size of

the segment. The Class field contains the appropriate secur-

ity access class of the segment. The Page_Table_Location

field has the disk, address of the page table. A null entry

indicates a zero-length segment. The Alias_Table_Location

field has the disk, address of the alias table for the seg-

ment. A null entry indicates that the segment is a leaf

segment.

4 . Memory Management Unit Imaae

The Memory Management Unit Image (MMU..Image) is a pro-

cessor local data base. It is an array structure that is in-

dexed by the DBR_#. Each MMU_lmage (see Figure 18) includes

a software representation of the segment descriptor regis-

ters (SDR) for the hardware MMU [23]. This is in exactly

the format used by the special I/O instructions for loading/

unloading the MMU hardware. The SDR contains the

Base_Address r Limit and Attribute fields for each loaded

segment in the process* address space. The Base_Address

field contains the base address of the segments in memory

(local or global) . The Limit field is the number of blocks

of contiguous storage for each segment (zero indicates one

- 71 -

block). rhe Attribute field contains eight flags. Fiv<

flags are used for protecting the segment against certaii

types of access, two encode the type of accesses made to th<

segment (read/write) , and one indicates the special struc-

ture of the segment [23], Five of the eight flags in the

attribute field are used by the memory manager. The "systei

only" and "execute only" flags are used to protect the cod*

of the kernel from malicious or unintentional modifications.

The "read only" flag is used to control the read or write

access to a segment. The "change" flag is used to indicate

that the segment has been written into, and the "CPU-inhi-

bit" flag is used to indicate that the segment is not in me-

mory.

The last two fields of the MMO_Image are the Block_asec

field and the Maximum_Available_Blocks field. These twc

fields are used in the mangement of each process 1 virtual

core and are not associated with the hardware MMU.

- 72 -

DBR #

Segment
No.

Blocks Used |

Max Avail Blocks |

Base_Addr | Limitl Attributes

one record / DBR_#

Figure 18: Memory Management Unit Image

- 73 -

5. Meiorz Allocation/Deallocation Bit Mags

All of the memory allocation/deallocation bit maps (see

Figure 19) are basically the same structure. Secondary sto-

rage, global memory and local memory are managed by memory

bit maps. The Disk_Bit_Map is a global resource that is

protected from race conditions via the locking convention

for the G_AST. Each bit in the bit map is associated with a

block of secondary storage. A zero indicates a free block

of storage while a one indicates an allocated block of sto-

rage. The Global_Memory_Bit_Map is used to manage global me-

mory. It is a shared resource that is protected from race

conditions by the locking of the G_AST. The Lo-

cal_Memory_Bit_Map is the same structure as the Glo-

bal_Memory_Bit_Map and is used to manage local memory. The

Local_Memory_Bit_tiap is not locked since it is not a shared

resource between memory managers.

- 74 -

Memory Bit Map

Page 012345678911111.
12 3 4

222222222
444555555
789012345

Figure 19: Memory Allocation/Deallocation Map

D. BASIC FUNCTIONS

The detailed source code for the basic functions and

main line of the memory manager is presented in Appendix J.

In the discussion of the memory manager design, a pseu-

do-code similar to PLZ/SYS is utilized. The rationale for

using this pseudo-code was to provide a summary of the memo-

ry manager source code, and to facilitate the presentation

of this design.

It is assumed that the memory manager is initialized

into the ready state at system generation (as previously

mentioned) . When the memory manager is initially placed

into the running state, it will block itself (via a call to

- 75 -

the kernel primitive Wait) . Wait will return a message from

a signalling process. This message is interpreted by the me-

mory manager to determine the requested function and its re-

quired arguments. The function code is used to enter a case

statement, which directs the request to the appropriate me-

mory manager procedure.

When the requested action is completed, the memory man-

ager returns a success code (and any additional required

data) to the signalling process via a call to the kernel

primitive Signal. This call will awaken the process which

requested the action to be taken, and place the returned

message into that process' message queue. When that action

is completed, the memory manager will return to the top of

the loop structure and block itself to wait for the the next

request. The main line pseudo-code of the memory manager

process is displayed in Figure 20.

- 76 -

ENTRY
INITIALIZE_PROCESSOR_LOCAL_ VARIABLES
DO

! CHECK_IF_MSG_O.UEUE_EMPTY !

VP_ID r MSG 7= WAIT
FUNCTION, ARGUMENTS := VALIDATE MSG (MSG)
IF FUNCTION

CASE CREATE_ENTRY THEN
SUCCESS_CODE := CREATE_ENTRY (ARGUMENTS)

CASE DELETE_ENTRY THEN
SUCCESS_CODE := DELETE_ENTR* (ARGUMENTS)

CASE ACTIVATE THEN
SUCCESS_CODE := ACTIVATE (ARGUMENTS)

CASE DEACTIVATE THEN
SUCCESS_CODE := DEACTIVATE (ARGUMENTS)

CASE SWAP_IN THEN
SUCCESS_CODE := SWAP_IN (ARGUMENTS)

CASE SWAP_OUT THEN
SUCCESS_CODE := SWAP_OUI (ARGUMENTS)

CASE DEACTIVATE_ALL THEN
SUCCESS_CODE := DEACTIV AIE_ALL (ARGUMENTS)

CASE MOVE_TO_GLOBAL THEN
SUCCESS_CODE := MOVE_TO_GLOBAL (ARGUMENTS)

CASE MOVE_TO LOCAL THEN
SUCCESS_CODE := MOVE_TO_LOCAL (ARGUMENTS)

CASE UPDATE THEN
SUCCESS_CODE := UPDATE (ARGUMENTS)

FI
SI3NAL (VP_ID, SUCCESS_CODE, ARGUMENTS)

OD
END MEMORY_MANAGER_PLZ/SYS MODULE

Figure 20: Memory Manager Mainline Code

- 77 -

1 • Create an Alias Table Entr.y

Create_Entry is invoked when a user desires to create a

segment. A segment is created by allocating secondary sto-

rage, and by making an entry (unigue_id, secondary storage

location, size, classification) into it's mentor segments

alias table. This implies that the mentor segment must have

an alias table associated with it, and that the mentor seg-

ment must be active in order to obtain the secondary storage

location of the alias table.

The mentor segment can be in one of two states. It may

have children (viz., have an alias table), or it may be a

leaf segment (viz., not have an alias table). If the mentor

segment has children, it has an alias table and this alias

table can be read into core, secondary storage can be allo-

cated, and the data can be entered into the alias table. If

the mentor segment is a leaf, an alias table must be created

for that segment before it (the alias table) can be read

into core and data entered into it (see Figure 15)

.

The pseudo-code for CREATE_ENTBY PRQCEDUfiE is presented

in Figure 2 1. The arguments passed to Create_Entry are the

index into the G_AST for the mentor segment, the entry num-

ber into its alias table, the size of the segment to be

created, and the security access class of that segment. The

return parameter is a success code, which would be

"seg_created H for a successful segment creation.

- 78 -

CREATE_ENTRY PROCEDURE (PAR_INDEX WORD, ENTRY_# WORD,
SIZE WORD, CLASS ~BYTE)

RETURNS (SUCCESS_CODE BYTE)
LOCAL BLKS WORD, PAGE_TABLE_LOC WORD
ENTRY
IF ALIAS_TABLE_DOES_NOT_EXIST THEN

SUCCESS_CODE := CRE ATE_ALI AS_TABLE
IF SUCCESS_CODE <> VALID THEN RETURN
FI

FI
BLKS := CALCULATE_NO_BLKS_REQ (SIZE)
SUCCESS_CODE : = R EAD~ALIAS_TABLE (

G_AST[PAR~INDEX]. ALIAS TABLE LOC)
IF SUCCESS_CODE <> VALID THEN RETURN
FI
SUCCESS CODE := CHECK_DUP ENTRY ! in alias table !

IF SUCCESS_CODE <> VALID THEN RETURN
FI
SUCCESS_CODE, PAGE_TABLE_LOC := ALLOC_SEC_STORAGE (BLKS)
IF SUCCESS_CODE <> VALID THEN RETURN
FI
UPDATE ALIAS_TABLE(ENTRY_#, SIZE, CLASS, P AGE_TABLE_LOC)
SUCCESS_CODE~:= WRITE_ALIAS_TABLE (

G_AST(PAR_INDEX].ALIAS_TABLE_LOC)
IF SUCCESS_CODE <> VALID THEN RETURN
ELSE SUCCESS_CODS := SEG_CREATED
FI

END CREATE ENTRY

Figure 21: Create Entry Pseudo-code

- 79 -

When invoked, Create_Entry will determine which state

the mentor segment is in (viz., if it has an alias table).

If an alias table does not exist for the mentor segment, one

is created and the alias table of the mentor segments pa-

rent is updated. The alias table is read into core and a

duplicate antry check is made. If no duplicate entry exists,

the segment size is converted from bytes to blocks, and the

secondary storage is allocated for non-zero sized segments.

The appropriate data is entered into the alias table and the

alias table is then written back to secondary storage.

2. Delete an Alias Table Entry.

Delete_Entry is invoked when a user desires to delete a

segment. A segment is deleted by deallocating secondary

storage, and by removing the appropriate entry from the ali-

as table of its mentor segment (the reverse logic of

Create_Entry) . This implies that the mentor segment must be

active at the time of deletion. There are three conditions

that can be encountered during the deletion of a segment:

the segment to be deleted may be an inactive leaf segment,

an active leaf segment, or a mentor segment.

If the segment to be deleted is an inactive leaf segment

(viz., has been swapped out of core, and does not have an

entry in the G_AST) , the secondary storage can be deallocat-

ed and the entry deleted from the mentor segment* s alias ta-

ble. If the segment is an active leaf segment, the segment

- 80 -

must first be swapped out of core and deactivated before it

can be deleted. This entails signalling the memory manager

of each processor, in which the segment is active, to swap

out and deactivate the segment.

If the segment to be deleted is a mentor segment, an

alias table exists for that segment . If the alias table is

empty, the secondary storage for the alias table and the

segment can be deallocated, and the entry for the deleted

segment can be removed from its lentor's alias table. If the

alias table contains any entries, the segment cannot be de-

leted because these entries would be lost. If this condition

is encountered a success code of "leaf_segment_exists" is

returned to the process which requested to delete the entry.

Due to a confinement problem in "upgraded" segments, this

Success_code cannot always be passed outside of the kernel.

This implies that the segment manager must strictly prohibit

deletion of a segment with an access class not equal to that

of the process.

The pseudo-code for DELETE_ENTBY_PEOCEDUBE is presented

in Figure 22. The parameters that are passed to this proce-

dure are the parent's index into the G_AST and the entry

number into the parent's alias table of the segment to be

deleted. The alias_table_loc field is checked to determine

the state of the mentor segment (either a leaf or a node)

,

and the appropriate action is then taken. A success code is

returned to indicate the results of this procedure.

- 81 -

DELETE_ENTRY PROCEDURE (PAR_INDEX HOED, ENT£Y_# WORD)

RETURNS (SUCCESS_CODE BYTE)
LOCAL PAR_INDEX WORD
ENTRY

! Check if the passed mentor segment has an alias table. !

IP G_AST[PAR INDEX], ALI AS_TABLE_LOC <> NULL
SUCCESS CODE := READ_ALI AS_TABLE (

G_AST[PAR_INDEX].ALIAS_TABLE_LOC)
ELSE

SUCCESS_CODE := NO_CHILD_TO_DELETE
FI
IF SUCCESS_CODE <> VALID THEN RETURN
FI

! Determine if segment has children in alias table !

IF ALIAS_TABLE_NOT EMPTY THEN
SUCCESS_CODE : =~LEAF_SEGHENT_EXISTS
RETURN ! Deletion will delete children !

ELSE
! Search G AST with UNIQUE ID to verify segment inactive !

IF ~ACTIVE_IN_G_AST~ THEN
! Checic if active in AST !

IF ACTIVE_IN_L_AST THEN
deactivatI_all (G_AST_INDEX, L_AST_INDEX)

FI
! Check G_AST to verify segment inactive in other L_AST*s i

IF ACTIVE_IN_OTHEH_L_AST THEN
SIGNAL_TO~DEACTIVATE_ALL (G AST INDEX)

FI
FI
FREE_SEC_STORAGE_OF_SEG_&_ALIAS_IF_EXISTS
DELETE_ALIAS_TABLE_ENTRY

FI
DELETE_ALIAS_TABLE_ENTRY
SUCCESS_CODE~:= »RITE_ALIAS_TABLE (

G_AST[PAR~INDEX]. ALIAS TABLE_LOC)
IF SUCCESS_CODE = VALID THEN

SUCCESS_CODE := SEG DELETED
FI

END DELETE ENTRY

Figure 22: Delete Entry Pseudo-code

- 82 -

3. Activate a Segment

Activate is invoked when a user desires to make a seg-

ment known by adding a segment to his address space. A seg-

ment is activated by making an entry into the L_AST for that

processor, and the G_A3T. The activated segment could be in

one of three states; it could have previously been activated

by another process and have a current entry in both the

G_AST and L_kST f it could have previously been activated by

another process on a different processor and have an entry

in the G_AST but not the L_AST, or it could be inactive and

have an entry in neither the G_AST nor the L_AST.

If the segment to be activated already has entries in

both the L_AST and G_AST, these entries need only be updated

to indicate that another process has activated the segment.

The segment number is entered into the Seg-

ment_No/Access_Auth field of the L_AST, and if the segment

is a leaf, its mentor's No_Active_Dependents field in the

G_AST is incremented. In this design, the G_ASI is always

searched to determine if the segment has been previously ac-

tivated by another process.

If the segment to be activated has an entry in the G_AST

but not the L_AST, an entry must be made in the L_AST and

the G_AST must be updated. The L_AST is searched to deter-

mine an available index. The segment number is entered into

the L_AST r and the index number is entered into the G_AST

- 83 -

Processors_L_ASTE_# field. If the segment to be activated is

a leaf segment, its mentor's No_Active_Dependents field in

the G_AST is incremented.

If the activated segment does not have an entry in eith-

er the G_AST or L_AST, an entry must be made in both. The

G_AST is searched to find an available index, and the entry

is made. The L_AST is then searched to find an available in-

dex, and the entry is made. The L_AST index is then entered

into the G_AST Processors_L_ASTE_# field. If the activated

segment is a leaf, the No_Acti ve_Dependents field of its

mentor* s 5_AST entry is incremented.

The pseudo-code for ACTIVATE PROCEDURE is presented in

Figure 23. The parameters that are passed are the DBR_# of

the signalling process, the mentor segment's index into the

G_AST, the alias table entry number, and the segment number

of the activated segment. The mentor segment is always

checked to determine if it has an associated alias table. If

it does not, the success code of "alias_does_not_exist" is

returned. If the alias table does exist, it is read into

core and the entry number is used as an index to obtain the

activated segment's unigue_id. The G_ASI is then searched

to determine if the segment has already been activated. If

the unique_id is found, the G_AST is updated and the L_AST

is either updated or an entry is made (depending on whether

an entry existed or not) . If the unigue_id of the segment

was not found during the search of the G_AST, an entry must

- 84 -

be made in both the G_AST and L_AST. Activate returns the

activated segment's classification, size, and handle to the

signalling process.

- 85 -

ACTIVATE PROCEDURE (DBR_# BYTE, PAR_INDEX WORD,
ENTRY_# WORD, SEGMENT.NO BYTE)

RETURNS (SUCCESS_CODE BYTE, RET_G_AST_HA NDLE HANDLE,
CLASS BYTE, SIZE WORD)

LOCAL G_INDEX WORD, L_INDEX WORD
ENTRY

! Verify that passed segment is a mentor segment I

IF G_AST[PARllNDEX].ALIAS_TABLE_LOC <> THEN
SUCCESS_CODE := READ_ ALIAS_TABLE (

G_AST[PAR_INDEX]. ALIAS_TABLfi_LOC)
ELSE

SUCCESS_CODE := ALIAS_DOES_NOT_EXIST
FI
IF SUCCESS_CODE <> VALID THEN RETURN
FI

! Check 3_AST to determine if active !

SUCCESSICODE, INDEX := SEARCH_G_AST (UNIQUE_ID)
IF SUCCESS_CODE = FOUND THEN

IF SEGHENT_IN_L_AST THEN
UPDATE_L AST (SEGMENT NO)

ELSE
MAKE_L_AST_ENTRY (DBR_#, SEGHENT_NO)
UPDATE_G_AST (L_INDExf
IF G_AST["lNDEX]7ALI AS_T ABLE_LOC = NULL THEN

G AST[PAR INDEX]. NO DEPENDENTS ACTIVE = 1

FI
FI

ELSE
MAKE_G_AST ENTRY (ENTRY_#)
MAKE_L AST_ENTRY (PAR INDEX, ENTRY #)

FI
SUCCESS_CODE := SEG_ACTIV ATED

END ACTIVATE

Figure 23: Activate Pseudo-code

- 86 -

** • P§§£ti vate a Segment

Deactivate is invoiced when a user desires to remove a

segment from his address space. To deactivate a segment,

the memory manager either removes or updates an entry in

both the L_AST and G_AST. Deactivate uses the reverse logic

of activate. Once a segment is deactivated, it can only be

reactivated via its mentor's alias table as discussed in ac-

tivate. If a process requests to deactivate a segment which

has not bean swapped out of the process* virtual core, the

memory manager swaps the segment out and updates the MMU im-

age before the segment is deactivated. The segment to be

deactivated could be in one of three states; more than one

process could concurrently hold the segment active in the

L_AST, the segment could be held active by one process in

the L_AST and more than one in the G_AST, the segment could

be held active by only one process in both the L_AST and the

G_AST.

Deactivation of leaf segments and mentor segments are

handled differently. If the segment is a mentor segment and

has active dependents, it cannot be removed from the G_AST

(even though no process currently has that segment active)

.

This is based on the design decision which requires that the

mentor of all active leaf segments remain in the G_AST to

allow access to its alias table. The mentor's alias table

must be accessible when an alias table is created for a de-

- 87 -

pendent leaf segment. If a leaf segment is deactivated, the

No_Active_Dependents field of its mentor's G_AST entry is

decremented. A mentor segment can only be removed from the

G_AST if no process holds it active, and it has no active

dependents.

If more than one process concurrently hold a segment ac-

tive in the L_AST, and one of them signals to deactivate

that segment, the entry in the L_AST is updated. This is ac-

complished by nulling out the Segment_No/Access_Auth field

of the L_AST for the appropriate process. If required, the

No_Active_Dependents field of its mentor segment* s G_AST en-

try is decremented.

If only one process holds the segment active in the

L_AST, and that Process signals to deactivate the segment,

the L_ASI entry for that segment is removed. The Proces-

sors_L_ASTE_# is updated and checked to determine if there

are other connected processors. If there are no other con-

nected processors and the segment has no active dependents,

the segment is removed from the G_AST. If there are other

connected processors, the G_AST is updated. If the deacti-

vated segment is a leaf, the mentor segments

No_Active_Dependents field in the G_AST is decremented.

The pseudo-code for DEACTIVATE PROCEDURE is presented in

Figure 24. The parameters that are passed to the memory man-

ager are the DBR_# of the signalling process, and the index

into the G_AST for the segment to be deactivated. The

- 88 -

procedure first updates the L_AST, and then removes xhe en-

try if no local process holds the segment active. The G_AST

is then updated, and its mentor segment is checked (if the

deactivated segment was a leaf) , to determine if it can be

removed. If no processes currently hold the segment active,

and it has no active dependents, the segment is removed from

the G AST.

- 89 -

DEACTIVATE
RETURNS
LOCAL
ENTRY

! Check i

IF G AS
!~Ch
IF

FI
FI

! Remove
L_AST[L
CHECK_I
IF NOT

L A

FI
! Check i

IF S AS
G_A

! Determi
CHE

FI
! Determi
CHECK_F
SUCCESS

END DEACTIV

PROCEDURE (DBR_# BYTE, PAR_INDEX WORD)

(SUCCESS_CODE BYTE)
INDEX WORD

f segment is in core !

T(INDEX]. NO_ACTIVE_IN_MEMORY <> THEN
eck MMU image to determine if in local memory !

IN LOCAL_MEMORY THEN
SUCCESS_CODE := OUT (DBR_#, INDEX)

process segment_no entry in L_AST !

_INDEX].SEGMENT_NO/ACCESS_AUrH[DBR_#]
F_ACTIVE_IN_L_AST (L_AST_INDEX)
ACTIVE IN_L_AST THEN

ST[L_INDEX].MEMORY_ADDR := AVAILABLE

=

f deleted segment was a leaf !

T[INDEX].G_ASTE # PAR <> THEN
ST[PAR_INDEX]. NO_DEP ENDENTS_ACTI VE -

ne if parent can be removed i

CK_FOR_REMOVAL (PAR_INDEX)

= 1

ne if deactivated segment can be removed !

OR_REMOVAL (INDEX)
_CODE := SEG_DEACTIVATED
ATE

Figure 24: Deactivate Pseudo-code

- 90 -

5. Swag a Segment In

SWAP_IN is invoiced when a user desires to swap a seg-

ment into main memory (global or local) from secondary sto-

rage. A segment is swapped into main memory by obtaining the

secondary storage location of its page table from the G_AST,

allocating the reguired amount of main memory, and reading

the segment into the allocated main memory. The segment must

be active before it can be swapped into core, and the re-

guired main memory space must be available. Three conditions

can be encountered during the invocation of SWAP_IN. The

segment can already be located in global memory, the segment

can already be located in one or more local memories, or the

segment may only reside in secondary storage.

If the segment is not in local or global memory, local

memory is allocated, the segment is read into the allocated

memory, and the appropriate entries are made in the tfMU im-

age, the L_AST and the G_AST. If the segment is already in

global memory, it can be assumed that the segment is shared

and writable. In this case the only required actions are to

update the G_AST and L_AST. The No_Active_In_Memory field of

the G_AST entry is incremented, and the ft&U image is updated

to reflect the swapped in segment 1 s core address and attri-

butes.

If the segment already resides in one or more local me-

mories, it must be determined if the segment is "shared" and

- 91 -

'•writable". A segment is "shared" if it exists in more than

one local memory. A segment is "writable" if one process has
j

write access to that segment. If the segment is not shared

or not writable and in local memory, the appropriate entries
j

are updated in the HMU image, the L_AST, and the G_AST. If

the segment does not reside in local memory, the required
I

amount of local memory is allocated, the segment is read

into the allocated memory, and the appropriate entries are

made in the MMO image, the L_AST, and the G_AST.

If the segment is shared, writable, and in local memory,

the segment must be moved to global memory. If the segment

is not in the memory manager's local memory, it signals

another memory manager to move the segment to global memory.

After the segment is moved to global memory, the memory man-

ager signals all of the connected memory manager's to update

their L_AST and AMU data bases. When all local data bases

are current, the memory manager updates the G_AST and re-

turns a success code of seg_activated.

The pseudo-code for SWAP_IN PROCEDURE is presented in

Figure 25. The arguments passed to SWAP_IN are the

G_AST_INDEX of the segment to be moved in, the process'

DBR_#, and the access authorized. SWAP_IN will convert the

segment size from bytes to blocks, and verify that the pro-

cess' core will not be exceeded. If the virtual core will

be exceeded, a success code of "core_space_exceeded" will be

returned. If write access is permitted, the writable bit is

- 92 -

set. Checks are then performed to determine the segment's

storage location (local or global) , and the appropriate ac-

tion is taken.

- 93 -

SWAP_IN PROCEDURE (INDEX WORD, DBR_# BYTE,
ACCESS_AUTH BYTE)

RETURNS (SUCCESS_CODE BYTE)
LOCAL L_INDEX WORD, BLKS WORD
ENTRY
BLKS := CALCULATE_NO._OF_BLKS (G_ASr[INDEX]. SIZE)
SUCCESS_CODE := CHECK~MAX_LINEAR_CORE (BLKS)
IF SUCCESS_CODE = VI RTUAL_LI NE Afl_CORE_FULL THEN

RETURN
FI
G_AST[INDEX]. NO_SEGMENTS_IN_MEMORY = 1

IF ACCESS_AUTH = WRITE* THEN
G AST[INDEX].FLAG BITS ;= WRITABLE_BIT_SET

FI
! Determine if segment can be put in local memory i

IF G_AST[INDEX]. FLAG BITS AND WRITABLE_MASK =
ORIF 3_AST[INDEX]. NO_ACTIVE_IN_MEMORY <= 1 THEN

! Determine if already in local memory !

CHECK_LOCAL_MEMORY (L_AST_INDEX)
IF NOT_IN_LOCAL_MEMORY THEN

ALLOCATE_LOCAL_MEMORY (BLKS)
READ_SEGMENT "(PAGE TABLE_LOC, BASE ADDR)
L_AST[L_INDEX] := BASE ADDR

FI
ELSE

IF NOT_IN_GLOBAL MEMORY THEN
UPDATE_MMU
UPDATE L_AST
RETURN

ELSE
ALLOCATE_GLOBAL__MEMORY (BLKS)
IF IN_LOCAL_MEMOSY THEN

MOVE TO_GLOBAL (L_INDEX, BASE ADDR, SIZE)
ELSE
SIGNAL OTHER_MEMORY MANAGERS (INDEX, BASE_ADDR)

FI
FI

FI
UPDATE_MMU_IMAGE (DBR_#,SEG_# ,BASE ADDR, ACCESS, BLKS)
UPDATE_L_AST_ACCESS (L INDEX, ACCESS, DBR #)
SUCCESS_CODE := SWAPPED_IN

END SWAP IN

Figure 25: Swap_In Pseudo-code

- 94 -

6. Swag a Segment O ut

SWAP_OUT is invoked when a user desires to move a seg-

ment out of core. A segment is swapped out of core by ob-

taining its secondary storage location, writing the segment

to that location (if required) , and deallocating the main

memory used. The decision to write the segment is deter-

mined by the G_AST written bit. This bit is set whenever the

segment has been modified. The segment to be swapped out

can be in one of two states: the segment can be in local

memory, or the segment can be in global memory.

If one process has the segment in local memory and the

written bit is set, the segment is written into secondary

storage and the local memory is deallocated. If the written

bit is not set, the local memory need only be deallocated.

If more than one process has the segment in the same local

memory, the segment remains in core. The appropriate MMO im-

age is updated to reflect the segments deletion and the

G_AST No_Active_In_Memory field is decremented.

All segments in global memory are shared and writable.

If a process requests the segment to be swapped out, the

segment remains in memory. The MMU image is updated to re-

flect the segments deletion, and the G_AST

No_Active_In_Memory field is decremented. If the

No_Active_In_Memory indicates that one process has the seg-

ment in core, its memory manager is signalled to move the

segment to local memory.

- 95 -

The pseudo-code for SWAP_OUT PROCEDURE is presented in

Figure 26. The arguments passed to SWAP_OUT are the DBR_#

of the signalling process, and the G_AST_INDEX of the seg-

ment to be removed. The return parameter is a success code.

SWAP_OUT removes the segment from the process* s virtual

core, deletes the segment from its HMU image, and decrements

the No_Acti ve_In_Memory field. If the segment can be removed

from memory, it is determined which memory can be deallocat-

ed. If the segment has been modified, it is written back to

secondary storage and the appropriate memory deallocated.

If the segment has not been modified, the appropriate memory

is deallocated. If after the deletion one process has the

segment in global memory, its memory manager need only be

signalled to move the segment to local memory. When

SWAP_OUT successfully completes, it returns a success code

of "swapped out".

- 96 -

SWAP_OUT PROCEDURE (DBR_# BYTE, INDEX WORD)
RETURNS (SUCCESS_CODE BYTE)
ENTRY
BLKS := G_AST[INDEX]. SIZE / BLK_SIZE
FREE_PROCESS_LINEAR_CORE (BLKS)"
DELETE_MMU_ENTRY (DBR_#, SEG_#)
G_AST[INDEX]• NO_SEGMENTS_IN_MEMORY - = 1

! Determine if segment has been written into !

IF MMU_IMAGE[DBR_#]. SDR[S EG_#]. ATTRIBUTES=WRITTEN THEN
! If segment has been written into, update G_AST !

3_AST[INDEX].FLAG_BITS := WRITTEN
FI

! Determine if segment is in global memory !

IF S_AST[INDEX]. GLOBAL_ADDfi <> NULL THEN
IF G_AST[INDEX]. NO_SEGMENTS_IN_MEMOR Y =

ANDIF~ G_AST[INDEX].FLAG_BITS =~WRITTEN THEN
WRITE_SEG (PAGE_TABLE_LOC, MEMORY_ADDR)
FREE_LOCAL_BIT_MAP (MEMORY_ADDR, BLKS)

ELSE
IF G_AST[INDEX] . NO_ACTI VE_IN_MEMO RY = THEN

FREE LOCAL_BIT MAP (MEMORY ADDR,BLKS)
FI

FI
ELSE I If not in global memory !

IF G_AST[INDEX]. NO_ACTIVE_IN_MEM0RY =

ANDIF G_AST[INDEX].FLAG_BITS = WRITTEN THEN
WRITE_SEG (PAGE_TABLE_LOC, GLOBAL_ADDR)
FREE_GLOBAL_BIT_MAP (GLOBAL_ADDR, BLKS)

ELSE
IF G ASTflNDEX]. NO_ACTI VE_IN_MEMORY = THEN

FREE_GLOBAL_BIT_MAP (GLOBAL_ADDR, BLKS)
FI

FI
FI
SUCCESS_CODE := SWAPPED_OUT

END SWAP OUT

Figure 26: Swap_Out Pseudo-code

- 97 -

7. Deactivate All Segments

DEACTIVATE_ALL is invoked when it becomes necessary to

remove a segment from every process* address space. Each

process is checked to determine if the segment is active. If

a process has the segment active, it is deactivated from its

address space. The pseudo code for Deactivat e_all is illus-

trated in Figure 27. The parameters passed to Deacti-

vate_all are the deactivated segment's G_AST index and the

L_AST index. The L_AST is searched by DBR_# to determine

which process has the segment active. If the check reveals

that the segment is active, it is deactivated by calling

Deactivate. If the segment was successfully deactivated froi

all processes, a success_code of valid is returned.

- 98 -

DEACTIVATE_ALL PROCEDURE (INDEX WORD, L INDEX WORD)
RETURNS (SUCCESS_CODE BYTE)
ENTRY
LOCAL I BYTE

I :=
DO

IF I = MAX_DBR # THEN
EXIT

FI
IF L_AST[L_INDEX]. SEGMENT NO/ACCESS AUTH[I]

<> ZERO THEN
SUCCESS_CODE := DEACTIVATE (I, INDEX)
IF SUCCESS_CODE <> SEG DEACTIVATED THEN

RETURN
FI

FI
I = 1

OD
SUCCESS_CODE : = VALID

END DEACTIVATE~ALL

Figure 27: Deactivate All Pseudo-code

8- 39.y.§ i Segment to Global Memgry.

MOVE_TO_GLOBAL is invoked when it becomes necessary to

move a segment from local to global memory. If a segment re-

sides in one or more local memories, and a process with

write access swaps that segment into core, or if a segment

resides in in local memory (with write access) and another

process with read access reguests the segment swapped in,

the segment is moved from a local to global memory to avoid

a secondary storage access. If the segment resides in the

running memory managers local memory, it will affect the

- 99 -

segment transfer, otherwise it will signal another memory

manager of a connected processor to affect the transfer.

Figure 28 illustrates the pseudo-code for MOVE_TO_GLOBAL.

Once the segment has been moved to global memory, the sig-

nalled memory manager will update the MMU images for all

connected processes, and deallocate the freed local memory.

A success code of completed will be returned to the signall-

ing memory manager. The parameters passed to the memory

manager are the segment's L_AST index the global memory ad-

dress of the move, and the size of the segment. This infor-

mation is passed because the G_AST is locked during this re-

quest.

M0VE_T0_3L0BAL PROCEDURE (L_INDEX WORD, GLOB AL_ADDR
SIZE WORD)

(SUCCESS_CODE BYTE)

WORD,

RETURNS
ENTRY

! Move se
DO MEMO
L_AST[I

! Update
DO FOR

IF L_
MMU_I

MMU
FI

OD
SUCCESS

END MOVE TO

gment from local memory to global memory !

RY_MOVE (MEMORY_ADDR, GLOBAL ADDR)
NDEX]. MEMORY_ADDR := AVAILABLE
the MMU image to reflect new address !

_ALL_DBR*S
AST[L_INDEX].SEGMENT_NO/ACCESS AUTH <> ANDIF
MAGE[DBR_#].SDR[SEG_#].ATTRIBUTES=IN_LOCAL THEN
IMAGE[DBR#]. SDR[SEG_#]. BASE_ADDR :=GLOBAL ADDR

CODE := VALID
GLOBAL

Figure 28: Move To Global Pseudo-code

- 100 -

»• «o2e a Segam to £ocai Uuan
aO7B_T0_LOCAL is invoiced when it h*™*aen it becomes necessary to

one of t„o processes .nici hold . S9g.ent ^^ '

swaps the segment out. The s«amon* •The segment is moved from global me-mory to the local memory of +h* ~»ory of the remaining process. Fi gure 29illustrates the pseudo-code for MOVE TO LOCAL The«.- ->«»•**• The parame-
ters passed to the memory manager are th*ger are tae segment's L ASTindex, the global address of the segment and „ ,

"
***»*»*, and the size of

the segment. The return parameter 1-parameter is a success code. The
HMD images of the sionaii^signaued process are apdated at«r the

«n» ,3ac=ESS_coDB
S1

S
E
IB)

" 08B»

BLKS := SIZE / 3LK SIZE

PI
l "

*

J - SDHt S£G-*J-SASE.ADOa: =BASE ADDRESS
OD

„wn S&CCESS.CODE :* VALID
2ND HOFS^TO.LOCAL

Pigura 29: Move To Local Pseudo-code

- 101 -

10. legate the 8BU Image

UPDATE is invoiced following a M0VE_T0_SL0BAL operation.

After a segnent has been moved from local aeaory to global

memory, it is necessary to signal the memory managers of all

connected processors to update their 8M0 images and L_AST

with the current location of the segment. They must also

deallocate the moved segment* s local memory. Figure 30 il-

lustrates the pseudo-code of UPDATE. The parameters passed

to the memory manager are the segment's L_AST index, the new

global address for the segment, and the size of the segment.

The return parameter is a success code.

UPDATE PROCEDURE (L_INDEX HOBD, GLOBAL_ADDR WORD,
SIZE WORD)

RETURNS (SUCCESS CODE BYTE)
ENTRY
DO FOR_ALLJ)BR«S

IP L_ASTfL_INDEX]. SEGMENT NO/ACCESS AUTH <> ANDIF
3MU_rMAGECDBR_#].SDRCSEG #"] .ATTRIBUTES* IN LOCAL THEN

3MU_iaAGE(DBR_#].SDRCSEG_#].BASE_ADDR 7*
GLOBAL ADDR

FI
0D
BLKS :- SIZE / BLK_SIZE
FREE.LOCAL^BIT.SAP" (MEMORY ADDR , BLKS)
L_AST[L.INDEX]7mEH0RY_ADDR~:= ACTIVE
SUCCESS CODE :- VALID*

END UPDATE

Figure 30: Update Pseudo-code

- 102 -

E. SOHHAaY

In this chapter the detailed design of the memory manag-

er process has been presented. The purpose of the memory

manager was outlined, followed by a detailed discussion of

the memory manager's data bases. The design presented has

identified ten basic functions for the memory manager. The

success codes returned by the memory manager are presented

in Figure 3 1

.

This design has assumed that the kernel level inter-pro-

cess synchronization primitives will be Saltzer's signal and

wait primitives [14], This fact dominated the design deci-

sion to lock the G_AST in the user's process before it sig-

nals the memory manager. In a multi-processor environment,

the possibility of a deadly embrace exists if the memory

manager processes lock the G_AST. Should follow on work im-

plement eventcounts and seguencers as kernel level synchron-

ization primitives, the locking of the 3_AST and memory man-

ager synchronization will need to be readdressed.

- 103 -

SYSTEM HIDE KERNEL LOCAL

INVALID
swapped_in
swapped~out
seg_activated
segIdeactivated
seg_created
seg_deleted
virtual_core_full
DUPLICAr~E_ENTRY
READ_ERROR
WRITE_ERROR
DRIVE NOT READY

LEAF_SEGMENT_EXISTS
NO_LEAF_EXISTS
ALIAS_DOES_NOT_EXIST
NO_CHILD_IO_DELETE
G_AST_FULL
L_AST_FULL
LOCAL_MEMORY_FULL
GLOBAL_MEMORY_FULL
SECONDARY STORAGE FULL

MEMORY MANAGER LOCAL

VALID
INVALID
FOUND
NOT_FOUND
IN_LOCAL_MEMORY
NOT_IN_LOCAL_MEMORY

! * DISK ERRORS !

Figure 31: Success Codes

- 104 -

Chapter XII

STATUS OF RESEABCH

A. CONCLUSIONS

The memory manager design utilized stare of the art

software techniques and hardware devices. The design was de-

veloped based upon ZILOG*S Z8001 sixteen bit segmented mi-

croprocessor used in conjunction with the Z8010 Memory Man-

agement Unit [23]. A microprocessor which supports

segmentation is required to provide access control of the

stored data. The actual implementation of the selected

thread was conducted upon the Z8002 non-segmented micropro-

cessor without the Z8010 HMU.

While information security requires that the micropro-

cessor support segmentation, the memory manager was devel-

oped to be configuration independent. The design will sup-

port a multi-processor environment, and can be easily

implemented upon any microprocessor or secondary storage

device. The loop free modular design facilitates any re-

quired expansion or modification.

Global bus contention is minimized by the memory manag-

er. Segments are stored in global memory only if they are

shared and writable. Secondary storage is accessed only if

- 105 -

the segment does not currently reside in global memory or

some local memory. The controlled sharing of segments optim-

izes main memory usage.

The storage of the alias tables in secondary storage

supports the recreation of user file hierarchies following a

system crash. The aliasing scheme used to address segments

supports system security by not allowing the segment's memo-

ry location or unigue identification to leave the memory

manager.

The design of the distributed kernel was clarified by

assigning the HMU image management to the memory manager.

The transfer of responsibility for memory allocation and

deallocation from the supervisor to the memory manager pro-

vides support for dynamic memory management.

In conclusion, the memory manager process will securely

manage segments in a multi-processor environment. The pro-

cess is efficient, and is configuration independent. The

primitives provided by the memory manager will support the

construction of any desired supervisor/user process built

upon the kernel.

- 106 -

B. FOLLOW ON HORK

There are several possible areas in the SASS design that,

can be looked into for continued research. The complete im-

plementation of the memory manager design (refine and optim-

ize the current PLZ/SYS code) is one possibility. Other pos-

sibilities include the implementation of dynamic memory

management, and modifying the interface of the memory manag-

er with the distributed kernel using eventcounts and se-

quencers for inter-process communication.

The implementation of the supervisor has not been ad-

dressed to date. Areas of research include the implmenta-

tion of the file manager and input/output processes, and the

complete design and implementation of the user-host proto-

cols. The implementation of the gatekeeper, and system ini-

tialization are other possible research areas. Dynamic pro-

cess creation and deletion, and the introduction of

multi-level hosts could also prove interesting.

- 107 -

PART D

AN IMPLEMENTATION OP MULTIPROGRAMMING AND
PROCESS MANAGEMENT POR A SECURITY KERNEL

OPERATING SYSTEM

This section contains updated excerpts from a Naval Post-
graduate School MS Thesis by S. L. Reitz [12]. The origins
of these excerpts are:

INTRODUCTION from Chapter I

IMPLEMENTATION from Chapter IV
CONCLUSION from Chapter V

Minor changes have been made for integration into this repor

Chapter XIII

INTRODUCTION

The application of contemporary microprocessor technolo-

gy to the design of large-scale multiple processor systems

offers many potential benefits. The cost of high-power com-

puter systems could be reduced drastically; fault tolerance

in critical real-time systems could be improved; and compu-

ter services could be applied in areas where their use is

not now cost effective. Designing such systems presents

many formidable problems that have not been solved by the

specialized single processor systems available today.

Specifically, there is an increasing demand for computer

systems that provide protected storage and controlled access

for sensitive information to be shared among a wide range of

users. Data controlled by the Privacy Act, classified De-

partment of Defence (DoD) information, and the transactions

of financial institutions are but a few of the areas which

require protection for multiple levels of sensitive informa-

tion. Multiple processor systems which share data are well

suited to providing such services - if the data security

problem can be solved.

A solution to these problems - a multiprocessor system

design with verifiable information security - is offered in

- 109 -

a family of secure, distributed multi-microprocessor operat-

ing systems designed by O'Connell and Richardson [7], A

subset of this family, the Secure Archival Storage Systei

(SASS) [9,5], has been selected as a testbed for the general

design. SASS will provide consolidated file storage for a

network of possibly dissimilar "host" computers. The system

will provide controlled, shared access to multiple levels of

sensitive information (Figure 32) .

This thesis presents an implementation of a basic moni-

tor for the 0' Connell-Richardson family of operating sys-

tems. Ths monitor provides multiprogramming and process

management functions specifically addressed to the control

of physical processor resources of SASS. Concurrent thesis

work [7] is developing a detailed design for a security ker-

nel process, the Memory Manager, which will manage SASS me-

mory resources.

- 110 -

HOST 1 HOST n

LOCAL
MEM CPU

SECONDARY
MEM

(e.g..

hard disk}

SASS BOUNDARY

• • • LOCAL
MEM

GLOBAL
MEM

• •

CPU

SECONDARY
MEM

(e.g.,

hard disk)

Figura 32: SASS SYSIEM

- 111 -

Chapter XIV

IMPLEMENTATION

Implementation of the distributed kernel was simplified

by the hierarchical structure of the design for it permit-

tad methodical bottom-up construction of a series of extend-

ed machines. This approach was particularly useful in this

implementation since the bare machine, the Z8000 Developmen-

tal Module, was provided with only a small amount of soft-

ware support.

A. DEVELOPMENTAL SUPPORT

A Zilog MCZ Developmental System provided support in de-

veloping Z3000 machine code. It provided floppy disk file

management, a text editor, a linker and a loader that creat-j

ed an image of each Z8000 load module.

A Z8000 Developmental Module (DM) provided the necessary

hardware support for operation of a Z8002 non-segmented mi-

croprocessor and 16K words (32K bytes) of dynamic RAM. It

included a clock, a OSART, serial and parallel I/O support,

and a 2K PROM monitor.

The monitor provided access to processor registers and

memory, single step and break point functions, basic I/O

functions, and a download/upload capability with the MCZ

system.

- 112 -

Sinca a segmented version of the processor was not

available for system development, segmentation hardware was

simulated in software as an MMO image (see Figure 33) . Alt-

hough this data structure did not provide the hardware sup-

port (traps) reguired to protect segments of the kernel do-

main, it preserved the general structure of the design.

OFFSET ATTRIBUTES

I

I

seg
*

I

V

High byte Low byte Attributes

Figure 33: MM0_IMAGE

- 113 -

B. INNER TRAFFIC CONTROLLER

The Inner Traffic Controller runs on the bare machine to

create a virtual environment for the remainder of the sys-

tem. Only this module is dependent on the physical proces-

sor configuration of the system. All higher levels see only

a set of running virtual processors. k kernel data base,

the Virtual Processor Table is used by the Inner Traffic

Controller to create the virtual environment of this first

level extended machine. A source listing of the Inner

Traffic Controller module is contained in Appendix G.

1 • Ii£tual Processor Table (VPT)

The VPT is a data structure of arrays and records that

maintains the data used by the Inner Traffic Controller to i

multiplex virtual processors on a real processor and to

create the extended instruction set that controls virtual

processor operation (see Figure 34) . There is one table for

each physical processor in the system. Since this implemen-

tation was for a uniprocessor system (the Z8000 DM) , only

one table was necessary.

The table contains a LOCK which supports an exclusion

mechanism for a multiprocessor system. It was provided in

this implementation only to preserve the generality of the

design.

The Descriptor Base Register (DBR) binds a process to a

virtual processor. The DBR points to an £1M0_IMAGE contain-

- 114 -

LOCK
R0NNIN3_LIST
READY_LIST
FREE LIST

VP
INDEX

I

DBRJ PHI | STATE! IDLE FLAGI CPU J NEXT VP| MSG LIST

MSG
INDEX

MESSAGE SENDER NEXT_MSG |

i

Figure 34: Virtual Processor Table

ing the list of descriptors for segments in the process ad-

dress space.

A virtual processor (VP) can be in one of three states:

running, ready, and waiting (Figure 35) . A running VP is

urrently scheduled on a real processor. A ready VP is

eady to be scheduled when selected by the level-1 schedul-

- 115 -

ing algorithm. A waiting VP is awaiting a message from some

other VP to place it in the ready list. In the meantime it

is not in contention for the real processor.

- 116 -

RSACT

IP
VP

I

1

- ?

V?

Figure 35: Virtual Processor States

- 117 -

2. Level- J. Scheduling

Virtual processor state changes are initiated by the in-

ter-virtual-processor communication mechanisms, SIGNAL and

WAIT. These level- 1 instructions implement the scheduling

policy by determining what virtual processor to bind to the

real processor. The actual binding and unbinding is per-

formed by a Processor switching mechanism called SWAP_DBR

[14], Processor switching implies that somehow the execu-

tion point and address space of a new process are acquired

by the processor. Care must be taken to insure that the old

process is saved and the new process loaded in an orderly

manner. A solution to this problem, suggested by Saltzer

[14], is to design the switching mechanism so that it is ai

common procedure having the same segment number in every ad-

dress space.

In this implementation a processor register (R14) was

reserved within the switching mechanism for use as a DBR.

Processor switching was performed by saving the old execu-

tion point (i.e., processor registers and flag control

word) , loading the new DBR and then loading the new execu-

tion point. The processor switch occurs at the instant the

DBR is changed (see Figure 36) . Because the switching

procedure is distributed in the same numbered segment in all

address spaces, the "next" instruction at the instant of the

switch will have the same offset no matter what address

- 118 -

space the processor is in. This is the key to the proper

operation of SWAP_DBR.

To convert this switching mechanism to segmented hard-

ware it is necessary merely to replace S«AP_DBR with special

I/O block-move instructions that save the contents of the

HHD in the appropriate MM(J_IMAGE and load the contents of

the new MMU_IMAGE into the MMO.

a. Getwork

SWAP_DBR is contained within an internal Inner Traffic

Controller procedure called GETWORK. In addition to multi-

plexing virtual processors on the CPU, 3ETW0RK interprets

the virtual processor status flags, IDLE and PREEMPT, and

modifies VP scheduling accordingly in an attempt to keep the

CPO busy doing useful work.

There are actually two classes of idle processes within

the system. One class belongs to the Traffic Controller.

Conceptually there is a ready level-2 idle process for each

virtual processor available to the Traffic Controller for

scheduling. When a running process blocks itself, the

Traffic Controller schedules the first ready process. This

will be an idle process if no supervisor processes are in

the ready list.

The second class of idle process exists in the kernel.

The kernel Idle process is permanently bound to the lowest

priority virtual processor.

- 119 -

Process #1

Address space
1 Process #2

Address space

I

V

Call SWAP_DBR
i

1

7

Save return point
on call stack.
(Process #1)

i

V

Save execution point
i

•

1

V
1

•

•

Swap DBR (R14)

processor
switch

I

I

I

I

> Swap DBB (R14)

Load new execution
point

.

I

V

Load return point
from call stack
(process #2)

I

V

Figure 36: SWAP DBR

- 120 -

The distinction is made between these classes because of

the need to keep the CPU busy doing useful work whenever

possible. There is no need for GETWOEK to schedule a lev-

el-2 idle process that has been loaded on a virtual proces-

sor, because the idle process does no useful work. The vir-

tual processor IDLE_FLAG indicates that a virtual processor

has been loaded with a level-2 idle process. GETWORK will

schedule this virtual processor only if the PREEMPT flag is

also set. The PREEMPT flag is a signal from the Traffic

Controller that a supervisor process is now ready to run.

When GETWORK can find no other ready virtual processors

with IDLE and PREEMPT flags off, it will select the virtual

processor permanently bound to the kernel Idle process.

Only then will the Idle process actually run on the CPU.

Getwork contains two entry points. The first, a normal

entry, ressts the preempt interrupt return flag. (RO is re-

served for this purpose within GETWORK.) The second, a

hardware interrupt entry point, contains an interrupt han-

dler which sets the preempt interrupt return flag. The DBR

(R14) must also be set to the current value by any procedure

that calls GETWORK in order to permit the SWAP_DfiR portion

Df GETWORK to have access to the scheduled process^ address

space. Upon completion of the processor switch, GETWORK ex-

imines the interrupt return flag to determine whether a nor-

lal return or an interrupt return is required.

- 121 -

The hardware interrupt entry point in GETHORK supports

the technique used to initialize the system. Each process

address space contains a kernel domain stack segment used by

SWAP-DBR in GETWORK to save and restore VP states. For the

same reason that SWAP-DBR is contained in a system wide seg-

ment number, the stack segment in each process address space

will also have the same number (Segment #1 in this implemen-

tation) . Each stack segment is initially created as though

it's process had been previously preempted by a hardware in-

terrupt. This greatly simplifies the initialization of pro-

cesses at system generation time. The details of system in-

itialization will be described later in this chapter. It is

important to note here, however, that GETWORK must be able

to determine whether it was invoked by a hardware preempt

interrupt or by a normal call, before it can execute a re-

turn to the calling procedure. This is because a hardware-

interrupt causes three items to be placed on the system

stack: the return location of the caller, the flag control

word, and the interrupt identifier, whereas a normal call

places only the return location on the stack. Therefore, in

order to clean up the stack, GETWORK must execute an inter-

rupt return (assembly instruction :IRET) if entry was via the

hardware preempt handler (i.e., RO set). This instruction

will pop the three items off the stack and return to the ap-

propriate location. If the interrupt return flag, RO, is

off, a normal return is executed.

- 122 -

During normal operation, SWAP-DE-R manipulates process

stacks to save the old VP state and load the new 7P state.

This action proceeds as follows (Figure 37) :

1. The Flag Control Word (FCW) , the Stack Pointer (R15)

and the preempt return flag (BO) are saved in the old

VP's kernel stack.

2. The DBR (R14) is loaded with the new VP's DBR. This

permits access to the address space of the new pro-

cess.

3. The Flag Control Word (FCW), the Stack Pointer (R15)

and the Interrupt Return Flag (RO) , are loaded into

the appropriate CPU registers.

a. RO is tested. If it is set, GETWORK will execute an

interrupt return. If it is off, a normal return oc-

curs.

By constructing GETWORK in this way, both system initializa-

tion and normal operations can be handled in the same way.

A high level GETWORK algorithm is given in Figure 38.

- 123 -

Old VP Stack New VP Stack

SP->

SB->
SP: R15

IRET :R0

FCW

HEADER

| CPU |

| RESSI

SP: R15

IRET :R0

FCH

HEADER

<—SP

<— SB

Figure 37: Kernel Stack Segments

- 124 -

GETWORK Procedure (DBR = R14)

Begin

Reset Interrupt Return Flag (RO)

Skip hardware preempt handler

Hardware Preempt Entry:
Set DBR
Save CPU registers
Save supervisor stack pointer
Set Interrupt Return Flag (RO)

Get first ready VP

Do while not select
If Idle flag is set then
if Preempt flag is set then
select

else
get next ready VP

end if
else
select

end if
end do

SWAP_DBR:
Save old VP registers in stack segment
Swap dbr (R14)
Load new VP registers in stack segment

If Interrupt Return Flag is set then
unlock VPT

simulate GATEKEEPER exit:
Call TEST_VPREEMPT
Restore supervvisor registers
Restore supervvisor stack pointer

Execute Interrupt Return (IRET)

end if

Execute normal return

end GETWORK

Figure 38: GETWORK

- 125 -

3. Virtual Processor Instruction Set

The heart of the SASS scheduling mechanism is the inter-

nal procedure, GETWORK. It provides a powerful internal

primitive for use by the virtual processors and greatly sim-

plifies the design of the virtual processor instruction set.

Virtual processor instructions perform three types of func-

tions: multiprogramming, process management and virtual in-

terrupts.

SIGNAL and WAIT provide synchronization and communica-

tion between virtual processors. They multiplex virtual

processors on a CPU to provide multiprogramming. This im-

plementation used a version of the signal and wait algor-

ithms proposed by Saltzer [14]. In the SASS design each CPU

is provided with a unique (fixed) set of virtual processors.

The interaction among virtual processors is a result of mul-

tiprogramming them on the real processor. Only one virtual

processor is able to access the VPT at a time because of the

use of the VPT LOCK (SPIN_LOCK) to provide mutual exclusion.

Therefore race and deadlock conditions will not develop and

the signal pending switch used by Saltzer is not necessary.

This implementation also included message passing mecha-

mism not provided by Saltzer. The message slots available

for use by virtual processors are initially contained in a

queue pointed to by FREE-LIST. When a message is sent from

one VP to another, a message slot is removed from the free

- 126 -

list and placed in a FIFO message queue belonging to the VP

receiving the message. The head of each VP's message queue

is pointed to by MSG-LIST. Each message slot contains a

message, the ID of the sender, and a pointer to the next

message in the list (either the free list or the VP message

list.

