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ABSTRACT
A computer model of a high-resolution sector-scanning sonar used for

imaging objects against the sea-bottom is presented. The model accounts

for the sonar parameters, bottom backscatter, reflections from the target's

visible surface, and the target's acoustic shadow. A variety of imaging scenar-

ios can be simulated including type of target, the target's orientation relative

to the sonar and the bottom, and the backscatter statistics. The acoustic im-

ages are presented in the conventional B-scan format. A new display format

that is useful for visualizing the target's silhouette is also presented. Visual

perspective images of the scene are provided to serve as a reference for subse-

quent image reconstruction work. Preliminary results for 3-d reconstruction

of the confining volume of the visible target surface are also presented. The
simulation model and the results of the 3-d reconstruction demonstrate the

promise of the application of image processing techniques for classification of

objects using acoustic images.
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Chapter 1

IMAGING SONARS AND
THEIR SIMULATION

1.1 INTRODUCTION
High-resolution sonar is the generic name for high frequency sonars that

are conventionally used for imaging applications in a variety of areas like

sea-bottom profiling, mine-hunting, undersea-navigation, diver guidance,

surveillance, etc. These sonars typically use frequencies in the range 100

kHz - 2 MHz depending on the application; the higher the sonar frequency,

the better are the range and bearing resolution [1,2,3]. Even so, the image

quality presently obtainable from these sonars for realistic acoustic apertures

is far inferior to that of an optical sensor. However, the main advantage of

using acoustic sensors is the potential for relatively longer ranges, more so in

turbid waters. It is this range capability that makes sonar an indispensable

sensor in hostile underwater imaging applications.

1.2 REVIEW
Historically, the first imaging sonar was the side-scan sonar or the side-look

sonar [1]. This sonar is typically mounted on a tow-fish that is towed behind

the mother-ship. The tow-fish has a horizontal linear array on either side

for looking at a narrow bottom swath at right angles to the ship's track. As

the ship moves (in a straight line or a well-defined track) the sonar obtains

1



2 CHAPTER 1. IMAGING SONARS AND THEIR SIMULATION

the range profile of the sea bottom very much like a searchlight beam. It is

obvious that the scanning speed (i.e., the ship speed) is limited by the time

taken for the acoustic signal to traverse the two-way distance to the farthest

point in a given swath. In spite of the slow speed of scan, the side-scan sonar

is a standard for hydrographers for the generation of sea-bottom maps and

profiles of interesting undersea features.

The next evolution in imaging sonars was the development of the sector-

scanning sonar [2]. These sonars have the ability to scan an angular sector

from a static location by means of electronic scanning of the acoustic beam
(very much like a phased-array radar). The beam scanning technology has

been continually updated from analog to the modern digital techniques. The
sonar transmits a cw pulse in a horizontally wide beam of approximately

30° beamwidth that insonifies the sector of interest. This sector is rapidly

scanned immediately thereafter by a narrow receiver beam of typically 1°

beamwidth once every range cell (as defined by the pulsewidth). This is a

very efficient method of obtaining images in near-real-time. These sonars

have found wide use in underwater vehicles and submersibles.

The sonars discussed above produce images that represent the acoustic

backscatter of various features on the sea bottom from the particular aspect of

the sonar. The acoustic images are, therefore, 2-d intensity images of the 3-d

scene and disregard the height of the reflecting features, the images being a

modified plan view. Further attempts have been made to obtain orthographic

images very much like the optical camera [3]. Some of these sonars use

holographic techniques for image formation of 3-d objects in the near-field

region of the planar apertures. The imaging process and the transducer

hardware complexity of these sonars is very high which has precluded their

widespread use as compared to side-scan and sector-scan sonars.

Apart from the above real-aperture imaging sonars there are other im-

plementations that address the problems of resolution (both azimuthal and

range) and blind range. Some notable implementations are the synthetic

aperture sonar, the continuous-time frequency-modulation (CTFM) sonar,

and the wideband monopulse sonar [4,5,6]. However, these techniques do not

completely solve the inherent image quality problems of acoustic imaging and

have their own domain of application.
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1.3 MOTIVATION
This report is the outcome of an ongoing investigation relating to acoustic

imaging and classification of objects on the sea bottom. In this work we are

interested in obtaining images of 3-d objects lying on the sea bottom (which

is considered to be flat in the region of the object). The imaging geometry

for such an application is a sonar that is looking down towards the object

from a stand-off location above and in front of the object (Fig. 1.1). The

actual distance depends on the object size and the sonar parameters required

to obtain the best resolution. Our attempt here is to obtain perspective

images of 3-d objects by means of a simulated sector-scanning sonar using a

linear array. It is obvious that a linear array having only azimuthal resolving

power cannot, by itself, generate 3-d images unless some other information is

available. In our study, we are hoping to utilize additional information. For

example, the shadows and echo intensity could be useful for reconstructing

the missing elevation information of the object.

In view of the above, it is apparent that a need exists to first simulate

realistic acoustic images from a sector-scanning sonar including shadow ef-

fects. These acoustic images can be used as a test-bed for the design of

algorithms for 3-d image generation and object classification. Previous sim-

ulation work in this area has considered objects to be flat regions (on the

sea bottom) of appropriate reflectivity [7]. This assumption falls short of a

realistic simulation study. In this report we outline the simulation model

of an imaging sonar for a more authentic 3-d scenario and also show some

preliminary results of 3-d imaging. It is hoped that the techniques devel-

oped in this process would be applicable to the acoustic images obtained by

sector-scanning sonars in the real-world.

