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Characteristic Trajectories

of

Generalized Lanchester Equations

by

John M. Wozencraft
Paul H. Moose

ABSTRACT

Generalized Lanchester-type differential equations are used to model attrition pro-

cesses. This system of non-linear equations has multiple equilibrium solutions, which

can be determined by a numerical technique called the Continuation Method when the

problem's dimensionality is moderate.

System dynamics are investigated and shown to depend critically on a domain of

attraction defined by a tube which connects the non-negative equilibrium points and

contains the dominant eigenvector at those points. Principles are presented and illus-

trated for mapping NM-dimensional systems into equivalent two-dimensional systems.

This capability is especially important when aggregating subsystems in multi-level sys-

tems modeling. It is shown that the two-dimensional Lanchester systems have only

four distinct modes of behavior, depending on the number of real positive equilibrium

points that they have. A method is described and illustrated for reallocating attrition

as state variables approach zero in order to guarantee their non-negativity.
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I. Introduction

Lanchester's equations were introduced during WW I to mathematically model

aerial combat losses [1]. During and afterWW II, they were studied extensively for their

potential to model attrition over a wide variety of military combat situations [2], [3]. In

their elementary form, Lanchester's equations are coupled evolution equations:

x(t) = -F(x,y,t)

(1)

y(t) = -G(x,y,t)

where the functions, F(.) and G(.) are generally non-linear in the state variables x and

y. The state variables represent the size, or strength, of the opposing forces or weapons

systems.

In this paper we report the results of our research into a generalized system of

Lanchester equations

x i (t) = Fi(x i ,y,t); i = l,2,...JV

(2)

yj(t)=Gj(xiyj ,ty, j = l,2,...Af

in which N components of a non-homogeneous "X-force" engage M components of a

"Y-force." Motivation for this research stemmed from our interest in the decision Sz

control problems faced by a modern day military commander. We needed an analytical

model of the attrition process that would accomodate the great variety present in the

military environment, but also one whose major dynamical features could be easily

interpreted and understood. This lead us to study in detail the dynamic properties of

the special N x M system

M M
ii(t) = -UiXi(t) - ^2 aijXi{t)yj(t) - ]T bijyj (t) + r

t ; % = 1, 2, . . . N
3=1 J= l

N N

VjW = -VjVjit) - ^2cijXi(t)yj(t) -^dijXi{t) + Sj-j = 1,2,... Af

(3)

i=l i=l

in which we assume the coefficients and replacements are deterministic nonnegative real

constants. Each component (which may be a force type such as tanks or infantry, or a
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force in a particular area such as Company A or B, etc.) has its population depleted by

self losses, random or "area" firing (the bilinear terms) and direct or aimed firing (the

linear coupling terms). The losses are offset by assumed steady rates of replacement, r

and s. No infracide is allowed; that is components of the same side do not attrite one

another.

The choice of this particular structure involving linear terms, bilinear terms (z,yj),

and constants is based on two observations. First, they are a generalization of the mixed

attrition Lanchester equations with replacements

x(t) = — ux(t) — ax(t)y(t) — by(t) + r

(4)

y(t) = -vy(t) - cx(t)y(t) - dx{t) + s

and second, they represent the lead terms in a Taylor series expansion of (2). In the

terminology of this paper, (4) corresponds to a 1 x 1 system.

Before explaining the behavior of N x M systems, it is valuable first to summarize

the dynamic behavior of the lxl system. It is shown in Appendix A that four distinct

modes of behavior are possible depending on whether one stable, one unstable, two or

zero equilibrium points lie in the positive quadrant, where by definition an equilibrium

is a point in the state space at which x — y = 0. Every lxl system always has

two such points which may be positive, negative or complex numbers. In all cases,

however, there is a "characteristic'
1

trajectory; i.e., a phase plane curve to which all

trajectories converge. This characteristic trajectory is very nearly a hyperbola. The

direction and rate of evolution along this trajectory is determined by the equilibrium

points and their eigenvalues. If two equilibrium points exist in the positive quadrant,

one must be stable, the other unstable. If only one exists, it may be either stable or

unstable. The equilibrium points lie on the characteristic trajectory. Four trajectories

are illustrated in Figure 1, for the case of a single stable equilibrium point system.

