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SUMMARY

This report presents a model for estimating the intercept probability

of a radiowave acquisition receiving system. The specific configuration or

type of receiving system is not important but there must be two or more

receiving systems and they must operate in such a manner that for each

trial (event) they alarm independently from a statistical point of view.

The data giving the number of alarms for each receiver and the number of

receivers alarming for each trial is all that is required. These data

are used to form estimates of the conditional probabilities of intercept

and simultaneous alarm. The estimates are then used in a least mean

square calculation from which the unconditional probabilities are estimated.
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I. INTRODUCTION

A. Background

In the conduct of electronic warfare it is necessary to employ radio

receivers to monitor activity in the electromagnetic spectrum for a

variety of purposes. In particular, electronic support measures (ESM)

and signal intelligence (SIGINT) gathering are concerned with this

monitoring process. The acquisition of an electromagnetic signal by a

radio receiver is referred to as intercept.

Two important considerations with regard to signal intercept are the

probability of intercept and the mean time to intercept. In general, one

has no a priori knowledge that a signal will be present at a given time.

Further, if a signal is present, the frequency and location of the

emitter may not be known. Thus it is most generally necessary to search

in time, frequency and space in order to intercept a signal. The probability

that the signal will be intercepted at all is of interest. Additionally,

if a signal is intercepted it is of interest to know the mean time to

intercept. This is particularly important in cases where the signal

represents a threat since if it is not intercepted in a timely manner the

results may be catastrophic.

There are currently five major types of receivers being used for the

acquisition of signals. These are:

(1) Crystal video

(2) IFM

(3) Sweeping superheterodyne

(4) Compressive

(5) Channelized (including 3ragg)



These receivers are sometimes used in combinations and in addition,

circuitry for the automatic recognition of signals may be employed at the

receiver output. An acquisition receiving system may thus be quite complex.

The determination of the intercept probability of such an acquisition system

is correspondingly complex.

B. Related Work

The subject of intercept probability has certainly been of interest for

as long as radio receivers have been used to search for signals. Early

literature on this subject may be found in ref [l^ where sweeping super-

heterodyne receivers are discussed. This work shows that receiver intercept

performance generally improves as the sweep rate is increased.

As technology progressed, other types of receivers were developed and

used in complex system configurations as discussed above. A reasonably

comprehensive search of the technical literature indicates, however,

that little has been done to advance our understanding of the intercept

probability problem to the point where this can be quantified for an

acquisition system.

C. Problem

This report addresses the problem of estimating radiowave acquisition

receiving system intercept probability. A method for estimating this

probability from system performance data is presented. An attractive

feature of the method is the fact that the particular system configuration

-2-



does not enter directly into the calculations. Certain assumptions must

be satisfied, however, and the actual hardware configuration may enter into

the problem indirectly in this way.

-3-



II. Probabalistic Intercept Theory

A. Two Acquisition Receiving Systems

With reference to Figure 1, assume that two acquisition receiving

systems are excited by a common source emitter. The emission will

generally be of finite duration and will occur at unknown time, frequency

and location. The receivers may be collocated and tied to a common

antenna in which case they share a common channel or they may be physically

separated in which case the channels may have quite different characteristics

Further, assume that the intercept probabilities for the two receiving

systems (including the effects of the channel) are p T1
and p T?

and that

the systems behave independently in the strict statistical sense. For any

emission (experiment) there can be one of four outcomes. Only system 1

may alarm, only system 2 may alarm, both may alarm or neither may alarm.

Let P(n) be defined as follows:

P(n) = probability of n simultaneous alarms

where

n€
I
0,1,2 ( .

It is easy to show that

P(0) = d-Pn ) C1-p I2 )

PCD = Pn d-P I2 )
+
Pi2 (1 -Pii }

P(2) ' PllPl2 (1)

-4-
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Consider the following examples

Example 1. Calculate the (simultaneous) alarm probabilities for

two acquisition receiving systems with p T1
=0.8 and

'12
= 0.7.

Solution: It is easy to show using equation (1) that

P(0) = .06

P(l) = .38

P(2) = .56

In this case there is a 94% probability that either one or both systems

will alarm and the signal will be intercepted.