1.4 RELEVANCE OF THE SIMULATIONS
A computer simulation model of an imaging sonar for developing advanced

imaging and classification algorithms has a number of applications. Mea-

surements at-sea are known to be highly expensive in terms of time, money
and a host of other support and resources. The sea is also a highly variable

medium that makes controlled measurements a formidable challenge. In this

context an exercise for simulating controlled measurements becomes a rela-



CHAPTER 1. IMAGING SONARS AND THEIR SIMULATION

Receive Array
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of Sonar

Scanned Sector

luminated bottom swath

Figure 1.1: SECTOR-SCANNING IMAGING SONAR GEOMETRY
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tively inexpensive alternative. Over the years a lot of data of a statistical

nature pertaining to various aspects of propagation has been made available.

While the applicability of this data in a particular situation is questionable,

it can certainly be useful in a modeling exercise. In our case of imaging of

3-d objects we adopt statistical models for the bottom backscatter instead of

generating actual backscatter from individual scatterers on the sea floor (and

the reflecting layers below). However, we attempt a complete simulation of

the target's scattering surface. The effect of such a methodology is to gen-

erate close to realistic acoustic images against a standardized backscattering

sea floor.

Another benefit of a simulation model is its use as a tool for the design

of the sonar itself. The various user-selectable parameters of the sonar, the

target, the backscatter, and the imaging geometry can be used to optimize

the sonar design in an interactive manner.

And finally, the sonar model can be used for training sonar operators in

various imaging scenarios.

The following chapters present the step-wise evolution of the computer

model. Chapter 2 introduces the strategy adopted for the entire simulation

study which is then elaborated in the subsequent chapters. In chapter 3

we discuss the implementation of the target models, the imaging geometry,

and the generation of visual perspective image of the scene that is to be

imaged by the sonar. The computation of the target data required for echo

formation by the sonar is also discussed. Chapter 4 presents the main acoustic

imaging program wherein the sonar's parameters, backscatter characteristics,

and the target data are used in the formation of B-scan images. These

images demonstrate the targets' specular echoes and their shadows on the

sea bottom. A new display that presents the silhouette of the target is also

discussed. In chapter 5 we discuss our first attempts at 3-d reconstruction of

the targets from their acoustic images. The results in the form of wire-frame

images of the confining volume of a target's visible surface are presented.

Chapter 6 concludes the report with some thoughts on possible enhancements

of the computer model. A brief operating guide for running the software is

presented in the Appendix to the report.
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Chapter 2

COMPUTER MODELING
STRATEGY

2.1 INTRODUCTION
The entire simulation model was implemented on an IBM PC-AT (or com-

patible) computer. It was written in Microsoft FORTRAN 4.01. The acous-

tic and perspective images generated by this software were displayed and

recorded by using a PC-based image processing system "PCVISIONplus"

from Imaging Technology, Inc. The hardcopy unit is Tektronix model HC01
Video Processor Unit. The computer model interacts with the user/operator

for setting up various options and parameters for the imaging scenario. The

following sections briefly discuss the methodology adopted in the simulation

exercise.

2.2 THE SONAR MODEL
The sonar is modeled as a typical high-resolution sector-scanning sonar with

the following programmable parameters:

• receiver beamwidth,

• range resolution, and

• wavelength.
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Sonar

(name/type)

Sector

coverage

(degrees)

Receiver beamwidth Scan rate

(kHz)

Frequency

(kHz)horizontal

(degrees)

vertical

(degrees)

NUTDI
Hydrosearch

Type 193

Bifocal

30

60

16

30

1

0.5

1

0.33

8.5

20

10

8

7.5

10, 30

500

180

100

305

Table 2.1: Parameters of some representative imaging sonars, (adapted from

[2])

The transmitter is presumed to uniformly insonify a certain azimuth sector

which is scanned by vertical fan beams of the receiver (Fig. 2.1). This model

can be used to represent some practical and commercially available imaging

sonars as represented in Table 2.1. The echo formation process is based

on the coherent summation of the signals from the target's "visible" point

scatterers/reflectors lying within a particular range-bearing resolution cell of

the sonar [8]. The spreading and absorption losses for individual scatterers

within the same resolution cell are considered to be equal. In addition, we

have assumed that the sonar performs gain compensation for these losses

over the entire range.

2.3 THE TARGET MODEL
The target is modeled as a densely packed (with respect to the wavelength)

surface of point reflectors. In this study we have modeled spheres and cylin-

ders which typify the features of many man-made objects. The targets can

be arbitrarily oriented in the horizontal plane for presenting various attitudes

towards the sonar. They can be positioned at any depth below the sonar or

on the sea-bottom.

2.4 THE BACKSCATTER MODEL
The sea bottom is modeled as a flat surface that basically follows Lambert's

law for acoustic backscatter at various grazing angles with an underlying
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^ Receive Array

Height

of Sonar

Scanned Sector

Range Cell

Illuminated bottom swath

Bearing Cell

SEA BOTTOM

Range cells on

sea bottom

Figure 2.1: PRINCIPAL SONAR PARAMETERS
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random variability [9,10,11]. The "exposed" area and the grazing angle of

the bottom in every range-bearing cell is used for computing the total (de-

terministic) bottom backscatter. This is then (optionally) multiplied by a

random number that defines the backscatter statistics. The exposed area in

each range-bearing cell is computed by subtracting the area that falls in the

acoustic shadow of the visible portion of the target from the total area. The
random backscatter is statistically modeled as a number generated by a ran-

dom process having either a uniform or Rayleigh probability density. This

takes into account to some extent, the variability observed in the backscatter

statistics.