Returning now to an N x M system, we may ask to what degree its dynamics in

the aggregate are like those of a 1 x 1 system. Or, put conversely, can one find a 1 x 1
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Figure 1 - "Typical Trajectories of a 1 x 1 System with a Single Stable

Equilibrium Point."
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system whose dynamics closely resemble the aggregate behavior of an arbitrary N x M
system? This is the central question to which this report is addressed.

The question is important for three reasons:

(i) The complexity of a multidimensional system grows so rapidly with the number of

dimensions that it is exceedingly difficult to comprehend the nature of its dynamic

behavior.

(2) Aggregation of detailed subsystems into a larger system of lower complexity pro-

vides a methodology for determining what the values of the coefficients of the

larger system should be.

(iii) Aggregation permits the development of a hierarchy of models which maintains a

constant degree of complexity at each level of the system.

In Appendix B we show that the general N x M system - like the lxl system -

also has an "attractive tube" in the positive quadrant which collapses to a cone as it

passes through each equilibrium point, and that these points must alternately be stable

and unstable. A "characteristic trajectory", determined by the dominant eigenvector

at these equilibrium points, lies inside this tube. A potential difficulty is that the

general system has many equilibrium points; specifically, an N x N system has (

2

^ )

of them, as is shown in Appendix C[4]. If more than two real equilibrium points lie in

the positive quadrant, it will be impossible to find a single satisfactory lxl system

equivalent. We conjecture, but have not proven that there are never more than two. 1

The equilibrium points of the N xM system which lie in the positive quadrant play

a critical role in determining the system dynamics. Continuation Methods [5] provide

a powerful way (in principle) to find all the equilibrium points of nonlinear systems.

Roots of a trivial system are tracked to the desired solution as replacement and linear

In fact, for the numerous versions of 2 x 2 systems that have been investigated in

this research, no more than 2 positive equilibrium points have ever occurred.

-5-



terms axe introduced incrementally. This procedure is described in detail in Appendix C

and illustrated for the six roots of a 2 x 2 system. Because we cannot tell a priori which

trivial roots will become positive final roots, all must be tracked, which unfortunately

limits applicability of the method to systems with moderate dimensionality.

The remainder of this paper is organized as follows: In Section II, aggregate system

trajectories axe presented for four 2x2 systems, along with their asymptotes, equilib-

rium points and eigenvalues. The four systems selected for study have equilibrium point

configurations in the positive quadrant that correspond to the four types of 1 x 1 sys-

tems described in Appendix A. In Section III, equivalent lxl systems axe found using

mapping-down procedures that preserve the equilibrium points and the characteristic

trajectory and rate of evolution near these points. The resultant lxl trajectories

axe very close to those desired, as is the dynamic behavior throughout the entire phase

plane. In Section IV, an additional nonlineaxity is added to the basic equations (3) to

terminate losses for vanishingly small components by redirecting "aimed" fire to the

remaining targets. This corrective term terminates all phase plane trajectories at the

boundaries of the positive quadrant with but minimal distortion inside the positive

quadrant. In Section V the results of this research and its implications for modeling

and for initial force allocation are discussed.

II. Case Studies of 2 x 2 Systems

Equilibrium points and their local stability axe important attributes of nearly all

non-linear systems. Appendix C shows how the equilibrium points of an N x N system

can be found by Continuation Methods. In this method, the equilibrium points of a

simplified or "trivial" N X N system are determined analytically. The solutions axe

then tracked to their final locations as aimed fire and replenishment rate terms are

introduced incrementally.