Example 2. Calculate the alarm probabilities for two acquisition

receiving systems with p n = 0.3 and p T?
= 0.4.

Solution: Again using equation (1)

P(0) = .42

P(l) = .46

P(2) = .12

In this case there is only a 58% probability that either one or both systems

will alarm and the signal will be intercepted. Note also that the most

probable outcome is for only one alarm whereas in the previous example

the most probable outcome was for two alarms.

-6-



At this point it seems appropriate to comment further on the independence

of the receiving systems (including channel). This is a point which is

naturally of considerable interest. The assumption of total independence

represents one extreme; the other would be total dependence in which case

both receiving systems would behave identically. The interesting question,

of course, is where in this interval the dependence lies in any particular

case. This is a question which probably cannot be answered in general.

The variety of possible acquisition receiving system configurations and

applications is such that an exhaustive examination of the many possibilities

would be impossible. There appear to be situations where this assumption

is reasonable but no claim of applicability is made for any particular

case. Each reader must decide if the model described here will fit his

own case. The assumption of independence has one important implication

from a mathematical point of view. It makes the problem tractable using

the method described here.

B. N Acquisition Receiving Systems

We now generalize the previous theory to the case of N acquisition

receiving systems with intercept probabilities p,,, Vr-?> •••» Ptm* ^

is again assumed that the systems are statistically independent. For

this case, it is shown in Appendix I that the alarm probabilities P(n)

may be calculated using the algorithm shown in Table I.

-7-



Step Computation

1 Calculate x.
J

" Pl/^-Plj 1

N

2 Expand U.

j-l

(x-x.) to obtain the polynomi.al

N

n (x-x.)

j=i J

N N-l
= a_x + a x +

N-
a_x

-2
+ ... + a

N

3 Calculate

POO =
N

,

£ hi
k=0 '

Kl

Table 1. Algorithm for Computation of Alarm Probabilities P(n)
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Example 3. Use the algorithm above to calculate P(n) for the intercept

probabilities of example 1.

Solution: Using the algorithm above,

Step 1. x = 4

x
2

= 7/3

Step 2. [I (x-x.) = (x-4) (x-7/3)

j = l
J

2 19 28
= x "~ x + -

2V i i , 19 28 SO
Step 3. Z

q
\\\ - 1 + - + - - -

pf0) = so7I=
- 06

p« = wl =
- 38

P^=w!= - S6

It can be seen that the results agree with those obtained in example 1.

The algorithm is simple although the computational labor grows rapidly

as N increases. Practically, however, the important result is that

a simple algorithm exists. The computational labor can be delegated to a

computing machine.

-9-



C. Discussion of the Probability Law for Alarms

The mean and variance of the probability law are most easily obtained

in the following way. Define random variables

y J
1 if acquisition system j alarms

j ) otherwise (2)

and then for each trial number of alarms is

N

n = £ Xj (3)

j = l

It then follows since the X. are independent that
3

H E[n] = t Pxj
C4)

j=l
iJ

- 9
N

E [Cn-n)"] = £ p (1-p ) (5)

j=l J

Example 4. Calculate the mean and variance for alarms using the p,

.

of example 1.

Solution: Using Eq (4) and Eq (5),

E[n] = 1.5

E [(n-n)
2
] = .37

This result is intuitively satisfying since example 1 showed the most probable

outcomes to be either 1 or 2 alarms.

-10-



An interesting case results when all the receiving systems have the

I
same intercept probability p, . = p T

¥j . In this case the probability

law reduces to the Binomial law

poo -(J!).? a-Pl
)»-"

(6)

which has mean

and variance

ne | 0,1,2, ...,N
\

E [n] = N p
:

E [(n-n)
2
] = N p (1-pj)

(7)

(8)

Lengthy discussions of this probability law can be found in any probability

text.

Example 5. Calculate the probability law, mean and variance for alarms

when N=5 and p_ . = .5 ¥j.