2.5 VISUAL IMAGES
A perspective image as would be perceived by an optical camera at the sonar

location is generated by the method of range shading. This image serves

as a reference for the subsequent efforts for 3-d image generation using the

acoustic imaging model. The visual image is generated by the principle of

perspective projection using a pin-hole camera at the sonar location. The

distance of the image plane from the pin-hole and the image size (250 x

250 pixels in our case) determine the size of the "visual pixels". Each pixel

on the image plane, in turn, represents a certain solid-angle region in space

which encompasses an increasing number of target voxels at larger distances

from the camera. The nearest target voxel intercepted by the solid angle is

imaged on that particular "visual pixel" to retain the opacity of the target.

The xyz-coordinates of such imaged voxels are recorded for the purpose of

acoustic imaging. The visual images are range-shaded and portrayed against

a flat sea bottom for presentation to the viewer.

2.6 ACOUSTIC IMAGES
The object echo and the bottom backscatter are summed incoherently to

get the resultant signal intensity in every range-bearing cell. The signal

level is stored in the conventional "range vs. bearing" format referred to

as "B-scan". Two images are generated: (i) target echo alone, and (ii)

composite target echo and backscatter returns. The composite image is the
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simulated acoustic image as simulated for a 3-d object against a sea bottom

and demonstrates realistic features like acoustic shadow and specular returns.

2.7 SILHOUETTE IMAGE
A modified B-scan display format has been proposed in this work that serves

as an aid for object classification. The knowledge of the height of the imaging

sonar above the sea bottom can be used to warp the range scale to provide

a perspective image of the flat sea bottom as viewed from the sonar. The

resultant image is very effective in displaying the shadow of the object in the

form of its true silhouette. In the situation that the object and shadow do not

overlap in range, the silhouette shows the entire object's visible outline. For

objects in contact with the sea bottom, the silhouette represents the object's

upper outline. In either event the silhouette is a useful potential classifier of

the object shape, more so because of the distracting speckled echoes within

the object image.

The preceding sections have described the approach followed for the de-

velopment of the conventional acoustic imaging program. The succeeding

sections present image processing techniques that have been applied to the

acoustic images generated by the above program.

2.8 SEGMENTATION
The composite acoustic B-scan image represents echoes from three distinct

regions: the target, the sea bottom, and the shadow. The first thing to do as

a step towards 3-d image reconstruction and classification is to automatically

identify these regions. A program has been written that adaptively sets two

thresholds at every range line. These thresholds are used as reference values

to label each acoustic pixel as one of the three regions: an object point, a

shadow point, or a sea-floor point. We have, at the present time, developed

the segmentation algorithm for the simplified case of constant Lambertian

backscatter so as not to detract from the immediate task of 3-d imaging and

classification. The segmentation of speckled images is in itself a challenging

problem and is the subject of other independent studies as well (see, for

example, Ref. [12]).
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The results of the segmentation serve as the first input towards 3-d re-

construction.

2.9 RAW 3-D IMAGES
The last topic discussed in this report is the generation of raw 3-d images

from the segmentation data. These results are for the case when the target

echo and its shadow do not overlap in range for a given bearing. The extent

of the shadow at each bearing represents the vertical angular extent of the

object in that bearing. The range and vertical extents of the object in all

bearings are used to postulate that the visible portion of the object is confined

within a particular volume. In the absence of other clues we cannot define

the exact surface curve within the above volume.

The confining volume has been captured as a perspective image of a wire-

frame model that can be viewed from various vantage locations including the

actual sonar location. This procedure provides the user/operator with a

feeling of depth of the confining volume of the object's visible surface.

We have presented above the broad outline of the computer model that

has been implemented. In the following chapters we discuss the detailed

implementation of the model and the results that have been obtained. We
first start by discussing in the next chapter the imaging scenario, the target

models, and the generation of visual images and target data required for

computing the target's contribution to the acoustic image.



Chapter 3

THE IMAGING SCENARIO

3.1 INTRODUCTION
We have in this report considered the imaging of two types of targets, spheres

and cylinders. The size of these objects and their orientation relative to

the sonar and the sea bottom can be specified to formulate the imaging

scenario. The targets are modeled as solid surfaces whose 3-d coordinates

are computed and stored in disk files. The coordinates of the target voxels

are stored in integer units. All other linear dimensions, for example, height

of the sonar above the sea bottom, wavelength and range resolution of the

sonar, etc. are referenced to the same units. The surface coordinates are

used to generate the visual perspective images of the targets against the sea

floor. Those voxels that get visually imaged are then stored for subsequent

computation of the acoustic image of the target.

The basic building block is the "circle" with a radius of 100 units (say,

centimeters). The coordinates around the circumference of this circle are

computed and stored in a sequential formatted file called "CIRCLE". The
points are computed at 1,000 equally-spaced locations around the circum-

ference. (The run-file for this program is "CIRCLE.EXE".)

3.2 THE SPHERE MODEL
The sphere is constructed by stacking circles of appropriate radius one be-

hind the other. In our model we construct the sphere of user-selected radius

13
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( < 100 units) by stacking circles that represent transverse slices (along a

principal diameter) taken every 1° inclination with the diameter. The coor-

dinates of the representative circle are suitably scaled for the circular slices.