Any resultant real equilibrium points in an "extended" positive quadrant lie on
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the characteristic system trajectory, which is interior to the bounding 2N dimensional

"tube" described in Appendix B. We define the extended positive quadrant to contain

all x, y points which component by component are greater than or equal to the vector

of X asymptotes X_A , and of Y asymptotes Y_A . In general, these asymptotes must be

found by numerically integrating the N x N equations. For the 2x2 problem, they

can be found as shown in Appendix D. The component asymptotes axe non- positive,

as are the aggregate asymptotes, denned as

XA = Y,X>A*iidYA = Y,yjA (5)

» j

The aggregate system trajectory will be asymptotic to Xa when one component of Vs

force becomes dominant, and to Ya as one component of X's force becomes dominant.

In order to illustrate these properties, we have studied 2x2 systems in considerable

detail. The Lanchester equations of the 2x2 problem are:

xi = - [ui + au yi + ai2V2] *\ - [buyi + h 2 y2 ] + H

x 2 = - [u 2 + a2 ii/i + a22 y2]x2 ~ [&2iyi + ^Vz] + r2

(6)

V\ = -
fai + cnxi + c21 x2 ] y1 - [dn xi + d21 x2 ] + si

y2 = - [v2 + c12 xi + c22 x2 ] y2 - [du x 1 + d22 x2 ] + s 2

This problem has 16 attrition coefficients, four self-attrition coefficients and four re-

plenishment rates. It has a total of six equilibrium points. We have investigated four

example systems in detail: a system with no positive equilibrium points, a system with

two positive equilibrium points (one of which is stable while the other is unstable), and

two systems with one equilibrium point (stable in one case and unstable in the other).

The attrition coefficients selected for each of these cases are listed in Table I.
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Table I

Attrition Coefficients

for Four Systems of the 2x2 Problem

&i'. y-i an a 12 &n b12

Case 20 10 2 1 7 6

Case 22 10 2 1 7 6

Case 2s 10 2 1 4 5

Case 2u 3 2 1 7 6

x2 : u 2 a2 i 621 a22 622

Case 20 20 3 4 12 5

Case 22 12 3 4 12 5

Case 2s 12 3 4 6 7

Case 2u 5 3 4 12 15

yii vi cu c2 i du d2 \

Case 20 10 2 3 6 5

Case 22 10 2 3 6 5

Case 2s 10 2 3 6 5

Case 2u 10 2 3 16 6

V2 v2 C12 C22 di 2 d22

Case 20 15 2 2 4 3

Case 22 15 2 2 4 3

Case 2s 15 2 2 4 3

Case 2u 15 2 2 15 12

(Case 20 = No Equilibrium; Case 22 = Two Equilibria; Case 2s = One Stable Equilib-

rium; Case 2u = One Unstable Equilibrium.)

The equilibrium points and replenishment rates for each of the 2x2 systems are

listed in Table II. Only the positive quadrant real equilibrium points are given.
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Table H

Equilibrium Points and Replenishment Rates

for Four Systems of the 2x2 Problem

X: X\ X2 X 7*i T2 R

Case 20 - - - 17 20 37

Case 22(u) 2 2 4 77 117 194

() 4.87 5.01 9.88

Case 2s 2 2 4 65 105 170

Case 2u 2 2 4 63 133 196

yi V2 Y «Si 52

Case 20 - - - 82 83 165

Case 22 (u) 3 3 6 82 83 165

(s) 0.79 1.39 2.18

Case 2s 3 3 6 82 83 165

Case 2u 3 3 6 104 123 227

Here, X = x\ + a*2, with Y, R and 5 defined similarly. The rationale for these

particular attrition and replenishment values was to create in a 2 x 2 environment

all four types of positive quadrant equilibrium points that occur in 1 x 1 systems. In

presenting these four cases, we are looking toward Section III in which lxl equivalents

will be determined and their dynamical behavior compared to the 2x2 aggregate

dynamics.