Solution: The Binomial law Eq (6) - (8) applies and we have

P(0) = 1 p° d-Pj)
5

= 1/32

P(l) = 5 P j (1-Pj)
4

= 5/32

P(2) = 10 p
2

(1-Pj)
3

= 10/32

P(3) = 10 p
3

(1-Pj)
2

= 10/32

P(4) = 5 vt Cl-P,)
1

= 5/32
I X

P(5) = 1 p^ (1-Pj) = 1/32

11-



with

E [n] = N p = 2.5

and

-v2-
E [(n-n)

Z
] = N P (1-P ) = 1.25

This shows that there is approximately a 60% probability of either 2 or 3

alarms for each trial and that there will be little deviation (40%)

from that result.
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III. Estimation of Intercept Probabilities

In most cases it would be difficult to calculate the intercept probability

of a receiving system. If system performance data are available, however,

it may be possible to estimate intercept probability. This section

presents a method for estimating the intercept probabilities of two or

more receiving systems if the systems are statistically independent.

A. Two Acquisition Receiving Systems

Let us make the following definitions:

A. = event : receiver 1 alarms

A_ = event: receiver 2 alarms.

It then follows that (see Figure 2)

PCAj) - P(A
x l

A
X
UA

2
) P (AjVJA^ (9)

P(A
2
) = P(A

2
| A

1
UA

2
) P (A

1
UA

2
) (10)

P(A
X
A
2
) = P (A

X
A
2

\ A
X
UA

2
) P (A

1
OA

2
) . (11)

Dividing Eq (11) by Eq (9) and then Eq (10) we obtain

P(A
X
A
2

) P(A
r
\
2

\ A
2
UA

2
)

P(A
X

) • P(A
1

| A
X
UA

2
)

and

P(A
X
A
2
) =

P(A
X
A
2
(A

1
C/A

2
)

P(A
2
) P(A

2 J
A
2
UA

2
)

Now if we assume independence

(12)

(13)

P(A
X
A
2
) = P(A

X
) P(A

2
) (14)
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and we substitute Eq (14) into Eqs (12) and (13) we obtain

P(A. A.\ A.U A )

P<V kmvv (15)

HLV PfA^A^A^

Using a prime to denote conditional probability we may write Eqs (15) and

(16) more compactly as

D =
VJ±1 (15a)

pn p; 2

p = EliS. (16a)
P I2 Ph

If receiving system data are available as shown in the Venn diagram

of Figure 2, then the intercept probabilities may be estimated on the

basis of relative frequency as

(17)

where

<\ =

n
l2

p Il n
12

+ n
2

/s =
n. _
It i

P I2 n
l2

+ n
l

(18)

n. = # times only receiver 1 alarms

r\ = # times only receiver 2 alarms

n
1?

= # times both receivers alarm.

Example 6. Given the data below, estimate p T1 , p ?
and signals missed.

Solution: Using Eqs (17) and (18) with

n = 30

n
2

= 40

n
12

= 50

-14-
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we obtain

'II 50 + 40

/\ 50 _ , n
Pti

=
en I zin = 5 / 9

P I2 ~ 50 + 30 " 5/8

We may now estimate the probability that no alarm occurred as

and it follows that

'p(A) = 5/6 .

Defining

we have

or

nn
= # trials for which no alarm occurred

nT
= total trials

n
T

P(A) = n
1

+ n
2

+ n
12

/iL = fr x 120 = 144 .

T 5

The estimate of signals missed is therefore

Q̂
= ^(A) ^ = 24

The above example illustrates a very interesting result. If we have

two independent receivers we can not only estimate their intercept probabilities

but also the probability that a signal will be missed as well as the number

of such signals.

-16-



B. N Acquisition Receiving Systems

We will now investigate the extension of the method just presented

to N receiving systems. In this case if we attempt to simply extend the

method just described for N = 2 to the case N = 3 we find that there

are a number of possible ways to estimate the p T
». It is not clear which

way this should be done except perhaps on the basis of intuition regarding

the relative amounts of data. It may be expected that this dilema would

become more difficult as N increases. Thus, in an attempt to circumvent

this difficulty and to make maximum use of the available data a least

squares approach was selected.

Consider the data obtained if N receiving systems are simultaneously

employed. From this data we can estimate the following quantities on the

basis of relative frequency

/\. /N, Ai /^»
Pir *h'*i3 • • • pJn

PtD, P'(2)/P
N
«(3) . . . P'(N).