IDL2 and SWAP_VDBR provide the Traffic Controller with a

means of scheduling processes on the running VP.

SET_VPREEMPT and TEST_VPREEMPT install a virtual inter-

rupt mechanism in each virtual processor. When the Traffic

Controller determines that a virtual processor should give

up its process because a higher priority process is now

ready, it sets the PREEMPT flag in that VP. Then, even if

an idle process is loaded on the VP, it will be scheduled

and will be loaded with the first ready process.

Test_VPreempt is a virtual interrupt unmasking mechanism

which forces a process to examine the preempt flag each time

it exists from the kernel.

a. Wait

WAIT provides a means for a virtual processor to move

itself from the running state to the waiting state when it

has no more work to do. It is invoked only for system

events that are always of short duration. It is supported

by three internal Procedures.

- 127 -

SPIN_LOCK enables the running VP to gain control of the

Virtual Processor Table. This procedure is only necessary

in a multiprocessor environment. The running VP will have

to wait only a short amount of time to gain control of the

VPT. SPIN_LOCK returns when the VP has locked the VPT.

GETWORK loads the first eligible virtual processor of

the ready list on the real processor. Before this procedure

is invoiced, the running VP is placed in the ready state.

Both ready and running VP*s are members of a FIFO gueue.

GETWORK selects the first VP in this ready list, loads it on

the CPU, and places it in the running state. When GETWORK

returns, the first VP of the gueue will always be running

and the second will be the first VP in the ready gueue.

GET_FIRST_MESSAGE returns the first message of the mes-

sage list (also managed as a FIFO gueue) associated with the

running VP. The action taken by WAIT is as follows:

WAIT Procedure (Returns: 2isg, Sender_ID)

Begin

Lock VPT (call SPIN_LOCK)

If message list empty (i.e., no work) Then

Move VP from Running to Waiting state

Schedule first eligible Ready VP (call GETWORK)

end if

(NOTE: process suspended here until

- 128 -

it receives a signal and is

selected by GETWOHK.)

Set first message from message list

(call GET_FIRST_MSG)

Unlock VPT

Beturn

end WAIT

If the running virtual processor calls WAIT and there is

a message in its message list (placed there when another VP

signaled it) it will get the message and continue to run.

If the message list is empty it will place itself in the

wait state, schedule the first ready virtual processor, and

move it to the running state. The virtual processor will

remain in the waiting state until another running VP sends

it a message (via SIGNAL) . It will then move to the ready

list. Finally it will be selected by GETWORK, the next in-

structions of WAIT will be executed, it will receive the

message for which it was waiting, and it will return to the

caller.

- 129 -

b. Signal

Messages are passed between virtual processors by the

instruction, SIGNAL, which uses four internal procedures,

SPIN_LOCK, ENTER_MSG_LIST, MAKE_READY, and GETWORK.

SPIN_LOCK, as explained above insures that only one vir-

tual processor has control of the Virtual Processor Table at

a time.

ENTER_MSG_LIST manages a FIFO message queue for each

virtual Processor and for free messages. This queue is of

fixed maximum length because of the implementation decision

to restrict the use of SIGNAL. A running VP can send no

more than one message (SIGNAL) before it receives a reply

(i.e., WAIT'S for a message). Therefore if there are N vir-

tual processors per real processors, the message queue

length, L, is:

L = N - 1

MAKE_READY manages the virtual processor ready queue.

If a message is sent to a VP in the waiting state,

MAKE_READY wakes it up (it places it in the ready state) and

enters it in the ready list. If a running VP signals a

waiting VP of higher priority, it will place itself back in

the ready state and the higher priority VP will be selected.

The action taken by signal is as follows:

SIGNAL Procedure (Message, Destination_VP)

Begin

- 130 -

Lock V?T (call SPIN_LOCK)

Send message (call ENTER_MSG_LISI)

If signaled VP is waiting Then

Make it up and make it ready

(call NAKE_READY)

end if

Put running VP in ready state.

Schedule first elgible ready VP

(call GETWORK)

Onlock VPT

Return (Success_ccde)

End SIGNAL

C. SWAP_VDBR

SWAP_VDBR contains the same processor switching mechan-

ism used in SWAP_DBR, but applies it to a virtual processor

rather than a real processor. Switching is quite simple in

this virtual environment because both processor execution

point and address space are defined by the Descriptor Base

- 131 -

Register. SWAP_VDBR is invoked by the Traffic Controller to

load a new process on a virtual processor in support of lev-

el-2 scheduling. It uses GETWORK to control the associated

level-1 scheduling. The action taken by SWAP_VDBR is:

SWAP_VDBR Procedure (New_DBR)

Begin

Lock VPT (call SPIN_LOCK)

Load running VP with New_DBR

Place running VP in ready state

Schedule first eligible ready VP

(call GETWORK)

Unlock VPT

Return

End SWAP VDBR

In this implementation one restriction is placed upon

the use of this instruction. If a virtual processors mes-

sage list contains at least one message, it can not give up

its current DBR. This problem is avoided as the natural re-

sult of using SIGNAL and WAIT only for system events, and

- 132 -

"masking" preempts within the kernel. If this were permit-

ted, the messages would lose their context. (The messages

in a VP_MS3_LIST are actually intended for the process load-

ed on the VP.)

d. IDLE

The IDLE instruction loads the Idle DBR on the running

virtual processor. Only virtual processors in contention

for process scheduling will be loaded by this instruction.

(The Traffic Controller is not even aware of virtual proces-

sors permanently bound to kernel processes.)

IDLE has the same scheduling effect as StfAP_VDBR, but it

also sets the IDLE_FLAG on the scheduled VP. The distinc-

tion is made between the two cases because, although the

Traffic Controller must schedule an Idle process on the VP

if there are no other ready processes, the Inner Traffic

Controller does aot wish to schedule an Idle V? if there is

an alternative. This would be a waste of physical processor

resources. The setting of the IDLE_FLAG by the Traffic

Controller aids the Inner Traffic Controller in making this

scheduling decision. Logically, there is an idle process

for each VP; actually the same address space (DBR) is used

for all idle processes for the same CPU, since only one will

run at a time. As previously explained, virtual processors

loaded by this instr action will be selected by GETWORK only

to give the Idle process away for a new process in response

to a virtual preempt interrupt. The action of IDLE is:

- 133 -

IDLE Procedure

Begin

Lock VPT (call SPIN_LOCK)

Load running VP with Idle DBR

Set VP«S IDLE_FLAG

Place running VP in ready state

Schedule first elgible ready VP

(call GETHORK)

Unlock VPT

Return

End IDLE

e. SET_VPHEEMPT

SET_VPREEMPT sets the preempt interrupt flag on a speci-

fied virtual processor. This forces the virtual processor

into level- 1 scheduling contention, even if it is loaded

with an Idle process. The instruction retrieves an idle

- 134 -

virtual processor in the same way a hardware preempt ret-

rieves an idle CPU by forcing the VP to be selected by

GETWORK. The only difference between the two cases is the

entry point used in GETWORK. The action of SETJ7PREEMPT is:

SET_VPREEHPT Procedure (VP)

Begin

Set VP's PREEMPT flag

If VP belongs to another CPU Then

send hardware interrupt

end if

Return

End SET VPREEMPT

Since the action is a safe sequence, no deadlocks or

race conditions will arise and no lock is required on the

7PT.

f. TEST 7PREEMPT

- 135 -

Within the kernel of a multiprocessor system all process

interrupts (which excludes system I/O interrupts) are

masked. If process interaction results in a virtual preempt

being sent to the running virtual processor by another CPU,

it will not be handled since GETHORK has already been in-

voiced. TEST_VPREEMPT provides a virtual preempt interrupt

unmasking mechanism.

TEST„VPREEMPT mimics the action of a physical CPU when

interrupts are unmasked. It forces the process execution

point back down into the kernel each time the process at-

tempts to leave the kernel domain, where the preempt flag of

the running VP is examined. If the flag is off,

TEST_VPR3EMPT returns and the execution point exits through

the Gatekeeper into the supervisor domain of the process ad-

dress space as described above. However, if the PREEMPT

flag is on, the TEST_VPREEMPT executes a virtual interrupt

handler located in the Traffic Controller. This jump from

the Inner Traffic Controller to the Traffic Controller

(TC_PREEMPT__HANDLER) is a close parallel to the action of a

CPO in response to a hardware interrupt, that is a jump to

an interrupt handler. The Traffic Controller Preempt Han-

dler forces level-2 and level-1 scheduling to proceed in the

normal manner. The preempt handler forces the Traffic Cont-

roller to axamine the APT and to apply the level-2 schedul-

ing algorithm, TC_GETWORK. if the APT has been changed

since the last invocation of this scheduler, it will be re-

- 136 -

fleeted ia the scheduling selections. Eventually, when the

running VP's preempt flag is tested and found to be reset,

TEST_VPREEMPT will return to the Gatekeeper where the pro-

cess execution point will finally make a normal exit into

its supervisor domain. TEST_VPREEMPT performs the following

action:

TEST_VPREEMPT Procedure

Begin

Do while running VP* s PREEMPT flag is set

Reset PREEMPT flag

Call preempt handler

(call TC_PREEMPT_HANDLER)

End do

Return

End TEST VPREEMPT

- 137 -

C TRAFFIC CONTROLLER

The Traffic Controller runs in a virtual environment

created by the Inner Traffic Controller. It sees a set of

running virtual processor instructions; SWAP_VDB2, IDLE,

SET_VPREEMPT, and RONNING_VP, and provides a scheduler,

TC_GETWORK, which multiplexes processes on virtual proces-

sors in response to process interaction. It also creates a

level-2 instruction set: ADVANCE, AWAII, and PSOCESS_CLASS,

which is available for use by higher levels of the design.

The Traffxc Controller uses a global data base, the ACTIVE

PROCESS TABLE to support its operation.

1 • Active Process Table (APT)

The Active Process Table is a system-wide kernel data-

base containing entries for each supervvisor process in SASS

(Figure 39) . It is indexed by active process ID. The

structure of the APT closely parallels that of the Virtual

Processor Table. It contains a LOCK to support the imple-

mentation of a mutual exclusion mechanism, a RONNING_LIST,

and a READY_LIST_HEAD . The Traffic Controller is only con-

cerned with virtual processors that can be loaded with su-

pervisor processes. Since two VP«s are permanently bound to

kernel processes (the Memory Manager and the Idle Process)

,

they cannot be in contention for level-2 scheduling; the

Traffic Controller is unaware of their existence; since

there are a number of available virtual processors, the

- 138 -

RUBIIBG.LIS I was iapl evented as an array indexed by VP_ID.

Ihe R2ADI_LIST_HEAD points to a FIFO gueue that includes

both running and ready processes. The running processes

will be at tie top of the ready list.

5ecaus= of tneir completely static nature, idle process-

es require no entries in the A?T. Logically, there is an

idle process at the end of the ready list for each V? avai-

lable to tne Traffic Controller. If tae ready list is emp-

ty, TC_GZTwCRf: loads one of tnese "virtual" idle processes

by calling IDLF, and enters a reserved identifier, 3IDLI, in

the appropriate a TJNNING_LI5I entry. This identifier is the

only data concerning idle processes that is contained m tae

APT. Idle procass scneduling considerations are aoved down

to ievel-1, because the Inner Traffic Controller knows about

physical processors, and can cptiaize CPO use by scheduling

idle processes only when there is zothing else to do.

The suoject access rrlass, S_ZLA5S, provides eacn process

with a label that is required by ieveI-3 modules to enforce,

the 3ASS non-discretionary security policy.

- 139 -

LOCK

RUNNING LIST PROCESS ID

VP_ID
I

I

V

i

I

I

READY_LIST_HEAD

DBR ACCESS CLASS

AP
Index

STATE NEXT AP E7ENTC00NT
HANDLE
INSTANCE
COUNT

Figure 39: Active Process Table

- 140 -

2. Lez§iz2 Scheduling

Above the Traffic Controller, SASS appears as a collec-

tion of processes in one of the three states: running,

ready, or blocked. Running and ready states are analogous

to the corresponding virtual processor states of the Inner

Traffic Controller. However, because of the use of event-

count synchronization mechanisms by the Traffic Controller,

the blocked state has a slightly different connotation than

the VP waiting state.

Blocked processes are waiting for the occurrence of a

non-system event, e.g., the event occurrence may be sig-

nalled from the supervisor domain. When a specific event

happens, ail of the blocked processes that were awaiting

that event are awakened and placed in the ready state. This

broadcast feature of event occurrence is more powerful than

the message passing mechanism of SIGNAL, which must be di-

rected at a single recipient.

Just as SIGNAL and WAIT provide virtual processor multi-

plixing in level-1, the eventcount functions, ADVANCE and

AWAIT, control process scheduling in levei-2.

a. TCJ3ETWORK

Level-2 scheduling is implemented in the internal Traff-

ic Controller procedure, TC_G2TW0RK. This procedure is in-

voked by eventcount functions when a process state change

- 141 -

may have occurred. It loads the first ready process on the

currently scheduled VP (i.e., the virtual processor that has

been scheduled at level- 1 and is currently executing on the

CPU) .

TC_GETWORK Procedure

Begin

VP_ID := BUNNING_VP

Do while not end of ready list

if process is running then

get next ready process

else

BUNNING_LIST [VP_ID] : = PBOCESS_ID

Process state := running

SWAP_VDBB

end if

end do

If end of running list (no ready processes) Then

R[JNNING_LIST := #IDLE

IDLE

end if

Beturn

End TC_GETWORK

- 142 -

b. TC_PREEHPT_HANDLER

Preempt interrupts are masked while a process is execut-

ing in the Icernel domain. As the process leaves the kernel,

the gatekeeper unmasks this virtual interrupt by invoking

TEST_VPREEMPT. This instruction tests the scheduled 7P«s

PREEMPT flag. If this flag is off, the process returns to

the Gatekeeper and exits from the kernel; out if the flag is

set, TEST_VPREEMPT calls the Traffic Controller's virtual

preempt interrupt handler, TC_PREEMPT_HANDLER . This handler

invokes rc_GETtfORK, which re-evaluates level-2 scheduling.

Eventually, when the schedulers have completed their func-

tions, the handler will return control to the preempted pro-

cess, which will return to te Gatekeeper for a normal exit.

This seguence of events closely parallels the action of a

hardware interrupt, but in the environment of a virtual pro-

cessor rather than a CPU. The virtualizaticn of interrupts

provides the ability for one virtual processor to interrupt

execution of another that may, or may not, be running on a

CPU at that time. This is provided without disrupting the

logical structure of the system. This capability is parti-

cularly useful in a multiprocessor environment where the

target virtual processor may be executing on another CPU.

Because these interrupts will be virtuaiizad, the operating

system will retain control of the system. The action of the

TC_PREEMPT_HANDL2R is described in the procedure below.

- 143 -

TC_PREEHPT_HANDLER Procedure

Begin

Call WAIT_LOCK

VP_ID := RUNNING_VP

Process_ID := RUNNING LIST [VP_ID]

If process is not idle Then

Process state := ready

end if

Call TC_GETWOfiK

Call WAIT__UNLOCK

RETURN

End TC_PREEMPT_HANDL£R

WAIT_LJCK and WAIT_UNLOCK provide an exclusion mechanism

which prevents simultaneous multiple use of the APT in a

multiprocessor configuration. This mechanism invoices WAIT

and SIGNAL of the Inner Traffic Controller.

- 144 -

3. Eventcounts

An eventcount is a non-decreasing integer associated

with a global object called an event [11]. The Event Manag-

er, a level-3 module, controls access to event data when re-

quired and provides the Traffic Controller with a HANDLE, an

INSTANCE, and a COUNT. The values for all aventcounts (and

sequencers) are maintained at the Memory Manager level and

are accessed by calls to the Memory Manager. The HANDLE

provides the traffic controller with an event ID, associated

with a particular segment. INSTANCE is a more specific de-

finition of the event. For example, each SASS supervisor

segment has two eventcounts associated with it, a INSTANCE_1

and a INSTANCE_2, that the supervisor uses keep track of

read and write access to the segment [9], Eventcounts pro-

vide information concerning system-wide events. They are

manipulated by the Traffic Controller functions ADVANCE and

AWAIT and by the Memory Manager functions, BEAD and TICKET.

A proposed high level design for ADVANCE and Ah'AIT is pro-

vided by Seitz [12].

a. Advance

ADVANCE signals the occurrence of an event (e.g., a read

access to a particular supervisor segment) . The value of

the eventcount is the number of ADVANCE operations that have

been performed on it. When an event is advanced, the fact

must be broadcast to all blocked processes awaiting it and

- 145 -

the process must be awakened and placed on the ready list.

Some of the newly awakened processes may have a higher pri-

ority than some of the running processes. In this case a

virtual preempt, SET_VPREEMPT (VP_ID) , must be sent to the

virtual processors loaded with these lower priority process-

es.

b. Await

When a process desired to block itself until a particu-

lar event occurs, it invokes AWAIT. This procedure returns

to the calling process when a specified eventcount is

reached. Its function is similar to WAIT.

c. Read

READ returns the current value of the eventcount. This

is an Event Manager (level three) function. This module

calls the Memory Manager module to obtain the eventcount va-

lue.

d. Ticket

TICKET provides a complete time-ordering of possibly

concurrent events. It uses a non-decreasing integer, called

a seguencer, which is also associated with each supervisor

segment. As with READ, this is an Event Manager function

that calls the Memory Manager to access the sequencer value.

Each invocation of TICKET increments the value of the se-

- 1U6 -

quencer and returns it to the caller. Two different uses of

ticket will return two different values, corresponding to

the order in which the calls were made.

D. SYSTEM INITIALIZATION

Because the Inner Traffic Controller's scheduler,

GETWORK, can accommodate both normal calls and hardware in-

terrupt jumps, the problem of system initialization is not

difficult.

When SASS is first started at level-1, the Idle VP is

running and the memory manager VP , which has the highest

priority, is the first ready virtual processor in the ready

list. All VP's available to the Traffic Controller for lev-

el-2 schedling are ready. Their IDLE_FLAG's and PREEMPT

flags are set.

At level-2, all VP's are loaded with idle processes and

all supervisor processes are ready.

The kernel stack segment of each process is initialized

to appear as if it had been saved by a hardware Preempt in-

terrupt (Figure 40)

.

All CPJ registers and the supervisor stack pointer are

stored on the stack. R15 is reserved as the kernel stack

point; R14 contains the DBR. All other registers can be

used to pass initial parameters to the process. The order

in which these registers appear on the stack supports the

PLZ/A3M block-move instructions.

- 147 -

SP >

RO

R15

R14 >

EM

stacic base->

Stack Segment

sup stacic ptr

DBR

int ID

sup FCH

process entry

leer stacic ptr

IRET_FLAG

leer FCW

header

Figure 40: Initialized Stacic

- 148 -

The status block contains the current value of the stack

pointer, R15, and the preempt interrupt return flag. This

flag is set to indicate that the process has been saved by a

preempt interrupt. The first three items on the stack: the

process entry point, the initial process flag control word,

and an interrupt indentifier, are also initialized to sup-

port the action of a hardware interrupt.

To start-up the system, R14 (the DBR) is set to th.e Idle

process DBR; the CPU Program counter is assigned the

PREEMPT_ENTRY point in GETWOBK; tne CPU Flag Control Word

(FCW) is initialized for the kernel domain; and the CPCJ is

started. Because the Idle_VP is the lowest priority VP in

the system, it will place itself back in the ready state and

move the Memory Manager in the running state. The Memory

Manager will execute an interrupt return because the inter-

rupt return flag was set by system initialization. There

will be no work for this kernel process so it will call WAIT

to place itself in the waiting state. The next ready VP is

idling, but since it's IDLE_FLAG and PREEMPT flag are set,

GETWORK will select it. It too will execute an interrupt

return, but because its PREEMPT flag is set, it will call

TC_PREEM?T_HAND!ER. This will cause the first ready process

to be scheduled. Each time a supervisor process blocks it-

self, the next idle VP will be selected and the sequence

will be repeated.

- 149 -

The action described above is in accord with normal op-

eration of the system. The only unique features of initial-

ization are the entry point (PREEMPT-ENTRY: in GETWORK) an<

the values in the initialized kernel stack.

The implementation presented in this thesis has been ruD

on a Z8000 developmental module. System initialization has

been tested and executes correctly. At the current level of

implementation, no process multiplexing function is availa-

ble. There is no provision for unlocking the APT after an

initialized process has been loaded as a result, a call to

the Traffic Controller (viz., ADVANCE or AWAIT) . In a pro-

cess multiplexed environment this would cause a system dead-

lock. Once the process left the kernel domain with a locked

APT, no process would be able to unlock it. The Traffic

Controller must handle this system initialization problem.

- 150 -

Chapter XV

CONCLUSION

The implementation presented in this thesis created a

security kernel monitor that runs on the Z8000 Developmental

Module. This monitor supports multiprogramming and process

management in a distributed operating system. The process

executes in a multiple virtual processor environment which

is independent of the CPU configuration.

This monitor was designed specifically to support the

Secure Archival Storage System (SASS) [2, 9, 5]. However,

the implementation is based on a family of Operating Systems

[7] designed with a primary goal of providing multilevel se-

curity of information. Although the monitor currently runs

on a single microprocessor system, the implementation fully

supports a multiprocessor design.

A. IECCMSENDATIONS

Because the Zilog MMU is not yet available for the Z3000

Developmental Module, it was necesary to simulate the seg-

mentation hardware. As Reitz explained [12], this was ac-

complished by reserving a CPU register, R14, as a Descriptor

Base Register (DBR) to provide a link to the leaded addresss

space. When the MMU becomes available, this simulation must

be removed. This can be done in two steps.

- 151 -

First, the addressing format must be translated to the

segmented form. This requires no system redesign.

Second, the switching mechanism most be modified to ac-

comodated to use the MMU. This can be done by modifying the

SWAP_DBR portion of GETUORK to multiplex the MHU_IMAGE onto

the MMU hardware and this can be accomplished by changing

about a dozen lines of the existing code.

B. FOLLOW ON WORK

Although the monitor appears to execute correctly, it

has not been rigorously tested. Before higher levels of the

system are added, it is essential that the monitor be highly

reliable. Therefore a formal test and evaluation plan

should be developed.

An automated system generation and initialization me-

chanism is also required if the monitor to be is a useful

tool in the development of higher levels of the design.

Once the monitor has been proven reliable and can be

loaded easily, work on the implementation of the Memory Man-

ager kernel process and the remainder of the kernel can con-

tinue.

- 152 -

PART E

IMPLEMENTATION OF SEGMENT MANAGEMENT FOR A
SECURE ARCHIVAL STORAGE SYSTEM

This section contains excerpts from a Naval Postgraduate
School MS Thesis by J. T. Wells [20]. The origins of these
excerpts are:

INTRODUCTION from Chapter I

SEGMENT MANAGEMENT FUNCTIONS
SEGMENT MANAGER
NON-DISCRETIONARY SECURITY MODULE
MEMORY MANAGER
SUMMARY from Chapter II

SEGMENT MANAGEMENT IMPLEMENTATION from Chapter III
CONCLUSIONS AND FOLLOW ON WORK from Chapter IV

Minor changes have been made for integration into this report,

Chapter XVI

INTBODOCTION

This thesis addresses the implementation of the segment

management functions of an operating system known as the Se-

cure Archival Storage System or SASS. This system, with full

implementation, will provide: (1) multilevel secure access

to information (files) stored in a "data warehouse" for a

network of multiple host computers, and (2) controlled data

sharing among authorized users. The correct performance of

both of these features is directly dependent upon the prop-

er implementation of the segment management functions ad-

dressed in this thesis. The issue of access to sensitive in-

formation is addressed by the Non-Discretionary Security

Module, which mediates all non-discretionary access to in-

formation. Sharing of information is accomplished chiefly

through the properties of segmentation, the SASS memory man-

agement scheme that is supported by the Memory Manager Mo-

dule and the Segment Manager Module. The implementation of

segment management for SASS is thus integral to the attain-

ment of the two key goals that SASS was designed to achieve.

This implementation addresses the Son-Discretionary Securi-

ty, Distributed Memory Manager (the interface to the Memory

Manager Process), and Segment Manager modules.

- 154 -

Chapter XVII

SEGMENT BANAGEMENT FUNCTIONS

&. SEGHENT MANAGER

1 . Function

The Segment Manager is the focal point of the segment

management function. Using the per-process Known Segment Ta-

ble as its database and the Memory Manager and Non-Discre-

tionary Security Module in strongly supportive roles, it is

responsible for managing the segmented virtual memory for a

process. Its role can be viewed as somewhat intermediary in

nature (viz., between the Supervisor modules and the Memory

Manager modules) . The extended instruction set created in

the Segment Manager includes the following instructions:

CREATE_3ESMENT, DELETERS EGMENT, MAKE_KNCKN, TERMINATE

SM_SWAP_IN, and SM_SKAP_00T (note that the names for SWAP_IN

and SWAP_OiJT have been modified by preceding each with SM_,;

this is strictly for clarity because the Memory Manager also

creates two instructions called 5HAP_IN and SWAP_G0"T) .

These instructions are invoked by the Supervisor domain of

the process (viz. , calls are made from the Supervisor domain

via the Gatekeeper to the Segment Manager in the Kernel do-

main) to provide SASS support to the Host.

- 155 -

In general, when the Segment Manager receives these

calls, it performs certain checks to ensure the validity and

security compliance (when reguired) of the reguest (call)

.

These checics are performed using its own database (the KST)

and by calls to the Non-Discretionary Security Module (when

reguired) . The Segment Manager invoices one of six Memory

Manager (more specifically, the Distributed Memory Manager

Module) created instructions. These instructions include:

MM_CREATE_2NTRY, MM_DELETE_ENTBY, MM_ACTIVATE,

aa_DEACTIVATE, MM_SWAP_IN, and MM_SHAP_OOT. These invoked

instructions (procedures) in turn perform interprocess com-

munciations with the non-distributed memory manager process

(where actual memory management functions are accomplished)

.

These interprocess invocations and returns are accomplished

through the use of the IPC primitives Signal and Wait. The

Segment Manager returns the reguired arguments to the Super-

visor by value (as passed back to it by the Memory Manager

and/or determined within itself) . The Segment Manager per-

forms actual segment number assignment when a segment is

made known to a process* address space. It also performs

any further database (KST) updating as may be reguired.

2. Database

The Known Segment Table (KST) is the database used to

manage segments. The KST is described in its tabular form

and PLZ/SYS structured representation in Figure 41. There

- 156 -

are several basic and pertinent facts to be noted of the

KST:

1. It is a process local database; that is, each process

has its own KST.

2. The KST is indexed by segment numoer; each record of

the KST consists of a set of fields (description in-

formation) regarding a particular segment.

3. Entering information into the fields of a segment is

called "making a segment known". This simply refers

to adding a segment to a process' address space

(viz., making a segment accessible to a process).

4. In 5ASS, a correspondence exists between making a

segment "known" and making a segment "active"; i.e.,

when a segment is added to the address space of a

process, this action results in an entry in the KST

(making "known") by the Segment Manager and an entry

in the Global Active Segment Taole (G_AST) by the Me-

mory Manager process (making it "active") . The G_AST

will be described later in this chapter.

A proper description of the structure and fields of the KST

is necessary at this point. Using the representation of the

PLZ/SYS language structure, the KST is described as an array

of records of fields of varying types. The fields are de-

scribed separately below. Although the KST index is not in

itself a field in the record, it does perform a rather sig-

nificant role. The KST index is an integer closely related

- 157 -

to the segment number of the segment described in that. K3T

entry (viz. , it is the subscript into the array of records)

.

This segment number also corresponds to the MMU descriptor

register (number) for that segment.

The MM_Handle is the first field in a KST record. The

MH_Handle is a system wide unique number that is assigned to

each segment with an entry in the G_AST (viz. , every active

segment) . This "handle" is the instrument of controlled sin-

gle copy sharing of information (segments) . It allows a seg-

ment to exist under one unique handle but be accessible in

the address space of more than one process (with different

segment numbers in each address space). The MM_Handle is re-

turned to the Segment Manager by the Memory Manager during

the execution of the Make_Known instruction.

The Size field is an integer value (of language struc-j

ture type "word") which represents the number of 256 byte

blocks composing a segment.

The Access_Mode field is used to describe the process'

access to the segment (i.e., null or read and/or write).

The In_Core field is used to indicate if the segment is

or is not in main memory (i.e., this field is a flag or

true/false boolean switch)

.

The Class field is a long word field used to represent

the degree of information sensitivity (viz., access class)

assigned to the segment. This field (for example) would be

used to numerically describe a classification label (as de-

scribed above)

.

- 158 -

Segment_#

MM Handle Size
Access
Mode

la-
Core Class Seg_No

Entry_
Number

KST Array [4 KST_BEC]

KST_REC Record [HM_Handle Array [3 Word]
Size Word
Access_Mode Byte
In_Core Byte
Class Long
M_Seg_No Short_Integer
Entry_Nuaber Short_Int eger]

Ficure HI: Known Segment Table

- 159 -

The Mantor_Seg_Nr field is a number representing the

segment number of a segment's parent or "mentor" segment.

Its importance will discussed shortly.

The Entry_Nr field is a number representing a segment's

index number into its parent or mentor segment's Alias Table

(not yet discussed)

.

The Alias Table is a Memory Manager database and will be

described later. The aliasing scheme provided via the alias

tables is used to prevent passing system wide information

out of the Kernel (i.e., the Unigue_ID of a segment). The

"alias" of a segment is the concatenation of the Men-

tor_Seg_Nr with the segment's Entry_Nr (index) into the men-

tor segment's Alias Table. It is clear that the last two

fields of a KST record are the "alias" of that segment.

3. NON-DISCRETIONARY SECURITY MODULE

The key in protection of secure information using inter-

nal controls was identified as the security kernel concept.

The basic idea within this concept is to prove the hardware

part of the Kernel correct and, similarly, to keep the soft-

ware part small enough so that proving it correct is feasi-

ble. A central component of the kernel software is the

Non-Discretionary Security Module (hereafter referred to as

the NDS Module) . The NDS Module is concerned only with the

non-discretionary aspect of the security poiicy in effect;

since the discretionary aspect is subservient in nature to

- 160 -

the non-discretionary aspect, it is then sufficient that the

Kernel contain only the software representing the non-dis-

cretionary aspect of the security policy. The discretionary

security is provided outside the kernel in the SASS supervi-

sor. Every attempt to access information must result in an

invocation of the NDS Module.

The function of the NDS Module is to compare two classi-

fications (viz. , compare two labels) , make a decision as to

their relationship (i.e., =,>,<,{), and return a true/false

interpretive answer relative to the guery of the calling

procedure. The mechanism used as a basis is the lattice mo-

del abstraction previously discussed. The NDS Module does

not require a database since the labels it compares are

stored in (passed from) other Kernel databases.

C. MEMORY MANAGER

1 • ?aSSt ion

The Memory Manager process is the only component of the

non-distributed kernel. It is responsible for aanacing the

real memory resources of the system — ma^n (local and glo-

bal) memory and secondary storage. It is tasked by ether

processes within the Kernel domain (via Signal and Wait) to

perform memory management functions. Ihis thesis will ad-

dress the Memory Manager in terms of two components: (1) the

Memory Manager Process (also called the nondistributed ker-

nel and the Memory Manager Module), and (2) the distributed

- 161 -

Memory Manager (also called the Distributed Memory Manager

Module) . The former is the "true" memory manager while the

latter is the interface with other processes, that is, it

resolves the issue of interprocess communication with the

"true" memory manager.

The Distributed Memory Manager Module creates the fol-

lowing extended instruction set: MM_CBEATE_ENTRY,

MM_DELETE_ENTRY, MM_ACTIVATE, MM_DEACTIVATE, MM_StfAP_IN, and

MM_SHAP_OUr. The instructions form the mechanism of communi-

cation between the Segment Manager of a process and a memory

manager process (where the actual memory management func-

tions are performed) . The Memory Manager Process instruction

set corresponds one to one with that of the Distributed Me-

mory Manager; the set consists of: CREAIE_ENTRY,

DELETE_ENTRY, ACTIVATE, DEACTIVATE, StfAP_IN, and StfAPJDUT.

The basic functions performed by the Memory manager are al-

location/deallocation of global and local memory and of sec-

ondary storage, and segment transfers from local to global

memory (and vice-versa) and from secondary storage to main

memory (and vice-versa)

.

2. Databases

A detailed and descriptive discussion of the Memory Man-

pager databases is presented in the work of Gary and Moor

[5], and the reader may refer to it for memory manager data-

base details. This thesis addresses the implementation of

- 162 -

the distributed Memory Manager bat not the Memory Manager

Process, thus brief descriptions are provided of the lat-

ter's databases.

The Global Active Segment Table (G_AST| is a system wide

(i.e., shared by all memory manager processes) database used

to manage all active segments. A lock/unlock mechanism is

used to prevent race conditions from occurring. The distri-

buted memory manager of the signalling process locks the

G_AST before it signals the memory manager process.

The Local Active Segment Table (L_AST) is a processor

local database which contains an entry for each segment ac-

tive in a process currently loaded in local memory.

The Alias Taole is a system wide database associated

with each aonleaf segment in the Kernel. It is a product of

the aliasing scheme used to prevent passing system wide in-

formation out of the Kernel. The alias table header (provid-

ed for file system reconstruction after system crashes) has

two pointers, one linking the alias table to its associated

segment, the other linking the alias table to the mentor

segment* s alias table. The fields in the alias taole are

Cnique_ID, Size, Class, Page_Table_Loc, and Aiias_Table_Loc.

The index into the alias table is Entry_No.

The Memory Management Unit Image <MMU_Iaage, Figure 42)

is a processor local database indexed by DBR_No (viz., for

each D3R_No there is a MMU_Image record, with each record

containing a software image of the segment descriptor regis-

- 163 -

ters of the hardware MMU) . The MM0_Image is an exact image

of the MMU. Each record is indexed by Segment_No (segment

number) and each Segment_No entry contains three fields. The

Base_Addr field contains the segments base address in memo-

ry. The Limit field contains the number of blocks of conti-

guous storage for the segment (zero indicates one block)

.

The Attributes field contains 8 flags including 5 whicn re-

late to the memory manager. The Blks_Used field and the

Max_Blks (available) fields are per record (not per segment

entry) and are used in the management of

each process* virtual core.

The Memory Bit Maps (Disk_Bit_Map, Glo-

bal_Memory_Bit_Map, and Local_Memory_Bit_Map) are memory

block usage maps that use true/false flags (bits) to indi-

cate the use or availability of storage blocks.

The only database in the Distributed Memory Manager is

the Memory Manager CPU Table (Figure 43) . It is an array of

memory manager VP_ID»s (MM_VP_ID) indexed by CPU number.

This table enables a signalling process to identify the ap-

propriate memory manager process (virtual processor) to sig-

nal.

- 164 -

DBR NO

Segment
No.

Blocks Used

Max Avail Blocks

Base Addr I Limit Attributes

MflU_Image

MMO

Seg_Desc_Rag

Address

Array [Max_DBR_No MflU]

Record [SDR Array [No_Seg_Desc_Reg
Seg_Desc_Recj

]

Blks_Used siord

Max_B1)ts Word]
Record [Base__Addr Address

Limit Byte
Attributes 3yte]

word

Picure 42: Memory Management Unit Image

- 165 -

MM VP ID
CPU

I

I

I

V

Figure 43: Memory Manager-CPU Table

D. SUMMABY

The segment management functions and Jcey related con-

cepts (such as segmentation) were discussed in this chapter.

The importance of segmentation to data sharing and informa-

tion security was emphasized as were key information securi-

ty concepts. With this background, the implementation of

segment management and a non-discretionary security policy

will be described in the following chapter.

- 166 -

Chapter XVIII

SEGMENT MANAGEMENT I MPLEMENTAIION

The implementation of segment management functions and a

non-discretionary security policy is presented in this chap-

ter. Paramount to this implementation were several key is-

sues that effected the implementation. laese issues are dis-

cussed first. The implementation is discussed in terms of

the Segment Manager, Non-Discretionary Security <NDS) , and

Distributed Memory Manager modules.

^« IMPL3M5NTATI0M ISSUES

Segment management for the SASS was provided througn the im-

plementation of the Segment Manager Module, the NDS Module,

and the Distriouted Memory Manager Module. Additionally,

since a iemcnstration/testbed was integral to the testing

and verification of the implementation, it was necessary to

complete other supportive tasks. Seitz [12] provided a de-

monstration of tne operation of the Inner Traffic Controller

primitives SIGNAL and WAIT (for interprocess communica-

tion) . Integral to this demonstration was the correct per-

formance of the Inner Traffic Controller 7? scheduling me-

chanism and a "stub" of the Traffic Controller and its

process scheduling mechanism (the TC support and use of the

- 167 -

mechanism of eventcounts and sequencers was not a part of

the demonstration) . The Segment management demonstration

(hereafter referred to as "Seg_Mgr. Demo") was "built on top

of" Reitz' ITC synchronization primitive demonstration

(hereafter referred to as "Sync. Demo") . Thus, an immediate

issue was to resolve the feasibility of adding on to

Sync. Demo and also to refine the present design of the Sync.

Demo to facilitate its integration into the Seg_Hgr.Demo.

One aspect of this effort was in resolving the problem of

how to pass (i.e., in interprocess communication) a larger

message.

1 • IS£erp_rocess Messages

The Sync. Demo passed "word" (16 bit) messages. To pro-

vide the mechanism for the distributed memory manager to i

signal the memory manager process with a command function

identification code and the arguments needed to perform that

function (e.g., CREATE-ENTRY and its input arguments), a

message size of at least eight words (16 bytes) was neces-

sary. An obvious answer was to signal with an array of

eight words as the message. PLZ/SYS, however, does not al-

low passing arrays in its procedure calls (a procedure call

is analogous to a subroutine call). Another alternative was

to signal with a pointer to the array of words, since

PLZ/SYS does allow passing pointers in procedure calls (thus

the message would be a pointer to the real message) . This,

- 168 -

however, would be invalid in the segmented implementation

(on the Z8000 segmented microprocessor) since identical seg-

ment numbers in different processes may not refer to identi-

cal segments. For example, a pointer in a process (e.g.,

file management) points to an array (i.e., provides its ad-

dress) by segment number and offset; passing this pointer to

another process (e.g., memory manager) would provide this

same segment number and offset which, of course, may be a

different object in the second processes address space).

Another alternative considered was that of a shared

"Mailbox" segment with an associated eventcount acted on by

the Kernel Inner Traffic Controller primitives

TICKET, ADVANCE and AWAIT. A design for using this concept

in the supervisor ring is provided by Parks [9]. This al-

ternative was not deeply considered since these primitives

are not included in the current Inner Traffic Controller.

The method ultimately used to signal the new length mes-

sages is based on the fact that the ITC is in both the sig-

nalling and the receiving (memory manager) processes 1 ad-

dress space. The message is loaded into an array in process

#1 and a pointer to the array is passed in the call SIGNAL;

the VPT, the ITC's database, is then updated by (using the

pointer) putting the message into its USG_Q section. The

message is retrieved by process #2 by execution of Reitz 1

WAIT primitive with only one refinement. That refinement is

for the "waiting" process to provide as an. argument (in the

- 169 -

WAIT primitive) a pointer to its own message array so that

the message in the VPT can be copied to it. This refinement

provides for passing a long message essentially "by value"

between processes.

2- Structures as Ar guments

Another issue concerned the use of pointers in the im-

plementation of segment management. Ihis necessary "evil"

is a result of the need to pass linguistically "complex"

data types in procedure calls. Complex types refer to arraj

and record structures in PLZ/SYS (as opposed to the "simple"

types— byte, word, integer, short-integer, long, and poin-

ter). In managing databases (e.g., KSI, 3_AST) which con-

sist of arrays of records (wnich in turn contain records

and/or arrays) , it was freguently necessary to reference

data as an array or record. tfithin a process, the use of

pointers was not a problem (i.e., not a proolem such as

would be encountered in IPC passing of pointers)

.

3. l§entrant Code

The issue of code reentrancy was addressed at the assem-

bly language level through the use of a stack segment anc

registers for storage of local variables. PLZ/SYS (higt

level language) does not address reentrant procedures anc

thus the segment management high level code is not automati-

cally reentrant. The problem of reentrancy can be seen bj

- 170 -

looking at a shared procedure that is not reentrant; such a

procedure has storage for its variables allocated statically

in memory. Suppose a procedure (e.g., in the Kernel) can be

activated by more than one process. While the procedure is

executing in one process, a process switch occurs (e.g., to

wait for a disk transfer) and its execution is suspended.

The second process is activated, and while it is running it

invokes the procedure. While the procedure is executing for

the second process it uses the same storage space for varia-

bles as it did when executing for the first process. Eventu-

ally, it relinquishes the processor. However, when the

procedure resumes its execution for the first process, the

variable values that were in use by it originally have been

changed during its execution in the second process. Thus,

incorrect results are now inevitable.

* • Process Structure of the Memory. Manager

References to the "Memory Manager" in past works have

generally meant, the memory manager process (non-distributed

kernel) * This work references two distinct components of

the "memory manager module". The Distributed Memory Manager

is an interface provided to the Memory Manager Process. It

is, in fact, distributed in the address space of each Super-

visor process. In contrast, the Memory Manager Process

clearly is not distributed and its address space is con-

tained entirely in the Kernel.

- 171 -

5. £§Ez£E2cess Known Segment labie

Another key issue was that of the per process Segment

Manager database, the K5T. Since each process has its own

KST, it cannot be linked to the (shared) segment manager

procedures. To implement the KST as a per process database,

it was convenient to establish, by convention, a KST segment

number that is consistent from process to process. That

segment in each process is the KST segment for that process.

Implementation is then accomplished by using the segment

number to construct a pointer to the base of the appropriate

KST. It is then easy to calculate an appropriate offset to

index any desired entry in the KST data.

6. DBR Handle

In Reitz's implementation of the multilevel scheduler

and the IPC primitives, references to "DBB" (descriptor base

register) are references to an address. That address value

represents a pointer to an MMU_IMAGE record containing the

list of descriptors for segments in the process address

space. Gary and Moore [5] reference a "DBfi_NO" that is es-

sentially a handle used within the memory manager as an in-

dex within the MMO_IMAGE to a particular MMU record. The

base address of the MMO record indexed by DBR_NO is then

equivalent to the concept of DBR value used in Reitz 1 work.

The effect of this inconsistency on the segment management

implementation was minor and will be further discussed later

in this chapter.

- 172 -

B. SEGMENT MANAGER MODULE

The Segment Manager Module consists of six procedures

representing the six extended instructions it provides.

These are based on the design of Coleaan £2], Only calls

from external to the Kernel (via the Gate Keeper) may be

made to the Segment Manager (per the loop-free structure of

the SASS) . The normal sequence of invocation of the Segment

Manager functions to allow referencing a segment is: (1)

CREATE_SEGMENT--allocate secondary storage for the segment

and update the mentor segments Alias Table, (2)

MAKE_KNOWN— add the segment to the process address space

(segment number is assigned) , (3) SWAP_IN— move the segment

from secondary storage into the process*s main memory. The

normal sequence of invocation to "undo" the above is: (1)

SWAP_O0T— move the segment from main memory to secondary

storage, (2) TERMINATE— remove the segment from the pro-

cess's address space, (3) DELETE_SEGMENT— deallocate secon-

dary storage and remove the appropriate entry from the alias

table of its mentor segment. The six Supervisor entries

into the Segment Manager (viz., the six extended instruc-

tions) will be discussed individually below. The PLZ/ASM

listings for the Segment Manager are in Appendix H.

- 173 -

1 • Create a Segment

The function that creates a segment (i.e., adds a new

segment to the SASS) is CREATE_SEGMENT. This function vali-

dates the correctness of the Supervisor call by checking the

parameters and making certain security checks. The distri-

buted memory manager is then called to accomplish interpro-

cess communication with the Memory Manager Process, where

segment creation is realized through secondary storage allo-

cation and alias table updating.

CREATE_SEGMENT is passed as arguments: (1) Men-

tor_Seg_No--the segment number of the mentor segment of the

segment to be created, (2) Entry_No—the desired entry num-

ber in the alias table of the mentor segment, (3) Class— the

access class (label) of the segment to be created, and (4)

Size--the desired size of the segment (in blocks of 256

bytes) . The initial check is to verify that the desired

size does not exceed the designed maximum segment size. If

this check is satisfactory, a conversion of the Men-

tor_Seg_No to a KST index is necessary. This is because the

Kernel segments use the first several segment numbers avai-

lable but do not have entries in the KST. Thus if there

were 10 Kernel segments and a system segment had segment

number 15, then its index in the KST would actually be 5

(i.e., the Kernel segments would use numbers 0-9, and this

segment would be the sixth segment in the KST and its index

would be 5) . A call is then made to the procedure

- 174 -

ITC_GET_SEG_PTR with the constant KST_SEG_NO passed as a

parameter. This procedure will return a pointer to the base

of this process* KST. This pointer is then the basis for

addressing entries in the KST. The next check is to see if

the mentor segment is known (viz., is in the address space

of the process, and thus, in the KST). The key to determin-

ing if any segment is known is the mentor segment entry

(M_SEG_So) for that segment in the KST. If not known, this

entry in the segment's KST record will be filled with the

constant N0LL_SEG. The basis for checking to see if the

segment's aentor segment is known is the aliasing scheme im-

plication that a mentcr segment must oe known before a seg-

ment can be created. The process classification must next

be obtained from the Traffic Controller. The process clas-

sification is checked to ensure that it is egual to the

classification of the mentor segment since write access to

its alias table is needed to create a segment. The NDS mo-

dule's CLASS_SQ procedure is called and returns a code of

true or false. The last check is the compatibility cneck to

ensure that the classification of the segment to be created

is greater than or equal to the classification of the mentor

segment. This is accomplished by calling the NDS Module's

CLASS_GE procedure which returns a code of true or false.

If any of these checks are unsatisfactory, an appropriate

error code is generated and the Segment Manager returns to

its calling point. If all checks are satisfactory, then a

- 175 -

pointer to the mentor segments MH_Handle array is derived

(HPTR) . Note that in the current memory manager design [5]

the actual MM_Handle contents are a Unigue_ID (a long word,

viz., two words concatenated), and an Index_No (index into

the G_AST, a word) ; thus together these two fields are a to-

tal of three words. Since the Segment Manager does not in-

terpret this handle, it is considered a three word array at

this level. For this reason, the entire uninterpreted

MM_Handle array will be passed by passing its pointer. This

pointer and Entry_No, Size, and Class are then passed in a

call to the distributed memory manager procedure

MM_CREATE_ENTRX. This procedure, in turn, performs IPC with

the memory manager process where segment creation ultimately

is accomplished. A success code is returned in an IPC mes-

sage from the memory manager process via the distributed me-

mory manager to the CREATE_SEGMENT procedure to indicate

success or failure as appropriate. This success code is

checked by the Segment Manager to ensure confinement would

not be violated if it is returned to the calling process'

supervisor domain. Only after the success code has been re-

turned can the action of segment creation be considered com-

plete. Segment creation does not imply the ability to re-

ference that segment; MAKE_KNOWN will accomplish that.

- 176 -

2. Delete a Segment

The function that deletes a segment (i.e., deletes a

segment from SASS) is DELETE_SEGMENT. Validation of parame-

ters and security checks are performed here similar to (but

fewer than) the CREATE_SEGMENT checks. The distributed me-

mory manager is then called to cause IPC with the memory

manager process, where segment deletion is realized through

secondary storage deallocation and alias table entry dele-

tions. DELETE_SEGMENT is passed as arguments: (1) Men-

tor_Seg_No and (2) Entry_No. Conversion of the Men-

tor_Seg_No to a KST index is accomplished first. The

pointer to the base of the KST is located and returned, as

before. The mentor segment is checked to ensure it is

known, again, by verifying that its own M_SEG_No (mentor

segment number) entry in the KST is not the NULL_SEG. The

process classification is obtained from the TC and checked

(by a call to CLASS_EQ) to ensure it is equal to the mentor

segment classification, since deleting an entry requires

write access to the alias table. If all caecks are satis-

factory, then the mentor segment 1 s ttfc_Handle pointer is der-

ived. This pointer and the mentor segment alias table entry

number are passed in a call to the distributed menory manag-

er procedure MM_DELETE_ENTSY. It then performs IPC with the

memory manager process where segment deletion is accom-

plished and a success code is returned as before.

- 177 -

3 • Make a Segment Known

The function that makes a segment known (i.e., adds that

segment to the process* address space by assigning a segment

number, updating the KST, and causing the memory manager

process to "activate" the segment (that is, add it to the

AST)) is MAKE_KNOWN. Making a segment known is the way the

Supervisor declares its intention to use a segment.

MAKE_KNOWN is passed as arguments: (1) Mentor_Seg_No, (2)

Entry_No, and (3) Acess_Desired (e.g., write, read, or

null) . It returns (1) a success code, (2) the access al-

lowed to the segment, and (3) the segment number. Conver-

sion of the mentor segment number to a KST index, finding

the KST pointer, and verifying that the mentor segment is

kncwn occur as previously discussed.

There are three basic cases that may occur in ,

MAKE_KNOWN: (1) the segment is already known (has an entry

in the KST) , (2) the segment is not known and there is a

segment number available, or (3) the segment is not known

and there is no segment number available.

A search is made of the KST using each record's (seg-

ments) M_SEG_.No (mentor segment number) and Entry_Number

fields as the search key. If these two fields match the in-

put values Mentor_Seg_No and Entry_No, then the record in-

dexed is that of the desired segment; thus the segment to be

made known is already known. In this case, all that need be

done is to return the success code, segment number (convert-

- 178 -

ed from the index by adding to it the number of kernel seg-

ments) , and the access allowed (equal to the Access_Mode en-

try in the KST for the already known segment)

.

During the search of the KST, the M_SEG_No field is also

checked to see if it contains the NULL_SEG entry (this im-

plies that the segment number associated with the record is

"available") . The first time this is noted, the index is

saved. Note the first available index is saved since it is

desired to assign segment numbers at the "top" of the KST to

keep it dense there. When the search does not find that the

segment is already known, the index for the available seg-

ment number is retrieved and converted to segment number by

adding to it the number of kernel segments. If this index

is the NOLL_SEG entry, then there is no segment number avai-

lable. In this event, the success code is set to

NO_SEG_AVAIL, the segment number is assigned NOLL_SEG, and

access allowed is set to N l'LL_ACCESS (this is the third case

mentioned) , If the index is not equal to NULL_SEG and con-

version to segment number has occurred then the Traffic

Controller is called to provide the DBfi_No (descriptor base

register number) for the current process. The DBB_No is

used by the memory manager process as an index in the

aKD_Image and the local AST. The distributed memory manager

procedure MJ1_Ac tivate is called; it is passed the DBR num-

ber, the pointer to the mentor segment's JJM_Handle entry*

the mentor segment alias table Entry_No, and the segment

- 179 -

number. MM_Activate perforins the normal interface function

(performs IPC with the memory manager process procedure that

updates the local and global AST 1 s) and also updates the KST

entry for the new segment's MM_Handle entry (returned from

the memory manager process) . It also returns to the Segment

Manager the success code, the segment classification, and

the segment size from the memory manager process. If the

success code is "succeeded" then the issue of access to be

granted must be resolved. The process classification is ob-

tained from the TC and passed with the segment classifica-

tion to the NDS Module procedure CLASSJ5E. If the

CONDITION_CODE returned is FALSE then access allowed is

NULL_ACCESS, the segment number is NULL_SEG, and

MM_DEACTIVATE is called to deactivate the segment. An appro-

priate error code is returned. If it is greater than or

egual then the access allowed is assigned as follows: (1)

the two classifications are compared again— this time to see

if egual; (2) If they are egual, then the access allowed is

either read or write per the access desired; (3) if they are

not egual (i.e., the process class is greater than the seg-

ment class) then the access allowed is read. Finally the

KST entries for that segment number (more accurately for its

index in the KST) are filled with the appropriate informa-

tion (e.g., IN_CORE is false, etc.). If the success code

returned from the memory manager process via -che distributed

memory manager is not "succeeded", then the segment number

- 180 -

is set to NULL_SEG and the access allowed is set to

NULL_ACCESS.

4. Make a Segment Onknown (Terminate)

The function that makes a segment unknown (i.e., removes

that segment from the process* address space— by updating

the KST and causing the memory manager process to "deacti-

vate" the segment) is TERMIMATE. It results in removal of

the M_SEG_No (mentor segment number) entry from that seg-

ments KST record. Terminate is passed the segment number

of the segment to be terminated as an argument. It returns

a success code. Conversion of the segment number to a KST

index, finding the KST pointer, and verifying that the seg-

ment is known occurs in the same manner as previously dis-

cussed. The next check is to verify that the segment is not

still leaded in the process* virtual core (viz., it has been

"swapped-out") . If not, an error code is returned and the

user must cause the Segment Manager extended instruction

sa_SWAP_OUT to be executed. The next check is to ensure

that the user is not attempting to terminate a Kernel seg-

ment. The first several segment numbers in a process* ad-

dress space will be used by Kernel procedures and data

(though they will not be entries in the KST) . Thus if there

were 10 Kernel segments, then the segment number to be ter-

minated must be greater than or egual to #10 (since the Ker-

nel segments used f*s 0-9) . Thus a check is made to ensure

- 181 -

that the segment number is not less than the number of Ker-

nel segments; otherwise an error code is returned. Next,

the segment number is checked to ensure that it is not lar-

ger than the maximum segment number allowable (if so, an er-

ror code is returned) . If all checks are satisfactory, then

the segment's MM_Handle pointer and the process DBR_No are

obtained (as discussed before) and passed in a call to the

MH_Deactivate procedure. It calls the memory manager pro-

cess procedure DEACTIVATE which removes or updates (as ap-

propriate) the entries in the local and global AST's.