The asymptotes of the 2x2 problem for each system are listed in Table III. They

have been calculated in accordance with the procedures developed in Appendix D. Also

shown are the dominant (exponentially growing) force components.
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Table III

Asymptotes and Dominant Components

for the Four Systems of the 2x2 Problem

X\a X2A Xa Dominant y;

Case 20 -3.5 -4 -7.5 yi

Case 22 -3.5 -4 -7.5 y2

Case 2s -2 -2 -4 yx

Case 2u -3.5 -4 -7.5 yx

Y\a Y2a Ya Dominant X{

Case 20 -5/3 -3/2 -19/6 x2

Case 22 -5/3 -3/2 -19/6 x2

Case 2s -5/3 -3/2 -19/6 x2

Case 2u -2 -6 -8 x2

Finally, in Table IV we list the largest eigenvalue and the aggregate slope of the

corresponding eigenvector at each equilibrium point. The aggregate slope of the eigen-

vector is defined as follows: if £j are the X components of the eigenvector and 77;
the

in the aggregated 2 dimensionalY components, then the slope is

J / . i

space.

Talble![V

Eigenvalues and Eigenvector Slopes

for the Four Systems of the 2x2 Problem

Amax Aggregate

Slope

X Y

Case 20 . _ _ _

Case 22(u) 0.731 -1.027 4 6

(s) -0.620 -.400 9.88 2.18

Case 2s -1.78 -1.168 4 6

Case 2u 12.62 -1.091 4 6

From the data presented in Tables I through IV, we can establish the asymptotes
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of the aggregate characteristic trajectory for X versus Y, the equilibrium points (if any)

through which it must pass and the slope of the trajectory at the equilibrium points.

These data are shown in Figures 2 through 5. In addition, the characteristic trajectories

are shown in each Figure along with important boundary trajectories, all determined

by integrating the equations numerically.

The boundary trajectories are particularly important to a military commander.

Figure 2 shows the boundary trajectory that marks the amount of force X must use

to initiate the combat if he is to eliminate Y entirely before Y begins to dominate the

conflict and eliminate X. Figure 3 indicates the presence of two boundary surfaces: one

which X must exceed if he is to eliminate Y prior to the conflict stagnating at the stable

equilibrium point, and one Y must exceed if he is to avoid stagnation. Figure 4, which

has a single stable point, has bounding surfaces similar to Figure 3. Figure 5, which

has a single unstable point, has a single boundary surface, similar to Figure 2, which

divides the state space into two regions, one in which Y dominates and the other in

which X dominates.
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Figure 2 - "Characteristic Aggregate Trajectory and Boundary Curve for

a 2 x 2 System with No Equilibrium Points."
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Figure 3 - "Characteristic Aggregate Trajectory and Boundary Curves

for a 2 x 2 System with Two Equilibrium Points.'
1
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Figure 5 - "Characteristic Aggregate Trajectory and Boundary Curve for

a 2 x 2 System with a Single Unstable Equilibrium Point."
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II. Aggregation of Model

The dimensionality and number of parameters needed to characterize an N x N

system, 2N(2N + 1) attrition coefficients and 2N replenishment rates, make it very

difficult to visualize or portray graphically the essential nature of the conflict dynamics

when N is large. On the other hand, a 1 x 1 system is relatively easy to portray,

while its four principal variations still provide variety able to match a rich assortment

of military engagements. There is much to be gained by determining to what degree

an N x N system can be represented by an "equivalent" lxl system.

The major goal of the research reported here has been to develop principles that

map N x N systems into lxl systems. Ideally, we want the mapping to preserve

closely:

a.) the aggregated phase plane trajectories X — ^,Xi,Y = YlVj
* 3

b.) the tempo of the combat (i.e., the elapsed time along the trajectories), and

c.) the cumulative resources expended by each side as the conflict evolves.

If a) and b) can be satisfied by using lxl replenishments equal to the aggregate

replenishments (r = R, s = S) then the third condition is automatically satisfied.