The scaled coordinates are truncated to integer units and stored only if they

are different from the previous point's coordinates. The entire 3-d coordi-

nates of the sphere are stored in a sequential formatted file "SPHERE3".
(The run-file for this program is "SPHERE3.EXE".)

3.3 THE CYLINDER MODEL
The cylinder's curved surface coordinates are computed by stacking circles

of radius as selected for the cylinder at every 1 unit along the axis. The front

and back faces of the cylinder are constructed by superimposing circles of

radii increasing from to the cylinder's radius in steps of 1 unit. The radius

and length of the cylinder are selectable (< 100 units). Once again, only those

(quantized) coordinates around each circle are stored that are distinct from

the previous point's coordinates. (This helps in reducing the memory storage

requirements.) The cylinder's 3-d coordinates are stored in a sequential

formatted file "CYL". (The run-file for this program is "CYL.EXE".)

3.4 PERSPECTIVE VISUAL IMAGES
The next step is to set up the imaging scenario based around one of the above

target models. A program has been written that does the following:

• defines the world 3-d coordinate system with the sonar location as the

origin,

• defines target location and orientation,

• defines sea-bottom location below the sonar,

• constructs a range-shaded perspective image of the opaque target and

the flat sea-bottom as seen from the sonar location, and then

• generates a file that records target voxels that are visible in the per-

spective image.
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The program accepts the 3-d coordinates of the selected target and first

converts the coordinates to the world coordinates by taking into account the

orientation of the target relative to the sonar (Fig. 3.1). Those target voxels

that are below the sea-bottom are not considered. The target voxels and the

sea-bottom are then perspectively imaged onto a vertical image plane that

has the following parameters (Fig. 3.2):

• distance of the image plane from the sonar,

• image size of 250 x 250 pixels, and

• intensity recorded as an 8-bit binary number.

The perspective image is formed using the following formulas:

Y
x = INT (-p- * #) + 125 (3.1)

Zi = INT (j±* F?\+ 125 (3.2)

Rt
It = 127 -INT (—J (3.3)

where

• Yi is the y-coordinate on image plane,

• Z{ is the z-coordinate on image plane,

• Fi is the distance of the image plane from the origin,

• /, is the image pixel intensity,

• Xt , Yt , Zt are the xyz-world coordinates of the target voxel, and

• Rt
= yXf + Yt

2 + Zi is the target voxel range.

The added constant of 125 in equations 3.1 and 3.2 ensures that the

camera axis is imaged in the center of the image plane. Equation 3.3 allows

the maximum image intensity to be 127 and the minimum as at the range

of 635 units. Care has to be taken while formulating the imaging scenario
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| Target orientation

xy-plane of the target

coordinate system
world Coordinate origin centered at

the Sonar location

Figure 3.1: TARGET AND WORLD COORDINATE SYSTEMS
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Target Point

Sonar location

(world coordinate origin)

Imaged pixel

250
IMAGE SPACE

MAGE PLANE

Figure 3.2: VISUAL PERSPECTIVE IMAGE GEOMETRY
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that the maximum range of the target's visible extent does not exceed 635

units to prevent underflow in Eq. 3.3.

A pixel on the image plane represents a solid-angle region in space as

implied by the equations 3.1 and 3.2. Thus, the actual surface area rep-

resented on the object by a particular pixel increases with the distance of

the imaged object from the camera. (This, in fact, explains the perspective

effect that distant objects appear smaller than when they are closer to the

camera.) It is apparent that F, governs the size of the image; the larger it

is, the larger is the image and, hence, the better is the imaging resolution.

It is, therefore, possible that more than one target voxel gets imaged at the

same pixel. This would typically happen for the more distant target vox-

els. In such situations the program records the coordinates of the nearest

voxel. This also automatically ensures that voxels "behind" others, (e.g., as

at the far side of the target) do not get imaged, thus ensuring the target's

opacity. On the other hand there is also the danger of over-resolution of the

(granular) surface point-coordinates of the targets at near ranges. In such

situations the perspective imaging would indicate a perforated hollow object

and hence image the normally hidden far-side voxels of the target through

the near-end surface "perforations". This anomaly is easily noticed in the

visual image as "holes" in the image which are in fact low intensity points

of the far-end surface. This potential problem can be fixed by the choice

of a smaller F{. As a first rule of thumb, F{ may be chosen to be at most

half the horizontal distance of the nearest object point. This would force

adjacent target voxels to be imaged on the same pixel thereby eliminating

the possibility of "hole" formation. (There is another constraint on the lower

limit of F{ arising out of the acoustic imaging aspect. This is discussed in

the next chapter.)

The above constraint on F
x
can be formulated as:

Ft
<*&&, (3.4)

where X<(min) is the horizontal distance of the nearest target voxel.

The final perspective image in 250 x 250 format is recorded in a sequential

binary file "PERSVIS3.IMG" in which the x-axis is represented as a point in

the center of the image plane. This file is stored in a format that is suitable

for viewing and hardcopying using the "PCVISIONplus" system. Sample

images for a sphere and a cylinder suspended above the bottom are shown
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(a)

(b)

Figure 3.3: SAMPLE VISUAL PERSPECTIVE IMAGES OF SUSPENDED
TARGETS, a) Sphere with radius of 100 cm, b) Cylinder with 100 cm ra-

dius and 100 cm length. (Height of target center above bottom = 150 cm,

horizontal distance from sonar = 450 cm, sonar height = 350 cm, distance

of image plane behind sonar=100 cm.)

in Figure 3.3. Both objects have their centers 150 cm above the sea-bottom.