5. Swafi a Segment In

The function that swaps a segment from secondary storage

to main memory (global or local) is SH_SHAP_IN. It is

passed the segment number of the segment to be swapped in as

an argument and returns a success code. Conversion of the

segment number to a KST index, finding the KST pointer, and

verifying that the segment number is known are accomplished

as previously discussed. If the check is satisfactory, then

the segment's MM_Handle pointer and the process DBR number

are obtained. They are passed with the segment's access

mode (from the KST) as arguments in the call to HM_SWAP_IN.

It performs normal interface (IPC) functions and returns a

success code from the memory manager process 1 SWAP_IN proce-

dure (where, if not already in core, allocation of main me-

mory space and reading the segment into main memory occurs)

.

- 182 -

If the success code is "succeeded" then the segment's

IN_CORE antry in the KST is updated to show that the segment

is in main memory for this process (i.e., the entry is now

"true") .

6- Swag a Segment Out

The function that swaps a segment from main memory to

secondary storage is SM_SiAP_OUX. It is passed the segment

number of the segment to be swapped out as an argument and

returns a success code. The behavicr of SM_SWAP_OUT is ex-

actly analogous to that of SH_SMAP_I1J except that the seg-

ment's KST IN_CORE entry is updated to reflect that the seg-

ment has been removed from main memory for this process

(i.e., the new entry is "false").

C NQN-DISCRETJJ)NARY SECURITY MODOLE

The Non-Discretionary Security Module implements the

non-discretionary security policy for the SASS. The NDS mo-

dule contains two procedures: CLASS_EQ and CLASS_GE; both

compare two labels (classifications) and determine if their

relationship meets that of the procedure's name (i.e.,

egual, or greater than or equal) . Although the type of

checks being made are, in fact, compatibility checks. Simple

Security Condition checks, etc, the NDS Module does not re-

cognize or need to recognize this. It simply uses an algor-

ithm to determine if classification #1 = classification #2

- 133 -

or if classification #1 >= classification #2, as appropri-

ate. It then returns a condition code of true or false in

accordance with the particular case. The earlier discussion

of label comparison in accordance with a partially ordered

lattice structure is relevant in discussing the NDS Module^

algorithm. Consider the same "totally ordered" relationship

TS > S > C > of levels and the "disjoint" relationship Cy

I N | Nu j % of categories, comparison of levels will be

numerical comparisons while comparison of categories will

use set theory comparison as a basis. If TS=4, S=3, C=2, 0=1

are level numerical assignments, then the totally ordered

relationship is maintained (i.e., TS>S>C>U is still true).

Now consider the categories and make the following assign-

ments: Cy=1, N=2, Nu=4, X=0. Note that a classification may

have only one level and one category set (the category set

may contain several categories) . Consider this example:

(TS, Cy,N . The level is TS (=<*) . The category is the set

Cy,N and numerically is formed by performing a logical OB

with the categories Cy and N. Sixteen bit representation of

this is:

Cy OR N

(0000 0000 0000 0001) OR (0000 0000 0000 0010)

= 0000 0000 0000 0011 = Cy,N

If (TS, Cy,N) is considered label #1 and (S, N) as label

#2 then a comparison of the two labels would be:

(1) Compare level #1 with level #2 — 4 > 3?

Clearly, the answer is yes.

- 184 -

i?

(2) Compare category #1 with category #2 — is

(0000 0000 0000 0011) a superset of

(0000 0000 0000 0010), or more clearly

is the latter a subset of the former?

The answer is yes, and one way to show that is true is

by performing a logical OR of category #1 with category #2

and comparing the result to category #1. if the result of

the OR operation equals category #1 then category #1 is a

superset (not necessarily proper) of category #2. Since us-

age of the term subset is more frequent than that of super-

set, this relationship will typically be stated as "category

#2 is a subset of category #1. To illustrate the above;

cy,N OR N :

(0000 0000 0000 0011) OR (0000 0000 0000 0010)

= 0000 0000 0000 0011 = category #1.

This means , in this example, that category #2 is a sub-

set (not necessarily proper) of category #1. Since level #1

> level #2 and category #2 subset category *1 then label #1

> label #2. Thus, a call to the CLASS„EQ procedure with

these two labels as the input classifications would return a

condition code of false while CLASS_.GE would return true.

The decision to have the classifications as long word (32

bits) supports the requirement of some DoD specifications

for eight levels and sixteen categories. This module uses

sixteen bits for the level and sixteen bits for the catego-

ry. Appendix I is the PIZ/ASM listings for the NDS Module.

- 185 -

1 . Egijal Classification Check

The CLASS_EQ procedure perforins comparison of two clas-

sifications (labels) and returns a condition code of true if

they are equal (an exact match of the two long words bit per

bit) or false if they are not.

2- Greater or Egu&i Classification Check

The CLASSJ5E procedure performs comparison of two clas-

sifications (labels) and returns a condition code true if

classification #1 is greater than or equal to classification

#2 or a condition code of false otherwise. For classifica-

tion #1 to be greater than or equal to classification #2,

the following must be true: (1) level #1 >= level #2 (deter-

mine this by simple numerical comparison of values) and (2)

category #2 subset category #1 (determine this by performing

a logical OR with the categories and comparing the result to

category »1 — if they are equal then category #2 is a sub-

set of category #1).

Since PLZ/SYS allows passing only "simple" types in

calls, the labels were passed as long words (as opposed to

each being word arrays of length two) . An access class label

is never interpreted outside the NDS Module. However, with-

in the NDS Module it is necessary to address the classifica-

tions components separately (viz., level and category).

Thus, an "overlay" of the logical view of the classification

#as created. This overlay was a record cf type ACCESS_CLASS

- ie6 -

and it consisted of two fields: level — 16 bit integer and

category — 16 bit integer. A pointer type CPTR was declared

to be of type pointer to ACCESS_CLASS. Two other pointers

CLASS1_PT8 and CLASS2_PTR were declared to be of type CPTE

and were set equal to the base address of CLASS1 and CLASS2

respectively. This "overlay" of the record frame over the

two classification labels passed as arguments allowed the

desired component addressibility. Futhermore, the non-dis-

cretionary policy enforced by SASS can be changed from the

current DoD policy to another lattice policy by changing

(only) the HDS Module.

D« DISTRIBOTJD MEMORY IM1GI1 3LOD0LB

The Distributed Memory Manager Module performs as an in-

terface between the Segment Manager and the Memory Manager

Process. As its name implies, it is distributed in the ker-

nel domain of each Supervisor process. The key role per-

formed in this module is to arrange and perform interprocess

communication between its process (actually the VP) and the

memory manager process (VP) . The module consists of eight

procedures. Six of the procedures are called directly by

Segment Manager procedures; they are EM_CREATE_2NTR Y

,

MM_DELET2_SNTRY, MM_ACTIVATE, MM_DE ACTIVATE, MM_SWAP_IN, and

MM_SWA?_oar. The other two procedures are "service" proce-

dures called by multiple procedures; they are:

MM_GET_DBR_VALUE and PERFORM_IPC. The logic used in the

- 187 -

first six procedures is somewhat uniform (except for

MH_ACTIVATE) . Thus, the general logic will be explained

(with MM_CRSATE_ENTRY as an example) and it should suffice

as a description for all (except MM_ACTIVATE) procedures.

The servica procedures will be described separately.

1 • Description of Proced ures

Each procedure is invoiced (and returns) on a one to one

basis with a corresponding procedure in the Segment Manager.

For example, CREATE_SEGMENT invokes MM_CRE ATE_ENTRY which

signals the CREATE_ENTRY procedure in the Memory Manager

Process Module. Associated with each procedure is an IPC

message "frame" to describe the unique format of the con-

tents of the message to be signalled to the memory manager

process. Similarly, there must be a message "frame" for re-

turn messages from the memory manager process; this frame is

the same for all but the MM_ACTIVATE procedure. Consider the

message frame for MM_CREATE_ENTRY ; it consists of: (1) a

code to describe which function is to be performed (e.g.,

CREATE_CODE indicates that the CREATE_ENTRY procedure is the

intended recipient of the message), (2) MM_Handle (an array

of three words) , (3) Entry_No, (4) Size, and (5) Class. The

message frame has a filler (in this case) of one byte to en-

sure that it is of length 16 bytes. The purpose of this

frame is to provide an overlay onto the actual message array

to be signalled and to facilitate loading the arguments into

- 188 -

the message array. This is accomplished by having a pointer

of the type that points to the frame but by converting its

address so that it actually points to the base of the mes-

sage array. Consider these lines of PLZ/SIS code:

CE_MSGPTR := CE_PTR COM_MSGPTR

CE_KSGPTR-».CREATE_CODE := CRE AT E_ENTRY_CODE

This code is putting a value into the structure pointed to

by CEJISGPTR at entry CREATE_C0DE. The key point is that

the frame of that structure is, in fact, CREATE_SSG (as de-

scribed before) , but the physical location pointed to is the

message array. This is assured by having the pointer

CE_MSGPTR (which points to a structure of type CREATE_aSG)

set egual to a pointer (COM_HSGPTR) to the actual message

array (COH_MSGBOP) . This is accomplished by the first line

of code. The message array itself is never directly refer-

enced, but rather the message array that is overlayed by the

message frame is filled in the format of the CREATE_MSG

frame. In this example, the first two bytes of the message

array now contain the value cf the constant

CREATE_ENTRY_CODE. The remainder of the message array is

filled in the same manner (all procedures use the same no-

tion of a frame, although the frames have different for-

mats) . The PERFORM_IPC (perform interprocess communication)

procedure is called by all procedures at this point in their

execution. The key is that the argument passed is the mes-

sage array pointer not the pointer to the CREATE_MSG record

- 189 -

(after all it is only an overlay frame — linguistically, it

is only a type and is never declared as a structure requir-

ing memory storage allocation) . When PERFORM_IPC returns,

the message array contains a return message. This message

consists of only a success code and filler space in all cas-

es but MM_ACTIVATE. Interpretation of the return message is

performed in the same manner as loading the message array.

The retrieved success code is returned to the calling Seg-

ment Manager procedure. For MM_ACTIVATE, the return message

must be interpreted and values for success code, segment

size, and segment classification retrieved and returned to

the Segment Manager MAKE_KNOWN procedure. The value for the

MM_Handle (called the G_AST_Handle by the memory manager

process) must be retrieved and entered in the KST record for

this segment.

2. Interprocess Co mmunication

The final arrangements and actual performance of IPC is

completed by the internal procedure PERFORM IPC. By locating

the identity of the current physical processor (CPU) and us-

ing that identity to index into the MM_CPU_TABLE, the VP_ID

of the current memory manager is resolved, so that the memo-

ry manager process dedicated to this physical processor is

signalled. The call to K_LOCK is, in fact, a disguised call

to the SPIN_LOCK procedure (since K_LOCK calls SPIN_LOCK)

.

K_LOCK represents an ultimate (as yet unimplemented) goal of

- 190 -

a Kernel locking (wait-lock) system. in any event, the

G_AST lock must be set prior to signalling the memory manag-

er process. After SIGNAL has been called, a call is made to

WAIT with the pointer to the message array as the argument.

The synchronization cycle that results is: (1) PEEFORM_IPC

calls the ITC procedure SIGNAL with the memory manager VP_ID

and message array pointer as arguments; PEEFOHM_IPC then

calls WAIT with the message array as the argument, (2)

SIGNAL causes the message array to be copied into the mes-

sage gueue (in the V?T) of the appropriate VP_ID, (3) ulti-

mately, the signalled VP is scheduled; it had previously

called WAIT, passing a pointer to its own local message ar-

ray; the action of WAIT is to copy the message from the VPT

to the signalled process' local message array; there it is

interpreted by the memory manager process main procedure and

the appropriate procedure is called for action (e.g.,

CREAT2_ENTRY) , (4) when action is completed the memory man-

ager process fills its local message array with the appro-

priate return message and calls SIGNAL with a pointer to the

message and the original signalling process 1 VP_ID as argu-

ments, (5) SIGNAL causes the memory manager process 1 message

to be copied into the VPT message gueue for the appropriate

VP_ID, (6) that 7P is eventually scheduled and through the

action of WAIT has the return message copied from its mes-

sage gueue in the VPT to its local message array; WAIT then

returns to ?ERFORH_IPC. The G_AST lock is unlocked and

- 191 -

PERFORM_IPC returns to the appropriate distributed memory

manager procedure.

The last procedure in the distributed memory manager is

MM_GET_DBR_VALUE. This procedure simply provides the ser-

vice of translating a DBR_NO {DBR number) into its appropri-

ate DBR address. It is called by the TC_GETaQHK procedure to

allow it to call the ITC procedure SWAP_VDBR (remember that

presently the Inner Traffic Controller deals with the DBR as

the address of the appropriate MMO record in the MMU_IMAGE

while the Traffic Controller uses DBR as a DBR number which

indexes to the appropriate MMO" record).

E. SUMMARY

The implementation of segment management functions and a

non-discrstionary security policy for the SASS has been pre-

sented in this chapter. The implementation of the Segment

Manager Module, Non-Discretionary Security Module, and Dis-

tributed Memory Manager management demonstration was de-

scribed.

- 192 -

Chapter XIX

CONCLUSIONS AND FOLLON ON WORK

The implementation of segment management tor the securi-

ty kernel of a secure archival storage system has been pre-

sented. The implementation was completed on Zilog»s Z8002

sixteen bit nonsegmented microprocessor. Segmentation hard-

ware {Zilog*s Z8010 Memory Management Unit) was not availa-

ble, therefore it was simulated in software as described by

Reitz [12]. The loop free modular construction used in the

implementation facilitates ease of expansion or modifica-

tion.

A non-discretionary security policy was implemented us-

ing a partially ordered lattice structure as a basis. En-

forcement was realized through an algorithm that compared

two labels and determined if their relationship was equal to

a desired relationship. Although the DqO security classifi-

cation system was represented, any non-discretionary securi-

ty policy that may be represented by a lattice structure may

similarly be implemented. This implementation has shown that

by having the non-discretionary security policy enforced in

one module, changing to another policy requires changing

only this one module.

- 193 -

Software engineering techniques used in previous work

emphasized the advantages of working with code that is well

structured, well documented, and well organized. Despite be-

ing written in assembly language, Reitz* implementation of

multiprogramming and process management proved to be consis-

tent in style, clarity and documentation. This enhanced the

construction of a segment management demonstration which was

built onto his synchronization demonstration. Further, re-

finements made to his code (not necessitated by any failures

of his coda) were relatively easily accomplished.

While the segment management implementation appears to

perform properly, it has not been subjected to a formal test

plan. Such a test plan should be developed and implemented.

The Memory Manager Process has been designed but not im-

plemented. Segment management implementation, provision for

IPC using more practical size messages, and the detailed de-

sign of the memory manager by Moore and Gary £5], provide a

sound foundation for memory manager implementation. A frame-

work of the mainline code needed is provided in the Memory

Manager Module of the demonstration code in Appendix J. Pri-

or to this implementation, formal testing of the segment

management implementation herein and the monitor implemented

by Reitz [12] should be completed.

- 194 -

PART F

IMPLEMENTATION OF PROCESS MANAGEMENT FOR A

SECURE ARCHIVAL STORAGE SYSTEM

This section contains excerpts from a Naval Postgraduate
School MS Thesis by A. R. Strickier [19]. The origins of
these excerpts are:

INTRODUCTION from Chapter I

IMPLEMENTATION ISSUES from Chapter III
PROCESS MANAGEMENT IMPLEMENTATION from Chapter 17
CONCLUSION from Chapter V

Minor changes have been made for integration into this report

Chapter XX

INTBODOCTION

This thesis addresses the implementation of process Man-

agement functions for the Secure Archival Storage System or

SASS. This system is designed to provide multilevel secure

access to information stored for a network of possibly dis-

similar host computer systems and the controlled sharing of

data amongst authorized users of the SASS. Effective pro-

cess management is essential to insure efficient use and

control of the system.

The major accomplishments of this thesis effort include

the provisions for efficient process creation and manage-

ment. These functions are provided through the establish-

ment of a system Traffic Controller and the creation of a

virtual interrupt structure. An effective mechanism for in-

ter-process communication and synchronization is realized

through an Event Manager that makes use of uniquely identi-

fied segments supported by eventcount and sequencer primi-

tives. A hardware controlled two domain operational envi-

ronment is created with the necessary interfacing between

domains provided by a software "gate" mechanism. Additional

support is provided through considerable work in the area of

database initialization and a technique for limited dynamic

memory allocation.

- 196 -

This implementation was completed on the commercial AMC

Am96/4 116 MonoBoard Computer with a standard Multibus inter-

face.

- 197 -

Chapter XXI

IMPLEHENTATION ISSOES

Issues bearing on the implementation of process manage-

ment and refinements made to existing modules are presented

in this chapter. Process management for the SASS was pro-

vided through the implementation of the Traffic Controller

Module, the Event Manager Module, the Distributed Memory

Manager Module, and a Gate Keeper Stub (system trap) . Addi-

tionally, since a demonstration/testbed was integral to the

testing and verification of the implementation, it was ne-

cessary to complete other supportive tasks. These suppor-

tive tasks included limited Kernel database initialization,

revised preempt interrupt handling mechanisms. Idle process

definition and structure, and additional refinements to ex-

isting modules.

A. DAJAB4§E INITIALIZATION

Previous work on SASS has relied on statically built da-

tabases, which proved to be sufficient for demonstration of

a single processor, single host supported system. In the

current demonstration, multiple hosts are simulated, and the

Kernel data structures have been refined to represent a mul-

tiprocessor environment. Since a multiprocessor system was

- 198 -

unavailable at the time of this demonstration, several

"runs" were made and traced, using different logical CPU

numbers, to show the correctness of this structure. Due to

this multiprocessor representation and simulation of multi-

ple hosts, the use of statically built Kernel databases was

no longer convenient. Therefore, it became necessary to

provide initialization routines for the dynamic creation of

these Kernel databases required for this implementation.

While it was not the intent of this effort to implement sys-

tem initialization, care was taken in the writing of these

initializing routines so that they might be utilized in the

system intiaiiz ation implementation with, hopefully, minimal

refinement. Database initialization was restricted to those

databases existing in the Inner Traffic Controller and the

Traffic Controller. Limited elements of the Known Segment

Table (KST) and Global Active Segment Table (G_AST) were

also created for demonstration purposes.

1- Iaa§£ S£afiic Controller Initialization

A "Bootstrap Loader" Module, which logically exists at a

higher level of abstraction within the Kernel, was created

to initialize the databases of the Inner Traffic Controller.

This initialization includes the creation of: 1) the Pro-

cessor Data Segment (PRDS) , 2) an MMU Map, 3} Kernel domain

stack segments for Kernel processes, 4) allocation and up-

dating of MMU entries for Kernel processes, and 5) Virtual

Processor Table (VPT) entries.

- 199 -

The PRDS was loaded with constant values that specify

the physical CPU ID, logical CPU ID, and number of VP's al-

located to the CPU. A design decision was made to allocate

logical CPU ID's in increments of two (beginning with zero)

so that they could be used to directly access lists indexed

by CPU number. The MMU map, constructed as a "byte" map,

was created to specify allocated and free MBU Image entries.

A separate procedure, CREATE_STACK, was created to es-

tablish the initial Kernel domain stack conditions for Ker-

nel processes. A discussion and diagram of these initial

stack conditions is presented in the next section.

ALLOCATE_HMU checks the MMU Map and allocates the next

availabe MMU entry to the process being created. The PRDS

is inserted in the allocated MMU entry and the DBR number is

returned to the calling procedure. The DBR number (handle)

is merely the offset of the DBR in the HMU Image. Since the

ITC deals with an address rather than a handle, a procedure,

GET_DBR_ADDR, was created to convert this offset into a phy-

sical address. UPDATE_MMU_IMAGE is the procedure which

creates or modifies MMU Image entries. UPDATE_MMU_IMAGE ac-

cepts as arguments the DBR number, segment number, segment

attributes, and segment limits. To facilitate process

switching and control, various process segments must possess

the same segment number system wide. This is accomplished

during initialization through the use of the

UPDATE_MMU_IHAGE procedure. In the ITC, these segments in-

- 200 -

elude the PHDS (segment number zero) and the Kernel stack

segment (segment number one).

The final task required in ITC intializat ion is the

creation of the VPT. The VPT header is initialized with the

"running" and "ready" lists pointers set to a 'nil* state,

and the "free" list pointer set to the first entry in the

message table. Virtual Processor entries are inserted in

the main body of the VPT by the UPDATE_VP__I ABLE procedure.

Entries are first made for the VP»s permanently bound to the

Memory Manager and Idle processes. The VP bound to the MM

process is given a priority of 2 (highest) , and the VP bound

to the Idle process is given a priority of (lowest) . The

External VP ID for both of these VP's is set to "nil" as

they are not visible to the Traffic Controller. The remain-

ing VP«s allocated to the CPU (viz., TC visible VP 1 s) are

then entered in the VPT with a priority of 1 (intermediate) ,

and their "idle" and "preempt" flags are set. The preempt

flag is set for these TC visible VP*s to insure proper sche-

duling by the Traffic Controller, The DBR for these remain-

ing VF»s is initialized with the Idle process DBR. A dis-

cussion of "idle" processes and VP f s will be provided later

in this chapter. The External VP ID for each TC visible VP

is merely the offset of the next available entry in the

EXTERNAL VP LIST. This External VP ID is entered in the

VPT, and the corresponding VP ID (viz., VPT Entry #) is en-

tered in the EXTERNAL VP LIST.

- 201 -

Once these VPT entries have been made, it is necessary

to set the state of each VP to "ready" and thread them (by

priority) into the appropriate ready list. A VPT threading

mechanism was provided by Reitz [12] in procedure

MAKE_READY. However, it was desired to have a more general

threading mechanism that could be used for other lists.

Procedure LIST_INSERT was created to provide this general

threading mechanism. LIST_INSERT is logically a "library"

function that exists at the lowest level of abstraction in

the Kernel. This function threads an object into a list

(specified by the caller) in order of priority, and then

sets its state as specified by the calling parameters.

Once the "Bootstrap Loader" has completed ITC initiali-

zation, it passes control to the ITC GETiORK procedure to

begin VP scheduling.

2. Traffis Controller Initialization

The initialization routines for the TC include rc_INIT,

CREATE_PROCSSS, and CREATE_KST. These routines are called

from the Memory Manager process. The MM process was chosen

to initiate these routines as it is bound to the highest

priority VP and will begin running immediately after the In-

ner Traffic Controller is initialized. Procedure

MM_ALLOCATE was written to allocate memory space for data

structures during initialization (viz.. Kernel stacks, user

stacks, and KST's). Memory space is allocated in blocks of

- 202 -

100 (hex) bytes. MM_ALLOCATE is merely a stub of the memory

allocating procedure designed by Moore and Gary [5].

It was necessary to pass long lists of arguments to the

TC for initialization purposes. To aid in this passing of

parameters, a data structure template was used. This temp-

late was created by declaring the parameters as a data

structure in both the sending and receiving procedures, and

then imaging this structure at absolute address zero. The

process 1 stack pointer was then decremented by the size of

the parameter data structure, and the parameters were loaded

into this data structure indexed by the stack pointer. This

template made it very easy to send and receive long argument

lists using the process' stack segment.

TC_INIT initializes the APT header and virtual interrupt

vector (discussed later) . Each element of the running list

is marked "idle", the ready and blocked lists are set to

"nil", and the number of VP*s and first VP for each CPU are

entered in the VP table. The address of the virtual preempt

handler is then passed to the ITC procedure CSEATE_INT_VEC

for insertion in the virtual interrupt vector.

CEEATE_PROCESS intializes user processes and creates en-

tries in the APT. ALLOCATE_MHU is called to acquire a DBR

number, and an APT entry is created with the process de-

scriptors (viz. , parameters) . The process is then declared

"ready" and threaded into the approciate ready list by

calling the threading function, LIST_INSEBT. A user stack

- 203 -

is allocated and UPDATE_MMU_IMAGE is called to include the

user stack in the MMU as segment number three. Ihe user

stack contains no information or user process initialization

parameters (viz., execution point and address space) as all

processes are initialized and begin execution from the Ker-

nel domain. Next, a Kernel domain stack is allocated and

included in the HM(J Image. A design decision was made to

initialize the Kernel stacks for user processes with the

same structure as the Kernel process 1 stacks. The rationale

for this decision is presented in the next section. As a

result of this decision, it became possible to use the

CREATE_STACK procedure in building Kernel domain stacks for

both Kernel and user prosesses. CBEAIE_STACK was therefore

used as a library function and placed in the library module

with LIST-INSERT.

Finally, a Known Segment Table (KST) stub is created to

provide a means of demonstrating the mechanism provided by

the eventcounts and sequencers for interprocess communica-

tion (IPC) and mutual exclusion. Space for the process* KST

is created by calling MM_ALLOCATE. The KST is then included

in the process' address space, as segment number two, by

aPDATE_a?lU_IilAGE. Initial entries are made in the Known

Segment Table by procedure CHEATE_KST. CREATE_KST makes an

entry in the KST for the "root" and marks the remaining KST

entries as "available." The Onigue_ID portion of the root's

handle (viz., upper two words) is initialized as -1 (for

- 204 -

convenience) and the G_AST entry number portion of the han-

dle (viz., lowest word) is initialized with zero.

3. Additional Init ial ization. Beguirements

As already mentioned, the Memory Manager Process prepares

the arguments utilized by TC_INIT, CREATE_PROCESS, and

CREATE_KST for TC initialization and user process creation.

Additionally, the MM process creates a Global Active Segment

Table (G_AST) stub utilized for demonstration of event data

management. The G_AST stub is declared in a separate module

(viz., the DEMO_DATABASE Module) with the format prescribed

by Moore and Gary [5]. However, the only fields initialized

and utilized by this implementation are UNIQUE_ID,

SEQUENCES, INSTANCE 1, and INSTANCE 2. The eventcounts and

seguencer fields are initialized as zero whenever an entry

is created in the G_AST. The ONIQUE^ID is created just to

support this demonstration and does not reflect the seg-

ment's unigue identifier as specified by Moore and Gary [5].

In this demonstration, UNIQUE_ID is built with the parame-

ters passed to MM_ACTIVATE. The first word in UHIQU£_ID is

the G_AST entry number of the segment's parent, and the sec-

ond word is the segment's entry number into the alias table.

The UNIQUE_ID together with the offset of tie segment's en-

try in the G_AST comprise the segment HANDLE maintained in

the KST. The first entry in the G..ASI is reserved for the

root, and is initialized with an Unigue_ID of minus one

- 205 -

(-1). It should be noted that any call to att_ACTIVATE for a

segment already possessing an entry in the G_AST will not

effect any changes to that entry. This is to insure that a

single G_AST entry exists for every segment as specified by

Moore and Gary [5].

B. PREEMPT INTERRUPTS

Various refinements were made in the handling of both

physical (hardware) and virtual (software) preempt inter-

rupts. A hardware preempt is a non-vectored interrupt that

invokes the virtual processor scheduling mechanism (viz.,

ITC GETWORK) . A virtual preempt is a software vectored in-

terrupt that invokes the user process scheduling mechanism

(viz., TC_GETWORK) . This implementation provides the notion

of a virtual interrupt that closely mirrors the behavior of

a hardware interrupt. In particular, there are similar con-

structs for initialization of a handler, invokation of a

handler, masking of interrupts, and return from a handler.

As with most hardware interrupts, a victual interrupt can

occur only at the completion of execution for an "instruc-

tion," where each kernel entry and exit for a process delim-

it a single "virtual instruction."

- 206 -

1 • 2kZ§ical Preempt Handler

The physical preempt handler resides in the virtual pro-

cessor manager (viz. , Inner Traffic Controller) . The func-

tions it perform are: 1) save the execution point, 2) in-

voke ITC GETWORK, 3) check for virtual preempt interrupts,

4) restore the execution point, and 5j return control via

the IRET instruction. Reitz [12] included the hardware

preempt handler in ITC GETWORK by establishing two entry

points and two exit points, one for a regular call to

GETWORK and another for the preempt interrupt. He had a se-

parate procedure, TEST_PREEMPT, that *as used to check for

the occurrence of virtual preempt interrupts. This structure

works nicely, but it reguires some means of determining how

GETWORK was invoked so that the proper exiting mechanism is

used. This was resolved by incorporating a preempt inter-

rupt flag in the status register block of every process 1

Kernel domain stack segment. A design decision was made to

restructure the hardware preempt handler into a single and

separate procedure, PHYS_PREEMPT_HANDLER. This allowed ITC

GETWORK to have a sugle entry and exit point, and it did

away with the necessity of maintaining a preempt interrupt

flag in the process stacks. PHYS_PRE2HPT_HANDLER was con-

structed from the preempt handling code in GETWORK and

procedure TEST_PB2EHPT. TEST_?REEMPT was delated from the

ITC as its functions were performed by PHZS_PREEMPT-HANDLER.

- 207 -

A further refinement was made to the hardware preempt

handler dealing with the method by which the virtual preempt

handler was invoiced. Reitz [12] invoked the virtual preempt

handler from TEST_PREEMPT by means of the "call" instruc-

tion. Since the virtual preempt handler logically exists at

a higher level of abstraction than the ITC, this invocation

violated our notion of only allowing "calls" to lower or

equal abstraction levels. However, this deviation was ne-

cessitated by the absence of a virtual interrupt structure.

This problem was alleviated by creating a virtual interrupt

vector in the ITC that is used in the same way as the hard-

ware interrupt vector. The virtual preempt was given a vir-

tual interrupt number (zero). The virtual interrupt handler

is then invoked by means of a "jump" through the virtual in-

terrupt vector for virtual interrupt number 0. This invoca-

tion occurs in the same manner that the handlers for hard-

ware interrupts are invoked. The virtual interrupt vector

is created by procedure CREATE_INT_VEC. CRE ATE_INT_VEC ac-

cepts as arguments a virtual interrupt number and the ad-

dress of the interrupt handler. The creation of the virtual

preempt entry in the virtual interrupt vector is accom-

plished at the time of the Traffic Controller initialization

by TC_INIT.

- 208 -

2. Virtual Preem2t Handles

The virtual preempt handler (VIRT_PREEMPT_HANDLER) re-

sides in the user process manager (viz., the Traffic Cont-

roller) . The functions performed by VIRT_PREEMPT_HANDLER

are: 1) determine the VP ID of the virtual processor being

preempted, 2) invoke the process scheduling mechanism (viz.,

TC_GETWORK) , and 3) return control via a virtual interrupt

return. The correct VP ID is obtained by calling RUNNING_VP

in the ITC. The Active Process Table is then locked, and

the state of the process running on that VP is changed to

"ready." kz this time, process scheduling is effected by

calling TC_GETVORK. Once process scheduling is completed,

the APT is unlocked and control is returned via a virtual

interrupt return. This virtual interrupt return is merely a

jump to the PREEMPT_RET label in the hardware preempt han-

dler (This jump emulates the action of the IRET instruction

for a hardware interrupt return)

.

This label is the point

at which the virtual preempt interrupts are unmasked.

All Kernel processes are initialized to appear as thougn

they are returning from a hardware preempt interrupt. All

user processes initially appear to be returning from a vir-

tual preempt interrupt. Therefore, the initial conditions

of a process' Kernel domain stack is largely influenced by

the stack manipulation of the preempt handlers. Figure 44

illustrates the initial Kernel domain stack structure for

all system processes.

- 209 -

3ase— >

Address
of

Segment

5P| > Preempt Return Point

N_S_P

Register 1

Register 15

Register

Interrupt ID

Initial .PCW

Initial EC

Current Stack Pointer

Kernel FCW

| Stack
J
"grows"

I
this

I vay

—
i

J IRET

1 Frame—
I

Figure 44: Initial Process Stack

- 210 -

The initial Kernel Flag Control Word (FCW) value is

"5000", indicating non-segmented code r system mode of opera-

tion, non-vectored interrupts masked, and vectored inter-

rupts enabled. The Current stack Pointer value is set to

the first entry in the stack (viz., SP) . The IEET Frame is

the portion of the Kernel stack affected by the IRET in-

struction. The first element. Interrupt ID (set to "FFFF")

is merely popped off of the stack and discarded. The next

element, Initial FCW, is popped and placed in the system

Flag Control Word. Initial FCW is set to "5000" for Kernel

processes and "1800" (indicating normal mode with all inter-

rupts enabled) for user processes. The final element of the

IRET frame, Initial IC is popped off of the stack and

placed in the program counter (PC) register. This value is

initialized as the entry address of the process in question.

The "register" entries on the stack represent the ini-

tial register contents for the process at the beginning of

its execution. Since the Kernel processes (viz., MM and

Idle) do not require any specific initial register states,

their entries reflect the register contents at the time of

stack creation. Initial register conditions are used to

provide initial "parameters" required by the user processes.

This will depend largely upon the parameter passing conven-

tions of the implementation language. The means for regis-

ter initialization was provided through CREATE_PEOCESS ; how-

ever, the only initial register condition used for the user

- 211 -

processes in this demonstration was register #13. Register

#13 was used to pass the user ID/Host number of the process

created. This value is utilized by the user process in ac-

tivating the segment used for inter-process communication

between a Host's Pile manager and I/O processes. Another

logical parameter passed to the user processes is the root

segment number. This did not reguire a register for passing

in the demonstration as it is known to be the first entry in

the KST for all processes. The N__S_P entry on the stack

represents the initial value of the normal stack pointer.

For user processes, this value is obtained when the Supervi-

sor domain stack for that process is created. For Kernel

processes, this value is set to "FFFF" since they execute

solely in the Kernel domain and have no Superivsor domain

stack. The Preempt Return Point specifies the address where

control will be passed once the process' VP is scheduled and

the "return" from ITC GETWORK is executed. For Kernel pro-

cesses, this is the point within the hardware preempt han-

dler where the virtual processor table is unlocked. For

user processes, this is the point within the virtual preempt

handler where the Active Process Table is unlocked.

It is important to note that if the APT was not unlocked

when a user process began its initial execution, the system

would become deadlocked and no further process scheduling

could occur. It should be further noted that the initial

stack conditions for user processes do not reflect a valid

- 212 -

history of execution. The "normal" history of a user pro-

cess returning from ITC GETWORK after a virtual preempt in-

terrupt would reflect the passing of control through

SKAP_VDBR and TC_GETWORK to the point in the virtual preempt

handler where the APT is unlocked. Another "possible" his-

tory could reflect the occurrence of a hardware preempt in-

terrupt at the point in the virtual preempt handler where

the APT is unlocked. Such a history would be depicted by

replacing the current top of the stack with the return point

into the hardware preempt handler (viz., at the point of

virtual preempt interrupt unmasking) and an additional hard-

ware preempt interrupt frame whose IC value in the IRET

frame is the point in the virtual preempt handler where the

AFT is unlocked. The current initial stack condition fcr

user processes was chosen for its ease of understanding and

its clear depiction of the fact that the structure of a Ker-

nel domain stack is the same for both Kernel and user pro-

cesses.

C IDLE PROCESSES

In the SAS3 design, there logically exists a Kernel do-

main "Idle" process for every physical processor in the sys-

tem and a Supervisor domain "Idle" process for every "TC vi-

sible" virtual processor in tae system. These processes are

necessary to insure that both the VP scheduler (viz., ITC

GETWORK) and the process scheduler (TC_GETWORK) will always

- 213 -

have some object to schedule, hence precluding any CPU or VP

from ever having an undefined execution point. Since the

Kernel domain Idle process performs no useful work, it could

be included within the ITC by means of an infinite looping

mechanism. The Kernel Idle process was maintained separate-

ly, however, as it is hoped that future work on SASS will

provide this Idle process with some constructive purpose

(e.g., performing maintenance diagnostics).

The Supervisor domain Idle processes (hereafter referred

to as TC Idle processes) are scheduled (bound) on VP«s when

there are no user processes awaiting scheduling. Since a TC

Idle process performs no user constructive work, we do not

want any VP executing a TC Idle process to be bound to a

physical processor. In other words, a VP bound to a TC Idle

process assumes the lowest system priority (represented by

the "idle flag"). Therefore, any such VP will have its idle

flag set and will not be scheduled unless it receives a vir-

tual preempt interrupt. Such an interrupt will allow the VP

to be rescheduled by the Traffic Controller. It should be

obvious, at this point, that a TC Idle process will never

actually begin execution on a real processor. This know-

ledge allowed a design decision to be made to only simulate

the existence of TC Idle processes. At the TC level, this

was accomplished by a constant value, IDLE_PROC, that was

used as a process ID in the APT running list, thus preclud-

ing the necessity of any "Idle" entries in the APT. At the

- 214 -

ITC level, any VP marked "Idle" (viz., the idle flag set)

was given the DBR number (viz., address space) of the Kernel

Idle process solely to provide the use of a Kernel domain

stack for rescheduling of the VP.

D. ADDITIONAL KERNEL REFINEMENTS

In addition to those already discussed, several other

refinements to existing Kernel modules were effected in this

implementation. One of these refinements deals with the way

virtual processors are identified by the Traffic Controller.

In the current implementation, all TC visible virtual pro-

cessors are given an External VP ID which corresponds to its

entry number in an External VP List. This required a modi-

fication to the ITC procedure RUNNING_VP. The benefits der-

ived from this refinement included the ability to directly

access the External VP ID in the Virtual Processor Table

vice the requirement of a run time division to compute its

value and the ability to use the External VP ID as an index

into the TC running list.

Refinements were also made to the existing Memory Manag-

er, File Manager and 10 process stubs used for demonstration

purposes. These refinements were largely associated with

the eventcount and sequencer mechanisms utilized in this im-

plementation. The current status of these processes is pro-

vided in this report.

- 215 -

The remaining refinements deal largely with the MMO Im-

age. In aoore and Gary's [5] design, the MMU Image was man-

aged by the Memory Manager process. This was largely be-

cause the MMO* Image is a processor local database and would

seem well suited for management by the non-distributed Ker-

nel. In fact, the MMU Image is utilized mainly by the ITC

for the multiplexing of process address spaces. Therefore,

in the current design, the MMU Images are maintained by the

Inner Traffic Controller. However, the MMU header proposed

by Moore and Gary (viz., the BLOCKS_USED and

MAXIMUM_AVAILABLE_BLOCKS fields) was retained in the Memory

Manager as it is used strictly in the management of a pro-

cess* virtual core and is not associated with the hardware

MMO.

In Wells 1 design [20], the Traffic Controller used the

linear ordering of the DBR entries in the MMU Image as the

DBR handle (viz., 1,2,3...). This required a run time divi-

sion operation to compute the DBS numoer, and a run tim

multiplication operation, by MM_GET_DBR_VALUE , to recompute

the DBR address for use by the ITC. In the current design,

the offset of the DBR entry in the MMU Image (obtained at

the time of KMO allocation) is used as the DBR handle in th€

Traffic Controller. Furthermore, SWAP_VDBR was refined tc

accept a DBR handle rather than a DBR address to preclude

the necessity of the Traffic Controller having to deal witl

MMO addresses. DBR addresses are computed only within th<

- 216 -

€

ITC (viz., by procedure GET_DBR_ADDR) by adding the value of

the DBR handle to the base address of the MMU Image. Since

DBR addresses are now used solely within the ITC, procedure

MM_GET_DBB_VALUE was no longer needed and was deleted from

the Memory Manager.

E. SUMMARY

The primary issues addressed in this thesis effort have

been presented in this chapter. Aside from the process man-

agement functions, this description included a mechanism for

limited Kernel database initialization, a revised preempt

interrupt handling mechanism, the creation of a virtual in-

terrupt structure, a definition of "idle" processes and

their structure, and a discussion of the minor refinements

effected in existing SASS modules. A detailed description

of the implementation of process management functions for

the SASS is presented in the next chapter.

- 217 -

Chapter XXII

PROCESS MANAGEMENT IMPLEMENTATION

The implementation of process management functions and a

gate keeper stub (system trap) is presented in this chapter.

The implementation is discussed in terms of the Event Manag-

er, Traffic Controller, Distributed Memory Manager, Oser

Gate, and Kernel Gate Keeper modules. A block diagram dep-

icting the structure and interrelationships of these modules

is presented in Figure 45. Support in developing the Z8000

machine code for this implementation was provided by a Zilog

MCZ Developmental System operating under the RIO operating

system. The Developmental System provided disk file manage-

ment for a dual drive, hard sectored floppy disk, a line

oriented text editor, a PLZ/ASM assembler, a linker and a

loader that created an executable image of each Z8000 load

module. An upload/download capability with the Am96/4 116

MonoBoard computer was also provided. This capability,

along with the general interfacing of the Am96/<*116 into the

SASS system, was accomplished in a concurrent thesis endea-

vor by Gary Baker. Baker's work relating to hardware ini-

tialization in SASS, will be published upon completion of

his thesis work in June 1981.

- 218 -

{ Kernel Gate
|

I
,

Gate Keeper

I"——I I-—7—1
1 1 I i

\
Read | |

Atrait
I I Ticket

| | Advance
|

I 1 «
1

I 1 1 ~|

I ,

I Convert |

I and
|

I Verify
|

Event Manager

, „, , , ,
1

I TC.Await | I Process
| j TC_Advance |

I j I class | f j

I 1

,
, , ,

I
TC_Getwork | | Virt Int |

j_,
j j Handler |

I 1

Traffic Controller

,
,

,
, {

,

J MM Head Sventcount | | MM_Ticket | | MM Advance |

,
r ..,

, ,
j—.-r

,

Distributed Memory Manager

Figure 45: Implementation Module Structure

- 219 -

A. EVENT MANAGER HOPPLE

The eventcount and sequencer primitives [11]# which are

system-wide objects, collectively comprise the event data of

SASS. As mentioned earlier, this event data is tied direct-

ly to system segments and is stored in the Global Active

Segment Table. There are two eventcounts and one sequencer

for every segment in the system. These objects are identi-

fied to the Kernel in user calls by specification of a seg-

ment number. Once this segment number is identified by the

Kernel, the segment's handle can be obtained from the pro-

cess 1 Known Segment Table. The segment handle identifies

the particular entry in the G_AST containing the event data

desired.

The Event Manager module manages the avent data within

the system and provides the mechanism for interprocess com-

munication between user processes. The Event Manager con-

sists of six procedures. Four of these (Advance, Await,

Read, and Ticket) represent the four user extended instruc-

tions provided by the Event Manager. The remaining two

procedures provide internal computational support to include

necessary security checking. The Event Manager is invoked

solely by user processes, via the Gate Keeper, through uti-

lization of the extended instruction set provided. For ev-

ery Event Manager extended instruction invoked by a user

process, the non-discretionary security is verified by com-

- 220 -

paring the security access classification of the process in-

voking the instruction with the classification of the object

(segment) being accessed. Access to the user process 1 Known

Segment Table is reguired by the module in order to ascer-

tain the segment handle and security class for a given seg-

ment number . The PLZ/ASM asssmbly language listing for the

Event Manager module is provided in Appendix A. A more de-

tailed discussion of the procedures comprising the Event

Manager follows.

1 • SugEort Procedures

The procedures GET_HANDLE and CQNVERT_AND_VERIFY provide

internal support for the Event Manager and are not visible

to the user processes. Procedure CONVERT_AN£_VERIFY is in-

voked by the four procedures representing the instruction

set of the Event Manager. The input parameters to

CONVERT_£M: _VERIFY are a segment number and a requested mode

of access {viz., read or write). C'CNVERT„AND_VERIFY returns

a pointer to the segment's handle and a success code.

Procedure GET_HANDLE is invoked solely by

CONVERT _AND_VERIFY. The input parameter to GET_HANDLE is

the segment number received as input by CONY ERT_AND_VERIFY.

GET_HANDLE returns a pointer to the segment's handle, a

pointer to the segment's security classification, and a suc-

cess cede. A discussion of the functions provided by these

support procedures follows,.

- 221 -

Procedure GET_HANDLE translates the segment number, re-

ceived as input, into a KST index number and verifies that

the resulting index number is valid. Next the base address

of the process' KST is obtained from procedure

ITC_GET_3E3_PTR. The KST index number is then converted

into a KST offset value and added to the base address to ob-

tain the appropriate KST entry pointer for the segment in

guestion. A verification is then made to insure that the

referenced segment is "known" to the process. If the seg-

ment is not known, an error message is returned to

CONVERT_AND_VERIFY. Otherwise, a pointer to the segments

handle is obtained to identify the segment to the memory

manager. A pointer to the segment's security class entry in

the KST is also returned for use in appropriate security

checxs.

Procedure CONVERT_AND_VERIEY provides the necessary

non-discretionary security verification for the extended in-

struction set of the Event Manager. Procedure GET_HANDLE

is invoked for segment number verification and to obtain

pointers to the segment's handle and security class. If

GET_HANDLE returns with a successful verification, the pro-

cess' security class is compared to the segment's security

class to verify the mode of access requested. A request for

"write" access causes invocation of the CLASS_EQ function in

the Non-Discretionary Security Module to insure that tne se-

curity classification of the process is equal to the classi-

- 222 -

fication of the eventcount or sequencer, which is the same

as that of the segment. Otherwise, the CLASSJSE function is

called to verify that the process has read access. if the

appropriate security check is unsuccessful, an error code is

returned by CONVERT_AND_VERIFY. Otherwise, the segment han-

dle is returned along with a success code of "succeeded" in-

dicating that the user process possesses the necessary se-

curity clearance to complete execution of the extended

instruction.

2

.

Read

Procedure READ ascertains the current value of a user

specified eventcount and returns its value to the caller.

The input parameters to READ are a segment number and an

instance (viz., an event number). CONVERT_AND_VERIFY is in-

voked with a "read" access request to obtain the segment's

handle and necessary verification. "Read" access is suffi-

cient for this operation as it only requires observation of

the current eventcount value and performs no data modifica-

tion. If verification :.s successful, procedure

MM_READ_EVENTCOu*NT is called to obtain the eventccunt value.

3

.

Ticket

Procedure TICKET returns the current sequencer value for

the segment specified by the user. CONVEBT_AND_VERIFY is

called with a request for write access to obtain verifica-

- 223 -

tion and the segment handle. Write access is required be-

cause once the sequencer value is read it must be increment-

ed in anticipation of the next ticket request. Once verifi-

cation is complete, MMJTICKET is invoked to obtain the se-

quencer value that is returned to the user process. It is

noted that every call to TICKET for a particular segment

number will return a unique and time ordered sequencer va-

lue. This is because the sequencer value may only be read

within MM_TICKET while the G_AST is locked, thereby prevent-

ing simultaneous read operations. Futhermore, once the se-

quencer value is read it is incremented before the G_AST is

unlocked.

** • Await

Procedure AWAIT allows a user process to block itself

until some specified event has occurred. The parameters to

AWAIT include a segment number and instance, which identify

a particular event, and a user specified value which identi-

fies a particular occurrence of the event. Verification of

read access and a pointer to the segment's handle is ob-

tained fuom procedure C0NVERT_AND_VERIFY.

.

Procedure

TC_AWAIT is invoked to effect the actual waiting for the

event occurrence. TC_AWAIT w^ll not return to AWAIT until

the requested event has occurred. It is noted that AWAIT

makes no assumptions about the event value specified by the

user. Therefore, the Kernel cannot guarantee that the event

- 22U -

specified by the user will ever occur; this is the responsi-

bility of other cooperating user processes.

5. Advance

Procedure ADVANCE allows a user process to broadcast the

occurrence of some event. This is accomplished by incre-

menting the value of the eventcount associated with the

event that has occurred. The parameters to ADVANCE include

a segment number and instance which identify a particular

event. The calling process must have write access to the

identified segment as modification of the eventcount is re-

quired. Verification of write access and a pointer to the

segments handle is obtained through procedure

CONVERT_AND_VERIFY. Procedure TC_ADVANCE is invoked to per-

form the actual broadcasting of event occurrence.

B« TRAFFIC CONTROLLER MODULE

The primary functions of the Traffic Controller module

are user process scheduling and support of the inter-process

cott-.mur.ication mechanism. The Traffic Controller is invoked

by the occurrence of a virtual preempt interrupt and by the

Erect Manager and the Segment Manager through the extended

instruction set: TC_Advance, TC_Await # Process_Class, and

Get_DBR_Nu*MBER. The Traffic Controller module is comprised

of nine procedures. Four of these procedures represent the

extended instruction set of the Traffic Controller. A de-

- 225 -

tailed discussion of six of the procedures contained in the

Traffic Controller module is presented below. The remaining

three procedures (viz., TC_INIT, CREAIE_PROCESS , and

CREATE_KST) were described in chapter three. The PLZ/ASM

assembly language source code listings for the Traffic Cont-

roller module is provided in Appendix B.

1 • TC Getworlc

Procedure TC_GETWORK provides the mechanism for user

process scheduling. The input parameters to TC_GETWORK are

the VP ID of the virtual processor to which a process will

be scheduled and the logical CPU number to which the virtual

processor belongs. The determination of which process to

schedule is made by a looping mechanism that finds the first

"ready" process on the ready -ist associated with the cur-

rent logical CPU number. Processes appear in the ready list

by order of priority. This looping mechanism is required as

both "running" and "ready" processes are maintained on the

ready list. This ready list structure was chosen to simpli-

fy the algorithm provided in procedure TC_Advance. If a

ready process is found, its state is changed to "running"

and its process ID (viz., the APT entry number) is inserted

in the running list entry associated with the current virtu-

al processor. Procedure SHAP_VDBR is then invoiced in the

Inner Traffic Controller to effect the actual process

switch. If a ready process was not found (viz., the ready

- 226 -

list was empty or comprised solely of "running processes")

,

then the running list entry associated with the current vir-

tual processor is marked with the constant "Idle_Proc" and

procedure IDLE is invoiced in the Inner Traffic Controller.

2. IC_Await

The primary function of TC_AWAIT is tha determination of

whether some user specified event has occurred. If the

event has occured, control is returned to the caller. Oth-

erwise, the process is blocked and another process is sche-

duled. The input parameters to TC_AWAIT are a pointer to a

segment handle, an instance (event number! , and a user spe-

cified eventcount value. TC_AWAIT initially locks the Ac-

tive Process Table and obtains the current value of the ev-

entcount in question by calling procedure

MM_READ_EVENTCOUNT. The determination of event occurrence

is made by comparing the user specified eventcount value

with the current eventcount. If the user value is less than

or equal to the current eventcount, the awaited event has

occurred and control is returned to the caller. Otherwise,

the awaited event has net yet occurred and the process must

be blocked.

If the process is to be blocked, procedure RaNNING_VP is

invoked to ascertain the VP ID of the virtual processor

bound to the process. The process* ID (viz., APT entry num-

ber) is then read from the running list. The input parame-

- 227 -

ters to TC_AWAIT (viz.. Handle, Instance, and Value) are

then stored in the Event Data portion of the process* APT

entry. The process is removed from its associated ready

list by redirecting the appropriate linking threads (poin-

ters) . Once removed from the ready list, the process is

threaded into the blocked list and its state changed to

"blocked" by invocation of the library function LIST_INSSRT.

Procedure TC_GETWORK is then called to schedule another pro-

cess for the current virtual processor.

3 . TC Advance

The primary purpose of TC_ADVANCE is the broadcasting

of some event occurrence. This entails incrementing the ev-

entcount associated with the event, awakening all processes

that are waiting for the event, and insuring proper schedul-

ing order by generating any necessary virtual preempt inter-

rupts. The high level design algorithm for TC_ADVANCE is

provided in Figure 46. The input parameters to TC_ADVANCE

are a pointer to a segment's handle and an instance (event

number) . Initially, TC_ADVANCE locks the APT to prevent the

possibility of a race condition. The eventcount identified

by the input parameters is then incremented by calling

MM_ADVANCE. MM_ADVANCE returns the new value of the event-

count. Once the eventcount has been advanced, TC_ADVANCE

awakens all processes awaiting this event occurrence. This

is accomplished by checking all processes that are currently

- 228 -

in the blocked list. The process* HANDLE and INSTANCE en-

tries are compared with the handle and instance identifying

the current event. if they are the same, then the process

is awaiting some occurrence of the current event. In such a

case, the process 1 VALUE entry in the APT is compared with

the current value of the eventcount. if the process 1 VALUE

is less than or equal to the current eventcount value, the

awaited event has occurred and the process is removed from

the blocked list and threaded into the appropriate ready

list by the library function LIsr_INSERI.