A 1 x 1 system has 6 attrition coefficients and two replenishment rates. As shown

in Appendix A, it has two real equilibrium points (or none), each having a dominant

eigenvalue and a slope for the corresponding eigenvector. These sixteen quantities are

so related that specifying any eight determines the other eight. If the replenishment

rates are pre- determined by the N x N problem to be the aggregate rates, then only

six parameters remain free.

In addition to preserving aggregate replenishment rates we propose the following

additional principles for mapping N x N systems to 1 x 1 systems:

- 16-



1) Positive quadrant equilibrium points are mapped to aggregate equilibrium

points. This is possible for zero, one, or two points, but not more than two

since a 1 x 1 system can only have two.

2.) Dominant eigenvalues of the equilibrium points are equated.

3.) Dominant aggregated asymptotes Xa and Ya are equated.

4.) Slopes of the eigenvectors at the equilibrium points are equated.

Principles 1, 3 & 4 assure well mapped phase-plane trajectories. Principle 2 assures

that the tempo of the combat near the equilibrium points is the same.

For N x N systems with one positive equilibrium point, principles 1 through

4 along with the replenishment rates uniquely specify a 1 x 1 system. For N x N

systems with zero equilibrium points, only principle three applies, leaving 4 parameters

undetermined. For N x N systems with two equilibrium points, principles 1 through

4 determine 10 quantities, so a "best compromise" of some kind must be found.

In order to test these principles, we have used them in mapping down the 2x2

systems studied in Section II. Table V lists the parameters determined by the 2x2

systems with one equilibrium point.
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Table V

Single Equilibrium Point

1x1 Systems

xi yi XA YA Xi Slope 1

Case Is 4 6 -4 -19/6 -1.78 -1.168

Case lu 4 6 -7.5 -8 -12.62 -1.091

These, along with R and S determine the eight attrition coefficients as listed in

Table VI.

Table VI

Attrition Coefficients

of 1 x 1 Equivalent System

u v a c (6 = —XA a) {d = —YA c)

Case Is 16.06 11.70 2.65 2.58 10.60 8.17

Case lu 4.33 11.91 2.59 2.77 19.41 22.16

The characteristic trajectory and bounding trajectories of these two lxl systems

are shown as Figures 6 and 7. Comparisons with Figure 4 and 5 indicate that the pro-

posed mapping principles work extremely well for 2x2 systems with single equilibrium

points.

For systems with 2 equilibrium points, application of all four principles determines

10 quantities. There are only six free parameters in the lxl system, so a best overall

fit must be found. We have elected to map the equilibrium points exactly and then find

a compromise between the eigenvalues and asymptotes to produce a fit close both to the

rate of conflict evolution and the phase plane geometry. (The slopes at the equilibrium

points are tightly constrained by the geometry of the problem and therefore tend to be
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Figure 6 - "Characteristic Trajectory and Boundary Curves for an "equiv-

alent" lxl System with a Single Unstable Equilibrium Point/'
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Figure 7 - "Characteristic Trajectory and Boundary Curve for an "equiv-

alent" lxl System with a Single Unstable Equilibrium Point."
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numerically close to the desired slopes automatically). Table VII lists the properties

of the 2x2 system with two equilibrium points and an equivalent lxl system.

Characteristic phase-plane trajectories are shown in Figure 8.

Table VII
Case 12

Compromise Mapping of Two Equilibrium Point System

2x2 System lxl System

XlrVl 4,6 4,6

Ai, slopei 0.731, -1.027 0.733, -1.031

*2,*/2 9.912, 2.18 9.912, 2.18

A 2 , slope2 -.62, -.401 -.68, -.400

Xa,Ya -7.5, -3.1667 -6.736, -3.695

Comparing Figure 8 to Figure 3 shows that the phase plane geometries are nearly

identical in the positive quadrant. The trajectories shown by x's in Figures 8 and 3

compare the tempo of combat along a particular trajectory. Again, it can be seen that

these compare favorably during both rapidly evolving stages and slowly evolving stages.