The cylinder has its axis horizontal and presents a broadside view to the

camera. The range shading provided in these images gives a feeling of depth

in the image. Since the sea-bottom is quite far off, its intensity is close to zero

and is therefore not perceptible against the background for these suspended

objects.

Figure 3.4 shows sample images of these objects half-submerged in the

sea bottom. The object centers lie exactly on the sea bottom and so the

lower halves of the objects are submerged. The cylinder is horizontal and

oriented at 45° with respect to the x-axis of the target coordinate system.

The center is offset by 100 cm along the y-axis (see Fig. 3.1). The sea bottom
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(a)

(b)

Figure 3.4: SAMPLE VISUAL PERSPECTIVE IMAGES OF SUB-
MERGED TARGETS a) Sphere with 100 cm radius, b) Cylinder (45° ori-

entation, 100 cm horizontal offset) with 100 cm radius and 100 cm length.

(Height of target center above bottom=0 cm (half-submerged), horizontal

distance from sonar=450 cm, sonar height =200 cm, distance of image plane

from sonar=100 cm.)
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is visible in this case and it merges with the background at longer ranges.

These figures serve as pictorial references of the scenarios presented to the

sonar for subsequent acoustic imaging.

The 3-d coordinates of the imaged target voxels are also stored in a

sequential formatted file "PERSVIS3.XYZ". (The run-file for this program

is "PERSVIS3.EXE".)

At this stage the basic target data in the form of the visible target voxel

coordinates is available. This is required for computing the target echo con-

tribution to the acoustic image. The next chapter discusses the formation of

the acoustic images by the sonar model.
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Chapter 4

ACOUSTIC IMAGING
PROGRAM

4.1 INTRODUCTION
The acoustic imaging program is the crux of the simulation model. The pro-

gram takes the visible target voxels as primary input for developing the acous-

tic image. The sonar's system parameters and the sea-bottom backscatter

characteristics are built into the model for a fairly comprehensive simula-

tion. The sonar is assumed to uniformly insonify an azimuthal sector which

is then scanned by a beam of a certain beamwidth. The return signal is

assumed to be processed in a receiver that compensates for the spreading

and absorption losses occurring in the water. The basic image format is the

standard B-scan which paints range and bearing as rectangular coordinates.

The B-scan format adopted in this model consists of 101 bearing cells plotted

horizontally and 400 range cells plotted vertically. The acoustic image has

range increasing from to 399 and the bearings vary from —50 to +50 from

left to right. (The acoustic images shown in this report are only a part of the

B-scan images in the region of interest around the objects.) The cell sizes

are defined in terms of the bearing and range resolution of the sonar. The

image intensity is stored as an 8- bit word after the necessary normalization.

The program basically provides three acoustic images for purposes of fur-

ther processing: B-scan image of target alone (BSCAN3.IMG), composite

B-scan image of target with bottom backscatter (BSCAN3SH.IMG), and a

23
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modified B-scan image to demonstrate the silhouette (SIL.IMG). The de-

tails of the program are discussed below. (The run-file of this program is

"IMAG1.EXE".)

4.2 TARGET IMAGING
As discussed in the previous chapter the file "PERSVIS3.XYZ" stores the

coordinates of the visible target voxels from the viewpoint of the camera

(which is the sonar location). These visible voxels are those that happen to be

perspectively imaged onto the image plane. Depending on the target imaging

geometry and the visual resolution, the number of voxel coordinates stored

is usually a small percentage of the 3-d surface points that were originally

computed. (A value of 1% is a representative figure.) This implies extensive

data reduction in the process of visual image formation and conveniently

saves on computation time in the echo formation model. It should be borne

in mind that each target voxel intrinsically represents a surface patch on the

contiguous surface of the target, which in the first instance, had necessarily

to be quantized for representation in a digital computer. This, coupled with

the possibility of more than one adjacent target voxels being imaged on the

same visual pixel, makes it essential to consider the size of the surface patch

represented by an "imaged voxel" in the accurate computation of the echo

intensity.

The area represented by this surface patch has dimensions that are in-

versely proportional to the distance of the image plane from the origin (Ft )

and proportional to the horizontal distance of the voxel from the origin {Xt ).

The signal level contributed by this surface is made proportional to its area.

It is apparent that surface patches at the same horizontal distance would

have the same dimensions and those at longer ranges would have larger di-

mensions. The dimensions of the surface patch are Xt
/

' F{.

The selection of F{ should be so made such that the surface patch di-

mensions over the visible extent of the target are smaller than at least half

the acoustic wavelength. Since the model considers the surface patches to

be point reflectors for the purpose of signal contribution, the separation be-

tween adjacent patches should be very small (relative to the wavelength) for

them to accurately represent an acoustically contiguous surface. For exam-

ple, consider imaging a sphere of radius 100 cm at a horizontal distance of
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500 cm from a sonar operating at a wavelength of 8 cm. The sphere's visible

surface would he between the horizontal range interval of 400 cm to 500 cm.

If we choose F{ to be 50 cm, then the surface patch dimensions would lie

between 8 cm and 10 cm over the target's visible region. This violates our

constraint as it exceeds 4 cm (half wavelength). A choice of F{ as 125 cm
or more would meet our requirement. Conversely, the wavelength can be

chosen to be sufficiently large to satisfy this condition. (This constraint on

F{ is imposed in addition to an earlier restriction discussed in the previous

chapter that guarantees the opacity of the visual image.) The constraint on

F, for accurate acoustic imaging may be written as

Xf(max) A
-AfT < 2' (iA)

where Xt(max) is the horizontal distance of the farthest imaged voxel and A

is the acoustic wavelength corresponding to the cw pulse carrier frequency.