Once the blocked list has been checked, it is necessary

to reevaluate each ready list to insure that the highest

priority processes are running. It is relatively simple to

determine if a virtual preempt interrupt is necessary, how-

ever, it is considerably more difficult to determine which

virtual processor should receive the virtual preempt. To

assist in this evaluation, a "count" variable (number of

preempts needed) is zeroed and a preempt vector is created

on the Kernel stack with an entry for every virtual proces-

sor associated with the logical CPU being evaluated. Ini-

tially, every entry in the preempt vector is marked "true"

indicating that its associated virtual processor is a candi-

date for preemption. Once the preempt vector is initial-

ized, the first "n" processes on the ready list (where n

equals the number of VP's associated with the current logi-

cal CPU) are checked for a determination of their state. If

- 229 -

TC_ADVANCE Procedure (HANDLE, INSTANCE)

Begia

! Get new eventcount !

COUNT := MM.ADVANCE (HANDLE, INSTANCE)

Call WAIT.LOCK (APT)

! Wake up processes !

PROCESS := BLOCKED_LIST_HEAD

Do while not end of BLOCKED.LIST
If (PROCESS. HANDLE = HANDLE) and

(PROCESS. INSTANCE = INSTANCE) and
(PROCESS. COUNT <= COUNT)

then
Call LIST.INSERT (READY LIST)

end if

PROCESS := PROCESS. NEXT_PROCESS
end do

! Check all ready lists for preempts I

L0GICAL_C?U_NO := 1

DO while LOGICAL.CPU.NO <= #NR_CPU
! Initialize preempt vector I

VP_ID := FIRST.VP (LOGIC AL.CPU.NO)

DO for LOOP := 1 to NR.VP (LOGICAL_CPU.NO
RUNNING_LIST[VP_ID]. PREEMPT := #TRUE

VP_ID := VP_ID 1

end do

I Find preempt candidates !

CANDIDATES :=

PROCESS := READY_LIST_HEAD (LOGICAL.CPU_N0)

Figure 46 : TC.ADVANCE Algorithm

- 230 -

VP_ID := FIRST_VP(LOGICAL_CPU_NO)

Do (for CYCLE - 1 to NR_VP(LOGICAL_CPU_N0) and
not end of READY_LIST (LOGICAL CPU_NO)

If PROCESS = #RUNNING
then
RONNING_LIST[VP_ID]. PREEMPT := #FALSE
else
CANDIDATES := CANDIDATES + 1

end if

VP_ID := VP_ID + 1

PROCESS := PROCESS. NEXT_PROCESS
end do

! Preempt appropriate candidates !

VP_ID := PIRST_VP(LGGICAL_CPU_NO)

DO for CHECK := 1 to NR_VP (LOGICAL_CPU_NO)
If <RONSING_LIST[VP_ID]. PREEMPT = #TRUE) and

(CANDIDATES > 0)

then
Call SET_PREEMPT (VP_ID)

CANDIDATES := CANDIDATES - 1

end if

VP_ID := VP_ID 1

end do

L0GICAL_CP0_NO :- LOGICAL_CPU_NO + 1

end do

Call ONLOCK (APT)

Return

End PC ADVANCE

Figure 46: TC_ADVANCE Algorithm (Continued)

- 231 -

a process is found to be "running" then it should not be

preempted as processes appear in the ready list in order of

priority. When a running process is found, its associated

entry in the preempt vector is marked "false." If a process

is encountered in the "ready" state then it should be run-

ning and the "count" variable is incremented. When the

first "n" processes have been checked or when we reach the

end of the current ready list (whichever comes first) , the

entries in the preempt vector are "popped" from the stack.

If an entry from the preempt vector is found to be "true",

this indicates that its associated virtual processor is a

candidate for preemption since it is either bound to a lover

priority process, or it is "idle." In such a case, the

"count" variable is evaluated to determine if the virtual

processor associated with the vector entry should be

preempted. If the count exceeds zero, a virtual preempt in-

terrupt is sent to the VP and the count is decremented.

Otherwise, no preempt is sent as there is no higher priority

process awaiting scheduling.

This preemption algorithm is completed for every ready

list in the Active Process Table. Once all ready lists have

been evaluated, the APT is unlocked and control is returned

to the caller. It is noted that it is not necessary to in-

voke TC_GETW03K before exiting ADVANCE. If the current VP

reguires rescheduling, it will have received a virtual

preempt interrupt from the preemption algorithm. If this

- 232 -

has occurred, the VP will be rescheduled when its running

process attempts to leave the Kernel domain and the virtual

preempt interrupts are unmasked.

* • yirtual_Preempt Handler

VlRTOAL_PREEMPT_HANDLER is the interrupt handler for

virtual preempt interrupts. The entry address of

VIRTOAL_PREEMPT_HANDLER is maintained in the virtual inter-

rupt vector located in the Inner Traffic Controller. 3nce

invoked, the handler locks the Active Process Table and det-

ermines which virtual processor is being preempted by call-

ing RUNNIMG_VP. The process running on the preempted VP is

then set to the "ready" state and TC_GETHORK is invoked to

reschedule the virtual processor. Hhen TC_GETWORK returns

to VIRTUAL_PREEMPT_HANDLER, the APT is unlocked and a virtu-

al interrupt return is executed. This return is simply a

jump to the point in the hardware preempt handler where the

virtual interrupts are unmasked. This effects a virtual in-

terrupt return instruction.

5. R§aaiaing Proce dures

The remaining two procedures in the Traffic Controller

module represent the extended instructions: PROCESS_CLASS

and GET_DBP._NUMBER. Both procedures lock the Active Process

Table and call RUNNING_VP to determine which virtual proces-

sor is executing the current process. The process ID (viz.,

- 233 -

APT entry Number) is then extracted from the running list.

PROCESS_CLASS reads and returns the current process 1 securi-

ty access classification from the APT. GET_DBR_NUMBER reads

and returns the current process 1 DBS handle. It should be

noted that in general the DBH number provided by procedure

GET_DBR_NUMBER is only valid while the APT is locked. Par-

ticularly, in the current SASS implementation, the Segment

Manager invokes GET_DBR_NDMBER and then passes the obtained

DBR number to the Distributed Memory Manager for utilization

at that level. In a more general situation, the process as-

sociated with the DBR number may have been unloaded before

the DBR number was utilized, thus making it invalid. This

problem does not arise in SASS as all processes remain load-

ed for the life of the system.

C. DISTRIBUTED SEM.ORJ MANAGER MODULE

The Distributed Memory Manager module provides an inter-

face between the Segment Manager and the Memory Manager pro-

cess, manipulates event data in the Global Active Segment

Table (G_AST) , and dynamically allocates available memory.

A detailed description of the Distributed Memory Manager in-

terface to the Memory Manager process was presented by Wells

[20]. The remaining extended instruction set is discussed

in detail below. The complete PLZ/ASM source listings for

the Distributed Memory Manager module is provided in Appen-

dix C.

- 234 -

1 • £H_Read_Eventco ant

MM_READ_EVENTCOUNT is invoked by the Event Manager and

the Traffic Controller to obtain the current value of the

eventcount associated with a particular event. The input

parameters to this procedure are a segment handle pointer

and an instance (event Number) , which together uniguely

identify a particular event.

The G_AST is locked and the entry offset of the segment

into the G_AST is obtained from the segment's handle. The

instance parameter is then validated to determine which ev-

entcount is to be read. If an invalid instance is speci-

fied, control is returned to the caller specifying an error

condition. Otherwise, the current value of the specified

eventcount is read. The G_AST is then unlocked, and the

current eventcount value is returned to the caller.

2. M£_Advance

MM_ADVANCE is invoked by the Traffic Controller to re-

flect the occurrence of some event. The input parameters to

HM_ADVANCE are a pointer to a segment 1 s handle and a parti-

cular instance (event number)

.

The Global Active Segment Table is locked to prevent a

race condition,. and the offset of the segment's entry into

the G_AST is obtained from the segment handle. The instance

parameter is then validated to determine which eventccunt is

to be advanced. If an invalid instance is specified, an er-

- 235 -

cor condition is returned to the caller and no data entries

are affected. If the instance value is valid, the appropri-

ate eventcount is incremented, and its new value is re-

turned.

3 . M5_£icket

MM_TICKET is invoked by the Event Manager to obtain the

current value of the sequencer associated with a specified

segment. The input parameter to MM_TICKET is a pointer to a

segments handle.

Initially, MM_TICKET locks the Global Active Segment Ta-

ble to prevent a race condition. Next the offset of the

segment 1 s entry into the G_AST is obtained from the segment

handle. The current value of the sequencer for the speci-

fied segment is then read and saved as a return parameter to

the caller. The sequencer value is then incremented in an-

ticipation of the next ticket request. 3nce this is com-

plete, the G_AST is unlocked and control is returned to the

caller.

*• MSJUlocate

The MM_ALLOCATE procedure provided in this implementa-

tion is a stub of the MM_ALLOCATE described in the Memory

Manager design of Moore and Gary [5]. The primary function

of MM_ALLOCATE is the dynamic allocation of fixed size

olocks of available memory space. It is invoked in the cur-

- 236 -

rent implementation by the initialization routines in

BOOTSTRAP.LOADER and TC_INIT for the allocation of memory

space used in the creation of the Kernel domain and Supervi-

sor domain stack segments and the creation of the Known Seg-

ment Tables for user processes. Dynamic reallocation of

previously used memory space (viz., garbage collection) is

not provided by the MM_ALLOCATE stub in this implementation,

all memory allocation required in this implementation is for

segments supporting system processes that remain active, and

thus allocated, for the entire life of the system. Memory

is allocated in blocks of 256 (decimal) bytes of processor

local memory (on-board RAM) . In this stub allocatable memo-

ry is declared at compile time by a data structure

(MEM_POOL) that is accessible only by MM.ALLOCATE.

The input parameter to MM_ALLOCATE is the number of

blocks of requested memory. This parameter is converted

from a block size to the actual number of bytes requested.

This computation is made simple since memory is allocated in

powers of two. The byte s:.ze is obtained by logically

shifting left the input parameter eight times, where eight

is the power of two desired (viz., 256). Once the size of

the requested memory is computed, it is necessary to deter-

mine the starting address of the memory block (s) to be allo-

cated. To assist in this computation, a variable

(NEXT_BLOCK) is used to keep track of the next available

block of memory in MEM_POOL. NEXT_BLOCK, which is initial-

- 237 -

ized as zero, provides the offset into the memory being al-

located. Once the starting address is obtained, the physi-

cal size of the memory allocated is added to NEXT_BLOCK so

that the next request for memory allocation will begin at

the next free byte of memory in MEM_POOL. This new value of

MEXT_BLOCK is saved and the starting address of the memory

for this request is returned to the caller.

D. GATE KEEPER MODULES

The 5ASS Gate Keeper provides the logical boundary bet-

ween the Supervisor and the Kernel and isolates the Kernel

from the system users, thus making it tamper proof. This is

accomplished by means of the hardware system/normal mode and

the software ring-crossing mechanism provided by the Gate

Keeper. The Gate Keeper is comprised of two separate mo-

dules: 1) the USER_GATE module, and 2) the

KERNEL_GATE_KEEPER module. These modules are disjoint, with

the asER_GATE module residing in the Supervisor domain and

the KERNEL_GATE_KEEPER module residing in the Kernel domain.

It is important to note that the USER_GATE is a separately

linked component in the Supervisor domain and is not linked

to the Kernel. The only thing in common between these two

modules is a set of constants identifying the valid extended

instruction set which the Kernel provides to the users.

The Gate Keeper modules presented in this implementation

are only stubs as they do not provide all of the functions

- 238 -

required of the Gate Keeper. However, the only task not

provided in this implementation is the validation of parame-

ters passed from the Supervisor to the Kernel. A detailed

description of this parameter validation design is provided

by Coleman [2]. In the process management demonstration,

the Supervisor stabs are written in PLZ/ASM with all parame-

ters passed by CPO registers. A detailed description of the

Gate Keeper modules and the nature of their interfaces is

presented below. The PLZ/ASM source listings for the two

Gate Keeper modules are provided in Appendix D.

1 • 5§er_Gate Module

The OSER_GATE module provides the interface structure

between the user processes in the Supervisor domain and the

Kernel. The QSER_GATE is comprised of ten procedures (viz.,

entry points) that correlate on a one to one basis with the

ten "user visible" extended instructions (listed in Figure

10) provided by the Kernel. The only action performed by

each of these procedures is the execution of the "system

call" instruction (SC) with a constant value, identifying

the particular extended instruction invoiced, as the source

operand.

The SC instruction is a system trap that forces the

hardware into the system mode (Kernel domain) and loads re-

gister 15 with the system stack pointer (Kernel domain

stack} . The current instruction counter value (IC) is

- 239 -

pushed onto the Kernel stack along with the current CPU flag

control word (FCW) . In addition, the system trap instruc-

tion is pushed onto the Kernel stack with The upper byte

representing the SC instruction and the lower byte repre-

senting the SC instruction's source operand (viz., the Ker-

nel extended instruction code) . Together, these operations

form an interrupt return (IBET) frame as illustrated in Fig-

ure 44. Once this is complete, the FCW is loaded with the

FCW value found in the System Call frame of the Program Sta-

tus Area (viz. , the hardware "interrupt vector") . The

structure of the Program Status Area is illustrated in Fig-

ure 47. The instruction counter is then loaded with the ad-

dress of the SC instruction trap handler. This value is

also located in the SC frame of the Program Status Area.

- 240 -

OFFSET

12

16

20

24

28

32

Reserved

Unimplemented
Instruction

Trap

Privileged
Instruction

Trap

Kernel FCW

Kernel Gate Keeper
Address

Segment
Trap

Non-Maskable
Interrupt

Kernel FCW

PHYS_PRESHPT_HANDLER
Address

Vectored Int

1

I — Frames
I

System
—Call
Instruction

| Hardware
i|
Preempt

I

—
1
(Non-

| Vectored
| Interrupt)

* NOTE: Offsets represent Program Status Area structure

for non-segmented Z8002 microprocessor.

Figure 47: Program Status Area

- 241 -

2. Kernel Gate Kee per Module

The system trap handler for the System Call instruction

is the KERNEL_GATE_KEEPER. The address of the

KERNEL_3ATE_KEEPER and the Kernel FCH value are placed in

the System Call frame of the Program Status Area by the

BOOTSTRAP_LOADER module during initialization. The

KERNEL_GATE_KEEPER fetches the extended instruction code

from the trap instruction entry in the IRET frame on the

Kernel stack. This value is then decoded by a "case" state-

ment to determine which extended instruction is to be exe-

cuted. If the extended instruction code is valid, the ap-

propriate Kernel procedure is invoked. Otherwise, an error

condition is set and no Kernel procedures are not invoiced.

Once control returns to the KERNEL_GATE_KEEPER, the CPO re-

gisters and normal stack pointer (NSP) value are pushed onto

the Kernel stack in preparation for return to the Supervisor

domain. It is noted that this operation would normally oc-

cur immediately upon entry into the KERNEL_GATE_KEEPER. In

this implementation, however, parameter validation is not

accomplished and the CPU registers are used to pass parame-

ters to and from the Kernel only for use by the process man-

agement demonstration. In an actual SASS environment, all

parameters would be passed in a separate argument list and

the CPO registers would appear exactly the same upon leaving

the Kernel as they did upon entering the Kernel. This is

- 242 -

important :o insure that no data or information is leaked

from the Kernel by means of the CPU registers.

Control is returned to the Supervisor by means of the

return mechanism in the hardware preempt handler. This me-

chanism is utilized to preclude the necessity of building a

separate mechanism for the KERNEL_GATE_KEEPER that would ac-

tually perform the very same function. To accomplish this #

the KERNEL_GATE_KEEPER executes an unconditional jump to the

PREEMPT_RET label in PHYS_PREEMPT__HANDLER. This "jump" to

the hardware preempt handler represents a "virtual IRET" in-

struction providing the same function as the virtual inter-

rupt return described in the discussion of the virtual

preempt handler. At this point, the virtual preempt inter-

rupts are unmasked, the normal stack pointer and CPU regis-

ters are restored from the stack, and control is returned to

the Supervisor by execution of the IRET instruction.

E. SUMMARY

The implementation of process management functions for

the SASS has been presented in this chapter. The implemen-

tation was discussed in terms of the Event Manager, Traffic

Controller, Distributed Memory Manager, and Gate Keeper mo-

dules.

- 243 -

Chapter XXIII

CONCLUSION

The implementation of process management for the securi-

ty Kernel of a secure archival storage system has been pre-

sented. The process management functions presented provide

a logical and efficient means of process creation, control,

and scheduling. In addition, a simple but effective mechan-

ism for inter-process communication, based on the eventcount

and seguencer primitives, was created. tforlc was also com-

pleted in the area of Kernel database initialization and a

Gate Keeper stub to allow for dual domain operation.

The design for this implementation was based on the Zi-

log Z8001 sixteen bit segmented microprocessor [22] used in

conjunction with the Zilog Z80 10 Memory Management Unit

[23]. The actual implementation of process management for

the SASS was conducted on the Advanced Micro Computers

Am96/41i6 MonoBoard Computer [1] featuring the AmZ8002 six-

teen bit non-segmented microprocessor. Segmentation hard-

ware was simulated by a software Memory Management Unit Im-

age.

This implementation was effected specifically to support

the Secure Archival Storage System (SASS) [17]. However,

the implementation is based on a family of Operating Systems

- 244 -

[7] designed with a primary goal of providing multilevel in-

formation security. The loop free modular design utilized

in this implementation easily facilitates any reguired ex-

pansion or modification for other family members. In addi-

tion, this implementation fully supports a multiprocessor

design. While the process management implementation appears

to perform correctly, it has not been subjected to a formal

test plan. Such a test plan should be developed and imple-

mented before kernel verification is begun.

A. FOLLOW ON WORK

There are several possible areas in the SASS design that

would be immediately suitable for continued research. In

the area of hardware, this includes, the establishment of a

multiprocessor environment, hardware initialization, and in-

terfacing to the host computers and secondary storage.

Further work in the Kernel includes the actual implementa-

tion of the memory manager process, and the refinement of

the Gate Keeper and Kernel intialization structures. The

implementation of the Supervisor has not been addressed to

date. Its areas of research include the implementation of

the File Manager and Input/Output processes, and the final

design and implementation of the SASS-Hosts protocols.

Other areas that could also prove interesting in rela-

tion to the SASS include the implementation of dynamic memo-

ry management, the support of multilevel hosts, dynamic pro-

- 245 -

cess creation and deletion, and the provision of

constructive work to be performed by the Idle process.

- 246 -

Appendix A

EVENT MANAGER LISTINGS

Z8000ASM 2.02
LOC OBJ CODE STMT SOURCE STATEMENT

SLISTON $TTY

EVENT_MGR MODULE

CONSTANT
TRUE := 1

FALSE :=
READ_ACCESS := 1

WRITE ACCESS :=
SUCCEEDED := 2
SEGMENT_NOT_KNOWN := 28
ACCESS_CLASS_NOT EQ : = 33
ACCESSJZLASS NOT GE := 41
KST_SEG NO ;:= 2

NR_OF_KSEGS := 10
MAX_NO_KST_ENTRIES ; = 54
NOT_KNOWN ::= XFF

TYPE
H_ARRAY ARRAY[3 \JORD]

KST_REC RECORD
[MH.HANDLE H ARRAY
SIZE WORD
ACCESS_MODE BYTE
IN_CORE BYTE
CLASS LONG
M_S3G_N0 SHORT_ING?EGER
ENTRY_NUMBER SHORT_I*ITEGER]

EXTERNAL
MM TICKET I>ROCEDURE
SM_READ_EVENTCOUNT I>ROCEDURE
TC~ AD VANCE I>ROCEDURE
TC_AWAIT I•ROCEDURE
PROCESS_CLASS E•ROCEDURE
CLASS_EQ iPROCEDURE
CLASSJ3E i>ROCEDURE
ITC GET 5EG PTR E•ROCEDURE

- 247 -

INTERNAL

$SECTION EM_KST_DCL
! NOTE: THIS SECTION IS AN "OVERLAP
OR "FRAME" OSED TO DEFINE THE
FORMAT OF THE KST. NO STORAGE IS
ASSIGNED BUT RATHER THE KST IS
STORED IN A SEPARATELY OBTAINED
AREA. (A SEGMENT SET ASIDE FOR IT)!

SABS
0000 KST ARRAY[MAX_NO_KST_ENTRIES KST_REC]

- 248 -

GLOBAL
$SECTION

0000

0000 93P2

0002 2102
0004 0001

0006 5F00
0008 0000*

0018 5E08
001A 001E'
001C 97F2

001E 9E08
0020

EM_GLB_PROC

OOGA OBOO
OOOC 0002

OOOE 5E0E
0010 001C 1

0012 97F2
0014 5F00
0016 0000*

HEAD PROCEDURE
i ******************************
* READS SPECIFIED EVENTCOUNT *
* AND RETURNS IT* S VALUE TO *
* THE CALLER

* PARAMETERS: *
* R1: SEGMENT t *

* R2: INSTANCE *

* RETURNS: *

* RO: SUCCESS CODE *

* RR4: EVENTCOUNT *
******************************!

ENTRY
! SAVE INSTANCE !

PUSH dR15, R2

! "READ" ACCESS REQUIRED !

LD R2, #READ_ACCESS

! GET SEG HANDLE & VERIFY ACCESS !

CALL CONVERT AND VERIFY !R1:SEG #

R2:REQ. ACCESS
RETURNS:
RQ:SUCCESS CODE
R1:HANDLE PTR

!

CP RO, ^SUCCEEDED

IF SQ ! ACCESS PERMITTED!
THEN !READ EVENTCOUNT!

!RESTORE INSTANCE!
POP R2, dR15
CALL MM READ EVENTCOUNT !R1:HPTR

R2:INSTANC2
RETURNS:
R0:SUCC2SS CODE
RR4:EVENTCOUNT!

ELSE !RESTORE SP!

POP R2, a)R15

FI
RET

END READ

- 249 -

0020 TICKET PROCEDURE
i *******************************
* RETURNS CURRENT VALUE OF *

* TICKET TO CALLER AND INCRE- *

* MENTS SEQUENCER FOR NEXT *

* TICKET OPERATION *

* PARAMETERS: *

* R1: SEGMENT # *

* RETURNS: *

* R0: SUCCESS CODE *

* RR4: TICKET VALUE *

*******************************!

ENTRY
! GET SEG HANDLE S VERIFY ACCESS !

! "WRITE" ACCESS REQUIRED 2

0020 2102 LD R2, #WEITE_ACCESS
0022 0000
0024 5F00 CALL CONVERT_AND_VERIFY ! R1:SEG #

0026 0000*
R2:ACCESS REQ
RETURNS:
RQ:SUCCESS CODE
R1:HANDLE PTR!

0028 0B00 CP RO, #SUCCEEDED
002A 0002

IF EQ ! ACCESS PERMITTED!
002C 5E0E THEN ! GET TICKET !

002E 0038'
0030 5F00 CALL MMJEICKET !H1: HANDLE
0032 0000*

RETURNS:
RR4: TICKET!

! RSTORE SUCCESS CODE !

0034 2100 LD RO, tSUCCEEDED
0036 0002

FI
0038 9E08 RET
003A END TICKET

- 250 -

003A AWAIT PROCEDURE

* CURRENT EVENTCOUNT VALUE IS *

* COMPARED TO USER SPECIFIED *

* VALUE. IF USER VALUE IS *

* GREATER THAN CURRENT EVENT- *

* COUNT VALUE THEN PROCESS IS *

* "BLOCKED" UNTIL THE DESIRED *
* EVENT OCCURS. *

* PARAMETERS: *
* R1: SEGMENT # *
* R2: INSTANCE (EVENT #) *

* RR4: SPECIFIED VALUE *
**************************** ***
* RETURNS: *

* RO: SUCCESS CODE *

* ********************** * *******

j

ENTRY
! SAVE DESIRED EVENTCOUNT VALUE !

003A 91F4 PUSHL 3R15, RR4
! SAVE INSTANCE !

003C 93F2 PUSH 3R15, R2
! "READ" ACCESS REQUIRED !

003E 2102 LD R2, #READ_ACCESS
0040 0001

! GET SEG HANDLE & VERIFY ACCESS !

0042 5F0O CALL CONVERT_AND_V ERIFY !R1:SEG #

0044 0000*
R2:ACCE5S REQ
RETURNS:
RO:SUCCESS CODE
R1:HANDLE PTR

!

0046 0B00 CP RO, #SUCCEEDED
0048 0002

IF EQ ! ACCESS PERMUTED i

004A 5E0E THEN ! AWAIT EVENT OCCURRENCE i

034C 005A 1

! RESTORE INSTANCE !

004E 97F2 POP R2 r 3R15
! RESTORE SPECIFIED VALUE !

0050 95F4 POPL RR4, 3R15
0052 5F00 CALL TC_AWAIT !R1:HANDLE PTR
0054 0000*

R2: INSTANCE
RR4:VALUE
RETURNS:
RO: SUCCESS CODE!

- 251 -

0056 5E08
0058 005E«
005A 95F4
005C 97F2

005E 9E08
0060

ELSE ! RESTORE STACK!

POPL RR4, C&R15

POP R2, SR15
FI
RET

END AWAIT

- 252 -

0060 ADVANCE PROCEDURE
i *******************************
* SIGNALS THE OCCURRENCE OF *

* SOME EVENT. EVENTCOUNT IS *

* INCREMENTED AND THE TRAFFIC *

* CONTROLLER IS INVOKED TO *

* AWAKEN ANY PROCESS AWAITING *

* THE OCCURRENCE. *

* PARAMETERS: *

* R1: SEGMENT # *

* R2: INSTANCE (EVENT *) *

* RETURNS: *

* RO: SUCCESS CODE *

ENTRY
! SAVE INSTANCE !

0060 93F2 PUSH 3R15, R2

! GET SEG HANDLE & VERIFY ACCESS i

! "WRITE" ACCESS REQUIRED i

0062 2102 LD R2, #WRITE_ACCESS
0064 0000
0066 5F00 CALL CONVERT_AND_VERIFY !R1:SEG #

0068 0000»
R2:ACCESS REQ
RETURNS:
RO:SUCCESS CODE
B1:HANDLE PTR!

006A 0B00 CP RO, #SUCCEEDED
006C 0002

I? EQ ! ACCESS PERMITTED !

006E 5E0E THEN ! ADVANCED EVENTCOUNT I

0070 007C»
! RESTORE INSTANCE !

0072 97P2 POP R2, o>R15

0074 5F00 CALL TC_AD VANCE !R1: HANDLE PTR

0076 0000*
R2:INSTANCE
RETURNS:
RO:SUCCESS CODE!

0078 5E08 ELSE ! RESTORE STACK!

007A 007E*
007C 97F2 POP R2, AR15

FI

007E 9E08 RET
0080 END ADVANCE

- 253 -

INTERNAL
3SECTI0N EM_INT_PR0C

0000 CONVERT_AND_VERIFY PROCEDURE
t ******************************* V***«* V *

* CONVERTS SEGMENT NUMBER TO KST INDEX*
* AND EXTRACTS SEGMENT'S HANDLE FROM *
* KST. IF SUCCESSFUL, THEN ACCESS *

* CLASS OF SUBJECT IS CHECKED AGAINST *
* ACCESS CLASS OF OBJECT TO INSURE *

* THAT ACCESS IS PERMITTED. *
*** ** *** ****** ********* ********** *** * **
* PARAMETERS: *

* ,R1: SEGMENT NUMBER *
* R2: ACCESS REQUESTED *
*************************** XXV*** ******
* RETURNS: *

* RO: SUCCESS CODE *

* R1: HANDLE POINTER *
***************************************;

ENTRY
! SAVE REQUESTED ACCESS !

0000 93F2 PUSH 3R15, R2
! GET SEGMENT HANDLE !

0002 5F00 CALL GET_HANDLE !R1:SEG #

0004 0062*
RETURNS:
R0:SUCCESS CODE
R4:HANDLE PTR
R5:CLASS PTR!

C006 0B00 CP RO, #SUCCEEDED
C008 0002

IF EQ ! SEGMENT IS KNOWN !

COOA 5S0E THEN ! VERIFY ACCESS !

000C 005E'
! SAVE HANDLE 5 CLASS PTR !

000E 91F4 PUSHL 3R15, RR4
I GET SUBJECT'S SAC !

00 10 5F00 CALL PROCESS_CLASS ! RETURNS:
0012 0000*

RR2:PROC CLASSI
! RETRIEVE SEG CLASS POINTER !

0014 95F0 POPL RRO, a)R15

! GET SEGMENT'S CLASS !

0016 1414 LDL RR4, d)R1

• RETRIEVE REQUESTED ACCESS J

0018 97F1 POP R1 , dR15
! SAVE HANDLE POINTER •

001A 93F0 PUSH 3R 1 5 , RO
! CHECK ACCESS CLEARANCE !

001C 0301 CP R1, #WRITE_ACCESS
001E 0000

IF EQ ! WRITE ACCESS REQUESTED !

- 254 -

0020 5E0E THEN
0022 0040*
0024 5F00 CALL CLASS EQ !RR2:PROCESS CLASS
0026 0000*

RR4:SEGMENT CLASS
RETURNS:
R1: CONDITION CODE!

0028 0B01 CP R1, #FALSE
002A 0000

IP EQ ! ACCESS NOT PERMITTED!
002C 5S0E THEN
002E 0038«
0030 2100 LD RQ, #ACCESS CLASS NOT EQ
0032 0021
0034 5E08 ELSE !ACCESS PERMITTED!
0036 003C 1

0038 2100 LD RO, *SUCCEEDED
003A 0002

PI
003C 5E08 ELSE ! READ ACCESS REQUESTED !

003E 0058»
0040 5F00 CALL CLASS GE !RR2:PR0CESS CLASS
0042 0000*

RR4:SEGMENT CLASS
RETURNS:
R1:CONDITION CODE!

0044 0B01 CP R1, #FALSE
0046 0000

IF EQ 'ACCESS NOT PERMITTED!
0048 5E0E THEN
004A 0054'
004C 2100 LD RQ, #ACCESS_CLASS_NOT_GE
004E 0029
0050 5E08 ELSE !ACCESS PERMITTED!
0052 0058*
0054 2100 LD RO, #SUCCEEDED
0056 0002

PI
FI
! RETRIEVE HANDLE POINTER !

0058 97F1 POP R1, 3R15
005A 5E08 ELSE
005C 0060*

! RESTORE STACK !

005E 97P2 POP R2, 3R15
FI

0060 9E08 RET
0062 END CONVERT_AND_VERIFY

- 255 -

0062 GET_HANDLE PROCEDURE
t ********************* **********
* CONVERTS SEGMENT NUMBER TO *

* KST INDEX AND DETERMINES IF *
* SEGMENT IS KNOWN. IF KNOWN *

* POINTER TO SEGMENT HANDLE *

* AND POINTER TO SEGMENT CLASS*
* ARE RETURNED. *

* PARAMETERS: *

* R1: SEGMENT NUMBER *

* RETURNS: *

* R0: SUCCESS CODE *

* R4: HANDLE POINTER *

* R5: CLASS POINTER *

»

ENTRY
• CONVERT SEGMENT # TO KST INDEX # !

0062 0301 SUB EM, #NR_OF_KSEGS
0064 000A

! VERIFY KST INDEX !

0066 2100 LD RO, #SUCCEEDED
0068 0002
006A 0B01 CP R1, #0
006C 0000

IF LE ! INDEX NEGATIVE!
006E 5E0A THEN
0070 007A'
0072 2100 LD RO, #SEGMENT NOT_KNOWN
0074 001C
0076 5S08 ELSE I INDEX POSITIVE!
0078 0086*
007A 0B01 CP R1, *MAX NO KST ENTRIES
007C 0036

IF GT ! EXCEEDS MAXIMUM INDEX!
007E 5E02 THEN 'INVALID INDEX!
0080 0086*
0082 2100 LD RO, #SEGMENT_NOT KNOWN
0084 001C

FI
FI

0086 0B00 CP RO, #SUCCEEDED
0088 0002

IF EQ ! INDEX VALID!
008A 5E0E THEN
008C OOBE 1

! SAVE KST INDEX !

008E 93F1 PUSH a)R15, R1
! GET KST ADDRESS !

0090 2101 LD S1, #KST SEG NO
0092 0002
0094 5F00 CALL ITC_GET_SEG_PTB !R 1 : KST_SEG_NO

- 256 -

0096 0000*
RETURNS:
R0:KST ADDR!

! RETRIEVE KST INDEX * !

0098 97F3 POP R3, SR15

! CONVERT KST INDEX # TO KST OFFSET !

009A 1902 MULT RR2, tSIZEOF KST_REC
009C 0010

! COMPOTE KST ENTRY ADDRESS !

009E 8103 ADD R3, RO
! SEE IF SEGMENT IS KNOWN !

OOAO 4D31 CP KST.M_SEG_NO (R3) , #NOT_KNOHN
00A2 000E
00A4 OOFF

IF EQ ISEGMENT NOT KNOWN!
00A6 5E0E THEN
00A8 00B2«
OOAA 2100 LD RO, #SEGMENT_NOT_KNOWN
OOAC 001C
OOAE 5E08 ELSE ISEGMENT KNOWN!
00B0 OOBE*
00B2 2100 LD RO, tSUCCEEDED
00B4 0002

! GET HANDLE POINTER !

0OB6 7634 LDA R4, KST. MM_HANDLE (R3)

00B8 0000
! GET CLASS POINTER !

OOBA 7635 LDA R5, KST. CLASS (R3)

OOBC OOOA
FI

FI
OOBE 9E08 RET
OOCO END GET_HANDLE

END EVENT MGR

- 257 -

Appendix B

TRAFFIC CONTROLLER LISTINGS

Z8000ASM 2.02
LOC OBJ CODE STMT SOURCE STATEMENT

3LISTON $TTY
TC MODULE

CONSTANT

i ******** SYSTEM PARAMETERS ******** !

NR PROC
VP~NR
NR_CPO
NR_KST

i ******** SYSTEM
RUNNING

= 4
= 2
- 2
= 54

READY
BLOCKED
IDLE_PROC
NIL
INVALID
KERNEL_STACK
USER STACK
KST SEG
KST~LIMIT
USER FCH
WRITE
IINDICATES

CONSTANTS

1

2

&DDDD
XFFFF
XEEEE
1

3

2

1

X1800

LOWEST SYSTEM

SECURITY CLASSI
SYSTEM_LOW :=
STK_OFFSET := %F?
REMOVED := XABCD
TRUE := 1

FALSE :=
SUCCEEDED := 2

TYPE
AP_PTR
VP~PTR
ADDRESS
H ARRAY

WORD
WORD
WORD
ARRAY[3 WORD]

- 258 -

AP_TABLE RECORD
[NEXT_AP AP_PTfl
DBR WORD
SAC LONG
PHI INTEGER
STATE INTEGER
AFFINITY WORD
VP_ID yp pxfi
HANDLE H ARRAY
INSTANCE WORD
VALUE LONG
FILL_2 ARRAY[2 WORD]

RUN_ARRAY ARRAY[VP_NR AP_PTR]

RDY_ARRAY ARRAY[NR_CPU AP_PTR]

AP_DATA ARRAY[NR_PROC AP_TABLE]
VP_DATA RECORD

fNR_7P ARRAY[NR_CPU WORD]
FIRST ARRAY[NR CPU VP PTR]

]

KST_REC RECORD
[MK_HANDLE H_ARRAY
SIZE WORD
ACCESS BYTE
IN_CORE BYTE
CLASS LONG
M_SEG_NO SHORT_INTEGER
ENTRY_NUM SHORT~INTEGER

]

EXTERNAL
K_LOCK PROCEDURE
K_UNLOCK PROCEDURE
SET PREEMPT PROCEDURE
SWAP_VDBR PROCEDURE
IDLE* PROCEDURE
RUNNING_VP PROCEDURE
CREATE_INT_VEC PROCEDURE
LIST_INSERT PROCEDURE
ALLOCATE_MMU PROCEDURE
MM_ALLQCATE PROCEDURE
UPDATS_MMU_IMAGE PROCEDURE
CREATE_STACK PROCEDURE
MM_ADVANCE PROCEDURE
MM~READ_EVENTCOUNT PROCEDURE
G_AST_LOCK WORD
PREEMPT RET LABEL

- 259 -

0000

3SECTION TC_DATA
INTERNAL
APT RECORD

[LOCK WORD
RONNING_LIST RUN_ARRAY
READY_LIST RDY_ARRAY
BLOCKED LIST AP PTR
FILL_3 LONG
VP VP_DATA
FILL ARRAY£4 UORD]
AP AP DATA

]

! THESE VARIABLES ARE USED DURING TC
INITIALIZATION TO SPECIF* AVAILABLE
ENTRIES IN THE APT, AND ARE INITIAL-
IZED BY TC_INIT IN THIS IMPLEMENTATION!

00A0 NEXTJTP WORD
00A2 APT_ENTRY WORD

SSECTION TC_LOCAL
$A3S
!NOTE: USED AS OVERLAY ONLY!

0000 ARG_LIST RECORD
[REG ARRAY£ 13 WORD]
IC WORD
CPU_ID WORD
SAC1 LONG
PRI1 WORD
USR_STK WORD
KER_STK WORD
KST1 LONG

]

SABS
INOTE: USED AS STACK FRAME FOR
STORAGE OF TEMPORARY VARIABLES
FOR CREATE_PROCESS.!

0000 CREATE "RECORD
[ARG^PTR WORD
DBR~NUM WORD
LIMITS WORD
SEG_ADDR ADDRESS
N_S P WORD

1

$ABS
0000 HANDLE_VAL RECORD

[HIGH LONG
LOW WORD

]

!THE FOLLOWING DECLARATION IS UTILIZED
AS A STACK FRAME FOR STORAGE OF

- 260 -

TEMPORARY VARIABLES UTILIZED BY
TC_ADVANCE AND TC_AWAIT.

!

$ABS
0000 TEMP RECORD

[HANDLE_PTR WORD
EVENT_NR WORD
EVENTUAL LONG
ID_VP~ WORD
CPU_NUM WORD
HANDLE_HIGH LONG
HANDLE_LOW WORD

]

SSECTION TC_KST_DCL
!NOTE: KST DECLARATION IS USED HERE
TO SUPPORT KST INITIALIZATION FOR
THIS DEMONSTRATION ONLY. THIS
DECLARATION AND INITIALIZATION
SHOULD EXIST AT THE SEGMENT MANAGER
LEVEL AND THUS SHOULD BE REMOVED
UPON IMPLEMENTATION OF SYSTEM
INITIALIZATION.

!

SABS
0000 KST ARRAY[NR_KST KST_REC]

- 261 -

0000
3SECTION TC_INT_PROC

TC_GETWORK PROCEDURE
I **,**************************
* PROVIDES GENERAL MANAGE- *

* MENT OF USER PROCESSES BY *

* EFFECTING PROCESS SCHEDO- *

* LING ON VIRTUAL PROCESSORS*
******************* **********
* PARAMETERS: *

* R1: CURRENT VP ID *

* R3: LOGICAL CPU # *

* LOCAL VARIABLES: *

* R2: NEXT READY PROCESS *

* R4: AP PTR *

*****************************!

0000
02

0004
0006
0008
000A
000C
000E

0C10
0012
0014
0016
0018
001A
001C

001E
0020
0022
0024
0026
0028
002A
002C

002E
0030
0032
0034
0036
0038

6132
0006*

0B02
FFFF
5E0E
0010 1

5E08
0026*

4D21
002A'
0001
5E0E
001E"
5E08
0026*

6124
0020'
A142
E8EF
0B02
FFFF
5E0E
003C»

4D15
0002'
DDDD
5F00
0000*
5E08

ENTRY
! FIND FIRST READY PROCESS I

LD R2, APT.READY_LIST(R3)

GET READY_AP:
DO ~! WHILE NOT (END OF LIST OR READY)!
CP R2, #NIL

IF EQ !NO READY PROCESS! THEN

EXIT FROM GET_READY_AP

FI
CP APT. AP. STATE (R2) , #READY

IF EQ I PROCESS READY! THEN

EXIT FROM GET_READY_AP

FI
! GET NEXT AP FROM LIST !

LD R4, APT.AP.NEXT_AP (R2)

LD R2, R4
OD
CP R2,#NIL

IF EQ 2 IF NO PROCESSES READY ! THEN

! LOAD IDLE PROCESS !

LD APT.RUNNING_LIST(R1) , #IDLE_PROC

CALL IDLE

ELSE

- 262 -

003A 0052*

003C 6F12
003E 0002'
0040 4D25
0042 002A«
0044 0000
0046 6F21
0048 002E*
004A 6121
004C 0022*
004E 5F00
0050 0000*

0052 9E08
0054

! LOAD FIRST READY AP !

LD APT.RUNNING_LIST (R1) , R2

LD APT. AP. STATE (R2) , #RUNNING

LD APT. AP. VP_ID(R2) , R1

LD R1, APT.AP.DBR (R2)

CALL SWAP_VDBR !(R1:DBR)!

FI
RET

END TC GETWORK

- 263 -

0054 7604
0056 0000'
0058 5F00
005A 0000*

005C 5F00
005E 0000*

0054 VIRTUAL_PREEMPT_HANDLER PROCEDURE
i ******** *******************
* LOADS FIRST READY AP *

* IN RESPONSE TO PREEMPT *

* INTERRUPT *

***************************!

ENTRY
!** CALL «AIT_LOCK (APT-.LOCK) **!
!** RETURNS WHEN PROCESS HAS LOCKED APT **!
LDA R4, APT. LOCK

CALL K_LOCK

! GET RUHNING_VP ID !

CALL RUNNING_VP IRETURNS:

R1:VP_ID
R3:CPU #!

! GET AP !

LD R2, APT.RUNNING_LIST(R1)

• IF NOT AN IDLE PROCESS, SET IT TO READY !

CP R2, #IDLE_PROC

IF NE ! NOT IDLE 1 THEN

LD APT.AP.STATE(R2) , #READY

FI

! LOAD FIRST READY PROCESS !

0072 5F00 CALL TC GETWORK !R1:VP ID
0074 0000'

R3:CPU #!

!NOTE: THIS IS THE INITIAL POINT OF
EXECUTION FOR USER PROCESSES.!

VIRT_PREEMPT RETURN:
»**~CALL UNLOCK (APT-. LOCK) **!
!** RETURNS WHEN PROCESS HAS UNLOCKED APT **!
!** AND ADVANCED ON THIS EVENT **!

0076 7604 LDA R4, APT. LOCK
0078 0000*
007A 5F00 CALL K_UNLOCK
007C 0000*

• PERFORM A VIRTUAL INTERRUPT RETURN !

!NOTE: THIS JUMP EFFECTS A VIRTUAL
IRET INSTRUCTION.

!

007E 5E08 JP PREEMPT_RET
0080 0000*

- 264 -

0060 6112
0062 0002*

0064 0B02
0066 DDDD
0068 5E06
006A 0072'
006C 4D25
006E 002A*
0070 0001

0082 END VIRTUAL PREEMPT_HANDLER

- 265 -

GLOBAL
SSECTION TC_GLB_PROC

0000 TC_INIT PROCEDURE
i *****************************
* INITIALIZES APT HEADER *

* AND VIRTUAL INT VECTOR *

* PARAMETERS: *

* HI: CPU_ID *

* R2: NR_VP *

*****************************{

ENTRY
! NOTE: THE NEXT FOUR VALUES ARE
ONLY TO BE INITIALIZED ONCE. !

LD NEXT_VP, #0

LD APT_ENTRY, #0

LD APT.BLOCKED_LIST, #NIL

CLR APT. LOCK

i ***************************************
NOTE: THE FOLLOWING CODE IS INCLUDED
ONLY FOR SIMULATION OF A MULTIPROCESSOR
ENVIRONMENT. THIS IS TO INSURE THAT THE
READY LIST(S) AND VP DATA OF THE SIMULATED
CPU(S) ARE PROPERLY INITIALIZED. IN AN
ACTUAL MULTIPROCESSOR ENVIRONMENT, THIS
BLOCK OF CODE SHOULD BE REMOVED.
***************** ************* ***********]

LD R4, #0

DO
CP R4, #NR_CPU*2

IF EQ IALL LISTS INITIALIZED!
THEN EXIT

0000 4D05
0002 00A0'
0004 0000
0006 4D05
0008 00A2»
000A 0000
OOOC 4D05
000E 000A'
0010 FFFF
0012 4D08
001U 0000'

0016 2104
0018 0000

001A 0B04
001C 0004

001E 5E0E
0020 0026*
0022 5E08
0024 0036'

0026 4D45
0028 0006*
002A FFPF

FI
! INITIALIZE READY_LISTS AS EMPTY I

LD APT.READY_LIST(R4) , #NIL

INITIALLY MARK ALL LOGICAL CPU 1 S

AS HAVING 1 VP. THIS IS NECESSARY
TO INSURE TC_ADVANCE WILL FUNCTION
PROPERLY, AS"lT EXPECTS EVERY CPU

- 266 -

TO HAVE AT LEAST 1 VP. !

002C 4D45 LD APT.VP.NR VP(R4), #1
002E 0010*
0030 0001
0032 A941 INC R4, #2
0034 E8F2 OD

! END MULTIPROCESSOR SIMULATION CODE.
A*************************************;

0036 6F12 LD APT.VP.NR VP(R1), R2
0038 0010*
003A 6103 LD R3 , NEXT VP
003C 00A0»
003E 6F13 LD APT. VP. FIRST (R1) , R3
0040 0014»

! RECOMPUTE NEXT_VP VALUE FOR TC
INITIALIZATION OF NEXT LOGICAL
CPU. !

0042 A125 LD R5 , R2
0044 1904 MULT RR4, #2

0046 0002
0048 8153 ADD R3, R5
004A 6F03 LD NEXT_VP, R3
004C 00A0'

! INITIALIZE RUNNING LIST !

004E 6113 LD R3, APT. VP. FIRST (R 1)

0050 0014"
DO

0052 0B02 CP R2, #0

0054 0000
0056 5E0E IF EQ THEN EXIT FI
0058 005E«
005A 5E08
005C 006A'
005E 4D35 LD APT. RUNNING_LIST (R3) , #IDLE_PROC
0060 0002 1

0062 DDDD
0064 A931 INC R3, #2

0066 AB20 DEC R2, #1

0068 E8F4 OD
006A 4D15 LD APT.READY_LIST (R1) , #NIL

006C 0006'
006E FFFF
0070 2101 LD R1 , #0

0072 0000
• ENTRY ADDRESS !

0074 7602 LDA R2 , VIRTUAL_PfiEEMPT_HANDLEE
0076 0054'
0078 5F00 CALL CREATE_INT_VEC
007A 0000*

!R1:VIRTUAL INTERRUPT #

R2:INTERRUPT HANDLER ADDRESS!

007C 9E08 RET
007E END TC_INIT

- 267 -

007E CREATE_PROCESS PROCEDURE
i *************************
* CREATES USER PROCESS *
* DATABASES AND APT *

* ENTRIES *

* PARAMETERS: *

* R14: ARGUMENT PTR *

i

007E 030F
0080 000A

0082 6FFE
0084 0000

0086 7604
0088 0000*
008A 5F0O
008C 0000*

008E 5F00
0090 0000*

0092 6101
0094 00A2 1

0096 2102
0098 0020
009A 8112

009C 6F02
009E 00A2'

00A0 4D15
00A2 0020»
00 A4 FFFF
00A6 6F10
0CA8 0022'

OOAA 54E2
OOAC 001E
OOAE 5D12
OOBO 0024«

00B2 61E2

ENTRY
!NOTE: THIS PROCEDURE IS A STUB TO ALLOW
PROCESS INITIALIZATION FOE THIS
DEMONSTRATION.!

• ESTABLISH STACK FRAME FOR LOCAL
VARIABLES. !

SUB R15, #SIZEOF CREATE

! STORE INPUT ARGUMENT POINTER !

LD CREATE. ARG_PTR (R15) , R14

! LOCK APT !

LDA R4, APT. LOCK

CALL K_LOCK

! RETURNS WHEN APT IS LOCKED !

! CREATE MMU ENTRY FOR PROCESS i

CALL ALLOCATE_MMU ! RETURNS:

RO: DBR #»

! GET NEXT AVAILABLE ENTRY IN APT !

LD R1, APT_ENTRY

! COMPUTE APT OFFSET !

LD R2, #SIZEOF AP_TABLE

ADD R2, R1
! SAVE NEXT AVAILABLE APT ENTRY !

LD APT_ENTRY, R2

! CREATE APT ENTRY FOR PROCESS !

LD APT. AP. NEXT_AP (R1) , #NIL

LD APT. AP. DBR(R1) , RO

! GET PROCESS CLASS I

LDL RR2, ARG_LIST. SAC1 (R14)

LDL APT. AP.SAC (R1) , RR2

! GET PROCESS PRIORITY !

LD R2, ARG_LIST.PRI1 (R14)

- 268 -

00B4 0022
00B6 6F12 LD APT. AP. PRI (R1) , R2
00B8 0028'

! GET LOGICAL CPO # !

OOBA 61E2 LD R2, ARG_LIST.CPU ID(R14)
OOBC 001C
OOBE 6F12 LD APT. AP. AFFINITY (R1) , R2
OOCO 002C

ITHREAD IN LIST AND MAKE READY!
00C2 7623 LDA R3 r APT. READY LIST(R2)
00C4 0006*
00C6 7604 LDA R4, APT. AP. NEXT AP
00C8 0020'
OOCA 7605 LDA R5, APT. AP. PRI
OOCC 0028*
OOCE 7606 LDA R6 , APT. AP. STATE
OODO 002A»
00D2 2107 LD R7, #READY
00D4 0001
00D6 AD21 EX R1, R2

! SAVE DBR # !

00D8 6FF0 LD CREATE. DBR NUM(R15), RO
OODA 0002
OODC 5F00 CALL LIST_INSERT
OODE 0000*

! R2: OBJ ID
R3: LIST HEAD PTR
R4: NEXT OBJ PTR
R5: PRIORITY PTR
R6: STATE PTR
R7: STATE!

! ONLOCK APT !

OOEO 7604 LDA R4, APT. LOCK
00E2 0000*
00E4 5F00 CALL K UNLOCK
00E6 0000*

!CREATE USER STACK!
! RESTORE ARGUMENT POINTER !

00E8 61FE LD R14, CREATE. ARG_PTR(R15)
OOEA 0000
OOEC 61E3 LD S3, ARG_LIST .USR_STK (R14)
OOEE 0024

! SAVE LIMITS !

OOFO 6FP3 LD CREATE. LIMITS (R1 5) , R3
00F2 0004
00F4 5F00 CALL MM_ALLOCATE !R3: # OF BLOCKS
0OF6 0000*

RETURNS:
R2: START ADDR!

.'COMPUTE & SAVE NSP!
00F8 A128 LD R8, R2

! ESTABLISH INITIAL SP VALUE
FOR USER STACK. !

OOFA 0108 ADD R8, #STK_OFFSET

- 269 -

OOFC OOFF
OOFE 6FF8 LD CREATE. N_S_P (R 15) , R8
0100 0008

! RESTORE LIMITS !

0102 61F4 LD R4, CREATE. LIMITS (R15)
104 000'4

0106 AB40 DEC R4 !SEG LIMITS!
! RESTORE DBR !

0108 61F0 LD RO, CREATE. DBRJJUM (R 1 5)

010A 0002
010C 2101 LD R1, #USER_STACK
010E 0003
0110 2103 LD R3, #WRITE IATTRIBUIE!
0112 0000
0114 5F00 CALL UPDATE MMU IMAGE
0116 0000*

•RO: DBR #

R1: SEGMENT #

R2: SEG ADDRESS
R3: SEG ATTRIBUTES
R4: SEG LIMITS!

!CREATE KERNEL STACK!
! RESTORE ARGUMENT POINTER i

0118 61FE LD R14, CREATE. ARG_PTR (R15)
011A 0000
01 1C 61E3 LD R3, ARG LIST.KER STK(R14)
011E 0026
0120 5F00 CALL MM ALLOCATE !R3: # OF BLOCKS
0122 0000*

RETURNS
R2: START ADDR!

!MAKE MMU ENTRY!
! RESTORE DBR # !

0124 61F0 LD RO, CREATE. DBR NUM(R15)
0126 0002
0128 2101 LD R1, #KERNEL STACK
012A 0001
012C A134 LD R4, R3
012E AB40 DEC R4
0130 2103 LD R3, #HRITE
0132 0000

! SAVE START ADDRESS !

0134 6FF2 LD CREATE. SEG ADDR(R15), R2
0136 0006
0138 5F00 CALL UPDATE MMU_IMAGE
013A 0000*

!R0: DER #

R1: SEGMENT #

R2: SEG ADDRESS
R3: SEG ATTRIBUTES
R4: SEG LIMITS!

•ESTABLISH ARGUMENTS!
! RESTORE ARGUMENT POINTER !

013C 61FE LD Rl4 r CREATE. ARG_PTR (R1 5)

- 270 -

013E 0000
! RESTORE STACK ADDRESS !

0140 61F1 LD R1, CREATE. SEG ADDR(R15)
0142 0006
0144 2103 LD R3 , #USER FCW
146 1800

0148 61E4 LD R4, ARG LIST.IC(R14)
014A 001A

! RESTORE INITIAL NS P !