Systems with zero equilibrium points are undetermined by our principles as only

two values, the asymptotes, are known. Case 22 of the previous section was determined

from Case 20 by increasing the replenishment rates of the X forces until there were two

equilibrium points in the positive quadrants. Our "equivalent" lxl no-equilibrium case

was obtained by utilizing the attrition coefficients of Case 12 and the replenishment

factors corresponding to Case 20. The resulting trajectories are shown in Figure 9.

When compared with Figure 2, we see that there is a very close agreement.

One of the critical boundaries dividing the phase plane in 1 x 1 systems with an

unstable equilibrium point is a line passing through that point and perpendicular to

the characteristic curve at that point. This curve may be found in 1 x 1 systems by

integrating backwards in time away from the equilibrium point, thereby staying on the

ridge bisecting the plane. Traveling along this ridge is the only way in which a system

-21-



Figure 8 - "Characteristic Trajectory and Boundary Curves for an "equiv-

alent" lxl System with Two Equilibrium Points."
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Figure 9 - "Characteristic Trajectory, Asymptotes, and Boundary Curve

for an "equivalent" 1 x 1 System with No Equilibrium Points."
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can evolve to an unstable point [6]. These bisecting curves are shown in Figures 7 and

8.

The 2x2 systems have boundary surfaces in their four dimensional state space.

Therefore, aggregated boundary curves depend to some degree on the initial force

compositions. All aggregated trajectories shown in Figures 2 through 5 were obtained

using uniform force compositions. At least for this case, the boundaries determined

by backward integration yield a very close approximation to the proper division of the

aggregate state space shown in Figures 2 through 5.
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IV. Terminating Attrition Losses of Vanishing Force Components

Several deficiencies exist with generalized Lanchester equations as models of com-

bat. One of the more obvious occurs when a vanishingly small force component con-

tinues to suffer aimed fire attrition in direct proportion to the number of opposition

forces. The linear attrition term is a reasonable model for aimed fire only in a "target

rich" environment.

One can modify the generalized equations such that all force components will

terminate at the boundaries of the positive quadrant of the state space in the following

way:

/ N \ r _ ,_ i

£fci
yj+r«t = l,2,...JV

(7)

Y^dijXi +3j;j = 1,2, ...N
i l * / * u J

N N
where X = ^ Xi,Y = Yl Vj anô we inake the further provision that lim Xi/X =

and lim yj/Y = ( The terms with subscripted zeros are initial values.)

The multiplier X/Xo assures that Xi cannot become negative because as it ap-

proaches zero, the aimed fire power of Y is reallocated away from the vanishing X{

targets to other components of the X force. The aggregate aimed fire loss rate remains

essentially constant until there are no x targets left at all.

The corrective term introduced into (7) does not appear to alter significantly the

aggregate trajectories of the original generalized Lanchester equations in the positive

quadrant. Although (strictly speaking) it has introduced a complicated nonlinear cou-

pling among like force components, the major practical effect on the trajectories is

concentrated near zero force levels.

To illustrate the behavior, we first re-integrated Case 2u of the previous section in-

cluding these factors, but found that the balanced equilibrium point force composition

tends to cause the individual losing force components to come to zero nearly simultane-
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ously anyway. Therefore, Case 2u does not provide a good illustration of the aimed fire

reallocation property that has been built into the nonlinear coupling. Consequently,

we altered the replenishment rates of Case 2u such that the unstable equilibrium point

moves to (4,2,3,2) and designate it Case 2a. With the termination factors included it

is designated Case 2b. The initial normalizing zero subscripted variables have been

chosen at the unstable equilibrium point of Case 2a.

Figure 10 compares the force evolution of the four force components for the two

cases. It shows how the attrition rate of x\ and x^ become zero simultaneously. The

Y components do not grow quite so fast because of the greater residual X{ force.