If our estimate that an alarm occurs at all is P(A) then

I ^ ^.^(A) (19)

1^(0) = 1-^CA)

^(n) =
/
P»(n)

/
P(A) (n< 1) (20)

Suppose that we now use the p.. in the alogrithm of Table 1 to estimate

P(n). Denote this estimate as P(n) and define the mean square weighted

error as

;

E^|
o
w^tcn)-^)] 2

^] (21,

-17-



For fixed weights W. the mean square error will vary with P(A)

as this quantity varies through the range

< P(A) < 1 (22)

We simply choose as our estimate, P(A), that non-trivial value which

minimizes the mean square error as given by Eq (21) . The estimates

for the p_. then follow from Eq (19).

The weights, W , in Eq (21) should be chosen so as to weight the data

according to its reliability. One way to accomplish this is to use the

inverse of the variance. A simple approach, however, is to set all weights

equal to 1 (W_ = l -Vn) which automatically weights data associated with

less probable outcomes less heavily.

A computer program has been written to carry out the computations

just described for N<9. W = 1 t n has been used. The use of this- n

program is illustrated in the following example.

Example 7. Solve Example 6 using the method of least squares.

Solution: From the data given in Example 6 we calculate the following

estimates for conditional probabilities:

p' = 80/120 ^'(1) = 70/120

p»
2

= 90/120 'P'
1 (2) = 50/120

If we now compute the mean square error as given by Eq (21) with W = 1 ¥ n

and plot this as a function of P(0) = [l-P(A)] we obtain the result

shown in Figure 3. P(0) =1 is a trivial case for which the error will

2
always be E (0) =0. A unique non-trivial minimum occurs for

P(0) = 1/6 = .167 where again E (1/6) = 0. This is exactly the answer

obtained in Example 6.

-18-



The intercept probabilities may now be estimated as

pn p ii
l p(0) = 5/9

^12
=
^I2

1"^(0) = 3/8

which again is exactly the result obtained in Example 6.

In Example 7 the method of least squares gives exactly the answer

obtained by the simpler method employed in Example 6. It is generally

true that

min E
2
(P(0)) = (N=2)

.

P(0)

If N > 2 then the error is not necessarily zero at the non-trivial

minimum. This is illustrated in the next example.

Example 8. Estimate P(0) and the p T
. for the case N = 5 given the

following data:

P 1

(1) = .04

r^(2) = .25

/
P
N

» (3) = .36

P' (4) = .22

P 1

(5) = .03

Solution: As in Example 7, the error is calculated from Eq (21). This

is plotted as a function of P(0) in Figure 4. The non-trivial minimum

occurs at P(0) = .015. The corresponding intercept probability estimates

are

-19-
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"p^ = .679 $• = .531

For the data of Example 8 it is interesting to compare the P(n) and

P(n) at the minimum error point to see the effects of the weighting

W = 1 t n. This comparison appears in Table 2.

An examination of the figures in Table 2 shows that the values for

2 < n < 4 are very close while for other values of n the P(n) and

P(n) disagree by approximately a factor of 2. This is a direct result

of the weighting W = 1 t n which causes greater attention to those

values of n for which a greater amount of data is available. In this

case about 70% of the data corresponds to 2 < n < 4.

22-



n fi&O
^̂
(n)

.0150 .0080

1 .0394 .0736

2 .2462 .2435

3 .3546 .3655

4 .2167 .2488

5 .0295

, ,. . - j

.0604

Table 2. Values of P(n) and

P(n) corresponding to minimum

error in Example 8.
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IV. Conclusions and Recommendations

A. Conclusions

This report has presented a discussion of the way in which alarms will

occur if several radiowave acquisition receiving systems with different

intercept probabilities are used to intercept a radio signal. It also gives

a least squares method for estimating the intercept probabilities from

system performance data. The receiving systems may be collocated or

dispersed as in a net.

To use the model described here it is necessary that for each trial

the receiving systems alarm in a statistically independent manner. Although

only data is required to employ the method described here, hardware

may enter into consideration when one attempts to establish independence.