014C 61F5 LD R5, CREATE. N_S P(R15)
014E 0008
0150 7606 LDA R6, VIRT PREEMPT RETURN
0152 0076*
0154 030F SUB R15, #8
0156 0008
0158 1CF9 LDM SR15, R3, #4
015A 0303

! LOAD ARGUMENT POINTER FOR
CREATE STACK CALL !

015C A1F0 LD RO, R15
015E 93P1 POSH 3R15, R1
0160 A1E1 LD R1, R14

! LOAD INITIAL REGISTER VALUES TO
BE PASSED TO USER PROCESS AS
INITIAL PARAMETERS. !

0162 5C11 LDM R2 f ARG_LIST.REG (R1) , #13
0164 020C
0166 0000
0168 97F1 POP R1, 3R15
16A 5F00 CALL CREATE STACK

016C 0000*
! BO: ARGUMENT PTR
R1: TOP OF STACK
R2-R14: INITIAL
REG STATES!

!NOTE: THE ABOVE INITIAL REG STATES
REPRESENT THE INITIAL PARAMETERS
(VIZ., REGISTER CONTENTS) THAT A
USER PROCESS WILL RECEIVE UPON
INITIAL EXECUTION. J

016E 010F ADD R15, #8 'OVERLAY PARAMETERS!
0170 0008

! ALLOCATE KST !

0172 2103 LD R3, #K3T_LIMIT
0174 0001
0176 5F00 CALL MM_ALLOCATE !R3:# OF BLOCKS
0178 0000*

RETURNS
R2:START ADDR!

! RESTORE DBR !

017A 61F0 LD RO, CREATE. DBR SUM (R15)

017C 0002
! SAVE KST ADDRESS I

017E 6FF2 LD CREATE. SEG_ADDR (R15) , R2

- 271 -

0180 0006
•MAKE MMO ENTRY FOR KST SEG!

0182 2101 LD R1, #KST_SEG
0184 0002
0186 2103 LD R3, #WRITE 1ATTRIBUTE!
0188 0000
018A 2104 LD R4, #KST_LIMIT-1
18C 0000

018E 5F00 CALL UPDATE_MKU_IMAGE
0190 0000+

! RO: DBR *

R1: SEGMENT #

R2: SEG ADDRESS
R3: SEG ATTRIBUTES
R4: SEG LIMITS!

! RESTORE KST ADDRESS !

0192 61F2 LD R2, CREATE. SEG ADDR(R15)
0194 0006

0196 5F00
0198 01A0«

I CREATE INITIAL KST STUB !

0196 5F00 CALL CREATE KST !R2:KST ADDR!

! REMOVE TEMPORARY VARIABLE
STACK FRAME. !

019A 010F ADD R15, #SIZEOF CREATE
019C 000A
019E 9E08 RET
1A0 END CREATE PROCESS

- 272 -

01A0 CREATE_KST PROCEDURE
i ************************
* CREATES KST STUB FOR *
* PROCESS MANAGEMENT *
* DEMO. INSERTS ROOT *
* ENTRY IN KST. NOT *

* INTENDED TO BE PINAL *
* PRODUCT. *

* PARAMETERS: *
* R2: KST ADDRESS *

j

ENTRY
!NOTE: THIS PROCEDURE IS A STUB USED
FOR INITIALIZATION IN THIS IMPLEMENTATION
ONLY. THE ACTUAL INITIALIZATION CODE
FOR THE KST HILL RESIDE AT THE SEGMENT
MANAGER LEVEL ONCE IMPLEMENTATION OF
SYSTEM INITIALIZATION IS EFFECTED. !

! CREATE ROOT ENTRY IN KST !

0U0 1406 LDL RR6, #-1 !ROOT HANDLE!
01A2 FFFF
01A4 FFFF
01A6 5D26 LDL KST. MM_HANDLE (R2) , RR6
01A8 0000

!SET ROOT ENTRY # IN G_AST !

01AA 4D25 LD KST. MM_HANDLE[2] (R2) , #0

01AC 0004
01AE 0000

! SET ROOT CLASSIFICATION !

01B0 1406 LDL RR6 r #SYSTEM_LOH
01B2 0000
01B4 0000
0136 5D26 LDL KST. CLASS (R2) , RR6
01B8 000A

!SET MENTOR SEG #!

01BA 4C25 LDB KST. M_SEG_NO (R2) , #0

01BC 000E
01BE 0000

UNITIALIZE FREE KST ENTRIES
FOR DEMO. NOT FULL KST!

01C0 2101 LD R1, #10

01C2 000A
DO

01C4 0B01 CP R1, #0

01C6 0000
01C8 5E0E IF EQ THEN EXIT FI

01CA 01D0'
01CC 5E08
01CE 01DE»
01D0 0102 ADD R2, #SIZEOF KST.REC
01D2 0010

- 273 -

1D4
01D6
01D8

1 DA
01 DC
01DE
01E0

UC25
000E
PFFP
AB10
E8F3
9E08

LDB KST.M_SEG_NO (R2) , #%FF

DEC R1
OD
RET

END CREATE KST

- 274 -

TC_ADVANCE PROCEDURE
t ********************************
* EVENTCOUNT IS ADVANCED BY *

* INVOCATION OF MM ADVANCE. *

* PROCESSES THAT ARE AWAITING *
* THIS EVENT OCCURRENCE ARE *

* REMOVED FROM THE BLOCKED LIST*
* AND MADE READY. THE READY *
* LISTS ARE THEN CHECKED TO *

* INSURE PROPER SHEDULING IS *
* EFFECTED. IF NECESSARY VIR- *
* TUAL PREEMPTS ARE SENT TO ALL*
* THOSE VP«S BOUND TO LOWER *

* PRIORITY PROCESSES. *

* PARAMETERS: *

* R1: HANDLE POINTER *

* R2: INSTANCE (EVENT #) *

* RETURNS: *

* RO: SUCCESS CODE *

********************* ************

ENTRY
! ESTABLISH TEMPORARY VARIABLE
STACK FRAME. !

030F SUB R15, #SIZEOF TEMP
0012

! SAVE INPUT ARGUMENTS !

01E4 6FF1 LD T EMP. HANDLE_PT R (R15) , R1

01E6 0000
01E8 6FF2 LD TEMP . EVENT_NR (R1 5) , R2

01EA 0002
! LOCK APT !

01EC 7604 LDA R4, APT. LOCK
01EE 0000 1

01F0 5F00 CALL K_LOCK
01F2 0000*

! RETURNS WHEN APT IS LOCKED !

! ANNOUNCE EVENT OCCURRENCE BY

INCREMENTING EVENTCOUNT IN G_AST!

01F4 5F00 CALL MM_ADVANCE !R1:HANDLE PTR

01F6 0000*
R2:INSTANCE
RETURNS;
R0:SUCCESS CODE
RR2: EVENTCOUNT!

01F8 0B00 CP RO, #SUCCEEDED
01FA 0002
01FC 5E0E IF EQ THEN
01FE 0372'

! SAVE EVENTCOUNT I

5DF2 LDL TEMP. EVENT VAL(315), RR20200
0202 0004

- 275 -

! RESTORE INSTANCE !

0204 61F0 LD R0 r TEMP.EVENT_NR (R15)
0206 0002

! RESTORE HANDLE POINTER !

0208 61F1 LD R1, TEMP.HANDL£_PTR (R1 5)

020A 0000
! SAVE HANDLE !

020C 5414 LDL RR4, HANDLE VAL. HIGH(R1)
020E 0000
0210 5DF4 LDL TEMP. HANDLE_HIGH (R15) , RR4
0212 000C
0214 6114 LD R4, HANDLE_V AL. LOW (R1)

0216 0004
0218 6FF4 LD TEMP. HANDLE LOW(R15), R4
021A 0010

! AWAKEN ALL PROCESSES AWAITING
THIS EVENT OCCURRENCE I

! GET FIRST BLOCKED PROCESS I

021C 6101 LD R1, APT.BLOCKED_LIST
021E 000A'
0220 7606 LDA R6, APT .BLOCKED_LIST
0222 000A*

WAKE_UP:
DO

! DETERMINE IF AT END OF BLOCKED LIST I

0224 0B01 CP R1, #NIL
0226 FFFF

IF EQ ! NO MORE BLOCKED PROCESSES !

0228 5E0E THEN EXIT FROM WAKE UP
022A 0230*
022C 5E08
022E G2B4'

FI
! SAVE NEXT ITEM IN LIST !

0230 6117 LD R7, APT. AP. NEXT_AP (R1)
0232 0020«

I DETERMINE IF PROCESS IS ASSOCIATED
WITH CURRENT HANDLE !

0234 54F4 LDL RR4 r TEMP. EANDLE_HIGH (R 1 5)
0236 000C
0238 5014 CPL RR4, APT. AP. HANDLE (R1)
023A 0030 8

IF EQ !HIGH HANDLE VALUE MATCHES!
023C 5E0E THEN
023E 02A2*
02^0 61F4 LD R4 r TEMP. HANDLE_LOW (R15)
0242 0010
0244 4B14 CP R4, APT. AP. HANDLE[2] (R 1)

246 00 34'

IF EQ ! HANDLE'S MATCH !

0248 5E0E THEN ! CHECK FOR INSTANCE MATCH !

024A 029C
024C 61F0 LD RQ, TEMP. EVENT_NR (R 15)
024E 0002

- 276 -

4B1Q
0036*

0254 5S0E
0256 0296'

0258 54F2
025A 0004
025C 5012
025E 0038'

5E01
0290 1

0264 2F67

0266 91F6

6112
002C«
7623
0006«
7604
0020'
7605
0028'
7606
002A»
2107
0001
A112
5F00
0000*

CP R0, APT. AP.INSTANCE(RI)

0286 95F6
0288 210B
028A ABCD
028C 5E08
28E 0292*

0290 8DB8

0292 5E08
0294 0293'
0296 8DB8

0298 5E08
029A 029E«

IF EQ ! INSTANCE MATCHES !

THEN ! DETERMINE IF THIS IS THE

OCCURRENCE THE PROCESS
WAITING FOR !

LDL RR2, TEMP.EVENT_VAL(R15)

CPL RR2, APT. AP. VALUE (R1)

IF GE JAWAITED EVENT HAS OCCURRED!
THEN ! AWAKEN PROCESS !

! REMOVE FROM BLOCKED LIST !

LD o)R6, R7
! SAVE LOCAL VARIABLES !

PUSHL 3R15, RR6
!SET LIST THREADING ARGUMENTS!
LD R2, APT.AP. AFFINITY (R 1

)

LDA R3, APT.READY_LIST (R2)

LDA R4, APT.AP. NEXT^AP

LDA R5, APT.AP. PRI

LDA R6, APT.AP. STATE

LD R7, #READY

LD R2, R1
CALL LIST_INSERT

!R2: OBJ ID
R3: LIST HEAD PTR
R4: NEXT OBJ PTR
R5*. PRIORITY PTR
R6: STATE PTR
R7: STATE VALUE !

! RESTORE LOCAL VARIABLES !

POPL RR6, o)R15

LD R11, #REMOVED

ELSE ! PROCESS STILL BLOCKED!

CLR R11
FI ! END VALUE CHECK !

ELSE ! PROCESS STILL BLOCKED!

CLR R11
FI ! END INSTANCE CHECK !

ELSE JPROCESS STILL BLOCKED!

- 277 -

029C 8DB8

029E 5E08
02A0 02A4'
02A2 8DB8

02A4 OBOB
02A6 ABCD

02A8 5E06
02AA 02B0 1

02AC 7616
02AE 0020*

02B0 A171
02B2 E8B8

02B4 8D28

02B6 0B02
02B& 0004
02BA 5E0E
02BC Q2C2*
02BE 5E08
02C0 0366«

02C2 8D18

02C4 A910
02C6 4B21
02C8 0010»

02CA 5E02
02CC 02D2'
02CE 5E08
02D0 02D8«

02D2 0DF9
02D4 0001
2D6 E8F6

02D8 9D38
02DA 6124
02DC 0010'

02DE 6121
0220 0006*

CLR H11
FI ! END HANDLE CHECK !

ELSE ! PROCESS STILL BLOCKED!

CLR R11
FI ! END HIGH HANDLE CHECK !

! RESET AP POINTER REGISTERS !

CP R11, #REMOVED

IF NE ! PROCESS IS STILL BLOCKED !

THEN

LDA R6, APT.AP.NEXT_AP(R1)

FI
LD R1 f R7

OD
! DETERMINE IF ANY VIRTUAL PREEMPT
INTERRUPTS ARE REQUIRED I

CLR R2
PREEMPT_CHECK:
DO
CP R2, #NR_CPU * 2

IF EQ !ALL READY LISTS CHECKED! THEN

EXIT FROM PREEMPT_CHECK

FI
! CREATE PREEMPT VECTOR FOR VP»S !

CLR R1
DO 'FOR R 1=1 TO NR VP'S!
INC R1

CP R1, APT.VP.NR_VP(R2)

IF GT ! PREEMPT VECTOR COMPLETED !

THEN EXIT

FI
PUSH 5IR15, #TRUE

OD
! # TO PREEMPT !

CLR R3
LD R4, APT.VP. NR_VP(R2)

! # OF VP'S !

! GET FIRST READY PROCESS !

LD R1 r API.READY_LIST(R2)

CHECK_RDY LIST:
DO

- 278 -

! SEE IP READY LIST IS EMPTY !

CP R1, #NIL

IF EQ !LIST IS EMPTY!
THEN EXIT FROM CHECK RDY LIST

FI
CP APT. AP. STATE (R1) , #RUNNING

IF EQ IPROCESS IS RUNNING!
THEN !DON»T PREEMPT IT!

LD R5, APT.AP.VP_ID(R1)

!COHPUTE LOCATION IN PREEMPT VECTOR!
SUB R5, APT. VP. FIRST (R2)

LDA R6, R15(R5)

LD 3R6, tFALSE

ELSE ! PREEMPT IT !

INC R3
FI
DEC R4
CP R4, #0

IF EQ !ALL VP • S VERIFIED!
THEN

EXIT FROM CHECK_RDY_LIST

FI
! GET NEXT AP IN READY LIST !

LD R0, APT. AP.NEXT_AP(R1)

LD R1, RO
OD !END CHECK_RDY_LIST!
! SET NECESSARY PREEMPTS !

LD R4, APT.VP.NR_VP(R2)

LD R1, APT. VP. FIRST (R2)

SEND PREEMPT:
DO

97F0 POP RO, dR15
! CHECK TEMPLATE !

0B0O CP RO, #TRUE
0001

IF EQ !CAN BE PREEMPTED!

- 279 -

02E2 0B01
2E4 FFFF

2E6 5E0E
02E8 02EE*
02EA 5E08
02EC 0324'

02EE 4D11
02F0 002A'
02F2 0000

2F4 5E0E
02F6 030C*
02F8 6115
02FA 002E*

02FC 4325
02FE 0014*
0300 74F6
0302 0500
0304 0D65
0306 0000
0308 5E08
030A 030E'
030C A930

030E AB40
0310 0B04
0312 0000

0314 5E0E
0316 031C«
0318 5E08
031A 0324'

031C 6110
031E 0020*
0320 A101
0322 E8DF

3 24 6124
0326 0010«
0328 6121
032A 0014*

0332 5E0E THEN
0334 0350*
0336 0B03 CP R3, #0

0338 0000
IF GT ! PREEMPTS REQUI

033A 5E02 THEN ! PREEMPT IT!
033C 0350*

I SAVE ARGUMENTS!
033E 93F1 POSH 3R15, R1

0340 91F2 POSHL 3R15, RR2
0342 93F4 POSH 3R15, R4
0344 5F00 CALL SET_PREEMPT
0346 0000*

!R1: VP ID!
! RESTORE ARGUMENTS

0348 97F4 POP R4, aai5
034A 95F2 POPL RR2, fl)R15

034C 97F1 POP HI, 3R15
034E AB30 DEC

FI
FI

R3

0350 A911 INC R1, #2
0352 AB40 DEC R4
0354 0B04 CP R4, #0
0356 0000

IF EQ '.STACK RESTORED!
0358 5E0E THEN
035A 0360«
035C 5E08 EXIT
035E 0362*

FI
0360 E8E5 OD ! END SEND_PREEMPT!

! CHECK NEXT READY LIST
0362 A921 INC R2, #2
0364 E8A8 OD ! END PREEMPT_CHECK!

! UNLOCK APT !

0366 7604 LDA R4, APT. LOCK
0368 0000*
036A 5F00 CALL K_UNLOCK
036C 0000*

036E 2100
0370 0002

! RESTORE SUCCESS CODE !

036E 2100 LD RO, #SUCCEEDED

FI
I RESTORE STACK !

0372 010F ADD R15, tSIZEOF TEMP
0374 0012
0376 9E08 RET
0378 END TC ADVANCE

- 280 -

0378 TC_AWAIT PROCEDURE
j ********************************
* CHECKS USER SPECIFIED VALUE *

* AGAINST CURRENT EVENTCOUNT *

* VALUE. IF USER VALUE IS LESS *

* THAN OR EQUAL EVENTCOUNT THEN*
* CONTROL IS RETURNED TO USER. *

* ELSE USER IS BLOCKED UNTIL *

* EVENT OCCURRENCE. *

* PARAMETERS: *

* R1: HANDLE POINTER *

* R2: INSTANCE (EVENT #) *

* RR4: SPECIFIED VALUE *

* RETURNS: *

* R0: SUCCESS CODE *

********************************!

ENTRY
! ESTABLISH STACK FRAME FOR
TEMPORARY VARIABLES. !

SUB R15, #SIZEOF TEMP

! SAVE INPUT PARAMETERS !

LD TEMP.HANDLE_PTR(R15) , R1

LD TEMP.EVENT_NR(R15) , R2

LDL TEMP.EVENT_VAL (R15) , RRU

! LOCK APT !

LDA R4, APT. LOCK

CALL K_LOCK

! RETURNS WHEN APT IS LOCKED !

! GET CURRENT EVENTCOUNT I

CALL MM_EEAD_EVENTCOUNT

!R1:HANDLE POINTER
R2:INSTANCE

RETURNS:
RO:SUCCESS_CODE
RR4: EVENTCOUNT!

0394 0B00 CP R0, #SUCCEEDED
0396 0002
0398 5E0E IF EQ THEN
039A 0440'

! DETERMINE IF REQUESTED EVENT

HAS OCCURRED !

039C 54F6 LDL RR6, TEMP. EVENTUAL (R15)

039E 0004
03A0 9046 CPL RR6, RR4

- 281 -

0378 030F
037A 0012

037C 6FF1
037E 0000
0380 6FF2
0382 0002
0384 5DF4
0386 0004

0388 7604
038A 0000'
3 8C 5F00

038E 0000*

0390 5F00
0392 0000*

03A2 5E02
03A4 0440 1

03A6 5F00
03A8 0000*

03AA 6FP1
03AC 0008
03AE 6FF3
03B0 OOOA
03B2 6118
03B4 0002*

03B6 61F2
03B8 0002
03BA 61F1
03BC 0000

03BE
G3C0
03C2
Q3C4
03C6
03C8
3CA

03CC
3CE

03D0
03D2
3D4

03D6
03D8

5414
0000
5D84
0030»
6114
0004
6F84
0034*
6F82
0036 1

54F6
0004
5D86
0038 1

03DA 6131
03DC 002C«
3DE 6112

03E0 0006'

03E2 8B62

03E4
03E6
03E8
03EA
3EC

03EE
03F0
03F2

5E0E
03F4«
6183
0020«
6F13
0006'
5E08
040E*

03F4 6123

IF GT !EVENT HAS NOT OCCURRED!
THEN ! BLOCK PROCESS!

! IDENTIFY PROCESS !

CALL RUNNING_VP !RETORNS:

R1:VP ID
R3:CP0 #!

! SAVE RETURN VARIABLES !

LD TEMP.ID_VP (R15) , R1

LD TEMP.CPU_NUM (R15) , R3

LD R8, APT.RUNNING_LIST(R1)

! RESTORE REMAINING ARGUMENTS i

LD R2, TEMP.EVENT_Nfi(R15)

LD R1, TEMP.HANDLE_PTR (R15)

! SAVE EVENT DATA !

LDL RR4, HANDLE_VAL.HIGH (R1)

LDL APT.AP.HANDLE(R8) , RR4

LD R4, HANDLE_VAL.L0W(R1)

LD APT.AP.HANDLE[2] (28) , R4

LD APT. AP. INSTANCE (R8) , R2

LDL RR6, TEMP.EVENT_VAL(R15|

LDL APT. AP. VALUE (R8) , RR6

! REMOVE PROCESS FROM READ* LIST !

LD R'J, APT. AP. AFFINITY (R8)

LD R2, APT. READ Y_LIST (R1)

! SEE IF PROCESS IS FIRST
ENTRY IN READY LIST !

CP R2, R8
IF EQ !INSERT NEW READY LIST HEAD!
THEN

LD R3, APT.AP.NEXT_AP (£8)

LD APT.READY_,LIST(B1) , R3

ELSE !DELETE FROM LIST BODY!

DO
LD R3, APT.AP.NEXT_AP(R2)

- 282 -

03F6 0020'
03F8 8B83

03FA 5E0E
03FC 040A'
03FE 6183
0400 0020'
0402 6F23
0404 0020*
0406 5E08
0408 040E*

040A A132
040C E8F3

040E A182
0410 7603
0412 000A'
0414 7604
0416 0020*
0418 7605
041A 0028'
041C 7606
041E 002A'
0420 2107
0422 0002
0424 5F00
0426 0000*

CP R3, H8
IF EQ IFOUND ITEM IN LIST!
THEN

LD R3, APT.AP.NEXT.AP (R8)

LD APT.AP.NEXT_AP(R2) , R3

EXIT

FI
LD R2, R3

OD
FI
ITHREAD PROCESS IN BLOCKED LIST!
LD R2, R8
LDA R3, APT.BLOCKED_LIST

LDA R4, APT.AP.NEXT_AP

LDA R5 r APT.AP.PRI

LDA R6 r APT. AP. STATE

LD R7, #BLOCKED

CALL LIST_INSERT !R2:OBJ ID

R3:LIST HEAD PTR
R4:NEXT OBJ PTR
R5:PRIORITY PTR
R6:STATE PTR
R7:STATE !

! GET CURRENT VP ID !

0428 61F1 LD R1, TEMP . ID_VP (R 15)

042A 0008
042C 61F3 LD R3, TEMP.CPO_NUM (R15)

042E 00OA

0430 5F00
0432 0000'

! SCHEDOLE FIRST READY PROCESS !

0430 5F00 CALL TC GETWORK !R1:VP ID

R3:CPU #!

! UNLOCK APT !

0434 7604 LDA R4 , APT. LOCK
0436 0000'
0438 5F00 CALL K_UNLOCK
043A 0000*

! RESTORE SUCCESS CODE !

043C 2100 LD RO , #SUCCEEDED
043E 0002

FI
FI

! RESTORE STACK !

- 283 -

0440 010F
0442 0012
0444 9E08
0446

ADD R15, #SIZEOF TEMP

RET
END TC AWAIT

- 284 -

0446 PROCESS_CLASS PROCEDURE
j ****************************
* READS SECURITY ACCESS *

* CLASS OF CURRENT PROCESS *

* IN APT. CALLED BY SEG *

* MGR AND EVENT MGR *

* LOCAL VARIABLES: *

* R1: VP ID *

* R5: PROCESS ID *

* RETURNS: *

* RR2: PROCESS SAC *

****************************!

ENTRY
0446 7604 LDA R4, APT. LOCK
0448 0000*
044A 5F00 CALL K_LOCK ! R4 :-«APT .LOCK!
044C 0000*
044E 5F00 CALL RUNNING_VP 'RETURNS:
0450 0000*

R1: VP_ID
R3:CPU *!

0452 6115 LD R5,APT. RUNNING_LIST(R1)
0454 0002'
0456 5452 LDL RR2, APT . AP . SAC (R5)

0458 0024«
! UNLOCK APT !

045A 7604 LDA R4, APT. LOCK
045C 0000»
045E 5F00 CALL K_UNLOCK
0460 0000*
0462 9E08 RET
0464 END PROCESS CLASS

- 285 -

0464 GET_DBR_NUMBER PROCEDURE
; *********************************
* OBTAINS DBR NUMBER FROM APT *

* FOR THE CURRENT PROCESS. *

* CALLED BY SEGMENT MANAGER *
************** ************* ******
* LOCAL VARIABLES: *

* R1: VP ID *

* R5: PROCESS ID *

* RETURNS: *

* R1: DBR NUMBER *

***************** **** ****** ******

i

ENTRY
!NOTE: DBR # IS ONLY YALID WHILE PROCESS
IS LOADED. THIS IS NO PROBLEM IN SASS
AS ALL PROCESSES REMAIN LOADED. IN A

MORE GENERAL CASE, THE DBR * COULD ONLY
BE ASSUMED CORRECT WHILE THE APT IS LOCKED!

0464 7604 LDA R4, APT. LOCK
0466 0000'
0468 5F00 CALL K_LOCK !R4: -.APT. LOCK •

046A 0000*
046C 5F00 CALL RUNNING_VP 1RETURNS:
046E 0000*

R1: VP_ID
R3:CPU #!

0470 6115 LD R5 , APT. RUNNING LIST(R1)
0472 0002'
0474 6151 LD R1,APT. AP.DBfi(R5)
0476 0C22'

I UNLOCK APT I

0478 7604 LDA R4, APT. LOCK
047A 0000'
047C 5F00 CALL K_UNLOCK
047E 0000*
0480 9E08 RET
0482 END GET_DBR_NUMBER

END TC

- 286 -

Appendix C

DISTRIBUTED MEMORY MANAGER LISTINGS

Z8000ASM 2.02
LOC OBJ CODE STMT SOURCE STATEMENT

SLISTON $TTY
DIST_MM MODULE

CONSTANT

CREATE_CODE = 50

DELETE_CODE = 51
ACTIVATE_CODE = 52
DEACTIVATE_CODE = 53
SWAP_IN_CODE = 54
SWAP OUT_CODE = 55
NR_CPU = 2

nr!kst_entry = 54

MAX_SEG_SIZE = 128
MAX_DBR_NO := 4

KST_SEG_NO := 2

NR_OF_KSEGS := 10

BLOCK_SIZE := 8

MEM_AVAIL := SFOO
G_AST_LIMIT := 10

INSTANCE1 := 1

INSTANCE2 := 2

INVALID_INSTANCE := 95

SUCCEEDED := 2

TYPE
H ARRAY ARRA I [3 WORD]

COM_MSG ARRA I [16 BYTE]

ADDRESS WORD

G_AST_REC RECOR D

fuNIQUE_ID LONG
3LOBAL_ADDR ADDRE SS

P L_ASTE_NO WORD
FLAG WORD
PAR_ASTE WORD
NR_ACTIVE WORD
NO_ACT_DEP BYTE
SIZE1 BYTE

- 287 -

PG_TBL ADDRESS
ALIASJTBL ADDRESS
SEQUENCER LONG
SVENT1 LONG
EVENT2 LONG

MM VP ID

SEG ARRAY

WORD

ARRAY [MAX_SEG_SIZE BYTE]

0000

0000

0F00

0000

0000

0000

SSECTION D_MM_DATA
GLOBAL

MM_CPO_TBL ARRAY [NR_CPU MM_VP_ID

]

SSECTICN AVAIL_MEM
INTERNAL
! NOTE: MEM
CPU LOCAL

MEM POOL

LOCATED
i

INPOOL IS
MEMORY.
ARRAY [MEM_AVAIL BYTE]

GLOBAL
! mote: next_block is used in the mm_allocate
stub as an~offset pointer into the block
3f allocatable memory. it is initialized
in bootstrap loader. i

ne:ct_block word
ssection msg_frame_dcl

internal
•note: these records are "overlays" or "frames" used
t'j define message formats. no memory is allocated !

SABS
record [cr_code

ce~hm„handle
ceIentry_no
CE_FILL
CE_SIZE
CE CLASS

CREATE MSG WORD
H_ARRAY
SHORT_INTEGER
BYTE
WORD
LONG]

SABS
DELETE MSG

SABS
ACTIVATE MSG

record [de_code
de_mm_handle
de~entry no
de""fill

RECORD [ACT_CODE
A_DBR_NO
A_MM_HANDLE
A~ENTRY_NO
A_SEGMENT NO
A_FILL

- 288 -

WORD
H_ARRAY
SHORT INTEGER
ARRAYf7 BYTE]]

WORD
WORD
H._ ARRAY
short^integer
shortIinteger
LONG]"

0000

0000

0000

0000

0000

SABS
DEACTIVATE_{!SG BECOED[DEACT_CODE WORD

D_DBR_NO WOBD
D_MM_HANDLE H_ABBAY
D_FILL ABRAY[3 WOBD]]

SABS
SWAP_IN_MSG RECOBD [S_IN_CODE WORD

SI MM HANDLE a AEBAY
SI~DBR NO WOBO
SI ACCESS AUTH BYTE
SI~FILL1 BYTE
SI_FILL ABBAY[2 WOBD]]

SABS
SWAP_OUT_»SG BECORD [S_OUT_CODE WORD

SO_DBR_NO WORD
SO_MM_HANDLE H_ARBAY
SO_FILL ABBAY[3 WOBD]]

SABS
B£T_SUC_CODE RECORD[SUC_CODE BYTE

SC~FILL ABBAY[15 BYTE]]

SABS
R_ACTIVATE_ABG RECORD [R_SUC_CODE BYTE

R FILL BYTE
R_MM_HANDLE H_ABBAY
R CLASS LONG
RESIZE UOBD
R~FILL1 WOBD]

SABS
0000 MM HANDLE BECOBD

flD LONG
ENTBY NO WORD

]

EXTERNAL

G_AST_LOCK WOBD

G_AST ARBAY[G_AST_LIMII G_AST_BEC

]

K_LOCK PBOCEDUBE

K_UNLOCK PBOCEDUBE

GET_CPU_NO PBOCEDUBE

SIGNAL PBOCEDUBE

WAIT PBOCEDUBE

- 289 -

GLOBAL
$SECTION D_MM_PROC

0000 MM_CREATE_ENTRY PROCEDURE
i ****$****************************
* INTERFACE BETWEEN S EG MGR *

* (CREATE_SEG PROCEDURE) AND *

* MMGR PROCESS (CREATE_ENTRY *

* PROCEDURE) . ARRANGES~AND *

* PERFORMS IPC. *

* REGISTER USE: *

* PARAMETERS *

* R0:SUCCESS_CODE (RET) *

* R1:HPTR (INPUT) *

* R2:ENTRY_NO (INPUT) *

* R3:SIZE (INPUT) *

* RR4:CLASS (INPUT) *

* LOCAL USE *

* R6:MM_HANDLE ARRAY ENTRY *

* R8:-.COM_NSGBUF *

* Rl3:-iCOM_MSGBUF *

********************************* I

E NT RY
•USE STACK FOR MESSAGEI

0000 030F SUB R15,#SIZEOF COM MSG
0002 0010
0004 A1FD LD R13,R15 ! -COM_MSGBUF !

!FILL COM_MSGBUF (LOAD MESSAGE) . CREATE MSG
FRAME IS BASED AT ADDRESS ZERO. IT IS
OVERLAID ONTO COM MSGBUF FRAME BY INDEXING
EACH ENTRY (I.E. ADDING TO EACH ENTRY) THE
BASE ADDRESS OF COMJiSGBUF!

CREATE_MSG.CR_CODE (R13) , #CREATE_CODE

R6,R1(#0) ilNDEX TO HM_HANDLE ENTRY!

CREATE_MSG.CE_MM_HANDLE[J (R13) ,R6

R6,R1 (#2)

CREATE_MSG.CE_MM_HANDLE[1] (R13) ,R6

R6,R1 (#4)

CREATE_MSG.CE_MM_HANDLE[2] (R13) ,R6

CREATE_MSG.CE_ENTRY_NO (R13) ,R2

CREATE_MSG.CE_CLASS(R13) ,RR4

- 290 -

0006 4DD5 LD
0008 0000
000A 0032
OOOC 3116 LD
OOOE 0000
0010 6FD6 LD
C012 0002
0014 3116 LD
0016 0002
0018 6FD6 LD
001A 0004
O01C 3116 LD
001E 0004
0020 6FD6 LD
0022 0006
0024 6FD2 LD
0026 0008
0028 5DD4 LDL
002A OOOC

002C 6FD3 LD CREATE_MSG. CE SIZE(R13),R3
002E OOOA
0030 A1D8 LD R8,R13
0032 5F00 CALL PERFORM_IPC !R8: -.CQM_MSGBUF

!

0034 018C 1

IRETRIEVE SUCCESS_CODE FROM RETORNED MESSAGE!

0036 8D08 CLR RO
0038 60D8 LDB RLO, RET_S(JC_CODE. SUC_CODE (R13)
003A 0000
003C 010F ADD R15,#SIZE0F COM_MSG 'RESTORE STACK STATE!
003E 0010
0040 9E08 RET
0042 END MM CREATE ENTRY

- 291 -

0042

0042
0044
0046

0048
004A
004C
004E
0050
0052
0054
0056
0058
005A
005C
005E
0060
0062
0064
0066
0068
006A
006C
06E

0070
0072
0074
0076
0078
007A
007C

030F
0010
A1FD

MM_DELETE_ENTRY PROCEDURE
i *********************************
* INTERFACE BETWEEN S EG MGR *

* (DELETE_SEG PROCEDURE) AND *

* MMGR (DELETE_ENTRY PROCEDURE) . *

* ARRANGES AND PERFORMS IPC. *

* REGISTER USE: *

* PARAMETERS *

* R0:SUCCESS_CODE(RET) *

* R1:HPTR (INPUT) *

* R2:ENTRY_NO (INPUT) *

* LOCAL USE *

* R6:MM_HANDLE ARRAY ENTRY *

* R8:-.COM_MSGBUF *

* R13:-.COM_MSGBUF *

********************************* I

ENTRY
!USE STACK FOR MESSAGE!
SUB R15,#SIZEOF COM_MSG

4DD5
0000
0033
3116
0000
6FD6
0002
3116
0002
6FD6
0004
3116
0004
6FD6
0006
6FD2
0008
A1D8
5F00
018C

8D08
60D8
0000
010F
0010
9E08

LD R13,R15 ! -COM_MSGBUF !

IFILL COM_MSGBUF (LOAD MESSAGE). DELETE_MSG FRAME
IS BASED~AT ADDRESS ZERO. IT IS OVERLAID ONTO
COM_MSGBUF FRAME BY INDEXING EACH ENTRY (I.E. ADD-
ING~TO EACH ENTRY) THE BASE ADDRESS OF COM MSGBUF!

LD DELETE_MSG.DE_CODE(fi13) , #DELETE_CODE

LD R6 r R1(#0) IINDEX TO MM_HANDLE ENTRY!

LD DELETE_MSG.DE_MM_HANDLE[] (R13) ,R6

LD R6,R1(#2)

LD DELETE_MSG.DE_MM_HANDLE[1 J (R13) ,R6

LD R6,R1(#4)

LD DELETE_MSG.DE_MM_HANDLE[2] (R13) ,R6

LD DELETE_MSG.DE_ENTRY_NO (S13) ,R2

LD R8,R13
CALL PERFORM_IPC ! R8 : -*COM_MSGBUF

!

!RETRIEVE SUCCESS_CODE FROM RETURNED MESSAGE!
CLR RO
LDB RL0,RET_SUC_CODE.SUC_CODE(R13)

ADD R15,#SIZEOF COM_MSG ! RESTORE STACK STATE!

RET
END MMJ)ELETE_ENTRY

- 292 -

007C MM_ACTIVATE PROCEDURE
I*********************************
* INTERFACE BETWEEN SEG MGR *
* (MAKE_KNOWN PROCEDURE) AND *
* MMGR (ACTIVATE PROCEDURE) . *
* ARRANGES AND PERFORMS IPC. *
******** *********************** **
* REGISTER USE: *
* PARAMETERS *
* R1:DBR_NO (INPUT) *
* R2:HPTR (INPUT) *
* R3:ENTRY_NO *
* R4:SEGMENT_NO *
* R12:RET_HANDLE PTR *
* LOCAL USE *
* R8:-.COM_MSGBUF *
* R13;-iCOM_MSGBUF *
* RETURNS: *
* RO: SUCCESS CODE *

* RR2:CLASS *
* R4:SIZE *
********************************* I

ENTRY
!USE STACK FOR MESSAGE!

007C 030F SUB R15,»SIZEOF COM_MSG
007E 0010
0080 A1FD LD R13,R15 ! -»COM_MSGBUF I

! SAVE RETURN HANDLE POINTER !

0082 93FC PUSH a)R15, R12

!?ILL COM_MSGBUF (LOAD MESSAGE). ACTIVATEJ1SG FRAME
IS BASED AT ADDRESS ZERO. IT IS OVERLAID~ONTO
COMJ1SGBUF FRAME BY INDEXING EACH ENTRY (I.E. ADD-
ING TO EACH ENTRY) THE BASE ADDRESS OF COM_MSGBUF!

LD ACTIVATE_MSG.ACT_CODS(R13) , *ACTIVATE_CODE

LD ACTIVATE_MSG.A_DBR_NO (R13) ,R1

LD R6,R2(#0)

LD ACTIVATE_MSG.A_MM_HANDLE[](R13) ,R6

LD R6,R2(#2)

LD ACTIVATE_MSG.A._MM_HANDLE[1](R13) ,R6

LD R6,R2(#4)

LD ACTIVATE_MSG. A_MM_HANDLE[2](R13) ,R6

LDB ACTIVATE_MSG.A_ENTRY_N0(R13) ,RL3

- 293 -

0084 4DD5
0086 0000
0088 0034
008A 6FD1
008C 0002
008E 3126
0090 0000
0092 6FD6
0094 0004
0096 3126
0098 0002
009A 6FD6
009C 0006
009E 3126
00A0 0G04
00A2 6FD6
00A4 0008
0OA6 6EDB
00A8 000 A

OOAA 6EDC LDB ACTI VATE_MSG. A_SEGMENT_NO (B13) , RL4
OOAC OOOB
OOAE A1D8 LD R8,R13
OOBO 5F00 CALL PEFFORM_IPC ! (R8 :-.COM_MSGBUF!
00B2 018C»

! RESTORE RETURN HANDLE POINTER I

00B4 97FC POP R12, o)R15

! UPDATE MM_HANDLE ENTRY !

00B6 54D6 LDL RR6, I_ACTIVATE ARG.R MM HANDLE (R13)
00B8 0002
OOBA 5DC6 LDL MM_HANDLE. ID (R 12) , RR6
OOBC 0000
OOBE 61D6 LD R6,R_ACTIV ATE_ARG. R MM HAN DLE[2] (R 1 3)
OOCO 0006
00C2 6FC6 LD MM_HANDLE. ENTRY_NO (R12) , R6
00C4 0004

IRETRIEVE OTHER RETURN ARGUMENTS!
00C6 8D08 CLR RO
00C8 60D8 LDB RLO, R_ACTIVATE_ARG.R_SUC_CODE (R13)
OOCA 0000
OOCC 54D2 LDL RR2,R ACTIVATE ARG.R CLASS (R13)
OOCE 0008
OODO 61D4 LD RU ,R_ACTIV AIE_ARG. RESIZE (R 13)

00D2 OOOC
00D4 010F ADD R15,#SIZE0F COM_MSG I RESTORE STACK STATE!
00D6 0010
00D8 9E08 RET
OODA END MM ACTIVATE

- 294 -

OODA MM_DEACTIVATE PROCEDURE
] ******** *************************
* INTERFACE BETWEEN SEG MGR *
* (TERMINATE PROCEDURE) AND *

* MMGR (DEACTIVATE PROCEDURE) . *

* ARRANGES AND PERFORMS IPC. *

* REGISTER USE: *

* PARAMETERS *

* RO: SUCCESS CODE (RET) *
* R1:DBR_NO (INPUT) *

* R2:HPTR(INPUT) *

* LOCAL USE *

* R6:MM_HANDLE ARRAY ENTRY *

* R8:-«COM_MSGBUF *

* R13:-.COM_MSGBUF *

i

ENTRY
!USE STACK FOR MESSAGE!

OODA 030F SUB R15,#SIZEOF COM MSG
OODC 0010
OODE A1FD LD R13,R15 ! -.COM_MSGBUF !

•FILL COM_MSGBUF (LOAD MESSAGE). DEACTIV ATE_MSG FRAME
IS BASED AT ADDRESS ZERO. IT IS OVERLAID ONTO
COM_MSGBUF FRAME BY INDEXING EACH ENTRY (I.E. ADD-
ING TO EACH ENTRY) THE BASE ADDRESS OF COM.MSGBUF!

DEACTIVATE_MSG.DEACI_CODE(R13) ,

#DEACTIVATE_CODE

DEACTIVATE_MSG.D_DBR_NO(R13) ,R1

R6,R2(#Q) IINDEX TO MM_HANDLE ENTRY!

DEACTIVATE_MSG.D_MM_HANDLE[0] (R13) , R6

R6,R2 (#2)

DEACTIVATE_MSG.D_MM_HANDLE[1] (R13) ,R6

R6,R2<#4)

DEACTIVATE_MSG.D_MM_HANDLE£2] (R13) , Rb

R8,R13
CALL ?ERFORM_IPC !R8: -.COM_MSGBUF

!

IRETRIEVE SUCCESS_CODE FROM RETURNED MESSAGES

0108 8D08 CLR RO
010A 60D8 LDB RLO, RET_SUC_CODE. SUC_CODE (R13)

- 295 -

00E0 4DD5 LD

0E2 0000
00E4 0035
00E6 6FD1 LD
00E8 0002
OOEA 3126 LD

EC 0000
OOEE 6FD6 LD
00F0 0004
00F2 3126 LD
00F4 0002
00F6 6FD6 LD
00F8 0006
OOFA 3126 LD
OOFC 0004
OOFE 6FD6 LD
0100 0008
0102 A1D8 LD
0104 5F0O CA
0106 018C

10C 0000
010E 010F ADD R15,#SIZEOF COM MSG IRESTORE STACK STATE!
01 10 0010
0112 9E08 BET
114 END MM DEACTIVATE

- 296 -

0114 MM_SWAP_IN PROCEDURE
I*********************************
* INTERFACE BETWEEN SEG MGR (SM *
* SWAP_IN PROCEDURE) AND MMGR *
* (SWAP_IN PROCEDURE) . ARRANGES *
* AND PERFORMS IPC. *

* REGISTER USE: *
* PARAMETERS *

* R0:SUCCESS_CODE(RET) *

* R1 :DBR_NO (INPUT) *

* R2:HPTR(INPUT) *

* R3: ACCESS (INPUT) *

* LOCAL USE *

* R6:MM_HANDLE ARRAY ENTRY *

* R8:-»COM_MSGBUF *

* R13:-.C0M_MSGBUF *

*************************** ******

i

ENTRY
!USE STACK FOR MESSAGE!

0114 030F SUB R15,#SIZEOF COM MSG
0116 0010
0118 A1FD LD R13,R15 ! -.COM_MSGBUF !

!FILL COM_MSGBUF (LOAD MESSAGE). SWAP_IN_MSG FRAME
IS BASED AT ADDRESS ZERO. IT IS OVERLAID ONTO
COMJiSGBUF FRAME BY INDEXING EACH ENTRY (I.E. ADD-
ING TO EACH ENTRY) THE BASE ADDRESS OF COM_MSGBUF!

01 1A 4DD5 LD S WAP_IN_MSG. S_IN_CODE (R1 3) , #SW AP_IN_CDDE
01 1C 0000
011E 0036
0120 3126 LD R6,R2(#0) 1INDEX TO MM_HANDLE ENTRY!
0122 0000
0124 6FD6 LD SWAP IN MSG. SI MM_HANDLE[] (R1 3) ,R6
0126 0002
0128 3126 LD R6,R2(#2)
012A 0002
12C 6FD6 LD S WAP_IN_MSG. SI_MM_HANDLE[1] (R1 3) ,R6

012E 0004
0130 3126 LD R6,R2(#4)
0132 0004
0134 6FD6 LD S WAP_IN_MSG. SI_MM_HANDLE[2] (R1 3) ,R6
0136 0006
0138 6FD1 LD S WAP_IN_MSG. SI_DBR_NO (R13) ,R1

013A 0008
013C 6EDB LDB S WAP_IN_MSG. SI_ACCESS_AUTH (R13) ,RL3
013E 000A
0140 A1D8 LD R8,R13
0142 5F0O CALL PERFORM_IPC ! R8 : -.CQMJ1SG BUF!

0144 018C
JRETRIEVE SUCCESS_CODE FROM RETURNED MESSAGE!

0146 8D08 CLR RO
0148 60D8 LDB RLO, RET_SUC_CODE. SUC_CODE (R13)

- 297 -

014A
014C
014E
0150
0152

0000
010P
0010
9E08

ADD R15,*SIZ20F COM_MSG 1RESTORE STACK STATE!

END
RET
MM SWAP IN

- 298 -

0152 MM_SWAP_OUT PROCEDURE
J*********************************
* INTERFACE BETWEEN SEG MGR (SM *
* SWAP_OUT PROCEDURE) AND MMGR ~*

* (SWAP_OUT PROCEDURE). ARRANGES*
* AND PERFORMS IPC. *
fr**************^*****************
* REGISTER USE: *

* PARAMETERS *

* RO: SUCCESS CODE (RET) *
* R1 :DBR_NO (INPUT) *

* R2:HPTR (INPUT) *

* LOCAL USE *

* R6:MM HANDLE ARRAY ENTRY *

* R8:-.COM_MSGBUF *

* R13:-.COM_MSGBUF *

i

ENTRY
•USE STACK FOR MESSAGE!

0152 030F SUB R15,#SIZEOF COM_MSG
0154 0010
0156 A1FD LD R13,R15 ! -.COM_MSGBUF I

!FILL COM_MSGBUF (LOAD MESSAGE). SWAP_OUT_MSG FRAME
IS BASED AT ADDRESS ZERO. IT IS 0VERLAID~ONTO
COM_MSGBUF FRAME BY INDEXING EACH ENTRY (I.E. ADD-
ING TO EACH ENTRY) THE BASE ADDRESS OF COM_MSGBUF!

0158 4DD5 LD S WAP_OUT_MSG. S_OUT_CODE (R1 3) , #SWAP_0UT_C3De
015A 0000
015C 0037
015E 3126 LD R6,R2(#0) IINDEX TO MM HANDLE ENTRY!
0160 0000
0162 6FD6 LD SWAP_OUT_MSG.SO_MM_HANDLE[] (R 13) , R6
0164 0004
0166 3126 LD R6,R2(#2)
0168 0002
016A 6FD6 LD S WAP_OUT_MSG .SO_MM_HANDLE[1] (R 13) , R6
016C 0006
016E 3126 LD R6,R2(#4)
0170 0004
0172 6FD6 LD S WAP_OUT_MSG.SO_MM_HANDLE[2] (R 1 3) , R6

0174 0008
0176 6FD1 LD SWAP OUT_MSG. SO_DBR_NO (R 13) ,R

1

0178 0002
017A A1D8 LD R8,R13
017C 5F00 CALL PERFORM_IPC ! R8 : -»CCM_MSG BUF!

017E 018C
!RETRIEVE SUCCESS_CODE FROM RETURNED MESSAGE!

0180 8D08 CLR RO
182 60D8 LDB RLO, RET_SUC_CODE. SUC_CODE (R13)

0184 0000
0186 010F ADD R15,#SIZEOF COM_MSG !RESTORE STACK STATE!

0188 0010

- 299 -

018A 9E08 RET
018C END MM SWAP OUT

- 300 -

018C PERFORM_IPC PROCEDURE
; *************************************
* SERVICE ROUTINE TO ARRANGE AND *
* PERFORM IPC WITH THE MEM MGS PROC *

* REGISTER USE: *

* PARAMETERS *

* R8: -.COM_MSG (INPUT) *

* LOCAL USE *

* R1,R2: WORK REGS *

* R4: -G_AST_LOCK *

* R13: -.COM_MSGBUF *

i

ENTRY
018C 93FD PUSH SR15,R13 ! -.COM_MSGBUF!
018E 5F00 CALL GET_CPU_NO ! RET-R1 :CPU_NO!
0190 0000*
0192 A112 LD R2,R1
0194 6121 LD R1,MM_CPU_TBL(R2) !MM_VP_ID!
0196 0000 1

0198 7604 LDA R4 ,G_AST_LOCK
019A 0000*
019C 5F00 CALL K_LOCK
019E 0000*
01A0 5F00 CALL SIGNAL !R 1 : MM_VP_ID, R8: -.COM_MSGBUF

!

01A2 0000*
01A4 97FD POP R13,o)R15
01A6 A1D8 LD R8,R13 !-«COM_MSGBUF!

01A8 93FD PUSH o)R15,B13
1AA 5F00 CALL WAIT ! R8: -.COMJ1SGBUF!

01AC 0000*
1AE 7604 LDA R4 ,G_AST_LOCK

01B0 0000*
01B2 5F00 CALL K_UNLOCK
01B4 0000*
01B6 97FD POP R13,o)R15
0tB8 9E08 RET
01BA END PERFORM IPC

- 301 -

01BA MM_ALLOCATE PROCEDURE
t **************************
* ALLOCATES BLOCKS OF CPU*
* LOCAL MEMORY. EACH *
* BLOCK CONTAINS 256 *
* BYTES OF MEMORY. *

* PARAMETERS: *

* R3: # OF BLOCKS *
* RETURNS: *

* R2: STARTING ADDR *
* LOCAL: *

* R4: BLOCK POINTER *
**************************{
ENTRY

! NOTE: THIS PROCEDURE IS ONLY A STUB
OF THE ORIGINALLY DESIGNED MEMORY
ALLOCATING MECHANISM. IT IS USED
BY THE PROCESS MANAGEMENT DEMONSTRATION
TO ALLOCATE CPU LOCAL MEMORY FOR ALL
MEMORY ALLOCATION REQUIREMENTS. IN AN
ACTUAL SASS ENVIRONMENT, THIS WOULD
BE BETTER SERVED TO HAVE SEPARATE
ALLOCATION PROCEDURES FOR KERNEL AND
SUPERVISOR NEEDS. (E.G., KERNE L_ALLOCATE
AND SUPERVISOR_ALLOCATE) . !

I COMPUTE SIZE OF MEMORY REQUESTED !

01BA B331 SLL R3, #BLOCK_SIZE
01BC 0008

! COMPUTE OFFSET OF MEMORY THAT IS
TO BE ALLOCATED !

01BE 6104 LD R4, NEXT BLOCK IOFFSET!
01C0 0F00»
01C2 7642 LDA R2, MEM_POOL(R4) ISTART ADDR!
01C4 0000»
1C6 8134 ADD R4, R3 ! UPDATE OFFSETI

I UPDATE OFFSET IN SECTION OF AVAILABLE
MEMORY TO INDICATE THAT CURRENTLY
REQUESTED MEMORY IS NOH ALLOCATED !

1C8 6F04 LD NEXT_BLOCK, R4 'SAVE OFFSET!
01CA 0F00'
1CC 9E08 RET

01CE END MM ALLOCATE

- 302 -

1CE MM_TICKET PROCEDURE
i *****************************
* RETURNS CURRENT VALUE OF *
* SEGMENT SEQUENCER AND *
* INCREMENTS SEQUENCER VALUE*
* FOR NEXT TICKET OPERATION *
******** *********************
* PARAMETERS: *
* R1: SEG HANDLE PTR *
* RETURNS: *
* RR4: TICKET VALUE *
* LOCAL VARIABLES: *
* RR6: SEQUENCER VALUE *

* R8: G_AST ENTRY # *

j

ENTRY
! SAVE HANDLE PTR !

01CE 93F1 PUSH o)R15, R1

! LOCK G_AST !

01DO 7604 LDA Ru7 G AST LOCK
01D2 0000*
01D4 5F00 CALL K LOCK
01D6 0000*

! RESTORE HANDLE PTR !

01D8 97F1 POP R1 f 3R15
! GET G_A$T ENTRY t I

01DA 6118 LD R8, MM HANDLE. ENTRY NO(R1)
01 DC 0004

! GET TICKET VALUE !

01DE 5486 LDL RR6, G AST. SEQUENCER (R8)
01E0 0014*

! SET RETURN REGISTER VALUE !

01E2 9464 LDL RR4 r RR6
IADVANCE SEQUENCER FOR NEXT
TICKET OPERATION!

01E4 1606 ADDL RR6, #1

01E6 0000
01E8 0001

• SAVE NEW SEQUENCER VALUE IN G AST
01EA 5D86 LDL G^AST. SEQUENCER (R8) , RR6
01EC 0014*

! UNLOCK G_AST !

! SAVE RETURN VALUES !

01EE 91F4 PUSHL 3R15, RR4
01F0 7604 LDA R4 r G AST_LOCK
01F2 0000*
01F4 5F00 CALL K_UNLOCK
01F6 0000*

! RETRIEVE RETURN VALUES !