Figure 11 compares the asymptotic aggregate phase plane trajectories of the two

cases. It is evident how similar these are in the positive quadrant, although Case 2b

can never exhibit a negative force component value. Since conflict typically terminates

at an aggregate force level considerably greater than zero, (perhaps 20 - 50% of the

inital force level), this equivalent lxl systems should have the desired property of

modeling "aimed" fire combat more realistically.
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Figure 10 - "Comparing Force Component Evolution With and Without

Aimed Fire Reallocation."
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Figure 11 - "Comparing Aggregate Phase Plane Trajectories With and

Without Aimed Fire Reallocation."
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V. Discussion and Further Work

In this paper we have reported the results of our research into the dynamical prop-

erties of a system of generalized Lanchester equations. The principal finding of our re-

search is that their behavior in the aggregate is closely determined by initial conditions

and a few important geometrical features in the state space. These are the equilibrium

points of the system, along with their dominant eigenvalue and eigenvectors, and the

asymptotes. Methods have been provided to find these features and illustrated for 2x2

systems. Given these features, one can find a characteristic aggregate trajectory toward

which all trajectories are attracted. Once near this characteristic trajectory, evolution

continues along it either toward an equilibrium point that is stable or away from an

equilibrium point that is unstable. If there are no equilibrium points in the direction

of travel, then evolution is toward an asymptote. However, since asymptotes are al-

ways negative, zero values will be reached for one or more of the state variables as the

asymptote is approached. Since the state variables represent quantities of resources,

evolution must be modified on approaching the boundaries of the positive quadrant. In

Section IV we suggested a means to terminate the trajectories at the boundaries with

minimal alteration to their properties interior to the positive quadrant.

Perhaps one of the most important results of our research is a technique to map

N x M systems of Lanchester equations into equivalent lxl systems. There are two

reasons why this is significant. First, it provides a means to determine the coefficients of

large complicated systems by aggregating smaller (and simpler) ones, and to assess the

sensitivity of overall system behavior to changes of individual subsystem parameters.

Second, it provides a set of principles for developing a hierarchy of consistent models at

ascending levels of military systems which preserves a constant level of complexity at

each level. Because of the potential sensitivity of critical dynamical features (such as

the eigenvalues, and hence the stability, of equilibrium points) to individual subsystem
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parameters, however, it remains possible to trace their effects throughout the entire

multilevel structure.

A topic of further research concerns the control of these non-linear systems. There

are two controllers, one for each side, whose objectives are in conflict. Given that each

side starts with finite resources and finite growth rates, then at issue is how each side

should allocate his resources initially and during the evolution of the conflict. A second

topic concerns the stochastic vice deterministic representation of attrition systems, as

well as the effects of uncertainty in observations of the system states.
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Appendix A

Asymptotes fe Equilibrium Points

The lxl equations are:

X = — ux — xay — by + r

y = —vy — xcy — dx -\- 3

Solving (8) for x = y = 0, we obtain

(8)

/ b\ ( u\ t b u
[* + -) (y + -) =- +—
\ aj \ at a a a

(9)

and

(
X+ ^(y +

-c)
=

c
+

-c--c
(10)

Each curve is a hyperbola having the form

Or+aOCv + AJ-fri + ouft) ;
«/,// (11)

the upper branches of which may be plotted as shown in Figure 12. Clearly, wherever

the curves (I) and (II) cross is an equilibrium point of the differential equations. As

shown in the figure there are four distinguishing cases. In cases (a) and (b) we say

the asymptotes are "crossed" , and there is always exactly one equilibrium point on the

upper branches. In cases (c) and (d) the asymptotes are "nested"; there will be two

or zero equilibrium points on the upper branches depending on the relative sizes of the

terms (n + a,-/?,-).
2

Stability at an Equilibrium Point

It is instructive to investigate the stability of (8) in the vicinity of an equilibrium

point, say (xo, yo). Letting x = xo + <$x, y = yo + Sy we have

Sx = — (u + ayo )Sx — (b + xoa)Sy

(12)