The above constraint on F, can now be combined with the one expressed

in Eq. 3.4 as

2X
t
(max)

^ F ^ A^(min)

Once this is done, the program proceeds to calculate the complex sig-

nal returns (amplitude and phase) from each voxel contained in the file

"PERSVIS3.XYZ". The program can currently process only 5,000 voxels

due to memory limitations. (This number can be raised by a better mem-
ory budgeting but has been seen to be more than adequate for the scenarios

of interest.) The program performs a running coherent sum of individual

signals contributed by the target voxels within the range-bearing cell under

consideration. Referring to Figure 4.1, for example, the signal contributions

of the target voxels are calculated as shown below:

Sx = yl 1 exp(-2^ JR1 ) (4.3)

S2 = A 2 exp{-2jkR2 ) (4.4)

where

• Si, S2 = signals contributed by the two voxels,

• A\, A 2 = surface patch areas represented by the visual pixels,
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Sonar location

Range Cell

Bearing Cell

Figure 4.1: SIGNAL CONTRIBUTIONS OF TARGET VOXELS
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a) Sphere (as in Fig. 3.3a) b) Cylinder (as in Fig. 3.3b)

c) Sphere (as in Fig. 3.4a) d) Cylinder (as in Fig. 3.4b)

Figure 4.2: SAMPLE B-SCAN TARGET ECHO IMAGES. (Range resolu-

tion = 20 cm, bearing resolution = 2.5°, wavelength = 8 cm.)

• A; = 27r/A, and

• Rij J?2 = radial distance of the voxels from the sonar.

After all voxels are accounted for, the program generates its first B-scan

acoustic image "BSCAN3.IMG". The acoustic image is formed by comput-

ing the (scalar) magnitude of the summed signals for each range-bearing

cell. For ease of display the image is normalized to a maximum level of

255. Figures 4.2a and b are the sample B-scan acoustic images for the tar-

get scenarios shown in Figures 3.3a and b, respectively. (The horizontal

axis is bearing and the vertical axis is range.) Figures 4.2c and d are the

corresponding B-scan acoustic images for the scenarios shown in Figs. 3.4a

and b, respectively. The images are formed from a single acoustic pulsed

transmission with the parameters mentioned in the caption of Fig. 4.2 and

demonstrate the specular target echoes that typically characterize acoustic

images.
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4.3 BOTTOM BACKSCATTER
The bottom backscatter calculation is done on the basis of the bottom surface

area exposed to the acoustic beam in each range-bearing cell. The area of

the sea bottom on a range-bearing cell basis in the absence of the target is

first calculated. Thus, cells at the same radial range from the sonar have

the same area. The initial cells prior to the sea-bottom do not contribute

any backscatter in our simulation. (It should be possible to include volume

backscatter at this point. We have ignored it for the present, however, as it

is presumed to be too weak relative to the bottom backscatter.) A record is

also kept of the grazing angle of each cell for subsequent calculation of the

angle-dependent backscatter.

Next, we compute the range and bearing extent of the shadow of each

of the visible target voxels on the sea-bottom. As explained earlier for the

case of target imaging, the dimensions of the voxels are taken into account

for these calculations. The area of the shadow regions is subtracted from the

total bottom area on a range-bearing cell basis. The resultant area is the

actual bottom area contributing to backscatter (Fig. 4.3). The backscatter

is computed by multiplying these areas by the corresponding grazing-angle-

dependent terms as per Lambert's law.

The raw backscatter so computed is further multiplied by a random num-

ber taken from either the uniform or Rayleigh distributions to simulate the

selected statistics:

PB = AB x sin
2
(0) x RND (4.5)

where

• Pg is the backscatter power,

• Ab is the net bottom area exposed in a range-bearing cell,

• 6 is the grazing angle of incidence to the above area, and

• RND is a number from a random distribution (else unity for non-

random backscatter).
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Sonar

9.

^
Effective projected area

of voxel

Typical

range-bearing cell

on sea bottom

Sea bottom

Acoustic shadow
of target voxe

Figure 4.3: BOTTOM BACKSCATTER AREA SHOWING ACOUSTIC
SHADOW STRADDLING RANGE-BEARING CELL BOUNDARIES.
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4.4 COMPOSITE ACOUSTIC IMAGE
The composite acoustic image of the 3-d target against the sea-bottom is

generated by the incoherent summation of the target echoes and the backscat-

ter returns. The signal intensity is normalized to a maximum level of 100

and stored as a B-scan image in the file "BSCAN3SH.IMC1

. Sample com-

posite acoustic images are shown in Figure 4.4. (These images correspond

to the images in Fig. 4.2.) Figures 4.4a and b are for a constant Lambertian

backscatter and Figs. 4.4c and d are for the random backscatter condition.

These images demonstrate the formation of the acoustic shadow on the sea

bottom. (Depending upon the relative strength of the target echo and the

local backscatter, the target echo may or may not be visible.) These com-

posite acoustic B-scan images are the simulated images of the scenario that

would be generated by an imaging sonar with the chosen parameters and

backscatter type.