01F8 95F4 POPL RR4, 3R15
01FA 9E08 RET
01FC END MM_TICKET

- 303 -

01FC MM_READ_EVENTCOUNT PROCEDURE
» *******************************
* READS CURRENT VALUE OF THE *
* EVENTCOUNT SPECIFIED BY THE *

* USER. *

* PARAMETERS: *

* H1: SEG HANDLE PTR *

* R2: INSTANCE (EVENT #) *

* RETURNS: *

* RR4: EVENTCOUNT VALUE *

* LOCAL VARIABLES: *

* RR6: SEQUENCER VALUE *

* R8: G_AST ENTRY # *

*******************************!

ENTRY
! SAVE INPUT PARAMETERS !

PUSH 3R15, R1
PUSH 8R15, R2
! LOCK G_AST !

LDA R47 G_AST_LOCK

CALL K_LOCK

! RESTORE INPUT PARAMETERS !

POP R2, o>R15

POP R1, SR15
! GET G_AST ENTRY # !

LD R8, MM_HANDLE.2NTRY_N0(R1)

! READ EVENTCOUNT !

! CHECK WHICH EVENT # !

IF R2
0210 0B02 CASE #INSTANCE1 THEN
0212 0001
0214 5E0E
0216 0224*
0218 5484 LDL RR4, G_AST.E VENT1 (R8)
021A 0018*
021C 2100 LD RO, #SUCCEEDED
021E 0002
0220 5E08 CASE #INSTANCE2 THEN
0222 Q23C«
0224 0B02
0226 0002
0228 5E0E
022A 0238*
022C 5484 LDL RR4, G_AST .E VENT2 (R8)
022E 001C*
0230 2100 LD RO, #SUCCE2DED
0232 0002

- 304 -

01FC 93F1
01FE 93F2

0200 7604
0202 0000*
0204 5F0O
0206 0000*

0208 97F2
020A 97F1

020C 6118
020E 0004

0234 5E08 ELSE IINVALID INPUT!
0236 023C
0238 2100 LD R0, #INVALID INSTANCE
023A 005F

FI
! NOTE: NO VALUE IS RETURNED IF
USER SPECIFIED INVALID EVENT #!

• SAVE RETURN VALUES !

023C 91F4 PUSHL 3R15, RR4
! UNLOCK G_AST !

023E 7604 LDA R4 , G_AST_LOCK
0240 0000*
0242 5F00 CALL K_UNLOCK
0244 0000*

! RESTORE RETURN VALUES !

0246 95F4 POPL RR4, SR15
0248 9E08 RET
024A END MM READ EVENTCOUNT

- 305 -

024A MM_ADVANCE PfiOCEDURE
t * ********** ************************
* DETERMINES G_AST OFFSET FROM *

* SEGMENT HANDLE AND INCREMENTS *

* THE INSTANCE (EVENT #) SPECIFIED *
* BY THE CALLER. THIS IN EFFECT *
* ANNOUNCES THE OCCURRENCE OF THE *
* EVENT. THE NEW VALUE OF THE *

* EVENTCOUNT IS RETURNED TO THE *

* CALLER. *

* PARAMETERS: *

* R1: HANDLE POINTER *

* R2: INSTANCE (EVENT #) *

* RETURNS: *

* RR2: NEW EVENTCOUNT VALUE *
***********************************!

ENTRY
! SAVE INPUT PARAMETERS !

024A 93F1 PUSH 3R15, R1
024C 93F2 PUSH 3R15, R2

! LOCK G_AST !

024E 7604 LDA R4, G_AST LOCK
0250 0000*
0252 5F00 CALL K_LOCK
0254 0000*

! RESTORE INPUT PARAMETERS !

0256 97F2 POP R2 , a)R15

0258 97F1 POP R1, a)R15

! GET G_AST OFFSET !

025A 6114 LD R4, MM HANDLE. ENTRY_NO (R 1)

025C 0004
! DETERMINE INSTANCE !

IF R2
025E 0B02 CASE #INSTANCE1 THEN
0260 0001
0262 5E0E
0264 027C»
0266 5442 LDL RR2, G AST. EVENT1 (R4)
0268 0018*
026A 1602 ADDL RR2, #1

026C 0000
026E 0001

! SAVE NEW EVENTCOUNT !

0270 5D42 LDL G AST .EVENT1 (R4) , RR2
0272 0018*
0274 2100 LD RO, #SUCCEEDED
0276 0002
0278 5E08 CASE #INSTANCE2 THEN
027A 029E«
027C 0B02
027E 0002

- 306 -

0280 5E0E
0282 029A»
0284 5442 LDL RR2, G_AST.EVENT2(R4)
0286 001C*
0288 1602 ADDL RR2, #1
028A 0000
028C 0001

! SAVE NEW EVENTCOUNT !

028E 5D42 LDL G_AST.EVENT2 (R4) , RR2
0290 00 1C*
0292 2100 LD RO, #SUCCEEDED
0294 0002
0296 5E08 ELSE IINVALID INPOT!
0298 029E»
029A 2100 LD RO, #INVALID_INSTANCE
029C 005F

FI
! NOTE : AN INVALID INSTANCE V

MILL NOT AFFECT EVENT DATA
! UNLOCK G_AST !

029E 7604 LDA R4, G_AST_LOCK
02A0 0000*
02A2 5F00 CALL K_UNLOCK
02A4 0000*
02A6 9E08 RET
02A8 END MM_ADVANCE

END DIST MM

VALUE
i

- 307 -

Appendix D

GATE KEEPER LISTINGS

Z80Q0ASM 2.02
LOC OBJ CODE STMT SOURCE STATEMENT

KERNEL_GATE_KEEPER MODULE

SLISTON $TTY

CONSTANT
ADVANCE_CALL :

= 1

AWAIT_CALL ! :
= 2

CREATE_SEG_CALL !
;

—
3

delete!seg_call ;
= 4

MAKE_KNOWN_CALL ;
= 5

READ~CALL :
= 6

SM_SWAP_IN_CALL : ,
= 7

SM SWAP_OUT_CALL j
= 8

TERMINATE_CALL J:
= 9

TICKET_CALL I
= 10

WRITE_CALL : :
= 11

WRITELN_CALL = 12
CRLF CALL :

= 13
WRITE :

= X0FC8 'PRINT CHAR!
WRITELN ;

= %0FC0 SPRINT MSG!
CRLF ; :

= XOFDU ICAR RET/LINE
MONITOR :

= %A902
REGISTER_BLOCK ; ,

= 32
rRAP_CODE_0?FSET : :

= 36
INVALID_KERNEL_ENTRY :

= XBAD

GLOBAL
3ATE_KEEPER_ENTRY 1.ABEL

EXTERNAL
ADVANCE iPROCEDURE
AWAIT iPROCEDURE
CREATE SEG iPROCEDURE
DELETE~SEG 1PROCEDURE
MAKE KNOWN 1PROCEDURE
READ* 1PROCEDURE
SM_SWAP_IN 1PROCEDURE
SM_SWAPJ3UT]PROCEDURE
TERMINATE iPROCEDURE
TICKET 1PROCEDURE
KERNEL EXIT I-ABEL

FEED!

- 308 -

0000 030F
0002 0020
0004 1CF9
0006 010F

0008 93F2
000A 7D27

INTERNAL
SSECTION KERNELJ3ATE_PR0C

0000 GATE_KEEPER_MAIN PROCEDURE

ENTRY
GATE_KEEPER_ENTRY:

! SAVE REGISTERS !

SOB R15, #REGISTER_BLOCK

LDM a)R15, R1, #16

! SAVE NSP !

POSH dR15, R2
LDCTL R2, NSP
! RESTORE INPUT REGISTERS !

000C 2DF2 EX R2, 3R15
• SAVE REGISTER 2 !

OOOE 93F2 PUSH o)R15, R2
! GET SYSTEM TRAP CODE !

00 10 31F2 LD R2, R15(#TRAP CODE OFFSET)
0012 0024

! REMOVE SYSTEM CALL IDENTIFIER FROM
SYSTEM TRAP INSTRUCTION !

0014 8C28 CLRB RH2
! NOTE: THIS LEAVES THE USER VISIBLE
EXTENDED INSTRUCTION NUMBER IN R2 !

! DECODE AND EXECUTE EXTENDED INSTRUCTION
IF R2
! NOTE: THE INITIAL VALUE FOR REGISTER 2

WILL BE RESTORED WHEN THE APPROPRIATE
CONDITION IS FOUND I

CALL THEN0016 0B02 CASE #ADVANCE_C
0018 0001
001A 5E0E
001C 0028*
001E 97F2 POP R2, 3R15
0020 5F00 CALL ADVANCE
0022 0000*
0024 5E08 CASE #AWAIT_CAL
0026 010C
0028 0B02
002A 0002
002C 5E0E
002E 003A'
0030 97F2 POP R2 r 3R15
0032 5F00 CALL AWAIT
0034 0000*
0036 5E08 CASE #CREATE_SE
0038 010C
003A 0B02
003C 0003
0O3E 5E0E

THEN

CALL THEN

- 309 -

0040 004C 1

0042 97F2
0044 5F00
0046 0000*
0048 5E08
004A 010C
004C 0B02
004E 0004
0050 5E0E
0052 005E 1

0054 97F2
0056 5F00
0058 0000*
005A 5E08
005C 010C
005E 0B02
0060 0005
0062 5E0E
0064 0070'
0066 97F2
0068 5F00
006A 0000*
006C 5E08
006E 010C»
0070 0B02
0072 0006
0074 5E0E
0076 0082*
0078 97F2
007A 5F00
007C 0000*
007E 3E08
0080 010C*
C082 0B02
0084 0007
0086 5E0E
0088 0094*
0C8A 97F2
08C 5F00

008E 0000*
0090 5E08
0092 010C*
0094 0B02
0096 0008
0098 5E0E
009A 00A6*
009C 97F2
009E 5F00
00A0 0000*
00A2 5E08
00A4 010C»
00A6 0B02
00A8 0009
OOAA 5E0E

POP R2, a)R15

CALL CREATE_SEG

CASE #DELETE SEG CALL THEN

POP R2, SR15
CALL DELETE_SEG

CASE #MAKE KNOWN CALL THEN

POP R2, 3R15
CALL MAKE_KNOWN

CASE #READ CALL THEN

POP R2 r SR15
CALL READ

CASE #SM SWAP IN CALL THEN

POP R2, 3R15
CALL SM_SWAP_IN

CASE #SM SWAP OUT CALL THEN

POP R2, 5)R15
CALL SH_SWAP_OUT

CASE ^TERMINATE CALL THEN

- 310 -

AC 00B8«
00AE 97F2
OOBO 5F00
00B2 0000*
00B4 5E08
00B6 010C»
00B8 0B02
OOBA OOOA
OOBC 5E0E
OOBE OOCA 1

OOCO 97F2
00C2 5F00
00C4 0000*
00C6 5E08
00C8 010C
OOCA 0B02
OOCC OOOB
OOCE 5E0E
OODO OODC
00D2 97F2
00D4 5F00
00D6 0FC8
00D8 5E08
OODA 010C
OODC 0B02
OODE OOOC
OOEO 5E0E
00E2 OOEE*
00E4 97F2
00E6 5F00
0OE8 OFCO
OOEA 5E08
OOEC 010C
OOEE 0B02
OOFO OOOD
0F2 5E0E

00F4 0100*
00P6 97F2
00P8 5F00
OOFA 0FD4
OOFC 5E08
OOFE 010C*

0100
0102
0104
0106
0108
010A

7601
0100'
2100
OBAD
5F00
A902

POP R2, a)E15
CALL TERMINATE

CASE #TICKET_CALL THEN

POP R2, 3R15
CALL TICKET

CASE tWRITE CALL THEN

POP R2, 3R15
CALL WRITE

CASE #WRITELN CALL THEN

POP R2, 3R15
CALL WRITELN

SE #CRLF CALL THEN

POP R2, a)R15

CALL CRLF

ELSE ! INVALID KERNEL INVOCATION!

! RETURN TO MONITOR !

! NOTE: THIS RETORN TO MONITOR IS
FOR STUB USE ONLI. AN INVALID
KERNEL INVOCATION WOULD NORMALLY
RETURN TO USER. !

LDA R1, $

LD RO, #INVALID_K2RNEL_ENTfiY

CALL MONITOR

FI

- 311 -

! SAVE REGISTERS ON KERNEL STACK I

! SAVE R1 !

010C 93F1 PUSH 3R15, R1
! GET ADDRESS OF REGISTER BLOCK i

010E 34F1 LDA R1, R15 (#4)
0110 0004

! SAVE REGISTERS IN REGISTER BLOCK
ON KERNEL STACK. !

0112 1C19 LDH 3R1, R1, #16
01 14 010F

! RESTORE R1 BUT MAINTAIN ADDRESS
OF REGISTER BLOCK !

0116 2DF1 EX R1, 3R15
! SAVE R1 ON STACK !

0118 33F1 LD R15(¥4) , R1
011A 0004

! RESTORE REGISTER BLOCK ADDRESS I

01 1C 97F1 POP R1, o)R15
! SAVE VALID EXIT SP VALUE !

011E 33F1 LD R15 (#30) , R1
0120 001E

! EXIT KERNEL BY MEANS OF HARDWARE
PREEMPT HANDLER !

0122 5E08 JP KERNEL_EXIT
0124 0000*
0126 END GATE_KEEPER_MAIN

END KERNEL GATE KEEPER

- 312 -

Z8000ASM 2.02
LOC OBJ CODE STMT SOURCE STATEMENT

aSER_GATE MODULE

SLISTON $TTY

0000

CONSTANT
ADVANCS_CALL a 1

AWAIT_CALL ; = 2

CREATE_SEG_CALL ; = 3

DELETE_SEG CALL ;

s 4

MAKE_KNOWN_CALL ; = 5

READ~CALL • = 6

SM_SWAP_IN_CALL ;
= 7

SM_SWAP~OUT_CALL s 8

TERMINATE_CALL ;;
= 9

riCKET_CALL j
= 10

WRITE_CALL :
= 11

WRITELN_CALL = 12
CRLF_CALL = 13

GLOBAL
SSECTION USER GATE PROC

0000
0002
0004

0004

7F01
9E08

0004 7F0 2

0006 9E08
0008

ADVANCE PROCEDURE
t ************************
* PARAMETERS: *

* R1:SEGMENT # *

* R2:INSTANCE (ENTRYt)*

* RETURNS: *

* RO:SUCCESS CODE *

i

ENTRY
SC #ADVANCE_CALL
RET

END ADVANCE

AWAIT PROCEDURE
; ************************
* PARAMETERS: *

* R1:SEGMENT # *

* R2:INSTANCE *

* RR4:SPECIFIED VALUE *

* RETURNS: *

* RO:SUCCESS CODE *

************************ I

ENTRY
SC #AWAIT_CALL
RET

END AWAIT

- 313 -

0008 CREATE_SEG PROCEDURE
J
****+*******************
* PARAMETERS: *

* Rl:MENTOR_SEG_NO *

* R2:ENTRY_NO *

* R3:SISE ' *

* RR4:CLASS *

* RETURNS: *

* R0:SOCCESS CODE *
************************ I

ENTRY
0008 7F03 SC #CREATE_SEG_CALL
000A 9E08 RET
000C END CREATE_SEG

000C DELETE_SEG PROCEDURE
i ************************
* PARAMETERS: *

* R1: MENTOR SEG_NO *

* R2:ENTRY_NO *

* RETURNS: *

* RO:SUCCESS CODE *

i

ENTRY
OOOC 7F04 SC #DELETE SEG_CALL
OOOE 9E08 RET
0010 END DELETE_SEG

0010 MAKE_KNOWN PROCEDURE
j ************************
* PARAMETERS: *

* R1:MENT0R_SEG_N0 *

* R2:ENTRY_N0 *

* R3: ACCESS DESIRED *

* RETURNS: *

* RO:SUCCESS CODE *

* R1:SEGMENT # *

* R2:ACCESS ALLOWED *

|

ENTRY
00 10 7F05 SC #MAKE_KNOWN_CALL
0012 9E08 RET
0014 END MAKE_KNOWN

0014 READ PROCEDURE
j ************************
* PARAMETERS: *

* R1:SEGMENT # *
* R2:INSTANCE *

- 314 -

* RETURNS: *

* R0:SUCCESS CODE *
* RR4: EVENTCOUNT *

i

ENTRY
0014 7F06 SC #READ CALL
0016 9E08 RET
0018 END READ

0018 SM_SWAP_IN PROCEDURE
; ************************
* PARAMETERS: *
* R1:SEGMENT # *

* RETURNS: *

* RO: SUCCESS CODE *

i

ENTRY
0018 7F07 SC #SM_SWAP_IN_CALL
001A 9E08 RET
001C END SM_SWAP_IN

00 1C SM_SWAP_OUT PROCEDURE
i ************************
* PARAMETERS: *

* R1:SEGMENT # *

* RETURNS: *

* RO:SUCCESS CODE *

************************ I

ENTRY
001C 7F08 SC #SM_SWAP_OUT_CALL
001E 9E08 RET
0020 END SM_SWAP_OUT

0020 TERMINATE PROCEDURE
j ************************
* PARAMETERS: *

* R1:SEGMENT # *

* RETURNS: *

* RO:SUCCESS CODE *

i

ENTRY
0020 7P09 SC #TERMINATE_CALL
0022 9E08 RET
0024 END TERMINATE

0024 TICKET PROCEDURE
i ************************
* PARAMETERS: *

* R1:SEGMENT # *

* RETURNS: *

- 315 -

* R0:SUCCESS CODE *

* RR4:TICKET VALUE *
************************ i

ENTRY
0024 7F0A SC #TICKET_CALL
0026 9E08 RET
0028 END TICKET

0028 WRITE PROCEDURE
ENTRY

0028 7F0B SC *WRITE_CALL
002A 9E08 RET
002C END WRITE

002C WRITELN PROCEDURE
ENTRY

002C 7?0C SC #WRITELN_CALL
002E 9E08 RET
0030 END WRITELN

0030 CRLF PROCEDURE
ENTRY

0030 7F0D SC #CRLF_CALL
0032 9E08 RET
003U END CRLF

- 316 -

Appendix E

BOOTSTRAP_LOADER LISTINGS

Z8000ASH 2.02
LOC OBJ CODE STMT SOURCE STATEMENT

BOOTSTRAP_LOADER MODULE

SLISTON $TTY
CONSTANT

! ******** SYSTEM PARAMETERS ********
NR_CPU ;

= 2

NR_VP ; ,
= NR_CPU*4

NR~AVAIL VP :
• = NR~CPU*2

MAX_DBR_NR :
= 10

STACK_SEG :
= 1

STACK SEG SIZE ;
= X100

STACK~BLOCK ; — STACK_SEG_SIZE/2 56

J * * OFFSETS 3:n STACK SEG * * !

STACK_BASE ; ,
= STACK SEG_SIZ2-%10

STATUS_REG_BLOCK. :
= STACK_SEG_SIZE~£10

INTERRUPT FRAME ; .
= STACK BASE-4

INTERRUPT_REG ; ;
= INTERRUPT^ RAME- 34

N_S_P : .
= interruptIreg-2

F_C~W :
= STACK_SEG_SIZE-55E

i ****** SYSTEM C()NSTANTS ****** !

ON :
;

- SFFFF
OFF ;

=

READY :
= 1

NIL ;
= %FFFF

INVALID ;
= SEEEE

K2RNEL_FCW ;
= X50G0

AVAILABLE :
=

ALLOCATED :
= SFF

SC OFFSET ;
= 12

TYPE

MESSAGE ARRAY £16 BYTE]
ADDRESS WORD
MM_VP_ID WORD
VP~INDEX
MSG INDEX

INTEGER
INTEGER

- 317 -

MSG_TABLE RECORD
[21SG MESSAGE

SENDER VP_INDEX
NEXT_MSG MSG_IND£X
FILLER ARRAY [6, WORD J

VP_TABLE RECORD
[~DBR ADDRESS

PRI WORD
STATE WORD
IDLE_FLAG WORD
PREEMPT WORD
PHYS_PROCESSOR WORD
NEXT READY VP VP INDEX
MSG_LIST MSG_INDEX
EXT~ID WORD
FILLER_1 ARRAY[7, WORD]

]

EXTERNAL
GET_DBR_ADDR PROCEDURE
CR£ATE_STACK PROCEDURE
LIST_INSERT PROCEDURE
ALLOCATE_MMU PROCEDURE
UPDATE_MMU_IUAGE PROCEDURE
an ALLOCATE PROCEDURE
MM_ENTRY LABEL
IDLE_ENTRY LABEL
PREEMPT_RET LABEL
BOOTSTRAP_ENTRY LABEL
GATE_KEEPER_ENTRY LABEL
NEXT_BLOCK ' WORD
MM_CPU_TBL ARRAY[NR_CPU MM_VP_ID]

VPT RECORD
[LOCK WORD

RUNNING_LIST ARRAY[NR_CPU WORD]
READY_LIST ARRAY[NR~~CPU WORD]
FREE-LIST MSG INDEX
VIRT_INT_VEC ARRAY[1 # ADDRESS]
FILLER_2 WORD
VP ABRAX [NR_VP, VP TABLE]
MSG_Q ARRAY [NR_VP,~MSG TABLE]

- 318 -

EXT_VP_LIST ARRAY(NR_AVAIL VP WORD]
NEXT_AVAILJ1MU ARR AY[MAX_DBrInR BYTE]

PRDS RECORD
[PHYS_CPU_ID HOED
LOG_CPU_ID INTEGER
VP_NR WORD
IDLE_VP VP_INDEX]

INTERNAL
$SECTION LOADER_DATA

• NOTE: THESE DECLARATIONS WILL NOT WORK
IN A TRUE MULTIPROCESSOR ENVIRONMENT AS
THEY ARE SUBJECT TO A "CALL." THEY MUST
BE DECLARED AS A SHARED GLOBAL DATABASE
WITH "RACE" PROTECTION (E.G., LOCK). !

0000 NEXT_AVAIL_VP INTEGER
0002 NEXT EXT VP INTEGER

- 319 -

ISECTION LOADER_INT
INTERNAL

0000 BOOTSTRAP PROCEDURE
t ********************* ***********
* CREATES KERNEL PROCESSES AND *

* INITIALIZES KERNEL DATABASES.*
* INCLUDES INITIALIZATION OF *

* VIRTUAL PROCESSOR TABLE, *

* EXTERNAL VP LIST, AND MMU *

* IMAGES. ALLOCATES MMU IMAGE *

* AND CREATES KERNEL DOMAIN *

* STACK FOR KERNEL PROCESSES. *
********************************!

ENTRY
! INITIALIZE PRDS AND MMU POINTER !

! NOTE: THE FOLLOWING CONSTANTS ARE
ONLY TO BE INITIALIZED ONCE. THIS
WILL OCCUR DURING SYSTEM INITIALIZATION!

0000 4D05 LD PRDS. PHYS_CPU_ID, #%FFFF
0002 0000*
0004 FFFF

! NOTE: LOGICAL CPU NUMBERS ARE ASSIGNED
IN INCREMENTS OF 2 TO FACILITATE INDEXING
(OFFSETS) INTO LISTS SUBSCRIPTED BY
LOGICAL CPU NUMBER. !

PRDS. LOG CPU_ID, #20006 4D05 LD
0008 0002*
000A 0002

i

OOOC 4005 LD
000E 0004*
0010 0002
0012 4D08 CLR
0014 0000*
0016 4D08 CLR
0018 0000*
001A 4D08 CLR
001C 0C02»

! SPECIFY NUMBER OF VIRTUAL PROCESSORS
ASSOCIATED WITH PHYSICAL CPU. !

?RDS.VP_NR, #2

NEXT_BLOCK

NEXT_AVAIL_VP

NEXT_EXT_VP

! ESTABLISH GATE KEEPER AS SYSTEM CALL
TRAP HANDLER !

! GET BASE OF PROGRAM STATUS AREA !

001E 7D15 LDCTL R1, PSAP

! ADD SYSTEM CALL OFFSET TO PSA BASE ADDR !

0C20 0101 ADD R1, #SC OFFSET
0022 OOOC

! STORE KERNEL FCW IN PSA !

0024 0D15 LD 3R 1 , tKERNEL FCW
0026 5000

! STORE ADDRESS OF GATE KEEPER IN PROGRAM
STATUS AREA AS SYSTEM TRAP HANDLER !

0028 A911 INC R1, #2

- 320 -

002A 0D15 LD
002C 0000*
002E 8D18 CLR

3R1, #GATE_KEEPER_ENTRY

R1
! NEXT_AVAIL_MMU INDEX i

! INITIALIZE ALL MMU IMAGES AS AVAILABLE !

SET MMU MAP:

DO
0030 4C15 LDB NEXT_AVAIL_MMU(R1) , #AVAILA3LI
0032 0000*
0034 0000
0036 A910 INC R1, #1

! CHECK FOR END OF TABLE !

0038 0B01 CP R1, #MAX_DBR_NR
003A 000A
003C 5E0E IF EQ 'rHEN EXIT FROM SET_MMU_MAP FI
003E 0044*
0040 5E08
0042 0046«
0044 E8F5 OD

! CREATE MEMORY MANAGER PROCESS !

0046 2103 LD R3 r #STACK_BLOCK
0048 0001

! ALLOCATE AND INITIALIZE KERNEL
DOMAIN STACK SEGMENT !

004A 5F00 CALL MM_ALLOCATE !R3: # OF BLOCKS
004C 0000*

RETURNS
R2: START ADDR!

004E A121 LD R1, R2
0050 2103 LD R3, #KERNEL_FCH
0052 5000
0054 7604 LDA R4, MM_ENTRY
0056 0000*
0058 6105 LD R5, XFFFF INSP!
005A FFFF
005C 7606 LDA R6, PREEMPT_RET
005E 0000*
0060 93F1 POSH SR15, R1 'SAVE STACK ADDR!
0062 030F SOB R15, #8
0064 0008
0066 1CF9 LDM 3R15, R3, #4
0068 0303
006A A1F0 LD RO, R15

! NOTE: ARGLIST FOR CREATE_STACK INCLUDES
KERNEL FCW, INITIAL IC, NSP, AND INITIAL
RETURN POINT. !

006C 5F0O CALL CREATE_STACK ! (RO: ARGUMENT PTR
006E 0000*

81: TOP OF STACK
R2-R14: INITIAL
REG. STATES !

- 321 -

0070 010F
0072 0008

0074 5F00
0076 0000*

0078 2101
007A 0001
007C 97F2
007E 2103
0080 0000

0082 2104
0084 0000

0086 93F0

0088 5F00
008A 0000*

ADD R15, #8 "OVERLAY ARGUMENTS!

008C 97F0

008E 5F00
0090 0000*

! ALLOCATE MMU_IMAGE !

CALL ALLOCATE MMU

LD

POP
LD

R1, *STACK_SEG

•RETURNS:

(RO: DBR #) i

! SEGMENT NO. !

R2, dR15 !GET STACK ADDR!
R3, #0 I WRITE ATTRIBUTE !

0092 2102 LD
0094 0002
0096 2105 LD
0098 0000
009A 2106 LD
009C 0000

009E 5F00
;

CA
OOAO 01CA»

00A2 610A
00A4 0002*

! SPECIFY NUMBER OF BLOCKS. COUNT STARTS
FROM ZERO. (I.E.,1 BLOCK=0, 2=1, ETC.)!

LD R4, #STACK_BLOCK-1

! SAVE DBR * !

PUSH 0R15, RO

! CREATE MMU ENTRY FOR MM STACK SEGMENT !

CALL UPDATE_MMU_IMAGE ! (RO: DBR #

R1: SEGMENT #

R2: SEG ADDRESS
R3: SEG ATTRIBUTES
R4: SEG LIMITS) !

! RESTORE DBR # !

POP R0 r 3R15

! GET ADDRESS OF MMU IMAGE !

CALL GET_DBR_ADDR ! (RO: DBR #)

RETURNS:
(R1: DBR ADDRESS) !

! PREPARE VP TABLE ENTRIES FOR MM !

R2, #2 ! PRIORITY !

R5, #OFF ! PREEMPT !

R6, #OFF ! KERNEL PROCESS !

UPDATE 7PT !

UPDATE_VPJTABLE !(R1: DBR

R2: PRIORITY
R5: PREEMPT FLAG
R6: EXT_V? FLAG)
RETURNS?
R9: VP_ID !

! INITIALIZE MM_CPU_TBL IN DISTRIBUTED MEMORY
MANAGER WITH VP ID OF MM PROCESS !

! GET LOGICAL CPU # !

LD R1Q, PRDS.LOG_CPU ID

- 322 -

00A6 6FA9 LD MM_CPU_TBL (R10| , R9
00A8 OOOO*

! CREATE IDLE PROCESS !

OOAA 2103 LD R3, #STACK_BLOCK
OOAC 0001
OOAE 5F00 CALL MM_ALLOCATE !R3: # OF BLOCKS
OOBO 0000*

RETURNS
R2: START ADDR

00B2 A121 LD R1, R2
00B4 2103 LD R3, #KERNEL_FCW
00B6 5000
00B8 76 04 LDA R4, IDLE_ENTRY
OOBA 0000*
OOBC 2105 LD R5, #XFFFF !NSP!
OOBE FFFF
OOCO 7606 LDA R6, PREEMPT_RET
0C2 0000*

00C4 93F1 POSH 3R15, R1 ISAVE STACK ADDR!
00C6 030F SUB R15, #8
00C8 0008
OOCA 1CF9 LDM 3R15, R3, #4
OOCC 0303
OOCE A1F0 LD RO, R15

! INITIAL IZE IDLE STACK VALUES !

OODO 5F00 CALL CREATE_STACK ! (RO: ARGUMEN
00D2 0000*

00D4 010F
00D6 0008

ADD

R1: TOP OF STACK
R2-R14: INITIAL
REG. STATES !

R15, #8 'OVERLAP ARGUMENTS!

00D8 5F00
OODA 0000*

! ALLOCATE MMU IMAGE FOR IDLE PROCESS !

CALL ALLOCATE MMU ! RETURNS RO:DBR # !

OODC 2101
OODE 0001
OOEO 97F2
00E2 2103
00E4 0000
0OE6 2104
00E8 0000

OOEA 93F0

OOEC 5F00
OOEE 0000*

! PREPARE IDLE PROCESS MMU ENTRIES !

LD R1, #STACK_SEG ! SEG # !

POP
LD

LD

R2, AR15 !GET STACK ADDR!
R3, #0 ! tfRITE ATTRIBUTE !

34, #STACK_BL0CK-1 ! BLOCK LIMITS !

! SAVE DBR # !

PUSH dR15, RO

! CREATE MMU IMAGE ENTRY !

CALL UPDATE_MMU_IMAGE ! (R1: SEGMENT #

R2; SEG ADDRESS
R3: SEG ATTRIBUTES

- 323 -

R4: SEG LIMITS) !

! RESTORE DBR # !

0OF0 97F0 POP RO, d>R15

! GET MMU ADDRESS !

00F2 5F00 CALL GET_DBR__ADDR ! (RO: DBR #)

00F4 0000*
RETURNS
(R1: DBS ADDRESS) I

! PREPARE VPT ENTRIES FOR IDLE PROCESS !

00F6 2102 LD R2, #0 ! PRIORITY !

00F8 0000
OOFA 2105 LD R5, #OFF ! PREEMPT !

OOFC 0000
OOFE 2106 LD R6, #OFF ! KERNEL PROC !

0100 0000

! CREATE VPT ENTRIES i

0102 5F00 CALL UPDATE_VP_TABLE ! (R1 : DBR
0104 01CA'

R2: PRIORITY
R4: IDLE_FLAG
R5; PREEMPT
R6: EXT_VP FLAS)
RETURNS?
R9: VP_ID i

! ENTER VP ID OF IDLE PROCESS IN PRDS i

0106 6F09 LD PRDS.IDLE_VP, R9
0108 0006*

! INITIALIZE IDLE VP« S !

010A 2102 LD R2, #1 ! PRIORITY !

010C 0001
010E 2105 LD R5, #ON ! PREEMPT !

0110 FFFF
0112 2106 LD R6, #ON 'NON-KERNEL PROC!
0114 FFFF
0116 6100 LD RO, PRDS.VP_NR
0118 0004*

! INITIALIZE VP VALUES !

DO
011A 5F00 CALL UPDATE_VP_TABLE !(S1: DBR
011C 01CA 1

R2: PRIORITY
R4; IDLE_FLAG
R5: PREEMPT
R6: EXT_VP FLAS)
RETURNS:
R9: VP ID !

011E ABOO DEC RO, #1
0120 0B00 CP RO, #0
0122 0000
0124 5E0E IF EQ !ALL VP»S INITIALIZED! THEN
0126 012C«
0128 5E08 EXIT

- 324 -

012A 012E«
FI

12C E8F6 OD

! INITILIZE VPT HEADER !

! GET LOGICAL CPU NOMBER !

012E 6102 LD R2, PRDS. LOG_CPU ID
0130 0002*
132 4D05 LD VPT. LOCK, #OFF

0134 0000*
0136 0000
0138 4D25 LD VPT. RUNNING LIST (R2) , #HIL
013A 0002*
013C FFFF
013E 4D25 LD VPT. BEAD? LIST(R2), #NIL
0140 0006*
0142 FFFF
0144 4D08 CLR VPT. FREE LIST !HEAD OF HSG LIST!
0146 000A*

! THREAD VP»S BY PRIORITY AND SET STATES TO READY I

0148 8D28 CLR R2 ISTART WITH VP #1!

THREAD:
DO

014A 610D LD R13, PRDS.LQG_CPU_ID
014C 0002*
014E 76D3 LDA R3, VPT. RE ADY_LIST (R 13)
0150 0006*
0152 7604 LDA R4 , VPT. VP ,NEXT_READY_VP
0154 001C*
0156 7605 LDA R5 , VPT. VP .PRI
0158 0012*
015A 7606 LDA R6 , VPT. VP .STATE
015C 0014*
015E 2107
0160 0001

0162 93F2
0164 5F00
0166 0000*

LD R7,#READY

! SAVE OBJ ID !

PUSH o>R15, R2
CALL LIST_INSERT !R2: OBJ ID

S3; LIST_HEAD_PTR ADDR
R4: NEXTJDBJ PTR
R5: PRIORITY_PTR
R6: STATE_PTR
R7: STATE !

RESTORE OBJ ID !

POP R2, 3R15
ADD R2, #SIZEOF VP_TABLE

0168 97F2
016A 0102
016C 0020
016E 0B02 CP R2, # (NR_VP * (SIZEOF VP^TABLE))

0170 0100
0172 5E0E IF EQ THEN EXIT FROH THREAD FI
0174 017A'

- 325 -

0176 5E08
0178 017C*
017A E8E7 OD

017C 8D18

MSG

017E A112
0180 A123
0182 0103
0184 0010

0186
0188
018A
018C
018E
0190
0192
0194
0196
0198
019A
019C
019E
01AO
01A2
01A4
01A6
01A8

01AA
1 AC

01AE
01B0
01B2
01B4
01B6
01B8
01BA
01BC

4D25
0110*
EEEE
A921
8B32
5E0E
0198'
5E08
019A 1

E8P6
4D15
0120*
FFFF
A112
0101
0020
0B01
0100

5E0E
01BC»
4D25
0122*
FFFF
5E08
01C2'
5E08
01C0«
6F21

! INITIALIZE VP MESSAGE LIST I

! NOTE: ONLY THE THREAD FOR THE MESSAGE
LIST NEED BE CREATED AS ALL MESSAGES
ARE INITIALLY AVAILABLE FOR USE. THE
INITIAL MESSAGE VALUES HERE CREATED
FOR CLARITY ONLY TO SHOH THAT THE
MESSAGES HAVE NO USABLE INITIAL VALUE!

CLR R1

LST_INIT:
! NOTE: R1 REPRESENTS CURRENT ENTRY IN
MSG_LIST, R2 REPRESENTS CURRENT POSITION
IN MSG_LIST ENTRY, AND R3 REPRESENTS
NEXT ENTRY IN MSG_LIST. !

DO
LD R2, R1
LD R3, R2
ADD R3, #SIZEOF MESSAGE

FILL_MSG:
DO
LD VPT.MSG_Q.MSG(R2) , ^INVALID

INC R2, #2
CP R2, R3
IF EQ THEN EXIT FROM FILL_MSG FI

OD
LD

LD
ADD

CP

IF EQ
THEN

LD

VPT.MSG_Q.SENDER(R1) , #NIL

R2, R1
R1, #SIZEOF MSG_TABLE

R1, #SIZEOF MSG_TABLE*NR_VP

VPT.MSG_G..NEXT_MSG(R2) , #NIL

EXIT FROM MSG_LST_INIT

ELSE

LD VPT.MSG_Q..NEXT_MSG(R2) , R1

- 326 -

01BE 0122*
FI

01C0 E8DE OD

I GET LOGICAL CPU # FOR USE
BY ITC GETiOBK. !

01C2 610D LD R13, PRDS.LOG_CPU ID
01C4 0002*

! BOOTSTRAP COMPLETE !

! START SYSTEM EXECUTION AT PREEMPT ENTRY !

! POINT IN ITC GETWORK PROCEDURE !

01C6 5E08 JP BOOTSTRAP_ENTRY
01C8 0000*
01CA END BOOTSTRAP

- 327 -

01CA UPDATE_VP_TABLE PEOCEDUEE

* INITIALIZES VPT ENTRIES *

* REGISTER USE: *

* PARAMETERS: *
* R1

:

DBR ADDRESS *

* R2: PRIORITY *

* R5: PREEMPT FLAG *

* R6: EXTERNAL VP FLAG *

* RETURNS: *

* R9: ASSIGNED VP ID *

* LOCAL VARIABLES: *

* R7: LOGICAL CPU # *

* R8: EXT_VP_LIST OFFSET *

* R9: VPT OFFSET *
*************** ****** ******** * **t

ENTRY
! GET OFFSET IN VPT FOR NEXT ENTRY !

01CA 6109 LD R9, NEXT_AVAIL_VP
01CC 0000'
01CE 6F91 LD VPT. VP. DBR (R9) , R1
01DO 0010*
01D2 6F92 LD VPT. VP. PRI (R9) , R2
01DU 0012*
01D6 6F96 LD VPT. VP. IDLE_FLAG (R9) , R6
01D8 0016*
01DA 6F95 LD VPT. VP. PREEMPT (R9) , S5
01DC 0018*
01DE 6107 LD R7 , PRDS. LOG_CPU ID
01E0 0002*
01 E2 6F97 LD VPT. VP. PHYS_PROCESSOR (R9) , R7
01E4 001A*
01E6 4D95 LD VPT. VP. NEXT_READ3f _VP (E9) , #NIL
01E8 001C*
1EA FFFF

01EC 4D95 LD VPT. VP. MSG_LISI (R9) , #NIL
01EE 001E*
01F0 FFFF

! CHECK EXTERNAL VP FLAG I

01F2 0B06 CP R6, *ON
1F4 FFFF

IF EQ !EXTERNAL VP

!

1F6 5E0E THEN ! VP IS TC VISIBLE !

01F8 0210*
1FA 6108 LD R8, NEXT EXT_VP

01FC 0002'
! INSERT ENTRY IN EXTERNAL VP LIST !

01FE 6F89 LD EXT_VP LIST (R8) , R9
0200 0000*
0202 6F98 LD VPT. VP. EXT ID (R9) , R8
0204 0020*

- 328 -

0206 A981 INC R8, #2
0208 6F08 LD NEXT_EXT_VP, R8
020A 0002«
020C 5E08 ELSE !VP BOUN
020E 0216*
0210 4D05 LD YPT.VP. EXT_ID, #NIL
0212 0020*
0214 FFFF

FI
0216 A19A LD R10, R9
0218 010A ADD R10, #SIZEOF VP_TABLE
021A 0020
021C 6F0A LD NEXT_AVAIL_VP, R10
021E 0000"
0220 9E08 RET
0222 END UPDATE.,VP_TABLE

END BOOTSTRAP "loader

- 329 -

Z8000ASM 2.02
LOC OBJ CODE

Appendix F

LIBRARY FUNCTION LISTINGS

STMT SOURCE STATEMENT

LIBRARY FUNCTION MODULE

SLISTON $TTY

CONSTANT
KERNEL_FCH
STACK_SEG_SIZE
STACK_3A5E
status_reg_block
interrupt frame
interrupt^reg
N_S_P
NIL

$5000
X100
3TACK_3EG_SIZE-X10
STACK_SEG_SIZE-X 10

STACK_BASE-4
INTERRUPT_FRAME-34
INTERRUPT_REG-2
XFFFF

- 1 ?.c\ -330

$SECTION LIB_PROC
GLOBAL

0000 LIST_INSERT PROCEDURE
» *********************************
* INSERTS OBJECTS INTO A LIST *
* BY ORDER OF PRIORITY AND SETS *
* ITS STATE *

* REGISTER USE: *

* PARAMETERS: *
* R2: OBJECT ID *
* R3: HEAD_OF_LIST_PTR ADDR *
* R4: NEXtI0BJJ?TR~ADDR *
* R5: PRIORITY~PTR ADDR *
* R6: STATE_PTR ADDR *
* R7: OBJECT STATE *
* LOCAL VARIABLES: *
* R8: HEAD_OF_LISTJ?TR *
* R9: NEXT~OBJ_PTR~ *
* R10: CURRENT~OBJ PRIORITY *
* R11: NEXT_OBJ PRIORITY *
*«*******************************;

ENTRY
! GET FIRST OBJECT IN LIST !

0000 2138 LD R8, a)R3

0002 0B08 CP R8, #NIL
ooou FFFF
0006 5E0E IF EQ !LIST IS EMPTY! THEN
0008 0018'

! PLACE OBJ AT HEAD OF LIST !

000A 2F32 LD a)R3, R2
OOOC 7449 LDA R9, R4(R2)
000E 0200
0010 0D95 LD 3R9, #NIL
0012 FFFF
0014 5E08 ELSE
0016 005A'

! COMPARE OBJ PRI WITH LIST HEAD PRI !

0018 715A LD R10, R5 (R2) i OB J PRI!

001A 0200
001C 715B LD R11, R5 (R8) IHEAD PRI!

001E 0800
0020 8BBA CP R10 r R11
0022 5E02 IF GT !OBJ PRI>HEAD PRI! THEN

0024 0030«
0026 2F32 LD a>R3, R2 !PUT AT FRONT!

0028 7348 LD R4(R2), R8

002A 0200
002C 5E08 ELSE ! INSERT IN BODY OF LIST !

002E 005A'

SEARCH_LIST:

- 331 -

DO
0030 0B08 CP R8, #NIL
0032 FFFF
0034 5E0E IF EQ !END OF LIST! THEN
0036 003C
0038 5E08 EXIT FROM SEARCH_LIST
003A 0052'

FI
003C 715B LD R11, R5 (R8) !GET NEXT PRI

!

003E 0800
0040 8BBA CP R10, R1

1

0042 5E02 IF GT JCUBRENT PRI>NEXT PRI! THEN
0044 004A»
0046 5E08 EXIT FROM SEARCH LIST
0048 0052'

FI

! GET NEXT OBJ !

004A A189 LD R9, R8
004C 7148 LD R8, R4(R9)
004E 0900
0050 E8EF OD ! END SEARCH_LIST !

! INSERT IN LIST !

0052 7348 LD R4 (R2) , R8
0054 0200
0056 7342 LD R4 (R9) , R2
0058 0900

FI
FI

! SET OBJECT* S STATE !

005A 7367 LD R6 (R2) , R7
005C 0200
005E 9E08 RET
0060 END LIST INSERT

- 332 -

°°60 CREATE_STACK PEOCEDUBE
I********************************
* INITIALIZES KERNEL STACK *
* SEGMENT FOB PROCESSES *
****************************m*
* REGISTER OSE: *
* PARAMETERS: *
* RO: ARGUMENT POINTER *
* (INCLUDES:FCW,IC, NSP, AND *
* RETURN POINT. SEE LOCAL *
* VARIABLES BELOW.) *
* R1 : TOP OF STACK *
* R2-R14: INITIAL REGISTER *
* STATES. (NOTE: IN DEMO, NO*
* SPECIFIC INITIAL REGISTER *
* VALUES ARE SET, EXCEPT R13*
* (USER ID) FOR USER PRO- *
* CESSES.) *
****** *************** ***********
* LOCAL VARIABLES *
* (FROM ARGUMENTS STORED ON *
* STACK.) *
* R3: FCW *
* R4 : PROCESS ENTRY POINT (IC) *

* R5: NSP *
* R6 : PREEMPT RETURN POINT *

i

ENTRY
o)R15, RO !SAVE ARGUMENT PTR!
RO, R15 !SAVE SP!
R15, R1 (#INTERRUPT_REG)

3R15, R1, #16 IINIIIAL REG. VALUES!

NOTE: ONLY REGISTERS R2-R14 MAY CONTAIN
INITIALIZATION VALUES !

R15, RO IRESTORE SP!
R0 r 3R15 'RESTORE ARGUMENT PTR!
R14, R15 !SAVE CALLER RETURN POINT!
R15, RO !GET ARGUMENT PTR!
R3, 0>R15, #4 !LOAD ARGUMENTS!

S15, R1 (#INTERRUPT_FRAME)

3>R15, R3, #2 !INIT IRET FRAME!

R15, R1 (#N_S_P)

o)R15, R5 !SET NSP!
R15, #2

3B15, R6 'PREEMPT RET POINT!
R8, R1 (#STACK_BASE)

- 333 -

0060 93F0 PUS
0062 ADFO EX
0064 34 1F LDA
0066 OOCA
0068 1CF9 LDM
006A 010F

! N

006C A10F
I

LD
006E 97F0 POP
0070 A1FE LD
0072 A10F LD
0074 1CF1 LDM
0076 0303
0078 341F LDA
007A OOEC
007C 1CF9 LDM
007E 0301
0080 34 1F LDA
0082 00C8
0084 2FF5 LD
0086 030F SUB
0088 0002
008A 2FF6 LD
008C 3418 LDA

008E OOFO
! INITIALIZE STATUS REGISTER BLOCK !

#KERNEL_FCH

R15, #2 ISAVE SP 6 FCW!

R14 ! RESTORE RETURN POINT!

0090 2100 LD RO,
0092 5000
0094 1C89 LDM a>R8,

0096 0F01
0098 A1EF LD R15,
009A 9E08 RET
009C END CREATE STACK

END LIBRARY FUNCTION

- 334 -

Appendix G

INNER TRAFFIC CONTROLLER LISTINGS

Z8000ASM 2.02
LOC OBJ CODE STMT SOURCE STATEMENT

INNER_TRAFFIC_CONTROL MODULE

SLISTON $TTY

!**1. GETHORK:
A. NORMAL ENTR
(THIS IS A FD
B. R14 IS AN I

SIMULATES INF
THE MMU HARDH
ESTABLISHED A
INVOKING GETH

C. THE PREEMPT I

NOT USE THE G
FUNCTIONS NOR
PRIOR TO NORM

(SAVE/RESTORE:

Y DOES NOT SAVE REGISTERS.
NOTION OF THE GATEKEEPER).
NPUT PARAMETER TO GETHORK THAT
THAT HILL EVENTUALLY BE ON

ARE. THIS REGISTER MUST BE
S A DBR BY ANY PROCEDURE
ORK.
NTERRUPT ENTRY HANDLER DOES
ATEKEEPER AND MUST PERFORM
MALLY ACCOMPLISHED BY IT
AL ENTRY AND EXIT.
REGS, NSP; UNLOCK VPT, TEST INT)

2. GENERAL:
A. ALL VIOLATIONS OF VIRTUAL MACHINE INSTRUCTIONS

ARE CONSIDERED ERROR CONDITIONS AND HILL RETURN
SYSTEM TO THE MONITOR HITH AN ERROR CODE IN R0
AND THE PC VALUE IN R1

.

3. ITC PROCEDURES CALLING GETHORK PASS DBR
(REGISTER R14) AND LOGICAL CPU NUMBER
(REGISTER R13) AS INPUT PARAMETERS.
(INCLUDES: SIGNAL, HAIT, SHAP_VDBB,
PHYS_PREEMPT_HANDLER, AND IDLE) . !

ERROR CODES ********** !

UNAUTHORIZED LOCK !

MESSAGE LIST EMPTY !

MESSAGE LIST ERROR !

READY LIST EMPTY I

MESSAGE LIST OVERFLOH
SWAP NOT ALLOWED !

VP INDEX ERROR !

MMU UNAVAILABLE !

CONSTANT
i **********

U_L :=

M~L EM ::= 1

m'l^ER ::* 2

R~L E :.= 3

M_L_0 := 4

S~N~A := 5

v"l~E := 6

M~U :- 7

- 335 -

i ******** SYSTEM PARAMETERS ******** «

NR SDR :
= 64 'LONG 'WORDS!

NR~CPU : :
= 2

NR~VP J
= NR CPU*4

NR~AVAIL_VP ! ;
= NR CPU*2

MAX_DBR_NR i :
= 10 !PER CPU!

STACK_SEG ;
= 1

PRDS_SEG !
=

STACK SEG SIZE , ,
= 56100

i ***** OFFSETS IN STACK SEG ***** !

STACK BASE
STATUS_REG_BLOCK
INTERRUPT_FRAME
INTERRUPT~REG
N S P
F~C H

5TACK_SEG_SIZE-%10
ST ACK~SEG "SIZE- 5610

STACK^BASE-U
INTERRUPT_FRAME-34
INTERRUPT REG-2
STACK SEG SIZE-%E

ON := XFFFF
OFF ::=

RUNNING J:=

READY := 1

WAITING !:= 2

NIL := 4FFFF
INVALID : — /6EEEE
MONITOR := XA900
KERNEL FCW := X5000
AVAILABLE :=

ALLOCATED := %FF

TYPE
MESSAGE ARRAY [16 BY
ADDRESS WORD
VP_INDEX INTEGER
MSG INDE3C INTEGER

i HBUG ENTRY !

SEG_DESC_REG RECORD

c

BASE ADDRESS
ATTRIBUTES BYTE
LIMITS BYTE

]

HMO ARRAY[NR_SDR SEG_DESC_REG

]

MSG TABLE RECORD

C MSG
SENDER
NEXT_MSG
FILLER

MESSAGE
VP_INDEX
MSG_INDEX
ARRAY £6, -3RD]

- 336 -

VP_TABLE RECORD
[DBR ADDRESS

PRI WORD
STATE WORD
IDLE_FLAG WORD
PREEMPT WORD
PHYS_PROCESSOR WORD
NEXT_READY_VP VP INDEX
MSG IlST MSG INDEX

]

EXT_ID WORD
FILLER_1 ARRAY[7, WORD]

EXTERNAL
LIST_INSERT PROCEDORE

GLOBAL
BOOTSTRAP_ENTRY LABEL

SSECTION ITC_DATA

0000 VPT RECORD
[LOCK WORD

RUNNING_LIST ARRAY[NR_CPU WORD]
READY_LIST ARRAX[NR~CPU WORD]
FREE_LIST MSG_INDEX
VIET INT VEC ARR AY[1 , ADDRESS]
fill!r_2~ WORD
VP ARRAX [NR_VP, VPJTABLE]
MSG Q ARRAY [NR VP,"~MSG TABLE]

]

0210 EXT_VP_LIST ARR AX[NR_AVAIL_VP WORD]

JSECTION MMU_DATA

0000 MMU_IMAGE RECORD

C

MMU STRUCTURE ARRAX[MAX DBR NR MMO]

]

OA0O NEXT_AVAIL_SMU ARRAY[MAX_DBR_NR BYTE]
OAOA PRDS" RECORD

[PHYS_CPO_ID WORD
LOG_C?U_ID INTEGER
VP_NR WORD
IDLE_VP VP_INDEX]

- 337 -

0000

^SECTION ITC_INT_PROC
INTERNAL
GETWORK

t *******
* SWAPS
* ON PH
**** ***
*

*

*

*

*

*

*

*

PA RAM
R13:

REGIS
STAT
R14
R15

LOCA
R1
R2
R3
R4
R5
R6

ENTRY

VIRTUAL

YSICAL PR

ETERS:
LOGICAL

TER USE:
US REGIST
: DBR (SI
: STACK_P
L VARIABL
READY_VP
CURRENT.
FLAG CON
STACK_SE
STATUS_R
NORMAL S

PROCEDURE

PROCESSORS *

OCESSOR. *

*CPU #

ERS
MULATION)
OINTER
ES:
(NEW)

VP (OLD)
TROL WORD
G BASE ADDR
EG BLOCK ADDR
TACK POINTER

*

*

*

*

*

*

*

*

*

*

0000
0002
0004
0006

31E4
0004
3445
00F0

! GET STACK BASE !

LD R4, R14 (#STACK_SEG*4)

LDA R5, R4 (#STATUS_REG_BLOCK)

0008 2F5F

000A
000C
000E

0010
0012

7D32
3343
00F2

! * * SAVE SP * * !

LD 3R5, R15
! * * SAVE FCW * * !

LDCTL R3, FCW
LD R4 (#F_C_W) , R3

61D1
0006*

BOOTSTRAP_ENTRY: ! GLOBAL LABEL •

• GET READY_VP LIST !