Factors such as the method of searching the frequency spectrum, the antenna

configuration, propagation effects, the method of signal sorting and

validation etc. will all play a role. No claims as to the applicability

of the model are made here. Each reader must decide if it may be applied

in any particular situation.

A very interesting result that appears here is that given data on the

number of signals intercepted one may estimate not only the intercept

probabilities but the number of signals which were missed. These are

signals which presumably could have been intercepted but were not.

B. Recommendations

The work reported here is certainly not viewed as the final or even

the best solution to the problem. The study was undertaken because no

-24-



other information on this subject could be found. It presents a solution

to the problem which should be of value in the absence of any other. It

is hoped that this work may stimulate others to give some thought to this

interesting subject.

There are various things which could be pursued in the future.

1. The problem could be cast more elegantly in the language of

statistics.

2. The properties and quality of the estimators presented here could

be studied.

3. The consequences of receiver dependencies could be examined and

perhaps methods developed for handling this.

4. The optimal estimator could be identified.

-25-
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Appendix I. An Algorithm for Calculating Probability

of n Simultaneous Alarms

A. The Algorithm

As discussed in the text, we may calculate the probability of n

simultaneous alarms if the intercept probabilities of the receiving systems

are known. Let us define

p Ij
= (1 "p Ij

) (I - 1)

Then we have

N = 2:

P(0) = p I1 p (I-2a)

/Pll
+

Pl2_\

\
PH PI2/

PCD =l^L + ^J Pn P I2
Ci-2b)

P(2) = pn p 12
d-2c)

N = 3:

P(0) = n p . (I-3a)

j-1
iJ

, I JiL + Jii + £li
]

II P I2 P I3/ j-1 ^

[ ^ + tt
1 + ^\ n

13/ j-1
P I1 P I2

3

n
3 = 1

1-1

p(3) = n pjj ci-3d)



Now suppose we know the P(n) and we wish to solve for the p T
-.

Define

P
Ii

x. = =M- . (1-4)
3 PU

Now by algebraic substitution among Eqs (1-2) or (1-3) we arrive at

N = 2:

P(0) x
2

- P(l) x. + P(2) = (1-5)

N = 3:

P(0) x
3

- P(l) x
2

+ P(2) x. - P(3) = . (1-6)

In general,

N N-l N-2 N
p(e) x

N
- p(i) x. + p(2) x. - ... (-iyp(N) = o

d-7)

Thus the x. are the roots of the polynomial (1-7) and from these roots

we may calculate the p,. from Eq (1-4) as

x.

p T - = TJ— OS)r Ij 1+x.
J

It is now clear that if the p y
. are known we may obtain a polynomial

having the form of Eq (1-7) as

N - N" 2
(1-9)EI (x-x.) = a

Q
x' = ajX + a

2
+....+ ^ *

The coefficients, a , of this polynomial are proportional to the P(n)

Knowing that
N

£ P(n) 1

n=0

we recognize that

1-2



(a
\

P(lO = -TT-11 . (1-10)

k=0

This is the algorithm of Table 1.

B. Discussion of the Algorithm and its Relation to the Least Squares Method

Suppose we had data from which it were possible to estimate the P(n).

Then an examination of Eq (1-7) suggests that a possible way of estimating

the p,. is

% - Re
( Tk\ CI - n)

where the x. are the roots of
3

9(0) x* -t(l) x*"
1

+ t(2) x^ 2
- ... + (-l)

N
t(N) = (1-12)

The roots of Eq (1-7) are real. However, if the P(n) are estimated using

data and the estimates are used as in Eq (1-12) then some roots may occur in

conjugate pairs with small imaginary parts due to the inaccuracy inherent

in estimating the P(n) from data. This is why the Re appears in

Eq (1-11). Now if the p T
. from (1-11) were used in the algorithm

above to obtain estimates, P(n) , of the P(n) these estimates would

differ from the coefficients P(n) in Eq (1-12) because the imaginary

part of each root x. has been discarded. There would thus be some

1-3



mean square error

B
2

= f [1^-W^] (1-13)

j=0

which in general would be non-zero

1-4
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