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ABSTRACT:

Density gradients, which refract laser light within the cavity,
degrade beam quality. In addition to wall influences and viscous
effects which cause density gradients, there is another mechanism.
This mechanism, which is due to wakes and compression waves from
heat (vibration energy to translation and rotation) addition in a
supersonic stream, appears to have been overlooked. The appropriate
equation is stated and discussed. A semigraphical solution procedure
is outlined. Contours of constant density have been calculated for

circular and rectangular cavities. Graphs of the isodensity contours
are given.
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Beam quality is degraded when there are density gradients in the

lasing medium. The density gradients refract the light within the

cavity. Considerable effort has been devoted by engineers and

scientists working with gas dynamic lasers to measure and correct

density variations arising from wakes, boundary layers and wall

irregularities. Another mechanism exists to cause density gradients,

and it appears that this mechanism has been overlooked or ignored.

Heat addition in a supersonic stream causes compression waves

which radiate from the energy release region. When the laser

radiation is created by stimulated emission (e.g. C0
?

laser ^ there

is also a transfer of vibrational energy to translational and

rotational degrees of freedom. This is effectively heat addition

and can be treated as a energy-per-unit" volume -and-per-unit-time

term in the energy equation.

Using the results from the paper by Tsien and Bielock , the

(2)
following equation can be derived for distributed energy sources
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Equation (l) is applicable to a planar geometry; planes normal to the

beam are considered. The symbols have the following meaning;

Y ratio of heat capacity of lasing medium

M Mach number

a local speed of sound

(3 (^-1)^

p density

h(x ,y ) energy released at (x ,y ) per unit at volume
and unit time

[i Mach angle equal to arcsin of l/M

S distance along a characteristic

U local flow velocity

&(y-y ) delta function

l(x-x ) unit function, zero for x-x < and unit for
x-x' >

The first integral yields the density variation along a characteristic.

When h(x,y) = constant, the change in density is proportional to the

length of characteristic imbedded within the energy release region .

When h(x,y) is variable, the element of characteristic length dS is

weighted by h(x,y).

The second integral results from the wake of the energy release

region. Note that it is opposite in sign to the first integral. The

change in density is proportional to the length of streamline imbedded

in the energy release zone upstream of the observation point. This

is true if h(x,y) is a constant. These facts concerning the proportionality

of Ap/p to the length of characteristic and streamline traversing the



energy release region suggest a semigraphical calculation procedure.

This is illustrated in Figure 1 for point P with a flow at M = U. As

illustrated, the right running characteristic R has a length of 7.0,

the wake streamline ¥ has a length of 8.5 5 and the left running

characteristic L, a length of 10.2. Ihe length of characteristics

must be multiplied by sin p,. It has been assumed that h(x,y) is a

constant within the circle and zero outside the circle. Waves reflected

from the walls have been neglected.

It is necessary to evaluate the value of h for typical laser

operating conditions. A gas dynamic laser has an efficiency of

approximately 1 percent based on the chemical energy which increased

the medium temperature from a room value to 1500 K or so. The increase

in enthalpy of the gas mixture is 550 BTU/lbm. Consider the flow of

gas through a volume with a shape of a cube having 1 ft sides. For

typical conditions this gives a flow of Uo lbm/sec through the cube

.

Assume the cube is the laser cavity and that 1 percent of the energy

is removed as radiation. A COp. laser has a quantum efficiency of

hO<f . It is assumed that 1.5$ of the energy, which had been frozen

in vibration, is transferred to translation and rotation. For these

conditions h has a value of 330 BTU/sec ft^. Using appropriate values

for M, a, p, etc. , it is found that

—P- = 0.023 per foot of characteristic length
P

and

—2. = -0.052 per foot of streamline in cavity
P

Using these values of Ap/p per foot of length, the density contours

were calculated for both a square and a circular cavity. Figure 2 shows



the results for a circular cavity. Flow is from left to right. At

the top of the cavity there is a region of large positive Ap/p due

to the fact the wake is small and the left running characteristic

within the cavity is long. At the extreme downstream edge of the

cavity Ap/p is large negative. For this position there is a long

wake within the circle which dominates the compression due to

characteristics. At the top of the cavity the 0, +.001, +.002, and

+.003 contours have a slope nearly equal to the slope of a left running

characteristic. This causes a near loop in the +.003 contour.

In Figure 3 the feature most readily obvious is the slope of the

density contours in the upper part of the figure. These might he

diagnosed as resulting from waves originating at the upper wall. However,

these are due to energy release in a supersonic stream. Along the

upper surface the density decreases going downstream. Along the laser

centerline the density increases slightly as one moves downstream. In

the upper downstream corner there is a strong density gradient.

The analysis of this note has focused on two cases where h(x,y)

is constant. For the circular case with a real laserj the value of h

is best described as Gaussian. This solution is straightforward but

extremely tedious. A computer program seems appropriate for the

problem of variable h(x,y).

This note has demonstrated that the energy release can cause Ap/p

values somewhat less than viscous flow effects but nonetheless

significant. Furthermore, since the Ap/p may be oriented nearly along

characteristics, these may be confused with waves originating at a

wall.
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DIRECTION OF FLOW
(3) M = 4

P

Fractional density contours due to energy release in

Fig. 2 : a circular laser cavity. Only top half is shown due to

symmetry.



Upper Wall of Laser Cavity

Values of bfifp

Centerline of Laser Cavity

DIRECTION OF
FLOW @M =4

Fig. 3
Fractional density contours due to energy release in a

square cavity.
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