LD R7, VPT.READY_LIST (R13)

0014 4D11
0016 0016*
0018 FFFF
001A 5E0E
001C 0030*
001E 4D11
0020 0018'
0022 FFFF
0024 5E0E
0026 002C
0028 5E08
002A 003C

SELECT_VP:
DO ! UNTIL ELGIBLE READY_VP FOUND !

CP VPT. VP.IDLE_FLAG (R1) ,~#ON

IF EQ ! VP IS IDLE ! THEN

CP VPT.VP.PREEMPT(RI) , #ON

IF EQ ! PREEMPT INTERRUPT IS ON ! THEN

EXIT FROM SELECT VP

- 338 -

FI
002C 5E08 ELSE ! VP NOT IDLE !

002E 0034*
0030 5E08 EXIT FROM SELECT VP
0032 003C

PI
! GET NEXT READY VP i

0034 6113 LD R3, VPT.VP.NEXT READY VP(R1)
0036 001C
0038 A131 LD R1 , R3
003A E8EC OD

! NOTE: THE READY_LIST WILL NEVER BE EMPTY SINCE
the idle vp, which is the lowest pbi vp,
will never be removed from the list.
it will ron only if all other ready vp»s are
idling or if there are no other vp«s on
the ready_list. once scheduled, it
will ron Until receiving a hdwe interrupt, i

! note: r14 is used as dbr here. when mmo
is available this series of save and load
instroctions will be replaced by special i/o
instructions to the mmo. !

! place new_vp in ronning state !

vpt. vp. state (r1), tronning003C 4D15 LD
003E 0014*
0040 0000
0042 6FD1 LD
0044 0002*

i * *

0046 611E LD
0048 0010'

! LOA
004A 31E4 LD
004C 0004
004E 3445 LDA
0050 00F0
0052 215F LD

! * *

0054 3143 LD
0056 00F2
0058 7D3A LDCTL
005A 9E08 RET

VPT.RUNNING_LIST(R13) , R1

SWAP DBR * * !

R14, VPT.VP.DBR (R1)

R4, R14 (#STACK_SEG*4)

R5, R4 (#STATUS_REG_3L0CK)

R15, o)R5

LOAD NEW FCW * * •

R3, R4(#F_C_W)

FCW, R3

END GETWORK

- 339 -

005C ENTER_MSG_LIST PROCEDURE
i *********************************
* INSERTS POINTER TO MESSAGE *

* FROM CORRENT_VP TO SIGNALED_VP*
* IN FIFO MSG_LIST *

* REGISTER USE: *

* PARAMETERS: *

* R8(R9):MSG (INPUT) *

* R1: SIGNALED_VP (INPUT) *

* R13: LOGICAL CPU NUMBER *

* LOCAL VARIABLES: *

* R2: CURRENT_VP *

* R3: FIRST_FREE_MSG *

* R4: NEXT_FREE_MSG *

* R5: NEXT_Q MSG *

* R6: PRESENT Q MSG *

i

ENTRY
005C 61D2 LD R2, VPT.RUNNING_LIST(R13)
005E 0002*

j GET FIRST MSG FROM FREE_LIST i

0060 6103 LD R3, VPT.FREE_LIST
0062 000A'

t * * * * DEBUG * * * * •

0064 0303 CP R3, #NIL
0066 FFFF
0068 5E0E IF EQ THEN
006A 0078*
006C 7601 LDA R1, $

006E 006C 1

0070 2100 LD RO, #M_L_0! MESSAGE LIST
0072 0004
0074 5F0C CALL MONITOR
0076 A900

0078 6134 LD
007A 0122'
007C 6F04 LD
007E 0OOA»

|

0080 763A
•

LD
0082 0110*
0084 2107 LD
0086 0010
0088 BA81 LD
008A 07A0
008C 6F32 LD
008E 0120'

FI
! * * * END DEBUG * * * !

R4, VPT.MSG_Q.NEXT_MSG(R3)

VPT.FREE_LIST, R4

INSERT MESSAGE LIST INFORMATION !

A R10,VPT.MSG_Q.MSG(R3)

R7,#SIZEOF MESSAGE

IRB 3R10,3R8,R7

7PT . MSG_Q . SENDER (R3) , R2

- 340 -

! INSERT MSG IN MSG_LIST !

0090 6115 LD R5, VPT. VP. MSG LIST(21)
0092 001E"

0094 0B05 CP R5, #NIL
0096 FFFF
0098 5E0E IF EQ ! MSG LIST IS EMPTY ! THEN
009A 00A4«

! INSERT MSG AT TOP OF LIST !

009C 6F13 LD VPT.VP.MSG LIST(R1), S3
009E 001E"

00A0 5E08 ELSE ! INSERT MSG IN LIST i

00A2 0OBC«
MSG_Q_SEARCH:
DO ! WHILE NOT END OF LIST !

00A4 0B05 CP R5, #NIL
00A6 FFFF
00A8 5E0E IF EQ ! END OF LIST ! THEN
OOAA 00B0 1

OOAC 5E08 EXIT FROM MSG_Q_SEARCH
OOAE 00B8'

FI

! GET NEXT LINK !

OOBO A156 LD R6, R5
00B2 6165 LD R5, VPT. MSG_Q . NEXTJiSG (R6>

00B4 0122*
00B6 E8F6 OD

! INSERT MSG IN LIST I

00B8 6F63 LD VPT. MSG_Q.NEXT._MSG (R6) , R3

OOBA 0122*
FI

OOBC 6F35 LD VPT. MSG_Q. NEXT_MSG (R3) , R5

OOBE 0122«
OOCO 9E08 RET
0OC2 END ENTER MSG LIST

- 341 -

00C2 GET_FIRST_MSG PROCEDURE
i ******************** mm **** *********
* REMOVES MSG FROM MSG_LIST *

* AND PLACES ON FREE LIST. *

* RETURNS SENDER'S MSG AND *

* VP_ID *

REGISTER USE: *

* PARAMETERS: *

* R8(R9): MSG POINTER (INPUT) *

* R13: LOGICAL CPU NUM3ER (INPUT)*
* H1: SENDER VP (RETURNED) *

* LOCAL VARIABLES *

* R2: CURRENT_VP *

* R3: FIRST MSG *

* R4: NEXT_MSG *

* R5: NEXT FREE MSG *

* R6: PRESENT_FREE_MSG *

************************** ****** ***i

ENTRY
00C2 61D2 LD R2, VPT. RUNNING_LIST (R 13)

00C4 0002*

! REMOVE FIRST MSG FROM MSG_LIST !

00C6 6123 LD R3, VPT. VP. MSG LIST(R2)
00C8 001E«

j * m * * DEBUG • * * * !

OOCA 0B03 CP R3, #NIL
OOCC FFFF
OOCE 5E0E IF EQ THEN
00D0 OODE*
00D2 2100 LD RO , #M_L_EM ! MSG LIST EMPTY !

00D4 0001
00D6 7601 LDA R1, $

00D8 00D6»
OODA 5F00 CALL MONITOR
OODC A900

FI
» * * * END DEBUG * * * !

OODE 6134 LD R4, VPT. MSG_Q . NEXT_MSG (R3)

00E0 0122*
00E2 6F24 LD VPT. VP. MSG LIST(22), R4
00E4 001E f

! INSERT MESSAGE IN FREE_LIST i

00E6 6105 LD R5, VPT. FREE_LIST
00E8 000A'
OOEA 0BO5 CP R5, #NIL
OOEC FFFF
OOEE 5E0E IF EQ ! FREE LIST IS EMPTY ! THEN
OOFO 0100*

! INSERT AT TOP OF LIST !

00F2 6F03 LD VPT. FREE LIST, S3
0OF4 OOOA*

- 342 -

00F6 4D35 LD VPT.MSG Q.NEXT MSG (R31 - #NIL
OOFS 0122"
OOFA FFFF
OOFC 5E08 ELSE ! INSERT IN LIST J

OOFE 011C
FREE_Q_SEARCH:

DO

0100 0B05 CP R5, #NIL
0102 FFFF
0104 5E0E IF EQ ! END OF LIST ! THEN
0106 010C«
0108 5E08 EXIT FROM FREE Q SEARCH
010A 0114«

FI
! GET NEXT MSG !

010C A156 LD R6, R5
010E 6165 LD R5, VPT.MSG Q.NEXT MSG (R6)
0110 0122*
112 E8F6 OD

! INSERT IN LIST !

0114 6F63 LD VPT.MSG Q. NEXT_MSG (R6) , R3
0116 0122*
0118 6F35 LD VPT.MSG Q. NEXTJ1SG (R3) , R5
01 1A 0122*

FI
! GET MESSAGE INFORMATION:

(RETURNS R1: SENDING_VP) !

011C 6131 LD R1, VPT. MSG_Q. SENDER (R3)

011E 0120*
0120 763A LDA R10 , VPT. MSG_Q. MSG (R3)

0122 0110«
0124 2107 LD R7,#SIZEOF MESSAGE
0126 0010
0128 BAA1 LDIRB 3R8 ,0>R1 ,R7
012A 0780
012C 9E08 RET
012E END GET_FIRST_MSG

- 343 -

! * * INNER TRAFFIC CONTROL ENTRY POINTS * * !

! NOTE: ALL INTERRUPTS MUST BE MASKED WHENEVER
THE VPT IS LOCKED. THIS IS TO PREVENT AN
EMBRACE FROM OCCURRING SHOULD AN INTERRUPT
OCCUR WHILE THE VPT IS LOCKED. !

GLOBAL
SSECTION ITC_GLB_PROC

PREEMPT_RET LABEL
KERNEL_EXIT LABEL

0000 CREATE_INT_VEC PROCEDURE
i ********************************
* CREATES ENTRY IN VIRTUAL INT-*
* ERRUPT VECTOR WITH ADDRESS *

* OF THE VIRTUAL INTERRUPT HAN-*
* DLER. *

* PARAMETERS: *

* R1: VIRTUAL INTERRUPT # *

* R2: INTERRUPT HANDLER ADDR *

******************************** I

ENTRY
! COMPUTE OFFSET IN VIRTUAL
INTERRUPT VECTOR !

MULT RRO, #SIZEOF ADDRESS

! SAVE ADDRESS OF VIRTUAL INTERRUPT
HANDLER IN INTERRUPT VECTOR !

LD VPT.VIRT_INT_VEC(R1) , R2

RET
000A END CREATE INT VEC

0000 1900
0002 0002

0004 6F12
0006 000C 1

0008 9E08

- 344 -

OOOA GET_DBR_ADDR PROCEDURE
f ********************************
* CALCULATES DBR ADDRESS FROM *

* DBR NUMBER *

* REGISTER USE: *

* PARAMETERS: *

* RO: DBR # *

* RETURNS: *

* R1: DBR ADDRESS *

i

ENTRY
! GET BASE ADDRESS OF MMU IMAGE !

R1, MMU_IMAGE

HANDLE (OFFSET) TO MMU BASE
TO OBTAIN DBR ADDRESS !

R1, RO

ADDR

OOOA 7601 LDA
OOOC 0000*

! ADD DBR
ADDRESS

OOOE 8101 ADD
0010 9E08 RET
0012 END GET DBR

- 345 -

0012 ALLOCATE_MMU PROCEDURE
i ********************* ***********
* ALLOCATES NEXT AVAILABLE MMU *

* IMAGE AND CREATES PRDS ENTRY *

* REGISTER USE: *

* RETURNS: *

* RO: DBR # *

* LOCAL VARIABLES: *

* R1: SEGMENT # *

* R2: PRDS ADDRESS *

* R3: PRDS ATTRIBUTES *

* R4: PRDS LIMITS *

************ *************** ******
ENTRY

! GET NEXT AVAILABLE DBR # !

0012 8D08 CLR RO
0014 8D18 CLR R1

! NOTE: THE FOLLOWING IS A SAFE SEQUENCE
AS NEXT_AVAIL_MMU AND MMU ARE CPU LOCAL!

GET_DBR:
DO

0016 4C11 CPB NEXT_AVAIL HMO (B1) , tAVAILABLE
0018 0A00*
001A 0000

IF EQ !MMU ENTRY IS AVAILABLE!
001C 5E0E THEN
001E 002E«
0020 4C15 LDB NEXT_AVAIL_MMU (R1) , #ALLOCATED
0022 0A00 1

0024 FFFF
0026 5E08 EXIT FROM GET_DBR
0028 004A*
002A 5E08 ELSE ICURRENT ENTRY IS ALLOCATED!
002C 0048*
002E A910
0030 0100
0032 0100

0034 0B01
0036 000A
0038 5E0E IF EQ THEN
003A 0048*
003C 2100 LD RO, #M_U iMMU UNAVAILABLE!
003E 0007
0040 7601 LDA R1 , $
0042 0040»
0044 5F00 CALL MONITOR
0046 A900

FI
i * * * END DEBUG * * * !

LSE JCURRENT ENTRY

INC R1, #1
ADD RO, #SIZEOF MMU

• * * * * DEBUG * *
CP R1, #MAX_DBR_NR

FI
0048 E8E6 OD

- 346 -

004A 2101 LD
004C 0000
004E 7602 LDA
0050 OAOA'
0052 2103 LD
0054 000 1

0056 2104 LD
0058 0000

R1, #PRDS_SEG i SEGMENT NO. •

R2, PRDS I PRDS ADDR !

R3, #1 ! READ AIIR !

R4, #((SIZEOF PRDS)-1)/256

! PRDS LIMITS !

! CREATE PRDS ENTRY IN MMU IMAGE !

005A 5F00 CALL OPDATE_MMO_IMAGE !(H1: SEGMENT #

005C 0060*
R2: SEG ADDRESS
R3: ATTRIBUTES
R4: SEG LIMITS)

!

005E 9E08 RET
0060 END ALLOCATE MMU

- 347 -

0060

0060
0062
0064
0066
0068
006A
006C

006E
0070
0072
0074
0076
0078
007A
007C
007E
0080
0082
0084
0086
0088
008A
008C

008E
0090
0092
0094

210A
0000»
810A
210D
0004
991C
81DA

2FA2
A9A1
0OA8
2EAC
A9A0
20AC
0A0B
0808
5E0E
008A 1

060C
F7F7
5E08
008E»
060C
FEFE

84 BC
2EAC
9E08

UPDATEJ!
; ********
* CREATE
* ENTRY

* REGIST

PARAM
RO
R1
R2
R3
R4

LOCAL
R10:
R13:

mm******
ENTRY
LD R10

MU_IMAGE PROCEDURE

S SEGMENT DESCRIPTOR *

IN MMU IMAGE *

ER USE: *

ETERS: *

DBR # *

SEGMENT # *

SEGMENT ADDRESS *

SEGMENT ATTRIBUTES *

SEGMENT LIMITS *

VARIABLES: *

MMU BASE ADDRESS *

OFFSET VARIABLE *

f

, #MMU IMAGE ! MMU BASE ADDRESS !

ADD R10, RO
LD R13 r #SIZEOF SEG_DESC_REG

MULT RR12, R1 J COMPUTE SEG_DESC
ADD R10, R13 !ADD OFFSET TO BASE
! INSERT DESCRIPTOR DATA !

LD 3R10, R2
INC R10, #2
CLR SR10
LDB 3R10, RL4
INC R10, #1
LDB RL4, SR10
CPB RL3, #X(2)00001000

OFFSET !

ADDRESS!

! EXECUTE !

IF EQ THEN

ANDB RL4, #% (2) 111 101 1 1 ! EXECUTE MASK

ELSE

ANDB RL4, #% (2) 1 1 1 1 1 1 10 ! READ MASK •

FI
ORB RL4, RL3
LDB o)R10, RL4
RET

END UPDATE MMU IMAGE

- 348 -

0094 WAIT PROCEDURE
!***********************************
* INTRA_KERNEL SYNC/COM PRIMATIVE *
* INVOKED BY KERNEL PROCESSES *
******** ****** ********* ********* * **
* PARAMETERS *
* R8(R9): MSG POINTER (INPUT) *
* R1: SENDING_VP (RETURN) *
* GLOBAL VARIABLES *
* R14: DBR (PARAM TO GETWORK) *
* LOCAL VARIABLES *
* R2: CURRENT_VP (RUNNING) *
* R3: NEXT READY VP *
* R4: LOCK~ADDRESS *
* R13: LOGICAL CPU NUMBER *

*********************************** t

ENTRY
! MASK INTERRUPTS !

0094 7C01 DI VI
! LOCK VPT !

LDA R4, VPT. LOCK

CALL SPIN_LOCK ! (R4 :-.VPT. LOCK) !

NOTE: RETURNS WHEN VPT IS LOCKED BY THIS VP !

GET CPU NUMBER !

CALL GET_CPU_NO ! RETURNS:

R1;CPU #

R2:# VP»S!
00A2 A11D LD R13, R1

LD R2, VPT.RUNNING_LISr (R13)

LD R3, VPT. VP.NEXT_READY_VP(R2)

CP VPT.VP.MSG_LIST(R2) , #NIL

IF EQ ! CURRENT VP« S MSG LIST IS EMPTY ! THEN

! REMOVE CUSRENT_VP FROM READY_LIST I

i * * * * DEBUG * * * * !

CP R3, #NIL

IF EQ THEN

LD RO, #R_L_E i READY LIST EMPTY i

LDA R1, $

CALL MONITOR

- 349 -

0096 7604
0098 0000'
009A 5F00
009C 0282'

i

009E 5F00

i

00A0 02C8«

00A4 61D2
00A6 0002'
00A8 6123
OOAA 001C

OOAC 4D21
OOAE 001E*
OOBC FFFF
00B2 5E0E
00B4 OOEA 1

00B6 0BO3
00B8 FFFF
OOBA 5E0E
OOBC OOCA*
OOBE 2100
00C0 0003
00C2 7601
00C4 00C2'
00C6 5F00
00C8 A900

FI
i * * * END DEBUG * * * !

OOCA 6FD3 LD VPT. HEAD Y_LIST (R 13) , E3
OOCC 0006»
OOCE 4D25 LD VPT . VP . NEXT_BEADY_VP (E2) , #NIL
OODO 001C«
00D2 FFFF

! POT IT IN WAITING STATE !

OOD4 4D25 LD VPT. VP. STATE (H2) , #WAITING
0D6 0014*

00D8 0002
! SET DBB !

OODA 612E LD R14, VPT. VP. DBB(B2)
OODC 0010 1

! SCHEDULE FIBST ELGIBLE HEADY VP !

OODE 93F8 PUSH 3R15,H8
! SAVE LOGICAL CPU # !

OOEO 93FD PUSH 3R15, B13
00E2 5F00 CALL GETWOBK !R13:CPU #

00E4 0000*
B14:DBB!

! RESTORE CPU # !

00E6 97FD POP R13, 3R15
00E8 97F8 POP R8,d)R15

FI
! GET FIRST MSG ON CURRENT VP«S MSG LIST !

OOEA 5F00 CALL GET_FIRST_MSG I COPIES MSG IN MSG ARRAY!
OOEC 00C2»

! R13: LOGICAL CPU t !

•RETURNS B1:SENDER_VP !

! UNLOCK VPT !

OOEE 4D08 CLR VPT. LOCK
OOFO 0000'

I UNMASK VECTORED INTEBBUPTS !

00F2 7C05 EI VI

! RETURN: R1:SENDER_VP I

00F4 9E08 RET
00F6 END WAIT

- 350 -

00F6

00F6 93F1

00F8 7C01

OOFA 7604
OOFC 0000*
OOFE 5FO0
0100 0282'

0102 5F00
0104 02C8'

0106 A11D

0108 97F1

SIGNAL
I ********
* INTRA_
* INVOKi

* REGIST

PARAM
R8(R
R1:

GLOBAL
R13:
R14:
LOCAL
B1:
S2:
R4:

ENTRY

! SAVE
POSH
! MASK
DI V

! LOCK
LOA

CALL

*

*

*

*

*

*

*

PROCEDURE
*********************** *****
KERNEL SYNC /COM PRIVATIVE *

D BY KERNEL PROCESSES *
****** **********************
ER USE: *

ETERS: *

9) : MSG POINTER (INPUT) *

SIGNALED VP ID (INPUT) *

VARIABLES *

CPU # (PARAM TO GETWORK) *

DBR (PARAM TO GETWORK) *

VARIABLES: *

SIGNALED VP *

CURRENT_VP *

VPT.LOCK ADDRESS *

**************************** i

VP ID !

3R15, R1
INTERRUPTS !

I

VPT !

R4, VPT.LOCK

SPIN_LOCK ! (R4: -.VPT. LOCK) !

!NOTE: RETURNS WHEN VPT IS LOCKED BY THIS VP,

! GET LOGICAL CPU * !

CALL GET CPU NO 'RETURNS:

R1:CPU #

R2;# VP»SJ
LD
! RESTORE
POP

R13, R1
VP ID !

Rl r 0>R15

! PLACE MSG IN SIGNALED_VP» S MS3_LIST !

010A 5F00 CALL ENTER_MSG LIST !(R8:MSG POINTER
010C 005C 1 R1:SIGNALED_VP

R13:LQGICAL CPU #) !

010E
0110
0112
0114
0116

4D11
0014'
0002
5E0E
0148'

CP VPT. VP. STATE (R1) , #WAITING

IF EQ ! SIGNALED_VP IS WAITING ! THEN

01 18 A112
01 1A 76D3
011C 0006'
011E 7604
0120 001C

! WAKE IT UP AND MAKE IT READY !

LD R2, R1
LDA R3, VPT.READY_LISI (R13)

LDA R4, VPT. VP.NEXT_READY_VP

- 351 -

0122
0124
126

0128
012A
012C

7605
0012'
7606
0014*
2107
0001

012E 93FD
0130 5F00
0132 0000*

0134 97PD

0136
0138
013A
013C
013E

0140
0142

61D2
0002*
4D25
0014*
0001

612E
0010*

LDA R5, VPT.VP.PRI

LDA R6, VPT.VP. STATE

LD R7, #READY

! SAVE LOGICAL CPU # !

POSH SR15, R13
CALL LIST_INSERT !R2; OBJ ID

R3: LIST_PTR ADDR
R4: NEXT_OBJ_PTR
R5: PRIORITY_PTR
R6: STATE PTR
R7: STATE !

! RESTORE LOGICAL CPU * !

POP R13, 3R15
! PUT CURRENT_VP IN READY_STATE I

LD R2, VPT.RUNNING_LIST (R13)

LD VPT.VP. STATE (R2) , #READY

! SET DBR !

LD R14, VPT.VP. DBR(R2)

144 5P00
0146 0000*

0148 4D08
014A 0000 1

14C 7C05

014E 9E08
0150

! SCHEDULE FIRST ELGIBLE READY VP !

CALL GETHORK !R13:LOGICAL CPU #

R14;DBR !

FI

! UNLOCK VPT !

CLR VPT. LOCK

! UNMASK VECTORED INTERRUPTS !

EI VI

RET
END SIGNAL

- 352 -

0150 SET_PREEMPT PROCEDURE
i ****************************
* SETS PREEMPT INTERRUPT ON*
* TARGET_VP. CALLED BY TC_ *
* ADVANCE. ' *

* REGISTER USE: *

* PARAMETERS: *

* R1:TARGET_VP ID (INPUT) *
* LOCAL VARIABLES *

* R1: VP_INDEX *

****************************!
ENTRY

! NOTE: DESIGNED AS SAFE SEQUENCE SO VPT NEED
NOT BE LOCKED. !

VP_ID TO VP_INDEX •

R2, EXT_VP_LIST(R1)

TGT_VP PREEMPT FLAG !

VPTTVP. PREEMPT (R2) , #ON

» ** IF TARGET VP NOT LOCAL
(NOT BOUND TO THIS CPU)

[IE, IF «CPU_SEG>>CPU_IDOVPT. VP. PH YS.CPU (R 1)]

THEN SEND HARDWARE PREEMPT INTERRUPT TO
VPT.VP.CPU(RI) . ** I

! CONVERT
0150 6112 LD
0152 0210*

I TURN ON
0154 4D25 LD
0156 0018"
0158 FFFF

015A 9E08 RET
15C END SET PREEMPT

- 353 -

015C

15C 5F00

IDLE
t ********
* LOADS
* CURREN
* TC_GET

* REGIST

GLOBA
R13:
R14:
LOCAL
R2:
R3:
R4:
R5:

ENTRY

• GET L
CALL

*

*

IDLE D
T VP.
WORK.

ER USE
L VARI
LOG C
DBR
VARIA

CURREN
TEMP V

VPT.LO
TEMP

PROCEDURE

BE ON *

CALLED BY *
*

*
*

*

*

*

*

*

*

*

***********;

ABLE
PU *

BLES:
T_VP
AR
CK ADDR

OGICAL CPU #

GET CPU NO ! RETURNS:

0174 6103
0176 0A10*
0178 6135
017A 0010'
017C 6F25
017E 0010'

! LOAD IDLE DBR ON CURRENT VP I

LD R3, PRDS.IDLE_VP

LD

LD

R5, VPT. VP.DBR(R3)

YPT.VP.DBR (R2) , R5

0180 4D25
0182 0016'
0184 FFFF

0186 4D25
0188 0014'
018A 0001

! TURN ON CURRENT VP'S IDLE FLAG I

LD VPT.VP.IDLE_FLAG(R2) , #ON

! SET VP TO READY STATE !

LD VPT. VP. STATE (R2) , #READY

018C 5F00
018E 0000 1

! SCHEDULE FIRST ELIGIBLE READY VP I

CALL GETWORK !R13:L0GICAL CPU #

R14:DBR I

190 4D08
0192 0000*

0194 7C05

! UNLOCK VPT I

CLR VPT. LOCK

I UNMASK VECTORED INTERRUPTS •

EI VI

0196 9E08
0198

RET
END IDLE

- 354 -

0198 SWAP_VDBR PROCEDURE
I *************************
* LOADS NEW DBR ON *
* CURRENT VP. CALLED BY *
* TC_GETWORK. *
************** ***********
* REGISTER USE *
* PARAMETERS *
* R1: NEW_DBR (INPUT) *
* GLOBAL VARIABLES *
* R13: LOGICAL CPU # *
* R14: DBR *
* LOCAL VARIABLES *
* R2: CURRENT_VP *
* R4: VPT.LOCK ADDR *
*************************!
ENTRY

! SAVE NEW DBR !

0198 93F1 PUSH o)R15, R1
! MASK INTERRUPTS I

019A 7C01 DI VI
! LOCK VPT !

019C 7604 LDA R4, VPT.LOCK
019E 0000'
01 AO 5F00 CALL SPIN LOCK I (R4: -.VPT. LOCK) !

01A2 0282*
! NOTE: RETURNS WHEN VPT IS LOCKED BY THIS VP.!
! GET CPU # !

01A4 5F00 CALL GET_CPU_NO ! RETURNS:
01A6 02C8»

R1: CPU #

R2:# VP«SJ
01A8 A11D LD R13, R1

! GET CURRENT VP !

01AA 61D2 LD R2, VPT. RUNNING_LIST (R 13)

01AC 0002*
i * * * DEBUG * * * I

01AE 4D21 CP VPT.VP.MSG_LISI (R2) , #NIL
01B0 001E*
01B2 FFFF
01B4 5E06 IF NE i MSG WAITING ! THEN
01B6 01C4'
01B8 2100 LD RO, #S_N_A I SWAP NOT ALLOWED !

01BA 0005
01BC 7601 LDA R1, $ IPCI

01BE 01BC
01C0 5F00 CALL MONITOR
01C2 A900

FI
! * * END DEBUG * * !

» SET DBR i

01C4 612E LD R14, VPT. VP. DBR(R2)

01C6 0010*
! RESTORE NEW DBR I

- 355 -

01C8 97F0 POP RO, o)R15

01CA 5F00 CALL GET_DBR_ADDR ! (RO: DBR #)

01 CC 000A'
RETURNS
(R1: DBR ADDR) !

! LOAD NEW DBR ON CURRENT VP I

01CE 6F21 LD VPT . VP. DBR (R2) , R1

01D0 0010'

! TURN OFF IDLE FLAG \

01D2 4D25 LD VPT . VP.IDLE_FLAG (R2) , #OFF
01DU 0016'
1D6 0000

• SET VP TO READY STATE !

1D8 4D25 LD VPT. VP. STATE (R2) , #READY
01DA 0014*
01 DC 0001

! SCHEDULE FIRST ELGIBLE READY VP !

01DE 5F00 CALL GETWORK !R13:LOGICAL CPU *

01E0 0000*
R1U:DBR i

! UNLOCK VPT !

1E2 4D08 CLR VPT. LOCK
01E4 0000'

! UNMASK VECTORED INTERRUPTS !

01E6 7C05 EI VI

01E8 9E08 RET
01EA END SWAP VDBR

- 356 -

01EA PHYS_PREEMPT_HANDLER PROCEDURE
i ********************************
* HARDWARE PREEMPT INTERRUPT *
* HANDLER. ALSO TESTS FOR *

* VIRTUAL PREEMPT INTERRUPT *

* FLAG AND INVOKES INTERRUPT *

* HANDLER IF FLAG IS SET. *

* INVOKED UPON EVERY EXIT FROM *

* KERNEL. KERNEL FCW MASKS *

* NVI INTERRUPTS TO PREVENT *

* SIMULTANEOUS PREEMPT INTERR. *
* HANDLING. *

********* ************ ***********
* REGISTER USE *

* LOCAL VARIABLES *

* R1: PREEMPT_INT_FLAG *

* R2: CURRENT_VP *

* GLOBAL VARIABLES *

* R13:LOGICAL CPU # *

* R14:DBR *

»

ENTRY

! * * PREEMPT_HANDLER * * !

! SAVE ALL REGISTERS !

01EA 030F SUB R15, #32

01EC 0020
01EE 1CF9 LDM 0>R15, R1, #16

01F0 010F

! SAVE NORMAL STACK POINTER (NSP) !

01F2 7D67 LDCTL R6, NSP

01F4 93F6 PUSH 3R15, R6
» GET CPU # !

01F6 5F00 CALL GET_CPU_NO 'RETURNS:

01F8 02C8»
R1: CPU #

R2:# vp«Si

01FA A11D LD R13, R1

! MASK INTERRUPTS !

01FC 7C01 DI VI
! LOCK VPT !

01FE 7604 LDA R4, VPT. LOCK
0200 0000*
0202 5F00 CALL SPIN_LOCK
020U 0282*

IRETURNS WHEN VPT IS LOCKED!
! SET DBR !

0206 61D2 LD R2, VPT. RUNNING.LIST (R1 3)

0208 0002«
020A 612E LD R14, VPT. VP.DBR (R2)

020C 0010*

- 357 -

! PUT CURRENT PROCESS IN READY STATE !

020E 4D25 LD 7PT. VP. STATE (R2) , #READY
0210 0014*
0212 0001
0214 5F00 CALL GETWORK !R13:L0G CPU #

0216 0000'
R14:DBR •

PREEMPT_RET:
! UNLOCK VPT !

0218 4D08 CLR VPT. LOCK
021A 0000'

! UNMASK VECTORED INTERRUPTS !

021C 7C05 EI VI
KERNEL_EXIT:

i *** (JNMASK VIRTUAL PREEMPTS *** i

! ** NOTE: SAFE SEQUENCE AND DOES NOT REQUIRE
VPT TO BE LOCKED. ** !

! GET CURRENT_VP !

021E 610D LD R13, PRDS.LOG CPU_ID
0220 OAOC 1

0222 61D2 LD R2, VPT. RUNNING LIST(R13)
0224 0002»

! TEST PREEMPT INTERRUPT FLAG !

0226 4D21 CP VPT. VP. PREEMPT (R2) , #ON
0228 0018«
022A FFFF
022C 5E0E IF EQ ! PREEMPT FLAG IS ON ! THEN
022E 0240«

! RESET PREEMPT FLAG !

0230 4D25 LD VPT. VP. PREEMPT (R2) , #OFF
0232 0018*
0234 0000

I SIMULATE VIRTUAL PREEMPT INTERRUPT I

0236 2101 LD R1, #0
0238 0000
023A 6112 LD R2, VPT. VIRT_INT_VEC (R1)
023C 000C
023E 1E28 JP SR2

!NOTE: THIS JUMP TO TRAFFIC_CONTRQL
IS USED ONLY IN THE CASE OF A PREEMPT INTERRUPT,
AND SIMULATES A HARDWARE INTERRUPT. ** !

i *** END VIRTUAL PREEMPT HANDLER *** !

FI

! NOTE: SINCE A HDHE INTERRUPT DOES NOT EXIT
THROUGH THE GATE, THOSE FUNCTIONS PROVIDED

BY A GATE EXIT TO HANDLE PREEMPTS MUST BE
PROVIDED HERE ALSO. !

- 358 -

! RESTORE NSP !

0240 97F6 POP R6 , 3R15
0242 7D6F LDCTL NSP, R6

! RESTORE ALL REGSTERS I

0244 1CF1 LDM R1, 3>R15, #16
0246 010F
0248 010F ADD R15, #32
024A 0020

! EXECUTE HARDWARE INTERRUPT RETURN !

024C 7B00 IRET

024E END PHYS PREEMPT HANDLER

- 359 -

024E

024E 7C01

0250
0252
0254
0256

0258
025A

7604
0000 1

5F00
0282«

5F00
02C8'

025C A113
025E 6132
0260 0002«

0262
0264

0266
0268
026A
026C
026E
0270
0272
0274
0276
0278

6121
0020*

0B01
FFFF
5E0E
027A'
2100
0006
7601
0272'
5F00
A900

RUNNING_VP PROCEDURE
i *********************************
* CALLED BY TRAFFIC CONTROL. *

* RETURNS VP ID. RESULT IS VALID*
* ONLY MHILE~APT IS LOCKED. *

* REGISTER USE *

* PARAMETERS *

* R1: EXT_VP_ID (RETURNED) *

* R3: LOG CPU # (RETURNED) *

* LOCAL VARIABLES *

* R2: VP INDEX *

t

ENTRY
! MASK INTERRUPTS !

DI VI
! LOCK VPT !

LDA R4, VPT. LOCK

CALL SPIN LOCK (R4:-VPI.L0CK) !

! NOTE: RETURNS iHEN VPT IS LOCKED BY THIS VP !

! GET LOGICAL CPU * !

CALL GET CPU NO {RETURNS:

LD
LD

R1: CPU #

R2:# VP»S!
83, R1

R2, VPT.RUNNING_LIST(R3)

! CONVERT VP_INDEX TO VP_ID !

LD RiT VPT. VP.EXT_ID(R2)

• * * * DEBUG * * * !

CP R1, #NIL

IF EQ ! KERNEL PROC ! THEN

LD RO, #V_I_E i VP INDEX ERROR !

LDA R1, $

CALL MONITOR

FI
! * * END DEBUG * * !

i UNLOCK VPT !

027A 4D08 CLR VPT. LOCK
027C 0000*

! UNMASK VECTORED INTERRUPTS !

027E 7C05 EI VI
0280 9E08 RET
0282 END RUNNING VP

- 360 -

0282

0282
0284
0286
0288
028A
028C
028E
0290
0292
0294

0D41
0000
5E06
0296»
2100
0000
7601
028E'
5P00
A900

0296 0DU6
0298 E5FE

029A 9E08

029C

SPIN_
i *****
* USE
* LOC
* STR
* BY

*REGI
* PAH
* H4

ENTRY
! NO

LOCK PROCED

S SPIN_LOCK M
KS UNLOCKED D

UCTURE (POINT
INPUT PARAMET

STER USE
AMETERS
: LOCK ADDR (

URE

ECH. *

ATA *

ED TO *

ER) . *

INPUT) *

*******{

CP

TE: SINCE ONLY ONE PROCESSOR CURRENTLY
IN SYSTEM, LOCK NOT NECESSARY. ** !

* * * DEBUG * * * •

R4, #OFF

IF NE ! NOT UNLOCKED ! THEN

LD RO, #U_L ! UNAUTHORIZED LOCK !

LDA R1, $

CALL MONITOR

FI
! * * END DEBUG » * I

TEST_LOCK:
! DO WHILE STRUCTURE LOCKED !

TSET 3R4
JR MI, TEST LOCK

! ** NOTE SEE PLZ/ASM MANUAL
FOR RESTRICTIONS ON
USE OF TSET. ** !

RET

END SPIN LOCK

- 361 -

029C ITC_G
i *****
* GET
* IND

* REG
* RO
* R1
* R2
* R3
* m
* R1

ET_SEG_PTR PROCEDURE

S BASE ADDRESS OF SEGMENT *

ICATED. *

ISTER USE: *

:SEG BASE ADDRESS (RET) *

:SEG NR (INPUT) *

: RUNNING VP (LOCAL) *

:DBR_VALUE (LOCAL) *

:VPT.LOCK *

3:LOGICAL CPU * *

i

029C 93F1

029E 7C01

02A0 7604
02A2 0000*
02A4 5F00
02A6 0282*

02A8 5F00
02AA 02C8*

02AC A11D

02AE 97F1
02B0 61D2
02B2 0002«
02B4 6123
02B6 0010'

02B8 4D08
02BA 0000»

02BC 7C05
02BE 1900
02C0 0004
02C2 7130
02C4 0100

ENTRY
! SAVE SEGMENT * !

PUSH SR15, R1
! MASK INTERRUPTS !

DI VI
! LOCK VPT !

LDA R4, VPT. LOCK

CALL SPIN LOCK !R4:-«VPT.L0CK!

! GET CPU # !

CALL GET_CPU_N0 'RETURNS:

81: CPU #

R2:# VP'S!
LD R13, R1
! RESTORE SEGMENT # !

POP R1, 3R15
LD R2,VPT.RUNNING_LIST(R13)

LD R3,VPT.VP.DBR(R2)

! UNLOCK VPT !

CLR VPT. LOCK

! UNMASK VECTORED INTERRUPTS !

EI VI
MULT RR0,#4

LD R0,R3 (R1)

02C6 9E08 RET
02C8 END ITC GET SEG PTR

- 362 -

2C8 GET_CPU_NO PROCEDURE
I *************************
* FIND CURRENT CPU_NO *
* CALLED BY DIST MMGR *
* AND MM *

* RETURNS *
* R1: CPU_NO *
* R2: # OF VP'S *

t

R1, PRDS.LOG_CPU_ID

R2, PRDS.VP NR

ENTRY
02C8 6101 LD
02CA QA0C
02CC 6102 LD
2CE 0A0E»

02D0 9E08 RET
02D2 END GET CPU NO

02D2 K_LOCK PROCEDURE
i *************************
* STUB FOR WAIT LOCK *

* R4:-.LOCK (INPUT) *
*************************!

SPIN LOCK
ENTRY

02D2 5F00 CALL
02DU 0282*
02D6 9E08 RET
02D8 END K LOCK

02D8 K_UNLOCK PROCEDURE
; *************************
* STUB FOR WAIT UNLOCK *

* R4:-LOCK (INPUT) *
*************************!

ENTRY
02D8 0D48 CLR £R4
02DA 9E08 RET
02DC END K_UNLOCK

END INNER TRAFFIC CONTROL

- 363 -

Z8000ASM 2.02
LOC OBJ CODE

Appendix H

SEGMENT MANAGER LISTINGS

STMT SOURCE STATEMENT

ILISTON JTTY

SEG MGR MODULE

CONSTANT
NULL SEG ; = -1
NULL^ACCESS :

= 4

MAX_SEG_NO ; = 64
max!no_kst_entries :

= 54
MAX SEG SIZE ;

= 128
KST_SEG_NO !

= 2

NR_OF_KSEGS :
= 10

TRUE :
= 1

FALSE :
=

READ ; = 1

WRITE ; =

I «*** SUCCESS CODES ****
SUCCEEDED j;

= 2

MENTOR_SEG_NOT_KNOWN . ;
= 22

ACCESS_CLASS_NOT_EQ > = 33
not_compatible : :

= 24
SEGMENT TOO LARGE J :

= 25
NO_SEG_AVAIL ; = 27
SEGMENT_NOT_KNOWN :

= 28
segment!in_core i :

= 29
KERNEL SEGMENT j;

= 30
INVALID_SEGMENT_NO i ; = 31
NO ACCESS PERMITTED : = 32
LEAF_SEG_EXISTS s

;
= 10

NO LEAF EXISTS J ; = 11
ALIAS_DOES_NOT_EXIST j :

= 23
NO_CHILD_TO DELETE ; :

= 20
G AST FULL j

= 12
L_AST_FULL i

;
= 13

PROC_CLASS_NOT_GE_SEG_.CLASS :

LOCAL_MEMORY_FULL~ "i :
= 16

GLOBAL MEMORY FULL i
= 17

SEC STOR FULL"" j
;
= 21

= 41

- 364 -

MONITOR : = X059A

TYPE
H_ARRAY ARRAY [3 WORD]

K5T_REC RECORD
[MM_HANDLE H_ARRAY
SIZE WORD
ACCESS_MODE BYTE
IN_CORE BYTE
CLASS LONG
M_SEG_NO SHORT INTEGER
ENTRY NUMBER SHORT~INTEGER

]

ADDRESS WORD

SEG_ARRAY ARRAY [MAX_SEG_SIZE BYTE]

INTERNAL

SSECTION SM_KST_DCL
! NOTE: THIS SECTION IS AN "OVERLAY"

OR "FRAME" USED TO DEFINE THE
FORMAT OF THE KST. NO STORAGE
IS ASSIGNED BUT RATHER THE KST IS
STORED IN A SEPARATELY OBTAINED
AREA (A SEGMENT SET ASIDE FOR IT) !

$A3S
0000 KST ARRAY MAX_NO_KST_ENTRIES KST_REC

EXTERNAL
CLASS_EQ PROCEDURE
CLASS GE PROCEDURE
MM_CREATE_ENTRY PROCEDURE
mmIdeleteIentry PROCEDURE
mm activate procedure
mm_deactivate procedure
mm~swap_in procedure
mm_swap_out procedure
process~class procedure
ITC_GET~*SEG_PTR PROCEDURE
SET DBR~NUMBER PROCEDURE

- 365 -

0000

$SECTION SM_PROC
GLOBAL

CREATE SEG

0000
0002
0004
0006
0008
000A
OOOC
OOOE
0010

0012
0014
0016
0018
001A
001C
001E

0B03
0080
5E02
0010»
2100
0019
5E08
0GA2'
030F

OOOA
1CF9
0104
2101
0002
5F00
0000*

0020 A10D

0022 1CF1
0024 0104
0026 A119
0028 0309

002A OOOA

002C 1908

PROCEDURE

****** **************** ********

CHECKS VALIDITY OF CREATE
REQUEST AND
CALLS MM_CREATE IF VALID.

j

REGISTER OSE: !

PARAMETERS !

R1: MENTOR_SEG_NO (INPUT)
R2: ENTRY_NO (INPUT)
R3: SIZE (INPUT)
RR4: CLASS (INPUT)
RO: SUCCESS_CODE (RETURNED)
LOCAL USE
R9: KST REC INDEX 1

R6,R7 VARIOUS USES I

R13: -»KST !

****************** «***********t

ENTRY
CP R3,#MAX_SEG_SIZE

IF GT THEN

LD R0,#SEGMENT_TOO_LARGE

ELSE

SUB

LDM

LD

CALL

LD

LDM

LD
SUB

R15,#10 ISTACK AREA FOR
INPUT REGSI

5>R15,R1,#5

R1,#KST_SEG_NO

ITC GET SEG PTR !R1: KST SEG NOi

!RET:R0:-.KST!
R13,R0 !KST BASE ADDRESS

(IE iKST) !

R1,3R15,#5 IRESTORE NEEDED REGS!

R9,R1 'COPY OF MENTOR_SEG_NO!
R9,#NR_OF_KSEGS ICONVERT

MENTOR SEG NO

KST_REC INDEX!
MULT RR8,#SIZEOF KST_REC

10FFSET TO KST REC!

- 366 -

002E 0010
0030 819D ADD R13,R9 !ADD OFFSET TO KST

BASE ADDRESS!
0032 2106 LD R6 #

0034 FPFF
0036 4ADE CPB RL6,KST.M_SEG_NO (B13)
0038 000E
003A 5E0E IF EQ THEN ! MENTOR SEG NOT KNOWN!
003C 0046*
003E 2100 LD R0,#MENTOR_SEG_NOT_KNOWN
0040 0016
0042 5E08 ELSE
0044 009E'
0046 93FD POSH 2>R15,R13
0048 5F00 CALL PROCESS_CLASS ! RR2: PROC_CLAS
004A 0000*
004C 97FD POP R13,aR15
004E 54D4 LDL RR4, KST. CLASS (R13)
0050 OOOA
0052 93FD PUSH 3R15,R13
0054 5F00 CALL CLASS_EQ !RR2: PROC_CLASS!
0056 0000*

!RR4: MENTOR SEG CLASS!
IB1: (RET) CONDITION_CODE!

0058 97FD POP R13,dRl5
005A A116 LD R6,R1

005C 1CF1 LDM R1,3R15,#5 !RESTORE INPUT RE
005E 0104
0060 0B06 CP R6,#FALSE
0062 0000
0064 5E0E IF EQ THEN
0066 0070 1

0068 2100 LD RO , *ACCESS_CLASS_NOT_EQ
006A 0021
006C 5E08 ELSE
006E 009E«
0070 93FD POSH
0072 9442 LDL RR2,RR4 !CLASS!
0074 54D4 LDL RR4, KST. CLASS (R13)

0076 OOOA
0078 5F00 CALL CLASS_GE !RR2:CLASS!
007A 0000*

!RR4: MENTOR CLASS!
!RET:R1:COND CODE!

007C 97FD POP R13,a>R15 IRESTORE PTR!
007E 0B01 CP R1,#FALSE
0080 0000
0082 1CF1 LDM R1,a)Rl5,#5
0084 0104
0086 5E0E IF EQ THEN
0088 0092*
008A 2100 LD R0,#NOT_COMPATI3LE

- 367 -

008C 0018
008E 5E08 ELSE
0090 009E*
0092 76D1 LDA R1,KST.MM HANDLE(R13)
0094 0000
0096 5F00 CALL MM CREATE_ENTRY
0098 0000*

!R1 :PTR TO MMJiANDLE!
!R2:ENTRY_NO!
!R3:SIZE!~
!RR4:CLASS!
!R0: (RETURNED) SUCCESS_CODE!

009A 5F00 CALL CONFINEMENT_CHECK
009C 0428'

FI
(R0:SUCCESS_CODE)

I

FI
FI

009E 010F ADD R15,#10
00A0 000A

FI
00A2 9E08 RET
00A4 END CREATE SEG

- 368 -

00A4 DELETE^

CHECKS
REQUES
CALLS

REGIS
PA RAM
R1:M
R2:E
RO:S

LOCAL
R6:V

SEG

VALIDITY

T AND
BM_DELETE

TER OSE:
ETERS
ENTOR SEG_N
NTRY_NO(INP
UCCESS CODE
OSE

ARIOOS LOCA

PROCEDURE

P DELETE

IF VALID.

!

(INPUT)
UT)
(RET)

L USES

00A4
00A6
00A8
OOAA

AC
OOAE
00B0
00B2
0OB4
00B6

93F1
93F2
2101
0002
5F00
0000*
A10D
97F2
97F1
0301

00B8 000A

OOBA 1900

OOBC
OOBE

OOCO
00C2
00C4
00C6
00C8

OOCA
oocc
OOCE
OODO
00D2
00D4
0D6

00D8
OODA
OODC

OODE
OOEO

0010
811D

2106
FFFF
4ADE
OOOE
5E0E

00D4»
2100
0016
5E08
010E f

93F1
93F2
93FD
5F00
0000*

97FD
54D4

ENTRY
PUSH dR15,R1 ISAVE NEEDED REGSI
PUSH a)R15,R2
LD R1,#KST_SEG_N0

CALL ITC_GET_SEG_PTR ! R1: KST_SEG_NO

!

LD R13,R0 1-.KST!
POP R2,3R15 JRESTORE INPUT REGS!
POP R1,a)R15
SUB R1,#NR OF_KSEGS 1C0NVERT

HENTOR_SEG_NO TO

KST REC INDEX!
MULT RR0,#SIZEOF KST_REC !OFFSET

"TO DESIRED REC!

ADD

LD

CPB

IF

LD

ELSE

R13,R1 !ADD OFFSET TO KST BASE
ADDRESS!

R6,#NULL_SEG

RL6,KST. M_SEG_N0(R13)

EQ THEN !MENTOR SEGMENT
NOT KNOWN!

RO, #HENTOR_SEG_NOT_KNOWN

PUSH 9R15,B1 !SAVE NEEDED REGS!

PUSH a)R15,R2
PUSH 5)R15,R13
CALL PROCESS_CLASS

! (RETURNS RR2 :PROC_CLASS) !

POP R13,o)R15
LDL RR4, KST. CLASS (R13) 1MENT0H

- 369 -

SEG CLASS!
00E2 OOOA
0OE4 93FD PUSH SR15,R13
00E6 5P00 CALL CLASS EQ !RR2:PROCESS CLASS!
00E8 OOOO*

!RB4: MENTOR SEG CLASS!
!R1:(RET) CONDIIION_CODE!

OOEA A116 LD R6,R1
OOEC 97FD POP R13,SR15
OOEE 97P2 POP R2,o)R15 !RESTORE NEEDED REGS!
OOFO 97F1 POP R1 f 5)R15

00F2 0B06 CP R6,#FALSE
0OF4 0000
00F6 5E0E IF EQ THEN
00F8 0102*
OOFA 2100 LD RO,#ACCESS CLASS NOT EQ
OOFC 0021
OOFE 5E08 ELSE
0100 010E»
0102 76D1 LDA R 1 , KST. MM_HANDLE (R1 3)

0104 0000
106 5F00 CALL MM DELETE_ENTRY

0108 0000*
!R1:-MM_HANDLE!
! R2:ENTRY_N0!
!R0: (RET) SUCCESS_CODE!

10A 5F00 CALL CONFINEMENT CHECK
010C 0428*

! (RO:SOCCESS CODE) !

FI
FI

10E 9E08 RET
01 10 END DELETE SEG

- 370 -

0110

0110
01 12
114

0116
0118

011A
011C

1 IE
0120
0122
0124

0126
0128

012A
12C

012E
0130
0132
0134
0136
0138
013A
013C
013E
0140
0142
0144
0146
0148
014A
014C

93F1
91F2
2101
0002
5F00

0000*
A10D
95F2
97F1
A115
0305

000A
1904

0010
815D
2104
FFFF
4ADC
OOOE
5E0E
014A'
2100
0016
2101
FFFF
2102
0004
5E08
02C8'
2107
0000

MAKE_KNOW

CHECKS V

REQUEST
IF VALID
NUMBER A

REGISTER
PARAMETE
R1:MENT
R2:ENTR
R3:ACCE
R0:SOCC
R1 :SEGM
R2:ACCE

LOCAL OS
IDENTIF

ENTRY
POSH 3R
POSHL 3R
LD R1

N PROCEDURE
************* *******,*,
ALIDITY OF HAKE KNOWN
AND CALLS MM_ACTIVATE
. ASSIGNS SEG
ND UPDATES KST.
******************* ***
USE:

RS:
OR_SEG_NO (INPUT)
Y_NO (INPUT)
SS_DESIRED (INPUT)
ESS_CODE(RET)
ENT_NO (RET)
SS_ALLQWED (RET)
E
IED AT POINT OF USAGE

15, R1 !SAVE INPUT REGS!
15,RR2
,#KST_SEG_NO

CALL ITC_GET_SEG_PTR i (R1: KST_SEG_NO

,

RET:R07-.KST) !

LD R13,R0 l-KST!
POPL RR2,3R15
POP R1,0)R15
LD R5,R1 ICOPY OF MENTOR_SEG_NO!
SUB R5,#NR OFJCSEGS 'CONVERT TO

INDEX!

MULT RR4,#SIZEOF KST_REC ! KST OFFSET
10 SEG REC!

ADD R13,R5 !ADD OFFSET TO -»KST

!

LD R4,#NULL_SEG

CPB RL4,KST. M_SEG_NO (R 13)

IF EQ THEN

LD R0,#MENTOR_SEG_NOT_KNOWN

LD R1,#NULL_SEG

LD R2,#NULL_ACCESS

ELSE

LD R7,*0 !KST INDEX!

- 371 -

014E 2108
0150 FFFF
0152 A109
0154 210A
0156 FFFF

0158
015A
015C
015E
0160
0162
0164
0166
0168
016A
16C

016E
0170
0172
0174
0176

4A99
00OE
5E0E
017C 1

4A9A
OOOF
5E0E
017C
2100
0002
0107
OOOA
A171
609A
0008
A11A

0178 5E08
017A 01A6»

017C 4A9C

017E OOOE
0180 5E0E
0182 0192*
0184 0B08
0186 FFFF
0188 5E0E
018A 0192*
018C A178

018E 0108

0190 OOOA

0192 A970
0194 0109

0196 0010
0198 0B07
19A 0036

019C 5E02
019E 01A4»

LD R8,#NULL_SEG "AVAIL SEG INDEX!

LD R9,R0 !-iKST!

LD R10,#NULL_SEG !SEG KNOWN INDICATOR!

SEE_IF_KNOWN:
DO

CPB RL1,KST.M_SEG_N0(H9)

IF EQ THEN

CP3 RL2 r KST.ENTRY_NUMBER(R9)

IF EQ THEN !CASE: SEG KNOWN!