4.5 SILHOUETTE IMAGE
The "BSCAN3SH.IMG" file shows the acoustic shadow of the target in an

exaggerated manner. This shadow can be used to obtain the silhouette of the

object by appropriate warping of the range axis. The approach we have used

is basically a conversion of the "plan-type image" into a perspective image

of the sea-bottom as viewed from the sonar location. The transformation

applied to the range-axis is

Rm = £~ (4.6)
Kg

where

• Rm is the modified range scale for converting from B-scan to silhouette

image,

• H is the sonar height,

• Rg = J

R

2
S
— H 2

is the ground range, and

• Rs = slant range.



4.5. SILHOUETTE IMAGE 31

a) Sphere (as in Fig. 4.2a)

Constant Lambertian backscatter

b) Cylinder (as in Fig. 4.2b)

Constant Lambertian backscatter

c) Sphere (as in Fig. 4.2c)

Rayleigh backscatter

d) Cylinder (as in Fig. 4.2d)

Uniform backscatter

Figure 4.4: SAMPLE COMPOSITE B-SCAN IMAGES
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a.) Sphere (from Fig. 4.4a).

b) Cylinder (from Fig. 4.4b).

Figure 4.5: SAMPLE SILHOUETTE IMAGES

The effect of this transformation is to compress the range axis in a non-

linear manner. The image intensity stored at each modified range cell is the

minimum intensity in the range interval represented by the compressed cell.

This is done to highlight the shadow regions.

The new image is recorded in a pseudo-B-scan format and shows the

silhouette in a geometrically accurate form. It is to be noted that the trans-

formation of Eq. 4.6 is only to be used as an aid for target identification from

its shadow alone and not from its echo. The range warping effect on the echo

region should not be directly used for any interpretative work.

The silhouette-image as obtained above is stored in the file "SIL.IMG".

Sample silhouette images are shown in Figure 4.5. These are generated from

the composite B-scan images of Fig. 4.4a and b. The nonlinear range trans-

formation compresses the far-field and expands the near-field. Consequently,

the shadows become shortened and the target echoes, which are near, become

stretched. The resulting shadows represent the silhouettes of the sphere and

cylinder shown in Fig. 3.3. These images demonstrate the effectiveness of the

range scale transformation applied to the B-scan images for obtaining the
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silhouette images. The silhouette images compare favorably with the visual

perspective images of the respective objects as shown in Fig. 3.3.

The computer model at this stage represents the simulation of acoustic

images from a sector-scanning sonar in the specified scenario. A first step

towards object classification has also been taken with the extraction of the

silhouette image from the shadow extent of the target in its acoustic image.

In the following chapter we present the next step towards classification, the

3-d reconstruction of the confining volume of the target's visible surface. In

this approach we utilize both the shadow and range extents of the target.
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Chapter 5

TOWARDS 3-D
RECONSTRUCTION

5.1 INTRODUCTION
The previous chapter has demonstrated the generation of acoustic images of

3-d objects against the sea-bottom in the conventional B-scan format. It

is well-known that interpretation of these images requires skilled operators

who have had extensive training and experience in the operation and use

of such imaging sonars. As the demand and applications of these sonars

increase, it is obvious that the trained human element is likely to be in short

supply. Some applications may, in fact, require a machine to sift through

the data and draw its own conclusions from the acoustic images. The above

statements point to the need for a more useful image presentation that makes

it easier for an unskilled operator to interpret the acoustic images by making

use of some clues that a trained operator would utilize in the classification

process. This chapter discusses the first attempt towards generation of 3-d

images of the acoustically visible surface for targets whose echo and shadow

regions do not overlap.

5.2 SEGMENTATION
A primary function of an image-processing system is to segment a raw im-

age from the sensor into appropriate regions. In our case we are interested in

35



36 CHAPTER 5. TOWARDS 3-D RECONSTRUCTION

segmenting the acoustic image into three regions: echo, shadow and bottom-

backscatter. The composite acoustic image file "BSCAN3SH.IMG" is pro-

cessed by a dual threshold derived from the image itself in the following

manner:

1. The average signal intensity at each range is computed.

2. The echo region is extracted if the image intensity exceeds the range-

average by more than 20%.

3. Those pixels that lie below this threshold are again compared with a

threshold that is 70% of the range average to distinguish between the

backscatter and the shadow regions.

4. The echo region is labeled as region "2", the backscatter as region "1",

and the shadow as region "0".

The segmentation result is stored in tabular form in a sequential format-

ted file "SEGEXT". This file stores the range limits of the target echo and

shadow regions at each bearing. A segmented B-scan image is also displayed

on the monitor for checking the quality of the segmentation process. The
run-file for the segmentation program is "SEG2.EXE".

The segmentation has presently been attempted against Lambertian back-

scatter. We have for the present avoided getting into the details of image

segmentation in random backscatter since it detracts from the immediate

task of 3-d reconstruction. (The 3-d reconstruction presupposes a good seg-

mentation of the acoustic image which, in principle, can be done for the other

cases of backscatter.)

5.3 CONFINING VOLUME
The segmented image provides volumetric information about the visible re-

gion of the target. This information resides directly in the range extent of the

target echo and indirectly in the range extent of the shadow. The shadow

extent in a particular bearing is easily translated into vertical angular ex-

tent for targets with distinct echo and shadow regions as per the following

(Fig. 5.1):
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Sonar

Height of

Sonar H

Visible target
^ surface

Hidden target

\ \ ^/^^ surface

V

Sea bottom

Shadow limits

Rmin, Rmax : sonar range at shadow limits

Figure 5.1: VERTICAL ANGULAR EXTENT FROM SHADOW LIMITS
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<f>tu = sin-1 (ir-) (
5J

)

-(£)•<j>i
= sin

where

•
<f>u = upper angular limit,

•
<f)i
= lower angular limit,

• Rmax — far range of the shadow extent, and

• ^min = near range of the shadow extent.