LD R0,«S0CCEEDED

R7,#NH_OF_KSEGSADD

LD
LDB

LD

R 1 , R7 ! S EG * !

RL2,KST.ACCESS_MODE (R9)

R10,R1 !SET SEG KNOWN
INDICATOR!

EXIT FROM SEE IF KNOWN

FI
FI

CPB RL4,KST.M_SEG_NO(R9)
!SEE IF SEG # AVAIL!

IF EQ THEN

CP R8,#NULL_SEG

IF EQ THEN

LD R8,R7 !SAVE FIRST
AVAIL SEG INDEX!

ADD R8,#NR_OF_KSEGS
!CONVERT TO SEG #!

FI
FI
INC R7
ADD R9,#SIZEOF KST_REC

IINCREMENT ONE REC!

CP R7,#MAX_N0_KST_ENTRIES

IF GT THEN

- 372 -

01A0 5E08 SXIT FROM SEE IF KNOWN
01A2 01A6*

FI
01A4 E8D9 OD

!SEE IF KNOWN!
01A6 OBOA CP R10,#NULL SEG
1A8 FFFF

01AA 5E0E IF EQ THEN ISEG KNOWN
INDICATOR NOT SET!

01AC 02C8*
01AE 0B08 CP R8,#NULL SEG
01B0 FFFF
01B2 5E06 IF NE THEN !CASE:SEG UNKNOWN

AND SEG# AVAIL!
01B4 02BC 1

01B6 91F0 PUSHL SR15,RR0 ! --KST AND
MENTOR_SEG NO!

01B8 91F2 PUSHL o)R15,RR2 !ENTRY_NQ~
6ACCESS DESIRED!

01BA 93F8 POSH dR15,R8 'AVAIL SEG
INDEX IN KST!

01BC 93FD PUSH 3R15,R13 iMENTOR SEG REC PTR!
01BE 5F0O CALL GET_DBR NUMBER

! (RET:RL1TdBR~NO) !

01C0 0000*
01C2 A11A LD R10,R1 !DBR_NO!
01C4 97FD POP R13,dR15
01C6 97F8 POP R8,a)Rl5
01C8 95F2 POPL RR2,3R15
01CA 95F0 POPL RR0,dR15

!MUST REARRANGE REGS FOR PASSING AND
RETURN CONSISTENCY OF LOCATION!

01CC A135 000D
047C 5E0E LD R5,R3 ! ACCESS_DESISED!
01CE A123 LD R3 , R2 !ENTRY_NO!
01DO 76D2 LDA R2,KST.MM HANDLE(R13) !HPTR!
01D2 0000
01D4 A116 LD R6,R1 !MENTOfi_SEG_NO

!

01D6 A181 LD R1,R8 !SEGMENT NO (SAVE)!
01D8 A184 LD R4,R8 !SEGMENT_NO

(PASSING ARG) !

01DA A109 LD R9 , RO !-*KST!

01DC 030F SUB R15,#20
01DE 0014
01E0 1CF9 LDM o>R15,R1,#10 !SAVE REGS 1-10!
01E2 0109
01E4 A1A1 LD R1,R10 ! DBR_NO PASSED

IN R1!

01E6 A18B LD R11, R8
01E8 030B SUB R11, #NR_OF_KSEGS
01EA 000A
01EC 190A MULT RR10, #SIZEOF KST_RFX
01EE 0010

- 373 -

01F0 A1BC
01F2 819C
1F4 5F00

01F6 0000*

01F8 5F00

01FA 0428*
1FC 942A

01FE A14C
0200 1CF1
0202 0108
0204 A187
0206 0307
0208 000A
020A 1906

020C 0010
020E A17D
0210 819D
0212 5DDA
0214 OOOA
0216 6FDC
0218 0006
021A 0A08
021C 0202
021E 5E0E
0220 02AC
0222 93FD
224 5F00

0226 0000*

0228 97FD
022A 54D4
022C OOOA
022E 93FD
0230 91F2
0232 91F4
0234 5F00
0236 0000*

0238 95F4
023A 95F2
023C 97FD
023E 0B01
0240 0000
242 5E0E

LD R12, R11
ADD R12, R9
CALL MM_ACTIVATE

! (R1:DBR_NO,R2:HPTR,R3:ENTRY_NO,
R4:SEGMENT_NO,R12:RET_HPTRJ"

!

! (RET: R0:SUCCESS__CODE, RR2:CLASS,
R4:SIZE) !

CALL CONFINEMENT_CHECK
i (R0;SUCCESS_CODE) I

LDL RR1G,RR2 iCLASS!
LD R12,R4 !SIZE!
LDM R1,o)R15,#9 IRESTORE REGS 1-9!

LD R7,fi8 !SEG *!
SUB R7,#NR_0F_KSEGS

MULT RR6,#SIZE0F KSI_REC
•OFFSET TO REC!

LD R13,R7
ADD R13,R9 IADD -»KST TO OFFSET!
LDL KST. CLASS (R13) ,RR10 1CLASS!

LD KST.SIZE(R13) ,R12 !SIZE!

CPB RLO,#SUCCEEDED

IF EQ THEN

PUSH o)R15,R13
CALL PROCESS_CLASS

! (RET:RR2:PROC_CLASS) !

POP R13,o)R15
LDL RR4, KST. CLASS (R13)

PUSH afi15,R13
PUSHL a)R15,RR2
PUSHL a>R15,RR4
CALL CLASS_GE

! (RR2:PROC_CLASS,RR4:SEG CLASS, RET:
R1:CONDITION_CODE)

!

POPL RR4,d)R15
POPL RR2,o)R15
POP R13,3R15
CP R1,#FALSE

IF EQ THEN •NO ACCESS
POSSIBLE— DEACT. !

0244 0266*

- 374 -

0246 1CF1
0248 0109
024A A1A1
024C 76D2

024E 0000
0250 5F00

0252 0000*
0254 5F00

0256 0428*
0258 21F1
025A 2102
025C 0004
025E 2100

0260 0029
0262 5E08
0264 02A8»
0266 93FD
0268 5F00
026A 0000*

026C 97FD
26E A110

0270 1CF1
0272 0108
0274 0B00
0276 0001
0278 5E0E
027A 0290'
027C 0BO5
027E 0000
0280 520E
0282 028A ,

0284 CAOO
0286 5E08
0288 028C*
028A CA01

028C 5E08
028E 0292*
0290 CA01

0292 4CD5
0294 0009
0296 0000
0298 6EDE
029A OOOE
029C 6EDB
029E OOOF

LDM R1,a)R15,#1Q

LD R1,R10 !DBR NO!
LDA R2,KST.MM_HANDLE(R13)

IHPTR1

CALL MM_DEACTIVATE
!RET:R0:S_CODE!

CALL CONFINEMENT_CHECK
•R0rS_C0DE!

LD R1,a)fi15 !SEG #!

LD R2,#NULL_ACCESS

LD RO,
#PROC CLASS NOT GE SEG CLASS

ELSE

PUSH 0>R15,R13
CALL CLASS_EQ ! (RB2: PROC_CLASS

,

RR4:SEG CLASS,
RET: R1 :CONDITION_CODE)

!

POP B13,dB15
LD R0,R1 !CONDITION_CODE!
LDM R1,3R15,#9

CP R0,#TRUE

IF EQ THEN

CP R5 r #WRITE

IF EQ THEN

LDB
ELSE

RL2 r #WRITE

LDB
FI

ELSE

RL2,*READ

LDB RL2,#READ
FI
LDB KST.IN CORE(R13) , #FALSE

LDB KST.M_SEG_NO (R13) r RL6

LDB KST.ENTRY_NUMB£R (R13) ,RL3

- 375 -

02A0 6EDA LDB KST.ACCESS_MODE

(

02A2 0008
02A4 2100]LD RO,#SUCCEEDED

•SUCCESS
02A6 0002

FI
02A8 5E08 ELSE
02AA 02B4'
2 AC 2101 LD R1,#NULL_SEG

02AE FFFF
02B0 2102 LD R2,#NULL_ACCESS
02B2 0004

FI
02B4 010F ADD R15
02B6 oon
02B8 5E08 ELSE
02BA 02C8'
02BC 2100 LD RO ,#NO_SEG_AVAIL
02BE 001B
2C0 2101 LD R1 ,#NULL_SEG

02C2 FFFF
02C4 2102 LD R2 ,#NOLL_ACCESS
02C6 0004

FI
FI

FI
02C8 9E08 RET
02CA END MAKE KNOWN

RL2

CODE!

- 376 -

02CA TERMINATE PROCEDURE

*************************:*****
CHECKS VALIDITY OF TERMINATE
REQUEST AND CALLS
MM_DEACTIVATE IF VALID

REGISTER USE
PARAMETERS
R1 :SEGMENT_NO (INPUT)
RO:SUCCESS CODE(RET)

LOCAL USE
R3:KST REC INDEX
R6:CONSTANT STORAGE
R13:-KST

02CA
02CC

2CE
02D0
02D2
02D4
02D6
02D8
02DA
2DC

A113
0303

000A
1902
0010
93F1
93F3
2101
0002
5F00

02DE 0000*

02E0
02E2
02E4
02E6
02E8
02EA
02EC
02EE
02F0
02F2
02F4
02F6
02F8
02FA
2FC

02FE
0300
0302
0304
0306
0308

A10D.
97F3
97F1
813D
2106
FFFF
4ADE
000E
5E0E
02FC«
2100
001C
5E08
0346'
2106
0001
4ADE
0009
5E0E
0310'
2100

ENTRY
LD R3,R1 !COPY OF SEG #!

SUB R3,#NR_OF_KSEGS
!CONVERT SEG# TO KST INDEX!

MULT RR2,#SIZEOF KST_REC

PUSH 0>R15,R1
PUSH SR15,R3
LD R1 ,#KST_SEG_NO

CALL ITCJ3ET SEG_PTR
! (R1:KST_SEG_N0) !

LD
POP
POP
ADD
LD

CPB

IF

ELSE

IF

! (RETURNS:RO:KST_SEG_PTR) !

R13,R0
R3,3R15
R1,3R15
R13,R3 !ADD OFFSET TO -.KST!

R6,#NULL_SEG

RL6,KST. M_SEG_NO(R13)

EQ THEN

LD R0,#SEGMENT_NOT_KN0WN

LD R6,#TRUE

CPB RL6,KST.IN_C0RE(R13>

EQ THEN

LD R0,#SEGMENT_IN_CORE

- 377 -

030A
030C
030E
0310
0312
0314
0316
0318
031A
031C
031E
0320
0322
0324

0326
0328
032A
032C
032E
0330

0332
0334

0336
0338
033A
033C
033E
0340
0342
0344

001D
5E08
0346'
0B01
000A
5E09
0320*
2100
001E
5E08
0346*
93FD
5F00
0000*

97FD
76D2
0000
93FD
5F00
0000*

5F00
0428 1

97FD
0A08
0202
5E0E
0346'
4CD5
OOOE
FFFF

ELSE

CP R1,#NR_0F_KSEGS

IF LT THEN

LD R0,#KERNEL SEGMENT

ELSE

POSH 3R15,R13
CALL GET_DBR_NUMBER

• (RETURNS:RL1:DBR_N0) !

POP R13,3R15
LDA R2,KST.MM_HANDLE(R13)

PUSH 3R15,R13
CALL MM_DEACTIVATE ! (R 1 : OBR_NO) !

! (R2:-.MM_HANDLE) 1

! (RET:R0:S0CCESS_CODE) I

CALL CONFINEMENT.CHECK

! (R0:SOCCESS_CODE) !

POP R13,3R15
CPB RL0,#SOCCEEDED

IF EQ THEN IUPDATE KST!

LDB KST.M_SEG_N0(R13) ,

#NULL SEG

0346
0348

9E08

FI
FI

FI
FI
RET

END TERMINATE

- 378 -

0348 SM SWAP IN PROCEDUBE

0348
034A

034C
034E

0350
0352
0354
0356
0358
035A
035C
035E
0360
0362
0364
0366
0368
036A
036C
036E
0370
0372
0374
0376
0378
037A
037C
037E
0380
0382
0384
0386

A117
0307

000A
1906

0010
93F1
93P7
2101
0002
5F00
0000*
A10D
97P7
97F1
817D
2106
FFFF
4A0E
OOOE
5E0E
037A 1

2100
001C
5E08
03B8'
2106
0001
4ADE
0009
5E0E
038E«
2100

****************** **********
CHECKS VALIDITY OF SWAP IN
REQUEST AND CALLS
MM_SWAP_IN IF VALID

REGISTER USE
PARAMETERS
R1 :SEGMENT_NO (INPUT)
RO:SUCCESS CODE (RET)

LOCAL USE
R7:KST REC INDEX
R3:ACCESS_MODE
R6:CONSTANT STORAGE
R13:-»KST

ENTRY
LD R7,R1 !COPY OF SEG #1

SUB R7,#NR_OF KSEGS
ICONVERT SEG? TO KST INDEX!

MULT RR6,*SIZEOF KST_REC
JOFFSET TO KST_REC!

PUSH 3R15,R1 !SAVE SEGMENT*!
PUSH 3R15,R7
LD R1 , #KST_SEG_NO

CALL ITC GET SEG PTR !R1:KST SEG NO!

LD
POP
POP
ADD
LD

CPB

IF

LD

ELSE

LD

CPB

R13,R0 !-KST!
R7,o)R15
R1,3R15 IRETRIEVE SEGMENT*!
R13,R7 !ADD OFFSET TO KST BASE ADDR!
R6 , #NULL_SEG

RL6 r KST. M_SEG_NO(R13)

EQ THEN

R0,#SEGMENT_NQT_KNOWN

R6,#TRUE

RL6,KST.IN_CORE (R13)

IF EQ THEN

LD RO,#SUCCEEDED

- 379 -

0388 0002
038A 5E08 ELSE
038C 03B8»
038E 93FD POSH
0390 5F00 CALL
0392 0000*
0394 97FD POP
0396 76D2 LDA
0398 0000
039A 60DB LDB
039C 0008
039E 93FD POSH
03A0 5F00 CALL
03A2 0000*

3>R15,R13 !SAVE KST HEC ADDR!
GET_DBR_NUMBER !R1 : (RET) DBR_NO!

B13 # »B15
R2,KST. Mfl_HANDLE(R13)

RL3,KST.ACCESS_MODE(R13)

dR15,R13 !SAVE SEG KST REC ADDR!
MM_SWAP_IN !R1:DBR_NO !

!R2:-MM HANDLE!
!R3: ACCESS_MODE!
!R0: (RET)SUCCESS_CODE!

03A4 5F00 CALL CONFINEMENT.CHECK
! (R0:SUCCESS_CODE) !

03A6 0428*
03A8 97FD POP R13,2)R15
03AA 0A08 CPB RLO, tSUCCEEDED
03AC 0202
03AE 5E0E IF EQ THEN
03B0 03B8«
03B2 4CD5 LDB KST.IN_CORE (R13) , #TRUE
03B4 0009
03B6 0101

FI
FI

FI
03B8 9E08 RET
03BA END SM SWAP IN

- 380 -

03BA SM_SWAP_OUT PROCEDURE

03BA
03BC

03BE
03C0

03C2
03C4
03C6
03C8
03CA
3CC

03CE
03D0
03D2
3D4

03D6

03D8
03DA
03DC
03DE
03E0
03E2
3E4

03E6
03E8
03EA
03EC
03EE
03F0
03F2
03F4
03F6
03F8

A117
0307

000A
1906

0010
93F1
93F7
2101
0002
5F00
0000*
A10D
97F7
97F1
817D

2106
FFFF
4ADE
OOOE
5E0E
03EC»
2100
00 1C
5E08
0426'
2106
0000
4ADE
0009
5E0E
0400«
2100

*************** **************
CHECKS VALIDITY OF SWAP OUT
REQUEST AND CALLS
MM_SWAP_OUT IF VALID

REGISTER OSE
PARAMETERS
R1 :SEGMENT_NO
RO :SUCCESS_CODE (RET)

LOCAL USE
R7:KST REC INDEX
R6:CONSTANT STORAGE
R13:-KST

ENTRY
LD R7,R1 ICOPY OF SEG *!

SUB R7,#NR_OF_KSEGS
•CONVERT SEG* TO KST INDEX!

MULT RR6,#SIZEOF KST REC
•OFFSET TO KST_REC!

PUSH £R15,R1 ISAVE SEGMENT*!
PUSH a>R15,R7
LD R1,#KST_SEG_NO

CALL ITC_GET_SEG_PTR ! R 1: KST_SEG_NO

!

LD R13,R0 J-.KST!

POP R7,3R15
POP R1,0>R15 IRETRIEVE SEGMENT*!
ADD R13,R7 !ADD OFFSET TO KST

BASE ADDR!
R6,*NULL_SEG

RL6,KST.M_SEG_NO(R13)

EQ THEN

R0,#SEGMENT_NOT_KN0«N

LD

CPB

IF

LD

ELSE

LD R6,*FALSE

CPB RL6,KST.IN_CORE(R13)

IF EQ THEN

LD RO,#SUCCEEDED

- 381 -

03FA 0002
03FC 5E08
03FE 0426*
0400 93FD
0402 5F00
0404 0000*
0406 97FD
0408 76D2
040A 0000
040C 93FD
040E 5F00
0410 0000*

ELSE

0412 5F00

0414 0428'
0416 97FD
0418 0A08
041A 0202
041C 5E0E
041E 0426*
0420 4CD5
0422 0009
0424 0000

POSH o)R15,R13 !SAVE KSI EEC ADDR

!

CALL GET_DBR_NOMBER !R 1 : (REI) DBR_NOJ

POP R13,3R15
LDA R2,KST.MM_HANDLE(R13)

POSH dR15,fi13 !SAVE SEG KST REC ADDR!
CALL MM_SWAP_OOT !R1:DBR_NO!

!R2:-«MH_HANDLEi
!R0: (RET)SOCCESS^CODE!
CALL CONFINEMENT_CHECK
! (R0:SOCCESS_CODE) !

POP R13,d)R15
CPB RLO,#SOCCEEDED

IF EQ THEN

LDB KST.IN_CORE (R13) , #FALSE

FI
FI

FI
0426 9E08 RET
0428 END Sa SWAP OOT

- 382 -

0428 CONFINE ME NT_CHECK PROCEDURE

SERVICE ROUTINE TO VERIFY
CONFINEMENT IS NOT VIOLATED
WHEN MEM MGR SUCCESS_CODE IS
RETURNED TO SUPERVISOR.

REGISTER USE:
PARAMETERS
R0:SUCCESS_CODE

0428 0B00

042A 000A
042C 5E0E
042E 0438'
0430 5F00
0432 059A
0434 5E08

0436
0438
043A
043C
043E
0440
0442
0444

0446
0448
044A
044C
044E
0450
0452
0454

0456
0458
045A
045C
045E
0460
0462
0464

04B4»
0B00
000B
5E0E
0448 1

5F00
059A
5E08

04B4»
0B00
0017
5E0E
0458*
5F00
059A
5E08

04B4'
OBOO
0014
5E0E
0468 1

5F00
059A
5E08

0466 04B4'
0468 0300
046A 000C

ENTRY
IF RO
CASE #LEAF_SEG.

CALL MONITOR
EXISTS THEN

CASE #NO_LEAF_EXISTS
CALL MONITOR

THEN

CASE #ALIAS_DOES_NOT_EXISI THEN
CALL MONITOR

CASE #NO_CHILD_TO_DELETE THEN

CALL MONITOR

CASE #G_AST_FULL THEN
CALL MONITOR

- 383 -

046C
046E
0470
0472
0474

0476
0478
047A
047C
047E
0480
0482
0484

0486
0488
048A
048C
048E
0490
0492
0494

0496
0498
049A
049C
049E
04A0
04A2
04A4

04A6
04A8
04AA
04AC
04AE
04B0
04B2

04B4
04B6

5E0E
0478'
5F00
059A
5E08

04B4 1

0B00
OOOD
5E0E
0488 1

5F00
059A
5E08

04B4<
OBOO
0010
5E0E
0498"
5F00
059A
5E08

04 B4'
OBOO
00 11

5E0E
04A8 1

5P00
059A
5E08

04B4'
OBOO
0015
5E0E
04B4'
5F00
059A

9E08

CASE #L_AST_FULL THEN
CALL MONITOR

CASE #LOCAL_MEMORY_FULL THEN
CALL MONITOR

CASE #GLOBAL_MEMORY_FULL THEN
CALL MONITOR

CASE #SEC STOR_FULL THEN
CALL MONITOR

FI
RET

END CONFINEMENT CHECK

END SEG MGR

- 384 -

Appendix I

NON-DISCRETIONARY SECURITY LISTINGS

Z8000ASM 2.02
LOC OBJ CODE STMT SOURCE STATEMENT

SLISTON $TTY
NDS MODULE

0000

0000

CONSTANT
TRUE : = 1

FALSE :=0
INTERNAL

SSECTION ACC_.CLASS_DCL !NOTE: IS AN OVERLAY,
IE NO ALLOCATION
OF MEMORY i

SABS
ACCESS,.CLASS RECORD INTEGER

CAT INTEGER]

GLOBAL
$SECTION NDS PROC

CLASS_EQ PROCEDURE
****** **************** ********
PASSED PARAMETERS
RR2 = CLASS1
RR4 = CLASS2

RETURNED
R1 = CONDITION_CODE

*********** ******* ************

ENTRY
0000 9042 CPL RR2,RR4
0002 5E0E IF EQ THEN
0004 00OE»
0006 2101 LD R1,#TRUE

08 0001
000A 5E08 ELSE
OOOC 0012*
000E 2101 LD R1, #FALSE
0010 0000

FI
0012 9E08 RET
0014 END CLASS_EQ

- 385 -

0014 CLASS_GE PROCEDURE
****************************** j

PASSED PARAMETERS i

RR2 = CLASS1 I

RR4 = CLASS2 !

RETURNED PARAMETER I

R1 = CONDITION_CODE !

!

0014 91F2

0016
0018
001A
001C

001E
0020

0022
0024

0026
0028
002A
002C

A1FD
91F4
A1FE
31E7

0002
45D7

0002
4BD7

0002
5E0E
0048»
61D6

002E 0000

ENTRY
PUSHL 3R15,RR2 !PUSH CLASS1 ON STACK-

-REFER BY ADDR!
LD R13,R15 ! CLASS1 ADDR !

PUSHL dR15,RR4
LD R14,R15 ! CLASS2 ADDR !

LD R7,R14 (#ACCESS CLASS. CAT)
! CAT2 IN R7 !

OR R7,ACCESS_CLASS.CAT(R13)
!CAT1 OR CAT2, R7!

CP R7,ACCESS_CLASS.CAT (R13)
!CAT1=(CAT1 OR CAT2) ?

!

IF EQ THEN

LD R6,ACCESS_CLASS. LEVEL (R13)
ILEVELU

I COMPARE LEVEL1 WITH LEVEL2 !

0030 4BE6 CP R6, ACCESS.CLASS. LEVEL (R14)
0032 0000
0034 5E01 IF GE THEN ILEVEL1 GE LEVEL2!
0036 0040*
0038 2101 LD R1,#TRUE
003A 0001
003C 5E08 ELSE
003E 0044*
0040 2101 LD R1,#FALSE
0042 0000

FI
0044 5E08 ELSE
0046 004C
0048 2101 LD R1 r #FALSE
004A 0000

FI
004C 95F4 POPL RR4 ,a)Rl5
004E 95F2 POPL RR2 ,3R15 IRESTORE SIACKi
0050 9E08 RET
0052 END CLASS_GE

END NDS

- 386 -

Appendix J

MEMORY MANAGER LISTINGS

Z8000ASM 2.02
LOC OBJ CODE STMT SOURCE STATEMENT

SLISTON STTY
MM_PROCESS

! VERS. 1.9

CONSTANT
RETURN TO

MODULE

MONITOR := XA902 !HBUG REENTRY!

COUNT := 10

TIME := 500

NR_OF_HOSTS
G_AST_LIMIT
3_AST_FULL
FREE_ENTRY
TRUE*
FALSE
SPACE
DASH

IO_MGR
FILE_MGR
MEM_MGR
FM ENTRY
IO_ENTRY
create_entry.
invalid_mmgr.
delete_entry"
activate_seg_
DEACTIVATE_SEG_CODE
SWAP_IN_SEG_CODE
SWAP~OUT_SEG_CODE
SUCCEEDED
STK_SIZE
TOP_SECRET
SECRET
CONFIDENTIAL
UNCLASS
EMPTY
CRYPTO

= 2

= 10
= 12
= %EEEEEEEE
= %BBBB
= XCCCC
= %20
= X2D

= S60
= %40
= %0
= X4A00
= %4E00

CODE
CODE
CODE
CODE

50
60
51
52
53
54
55
2

1

4

3

2

1

1

- 387 -

NATO := 2

NUCLEAR := 4

TYPE
ADDRESS WORD
H_ARRAY ARRAY[3 WORD]

S_AST_REC RECORD
["unique..ID LONG
global] ADDR ADDRESS
P_L ASTE_NO WORD
FLAG_BITS WORD
G_ASTE_.PAR WORD
NO ACT _IN_MEM WORD
NO ACT "dep BYTE
SIZE1 BYTE
PGJTBL^ LOC ADDRESS
ALIAS TBL LOC ADDRESS
SEQUENCER LONG
EVENT1 LONG
EVENT2

]

LONG

EXTERNAL
SIGNAL PROCEDURE
WAIT PROCEDURE
TC INIT PROCEDURE
GET_CPU_NO PROCEDURE
CREATE_PROCESS PROCEDURE
sndchr" PROCEDURE
SNDMSG PROCEDURE
SNDCRLF PROCEDURE

G_AST_LOCK WORD
G_AST ARRAY[G_AST_LIMIT G_AST_REC]

GLOBAL
SSECTION MM_DATA

MM ENTRY LABEL

- 388 -

INTERNAL

t * * * * MESSAGES * * * * I

0000 08 28 10 ARRAY [* BYTE] := • S08 (FOR 10)

•

0002 46 4F
0004 52 20
0006 49 4F
0008 29
0009 08 28 FM ARRAY [* BYTE] := «%08(FOR FM)

•

OOOB 46 4F
OOOD 52 20
OOOF 46 4D
0011 29
0012 12 4B MM_MSG_1

ARRAY [* BYTE] := • %12KERNEL = SIGNALLER 1

0014 45 52
0016 4E 45
0018 4C 20
001A 3D 20
001C 53 49
001E 47 4E
0020 41 4C
0022 4C 45
0024 52
0025 10 4D CREATE MSG

ARRAY [* BYTE]:* «%10MM: CREATE_ENTRY
0027 4D 3A
0029 20 43
002B 52 45
002D 41 54
002F 45 5F
0031 45 4E
0033 54 52
0035 59
0036 10 4D DELETE MSG

0038 4D 3A
003A 20 44
003C 45 4C
003E 45 54
0040 45 5F
0042 45 4E
0044 54 52
0046 59

ARRAY [* BYTE] := •X10HM: DELETE_ENTRY

- 389 -

0047 0C 4D ACTIVATE_MSG
ARRAY [* BYTE] := •XOCHM: ACTIVATE 1

0049 4D 3A
004B 20 41
004D 43 54
004F 49 56
0051 41 54
0053 45
0054 OE 4D DEACTIVATE tiSG

ARRAY [* BYTE] := •

0056 4D 3A
0058 20 44
005A 45 41

005C 43 54
005E 49 56
0060 41 54
0062 45
0063 OB 4D SWAP_IN_MSG

ARRAY [* BYTE] :=

0065 4D 3A
0067 20 53
0069 57 41

006B 50 5F
006D 49 4E
006F OC 4D SWAP_O0T_MSG

ARRAY I* BYTE] := •

0071 4D 3A
0073 20 53
0075 57 41
0077 50 5F
0079 4F 55
007B 54
007C OC 49 ERROR_MSG

ARRAY [* BYTE] := •

007E 4E 56
0080 41 4C
0082 49 44
0084 20 43
0086 4F 44
0088 45
0089 02 00 RET_VAL0ES

ARRAY C* BYTE] := [

008B 00 00
008D 00 10

008F 00 1

1

0091 00 03
0093 00 01

0095 00 30
0097 00 00

099A MM_MSG_ARRAY ARRAY
OOAA SENDER WORD

SOESM: DEACTIVATE 1

SOBMM: SWAP IN*

XOCHM: SWAP OOT 1

XOCINVALID CODE*

= [2,0, 0,0,0, 16,0, 17, 0,3,0,

1,0,48,0,0]

[8 WORD]

- 390 -

SABS
! NO MEMORY ALLOCATED; USED
FOR PARAMETER TEMPLATE ONLY!

0000 ACTIVATE_ARG RECORD
[CODE WORD

DBR WORD
HANDLE H_ARRAY
ENTRY_NO BYTE
SEG NO BYTE

JABS
•NO MEMORY ALLOCATED; USED
FOR PARAMETER TEMPLATE ONLY!

0000

0000

RET_VAL RECORD
CODE1 BYTE
FILLER BYTE
MM_HANDLE H ARRAY
CLASS LONG
SIZE WORD
FILLER 1 WORD

$ABS
ARG_LIST RECORD
REG*" ARRAYf 13 WO

IC WORD
C?U_ID WORD
SAC~ LONG
PRI WORD
USR_STK WORD
KER STK WORD

- 391 -

SSECTION SM PROC

0000

0000 4D08
0002 0000*
0004 2102
0006 0001
0008 2101
OOOA 0000
000C 1404
OOOE EEEE
0010 EEEE

0012 5D14
0014 0000*
0016 A920
0018 0B02
001A OOOA
001C 5E02
001E 0024*
0020 5E08
0022 002A'
0024 0101
0026 0020
0028 E8F4

MM_HAIN
ENTRY
MM_ENTRY:

! INITIALIZE G_AST I

CLR G AST LOCK

LD R2, #1

LD R1 , #0

LDL RR4, #FREE_ENTRY

PROCEDURE

DO
LDL G_AST.UNIQUE_ID(R1) , RR4

INC R2, #1
CP R2, #G_AST_LIMIT

IF GT !END OF G_AST! THEN

EXIT FI

ADD 81, #SIZEOF G_AST_REC

OD

! RESERVE FIRST ENTRY IN
G AST FOR ROOT J

002A 2101 LD R1, #0
002C 0000
002E 1404 LDL RR4, #-1
0030 FFFF
0032 FFFF
0034 5D14 LDL G_AST.UNIQUE_ID (S1) , RR4
0036 0000*
0038 5F00 CALL GET_CPU_NO ! RETURNS:
003A 0000*

R1: CPU *

R2: # VP'S!
3C 93F1 POSH o)R15, R1 !SAVE CPU #!

003E 5F00 CALL TC INIT
0040 0000*

0042 210D
0044 0000

0046 A9D0

! USER/HOST # I

LD R13, #0

! INITIALIZE USERS !

DO
I NC R 1 3 , * 1

- 392 -

0048 OBOD
004A 0002

004C 5E02
004E 0054*
0050 5E08
0052 00B8«

0054 21F0
0056 030F
0058 0028

005A A1F1
005C 6F10
005E 001C

0060 5C19
0062 020C
0064 0000
0066 2102
0068 4A00
006A 6F12
006C 001A
006E 2102
0070 0003
0072 3D38
0074 0503
0076 0001
0078 5D12
007A 001E
007C 4D15
007E 0022
0080 0002
0082 4D15
0084 0024
0086 0001
0088 4D15
008A 0026
008C 0001
008E A11E
0090 93FD
0092 5F0O
0094 0000*
0096 97FD

CP R13, #NR_OF_HOSTS

IF GT !ALL HOSTS INITIALIZED!
THEN EXIT

FI

! CREATE FM PROCESS !

LD RO, 3R15 IRESTORE CPU #!

SOB R15, #SIZEOF ARG_LIST

•SETS ARGUMENT LIST IN STACK!
LD R1 f R15
LD ARG_LIST.CPU_ID(R1), RO

!LOAD INITIAL REGISTER PARAMETERS
FOR FM PROCESS (SIMULATED)
R13 DENOTES USER # !

LDM ARG_LIST.REG(R1) , R2 , #13

LD R2, #FM_ENTRX

LD ARG_LIST.IC(R1) , R2

LD R2, #SECRET

CLR R3
OR R3, #CRYPTO

LDL ARG_LIST.SAC(R1) , RR2

LD ARG_LIST.PRI (R1) , #2

LD ARG_LIST.USR_STK (R1) , #STK_SIZE

LD ARG_LIST.KER_STK(R1) , #SIK_SIZE

LD R14, R1
PUSH 3R15 r R13
CALL CREATE_PROCESS !R14: ARG PTR!

POP R13, SR15

! CREATE 10 PROCESS !

- 393 -

0098 A1F1 LD R1, R15 IRESTORE ARGUMENT PTR!

009A 5C19
009C 020C
009E 0000
00A0 2102
00A2 4E00
00A4 6F12
00A6 001 A

00A8 A11E
OOAA 93FD

AC 5F00
OOAE 0000*
OOBO 97FD
00B2 010F
00B4 0028
00B6 E8C7

00B8 97F0

!LOAD INITIAL REGISTER PARAMETERS
FOR 10 PROCESS (SIMULArED)
R13 DENOTES USER # !

LDM ARG_LIST.REG (R1) , R2 , #13

LD R2, #IO_ENTRY

LD ARG_LIST.IC(R1) , R2

LD R14, R1
PUSH o)R15, R13
CALL CREATE_PROCESS I R14: ARG PTR!

POP R13, SR15
ADD R15, tSIZEOF ARG_LIST

OD
! REMOVE CPU # FROM STACK !

POP RQ, o)R15

DO !** DO FOREVER **!

OOBA 7608 LDA R8 r MM_MSG_ARRAY
OOBC 009A'
OOBE 5F00 CALL WAIT
00C0 0000*
00C2 6F01 LD SENDER, R1 'SAVE SIGNALING PROC #!

00C4 OOAA'
00C6 2103 LD R3,#50
00C8 0032
OOCA 5F00 CALL MM_PRINT_BLANKS
OOCC 030C
OOCE 2102 LD R2,#MM_MSG_1
OODO 0012'
00D2 5F00 CALL SNDMSG
00D4 0000*
00D6 6101 LD R1, SENDER
00D8 OOAA 1

IF R1
OODA 0B01 CASE #IO_MGR THEN LD R2,#I0
OODC 0060
OODE 5E0E
OOEO OOEE*
00E2 2102
00E4 0000»
0E6 5F00 CALL SNDMSG

00E8 0000*
OOEA 5E08 CASE #FILE_MGR THEN LD R2,*FM
OOEC OOFE«
OOEE 0B01
OOFO 0040
00F2 5E0E

- 394 -

00F4 OOFE 1

00F6 2102
0OF8 0009'
OOFA 5F00 CALL SNDMSG
OOFC 0000*

FI
OOFE 5F0O CALL MM_DELAY
0100 02D8»
0102 5F00 CALL SNDCRLF
0104 0000*
106 2103 LD R3,#50

0108 0032
010A 5F00 CALL MM_PRINT_BLANKS
010C 030C
010E 6101 LD R1,MMJiSG_ARRAY
0110 009A*

- 395

0112
0114
0116
01 18

1 1

A

011C
011E
0120
0122
0124
0126
0128
012A
012C
012E
0130
0132
0134
0136
0138
013A
013C
013E
0140
0142
0144
0146
0148
014A
014C
0142
0150
0152
0154
0156
0158
015A
015C
015E
0160
0162
0164
0166
0168
016A
016C
016E
0170
0172
0174

0B01
0032
5E0E
0122 1

5F00
019E 1

5E08
0176*
0B01
0033
5E0E
0132«
5F00
01AC«
5E08
0176 1

0B01
0034
5E0E
0142'
5F00
01BA'
5E08
0176«
0B01
0035
5E0E
0152«
5F00
029E»
5E08
0176*
0B01
0036
5E0E
0162'
5F00
02AC
5E08
0176'
0B01
0037
5E0E
0172»
5F00
02CA*
5E08
0176'
2102
007C«

IF R1
CASE #CREATE ENTRY CODE THEN

CALL CREATE_ENTBY

CASE #DELETE ENTRY CODE THEN

CALL DELETE_ENTRY

CASE #ACTIVATE SEG CODE THEN

CALL ACTIVATE

CASE tDEACTIVATE SEG CODE THEN

CALL DEACTIVATE

CASE #SWAP IN SEG CODE THEN

CALL SWAP_IN

CASE #SWAP OUT SEG CODE THEN

CALL SWAP_OUT

ELSE

LD R2,#ERRORJSSG

FI

- 396 -

0176
0178
017A
017C
017E
0180
0182
0184
0186
0183
018A
18C

018E
0190
0192
194

0196
0198
019A
019C
019E

5F00
0000*
5F0O
02D8»
5F00
0000*
2103
004B
5F00
02F4»
5F00
0000*

6101
00AA'
7608
009A*
5F00
0000*
E88F
9E08

CALL

CALL

CALL

LD

CALL

CALL

! **
LD

LDA

SNDMSG

MM DELAY

SNDCBLF

R3,*75

MM PRINT LINE

SNDCRLF

SIGNAL
R1,

(SENDER,
SENDER

DONE 1
)

** !

R8,MM_MSG_ARRAY

CALL SIGNAL

OD ! ** REPEAT FOREVER ** !

RET
END MM MAIN

019E CREATE ENTRY PROCEDURE

ENTRY
019E 7608 LDA R8,MM_MSG_ARRAY
01A0 009A 1

01A2 0C85 LDB o)R8,#SUCCEEDED
01A4 0202
1A6 2102 LD R2,#CREATE_MSG

01A8 0025 1

01AA 9E08 RET
01 AC END CREATE ENTRY

01 AC DELETE ENTRY PROCEDURE

ENTRY
1 AC 7608 LDA R8,MM_MSG_ARRAY

01AE 009A*
01 BO 0C85 LDB dR8,#SUCCEEDED
01B2 0202
1B4 2102 LD R2,#DELETE_MSG

01B6 0036*
1B8 9E08 RET

01BA END DELETE ENTRY

- 397 -

01BA ACTIVATE PROCEDURE
! R8: ARGUMENT PTR !

ENTRY
01BA 7608 LDA R8, MM_MSG_ARR AY
01BC 009A'
01BE 6182 LD R2 , ACTIVATE_ARG. HANDLE 2 (R8)

I0NIQUE ID!
1C0 0008

01C2 8D38 CLR R3
1C4 608B LDB RL3, ACTIVATE_ARG . ENTRY_NO (R8)

01C6 000A
1C8 030P SOB R15, #SIZEOF RET_VAL

01CA 0010
01CC A1F8 LD R8 r R15
01CE 2100 LD RO, #FALSE

1 DO CCCC
01D2 2101 LD R1 r #0 !G_AST INDEX!
01D4 0000
1D6 2104 LD R4 , #1 ! NR OF ENTRIES SEARCHED!

01D8 0001

SEARCH_G_AST:
DO

01DA 5012 CPL RR2 r G_AST. UNIQUE_ID (R 1)

01DC 0000*
01DE 5E0E IF EQ ISEGMENT IS ACTIVE! THEN
01E0 01EA 1

01E2 2100 LD RO, #TROE
01E4 BBBB
01E6 5E08 EXIT FROM SEARCH_G_AST
01E8 01FE 1

FI
01EA A940 INC E4, #1

01EC 0B04 CP RH, #G_AST_LIMIT
01EE 000A
01FO 5E02 IF GT !END OF G AST! THEN
01F2 01F8»
01F4 5E08 EXIT FROM SEARCH G AST
01F6 01FE«

FI
01F8 0101 ADD B1 f #SIZEOF G_AST_REC
01FA 0020
01FC E8EE OD

01FE 0B00 CP RO, #FALSE
0200 CCCC

IF EQ !SEGMENT NOT ACTIVE!
0202 5E0E THEN
0204 0266»
0206 2100 LD RO, #1

0208 0001
020A 2101 LD R1, #0

- 398 -

020C 0000

020E
0210
0212
0214
0216
0218
021A
21C

021E

0220
0222
0224
0226
0228
022A
022C

022E
0230
0232

0234
0236

1404
EEEE
EEEE
5014
0000*
5E0E
0220*
5E08
0234'

A900
0B00
OOOA
5E02
022S»
5E08
0234«

0101
0020
E8ED

OBOO
OOOA

0238 5E0A
023A 025C»
023C 5D12
023E 0000*

0240
0242
0244
246

0248
024A
024C
024E
0250
0252
0254
0256

1404
0000
0000
5D14
0014*
5D14
0018*
5D14
001C*
4C85
0000
0202

0258 5E08
025A 0262»
025C 4C85
025E 0000
0260 OCOC

0262 5E08

FIND_FREE_ENTRY:
DO

LDL RR4, #FREE_ENTRY

CPL RR4, G_AST.UNIQUE_ID (R1)

IF EQ ! ENTRY IS AVAILABLE! THEN

EXIT FROM FIND_FREE_ENTRY

FI
INC HO, #1
CP RO, #G_AST_LIMIT

IF GT !END OF G_AST! THEN

EXIT FROM FIND_FREE_ENTRY

FI
ADD R1, #SIZEOF G_AST_REC

OD

CP RO, #G_AST_LIMIT

IF LE 'FOUND FREE ENTRY!
THEN

LDL G_AST. UNIQ.UE_ID(R1) , RR2

! ZERO ALL EVENT DATA ENTRIES !

LDL RR4, #0

LDL G_AST. SEQUENCER (R1) , RR4

LDL G_AST.EVENT1 (R1) , RR4

LDL G_AST.EVENT2(R1) , RR4

LDB RET_VAL.CODE1 (R8) , #SUCCEEDED

ELSE

LDB RET_VAL.CODE1 (R8) , #G_AST_FULL

FI
ELSE ! SEGMENT ACTIVE!

- 399 -

0264 026C
0266 4C85
0268 0000
026A 0202

LDB HET_VAL.CODE1 (H 8) , #SUCCEEDED

026C
026E
0270
0272
0274
0276
0278
027A
027C
027E
0280
0282
0284
0286
0288
028A
028C
028E
0290
0292
0294
0296
0298
029A
029C
029E

5D82
0002
6P81
0006
1404
0003
0001
5D84
0008
4D85
000C
0001
7689
0000
7608
009A 1

2102
0010
BA91
0280
2102
0047»
010F
0010
9E08

FI
LDL

LD

LDL

RET_VAL.ttfl_HANDLE (R8) , RR2

RET_VAL.MM_HANDLE 2 (R8) , R1

RR4, #%30001

LDL RET_VAL. CLASS (R8) , RR4

LD RET_VAL.SIZE(R8) , #1

LDA R9, RET_VAL(R8)

LDA R8, MM_MSG_AflRAI

LD R2, #16

LDIRB 3R8 f o)R9, R2

LD R2, #ACTIVATE_HSG

ADD R15, #SIZEOF RET_VAL

RET
END ACTIVATE

- 400 -

029E DEACTIVATE PROCEDURE

ENTRY
029E 7608 LDA R8 ,MM_MSG_ARRAY
02A0 009A*
02A2 0C85 LDB 3R8 , tSOCCEEDED
02A4 0202
02A6 2102 LD R2 , #DEACTIVAIE MSG
02A8 0054«
02AA 9E08 RET
02AC END DEACTIVATE

02AC SWAP_IN PROCEDURE

ENTRY
02AC 2102 LD R2 , #%FF30
02AE FF30
02B0 3B26 OUT %FFD2, R2
02B2 FFD2
02B4 7608 LDA R8 , MM_HSG_ARRAY
02B6 009A«
02B8 5F00 CALL WAIT !R8:MSG ARRAY!
02BA 0000*
02BC 7608 LDA R8 , MM_MSG_ARRAY
02BE 009A 1

O2C0 0C85 LDB a)R8, #SOCCEEDED
02C2 0202
02C4 2102 LD R2 , #SWAP_IN_MSG
02C6 0063*
02C8 9E08 RET
02CA END SWAP IN

- 401 -

02CA SWAP_

ENTRY

OUT

2CA 7608 LDA R8,MM_MSG_ARRAY
02CC 009A'
02CE 0C85 LDB o)R8,#SUCCEEDED
02D0 0202
02D2 2102 LD R2,#SWAP_0UT_MSG
02D4 006F 1

02D6 9E08 RET
02D8 END SWAP OUT

PROCEDURE

02D8 MM_DELAY PROCEDURE
; ********** ********* ***** **** **«**]
• PRODUCES 2 SEC DELAY !

t *********************************;
ENTRY

#C0UNT

#TIME

#0

02D8 2102 LD R2,
02DA 000A
02DC 2101 LD R1,
02DE 01F4

DO
02E0 0B02 CP R2
02E2 0000
2E4 5E0E IF EQ THE

02E6 02EC
02E8 5E08
02EA 02F2*
2EC AB20 DEC R2

02EE 7B1D MREQ R1
02F0 E8F7 OD
02F2 9E08 RET
02F4 END MM DELAY

EXIT FI

- 402 -

02F4 MM_PRINT_LINE PROCEDURE
i **************************** *****
! PRINTS LINE LENGTH
! SPEC IN R3.
i *********************************
ENTRY

02F4 C82D LDB RLO, #DASH
DO

02F6 0B03 CP R3 r #0
02F8 0000
02FA 5E0E IF EQ THEN EXIT FI
02FC 0302*
02FE 5E08
0300 030A*
0302 5F00 CALL SNDCHR
0304 0000*
0306 AB30 DEC R3
0308 E8F6 OD
030A 9E08 RET
030C END MM_PRINT_LINE

030C MM_PRINT_BLANKS PROCEDURE
i *********************************
! PRINTS NUMBER OF
! BLANKS SPEC IN R3.
i *********************************
ENTRY

030C C820 LDB RLO, #SPACE
DO

030E 0B03 CP R3, #0
0310 0000
0312 5E0E IF EQ THEN EXIT FI
0314 031A 1

0316 5E08
0318 0322 1

031A 5F00 CALL SNDCHR
031C 0000*
031E AB30 DEC R3
0320 E8F6 OD
0322 9E08 RET
0324 END MM PRINT_BLANKS

END MM PROCESS

- 403 -

LIST OF REFERENCES

1. Advanced Micro Computers, AM96/4116 AMZ8000 16-bit
Monoboard Computer, Osers^s Manual, 1980.

2. Coleman, A. R., Secur ity Kernel Design, for a

Microprocessor- Based . Multilevel. Archival Storage
System, MS Thesis, Naval Postgraduate School, December
79797"

3. Denning, D. E., "A Lattice Model of Secure Information
Flow," Communications of the ACM, 7. 19, p 236-242, May
1976.

4. Dijkstra, E. W. , "The Humble Programmer,"
Communications of the ACM, 7. 15, No. 10, p. 859-865,
October 1972."

5. Gary, A. 7. and Moore, E. E. , The Desig.ii and
Implementation of the Memory. Manager for a S ecure
£££k.iia.i Storage System. MS Thesis, Naval Postgraduate
School, June, 1980.

6. Madnicic, S. E. and Donovan, J. J., Operating. Systems.
McGraw Hill, 1974.

7. O^onnell, J. S. and Richardson, L. D. , Distributed
Secure Desgji for a Multi-micro processor Operating
System. MS Thesis, Naval Postgraduate School, June
1980."

8. Organic*, E. J., The Multics System: An Exa mination of

Its Structure, MIT Press, 19 72.

9. Parks, E. J., The Design of a Secure File Storage
System, MS Thesis, Naval Postgraduate School, December
1979*7"

10. Reed, P. D., Processo r Multipl exin g in a Lay ered
QP.§£ating System. MS Thesis, Massachusetts Institute of
Technology, MIT LCS/TR-167, 1979.

11. Reed, P. D. and Kanodia, R. K. , "Sycnhronization Hith
Eventcounts and Seguencers," Co mmunications of the ACM,
7. 22, No. 2, pp. 115-124, February~1979

.

- 404 -

12. Reitz, S. L, . , An Ijnfilementatign of Multiprogramming
and Process Management £or a Security_~Kernii Operating
System, MS Thesis Naval Postgraduate School, June 1980.

13. Riggins, C, "when No Single Language Can Do the Job,
Make it a Language-Family Matter," Electronics Design,
February 15, 1979.

14. Saltzer, J. H., Traffic Control in a Multiplexed
Computer System, Ph.D. Thesis, Massachusetts Institute
of Technology, 1966.

15. Schell, Lt. Col. R. R., "Computer Security: the
Achilles Heel of the Electronic Air Forece?," Air
University, Review. V. 30, No. 2, pp. 16-33, January
1979.

16. Schell, Lt. Col. R. R., "Security Kernels: A
Methodical Design of System Security," USE Technical
Papers (Spring Conference, 1979) pp. 245-25q"7 March"
1979.

17. Schell, R. R. and Cox, L. A., Secure Archival Storage
Sy.st.2a, Part I zz. Design. Naval Postgraduate School,
NPS52-30-002, March 1980.

18. Schroeder, M.D., "A Hardware Architecture for
Implementing Protection Rings," Communications of the
ACM, 7. 15, No. 3, pp. 157-170, March~19727"

19. Strickler, A. R., Im p l em entation of Process Management
12L i Secure Archival Storage System, MS Thesis, Naval
Postgraduate School, March 1981.

20. Wells, J. T. , I mplementation of Segment Mana gement for
a Secure irchival Storage Sytem. MS Thesis, Naval
Postgraduate School, Septemeber 1980.

21. Zilog, Inc., Z8 000 PLZ/ASM Assembly Language
Programming Manual . 03-3055-01, Revision A, April 1979.

22. Zilog, Inc., Z8001 CPU Z8002 CPU, Preliminary. Product
Specif icaion. March 1979.

23. Zilog, Inc., Z8010 MMU Memory Management Unit,
Preliminary Product Specification, October 1979.

- 405 -

INITIAL DISTRIBUTION LIST

No. Copies
1. Defense Documentation Center 2

ATTN:DDC-TC
Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142 2

Naval Postgraduate School
Monterey, California 93940

3. Department Chairman, Code 52 2

Department of Computer Science
Naval Postgraduate School
Monterey, California 93940

4. National Security Agency 5

Attn.: Col. Roger R. Schell
C1
Fort George Meade, Maryland 20755

5. Lyle A. Cox, Jr., Code 52C1 4

Department of Computer Science
Naval Postgraduate School
Monterey, California 93940

6. Joel Trimble, Code 221 1

Office of Naval Research
800 North Quincy
Arlington, Virginia 22217

7. John P.L. Woodward 1

The MITRE Corporation
P.O. Box 208
Bedford, Massachusetts 01730

8. Digital Eguipment Corporation 1

Attn: Mr. Donald Gaubatz
146 Main Street
ML 3-2/E41
Maynard, Massachusetts 01754

- 406 -

9. Joe Urban
University of Southwestern Louisiana
P.O. Box 44330
Lafayette, Louisiana 70504

10. LCDR 3ary Baker, Code 37

COMRESPATWINGPAC
Code 32
NAS Moffett Field, California 94035

1 1. LCDR John T. Wells
P.O. Box 366
Waynesboro, Mississippi 39367

12. James P. Anderson Co.

Box 4 2

Fort Washington, Pennsylvania 19034

13. I. Larry Avrunin, Code 18

DTNSRDC
Bethesda, Maryland 20084

14. Gerald B. Blanton
242 San Carlos Way
Novato, Calif. 94947

15. Intel Corporation
Attn: Mr. Robert Childs
Mail Code: SC4-490
3065 Bowers Avenue
Santa Clara, California 95051

16. Dr. J. McGraw
U.C. - L.L.L. (1-794)
P.O. BOX 808
Livermore, California 94550

17. M. George Michael
O.C. - L.L.L. (L-76)
P.O. Box 808
Livermore, California 94550

18. Robert Montee
Director, Long Range Systems Planning
Honeywell, MN12-2276
Honeywell Plaza
Minneapolis, Minn. 55408

- 407 -

19. Dr. P. C Colon Osorio 1

Research and Developement
Digital Equipment Corp.
146 Main Street
Maynard, Mass. 01754

20. David P. Reed 1

MIT Lab for Computer Science
545 Tech Sq
Cambridge, Mass. 02139

21. Capt. Anthony R. Strickler 1

HQ Command,
US Army Signal Center & Ft. Gordon (W0U5AA)
Ft. Gordon, Georgia 30905

22. Lt. W. J. Wasson 1

Naval Electronics Systems Command
Headquarters, PME 124
Washington D. C. 20360

23. S. H. Wilson 1

Code 7590
Naval Research Lab
Washington D. C. 20375

24. Maj. Robert Yingling 1

Box 6227
APO New York, New York 09012

25. LCDR William R. Shockley 40

Code 5 2Sp
Department of Computer Science
Naval Postgraduate School
Monterey, California 93940

26. LCDR Ronald W. Modes 5

Code 52Mf
Department of Computer Science
Naval Postgraduate School
Monterey, California 93940

27. S. L. Perdue 5

Code 5 2

Department of Computer Science
Naval Postgraduate School
Monterey, California 93940

- 408 -

no 7

DUDLEY KNOX LIBRARY - ««^"22E?

5 685301071267 2
U199439

•

•