The angles (j>i and <j>u are referenced below the horizon. The visible surface

of the target can be safely assumed to be confined within the range and

angular extents as computed above. This confining volume can be regarded

as a stack (in bearing) of vertical circular sectors lying within the minimum
and maximum range radii of the echo.

The 3-d coordinates of the above slices are computed by the run-file

"RAW1-3D.EXE" and stored in a sequential formatted file "RAW-3D".

5.4 3-D WIRE-FRAME IMAGE
The information derived above is suitable for presentation in a more con-

ventional visual form as a perspective image. This represents a fundamental

break from the direct acoustic image obtained from the sonar. The addi-

tional range information available to us can be used to advantage in the

generation of the acoustically-derived perspective image. We have written a

program that can artificially view the confining volume from different vantage

locations around the target to heighten the depth perspective. The run-file

that generates the wire-frame perspective image is "RAWIRE1.EXE" and

the image is stored in a sequential binary file "RAWIRE.IMG". This image

is generated in a 250 x 250 pixel range-shaded format like the visual im-

ages generated earlier. Sample wire-frame images are shown in Figure 5.2.

Figure 5.2a shows the visual perspective image of a sphere. Figures 5.2b-
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a) Sphere (Fig. 3.3a)

Visual perspective image

c) Wire-frame image

Viewing angle: 20°

b) Wire-frame image

Viewing angle:
C

d) Wire-frame image

Viewing angle: 40°

Figure 5.2: SAMPLE WIRE-FRAME IMAGES (Swivel radius for viewing

wire-frame = 550 cm).



40 CHAPTER 5. TOWARDS 3-D RECONSTRUCTION

d show different views of the wire-frame image of this sphere constructed

from the echo and shadow range extents in its composite acoustic image of

Figure 4.4a. A hypothetical camera is swiveled around the wire-frame im-

age in a circular arc of a selectable radius. The angle on this arc relative

to the sonar's broadside direction specifies the camera's vantage location for

viewing the wire-frame image.
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CONCLUSIONS

6.1 INTRODUCTION
This report has discussed the implementation of a computer model of a

sector-scanning sonar for imaging of objects against the sea-floor. The entire

simulation exercise is carried out on an IBM PC-AT-compatible computer.

Based upon the acoustic images simulated, wire-frame perspective images

of the confining volume of the target's visible surface have been generated.

The images are recorded in binary files in a format suitable for viewing and

hardcopying using the "PCVISIONplus" system.

6.2 CAPABILITIES OF THE MODEL
The computer model has a number of interesting features as listed below:

• It simulates spherical and cylindrical targets of different dimensions

and at various orientations relative to the sonar and the sea-bottom

(including partially submerged targets).

• The operator can specify the beamwidth, range resolution and wave-

length of the sonar.

• The bottom backscatter statistics are selectable between uniform, Rayleigh,

and constant (i.e., Lambertian alone).

• It generates visual perspective images.

41
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• It intrinsically models specular reflections and acoustic shadows.

• It generates silhouette images.

• The model also generates 3-d wire-frame images of the visible confining

volume (of suspended targets) that are viewable from various vantage

locations.

6.3 POSSIBLE ENHANCEMENTS
The computer model developed thus far is a framework under which further

enhancements can be incorporated in a straight-forward manner. Some of

the possibilities are:

1. a more extensive library of targets,

2. inclusion of volume backscatter,

3. a larger variety of bottom backscatter statistics, and

4. segmentation in the presence of specular backscatter.

The confining volume image is proposed to be refined into a more exact

shape of the visible surface by inclusion of other clues like echo intensity.

The image reconstruction attempted in this report is for targets whose echo

and shadow regions are non-overlapping. Work is presently underway to

study the problem of reconstructing targets whose echo and shadow regions

overlap, as is the case for targets lying on the sea-bed.

6.4 CONCLUSION
The computer model, in addition to being a simulator of the acoustic imaging

process, is also a powerful tool for carrying out developmental studies for 3-d

reconstruction and classification of objects by means of a sector scanning

sonar.
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Appendix A

OPERATING GUIDE

A.l HARDWARE REQUIRED
The following hardware is required for the operation of the computer model:

• An IBM PC-AT (or compatible) with 640KB RAM, hard disk, 360 KB
floppy drive

• "PCVISIONplus" system (from Imaging Technology Inc.) installed on

the PC including a B/W video monitor

• Hardcopy unit TEKTRONIX Model HC01 (optional)

A.2 OPERATING STEPS
The operating steps to be followed are:

1. Execute file "CIRCLE.EXE"

2. Execute either file "SPHERE3.EXE" or "CYL.EXE"

3. Execute file "PERSVIS3.EXE"

4. Execute file "IMAG1.EXE"

5. Execute file "SEG2.EXE"
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6. Execute file "RAW1-3D.EXE"

7. Execute file "RAWIRE1.EXE"

The following images are generated for viewing:

1. "PERSVIS3.IMG" at step (3)

2. "BSCAN3.IMG", BSCAN3SH.IMG", and "SIL.IMG" at step (4)

3. "RAWIRE1.IMG" at step (7)

The executable program files are available from:

Professor John P. Powers

Dept. of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, CA 93943
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