Sy = —{d + cy )Sx - (v + x c)6y

2
If there are no equilibrium points on the upper branches, either there are two

on the lower branches or else both equilibrium points are complex. If there is one

equilibrium point on the upper branches, then there is another on the lower branches.
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Figure 12 - "The Four Distinct Cases of the 1 x 1 Problem."
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The system will be locally stable if both eigenvalues of the matrix

C = (u + ay ) (b + x a)

(d + cyQ ) (v + xqc)
(13)

have a positive real part. The characteristic equation is

(u + ay )-s (b + x a)

(d + cyo) (v + x c) - s

or

= (14)

s
2 - (v + x c + u + ay )s + [(u + ay )(v + x c) - (d + cy )(b + xqcl)} = (15)

Since each term in parentheses is positive for (xo,yo) on the upper branches of the

hyperboles (11), it follows that the real part of both eigenvalues will be positive if

If we rewrite this as

(u + ay )(v + x c) > (d + cy )(b + x a)

u + ay d + cy

b + XqCL V + XqC

then from equation (12) the stability condition can be interpreted as

(16)

(17)

\Tn x \ > m, (18)

where m x and my are respectively the slopes of hyperbolas I and II at (xo,yo)-

The Trajectory Dynamics

The stability of an equilibrium point provides insight into the trajectories of combat

dynamics. For large values of x and y, both x and y are negative, and a typical

trajectory will move closer to the origin until it first crosses one of the hyperbolas. If

in case (b) of Fig. 12 the trajectory crosses I first x becomes positive while y remains

negative, and the trajectory bends towards the equilibrium point, as shown. A similar

result obtains if the trajectory crosses II first: in both cases, the trajectory enters
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the tube between I and II and heads towards the equilibrium point which is stable.

Furthermore, once within the tube, the trajectory cannot escape since at the boundary

one derivative is zero and the other points back into the tube. It follows that all 1st

quadrant trajectories:

• are captured by the tube, and

• come to rest at the equilibrium point

In case (a), the equilibrium point is locally unstable. The tube between I and

II again captures the trajectory, but now guides it away from the equilibrium point

rather than towards it. Thus x or y will win the battle, depending on whether the

initial combat point is above or below the separating curve shown in Figure 12a. This

separatrix will clearly be of prime importance in any application of the theory; it can be

calculated numerically (as was done for the case shown) by backwards integration from

the equilibrium point, departing perpendicularly to the dominant eigenvector (which

must lie within the tube.)

When there are two equilibrium points on the upper hyperbolas, it is obvious

geometrically that one must be stable and the other unstable. Typical trajectories are

shown in Figure 12c. If there are no equilibrium points, case (d) the tubes still capture

the trajectories, and conduct them in one direction (x wins ) or the other (y wins)

depending on whether hyperbola I or II is uppermost.

Degenerate cases

There are two degenerate cases which we consider in the interest of completeness.

If the two hyperbolas osculate, there is a double root with eigenvalue zero. The tra-

jectories either move to the equilibrium point and stall, or else move away from it,

depending upon where they enter the tube.

If the two hyperbolas coincide, the entire curve is in neutral equilibrium, so that

trajectories stall at the point at which they reach the curve.
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Characteristic Trajectories

The trajectory that passes through an equilibrium point along the dominant eigen-

vector [i.e., the eigenvector corresponding to the largest eigenvalue of the linearized

equations (12)] plays a special role: we call it the "characteristic trajectory". Clearly,

if the global problem were strictly linear, all trajectories ultimately would be asymptotic

to the dominant eigenvector. In the bilinear case, considered here, the non- linearities

appear to be sufficiently weak that the same effect occurs, and all trajectories ulti-

mately converge onto the characteristic trajectory. The characteristic trajectory nests

between the hyperbolas I and II and can itself be approximated by a hyperbola, as

illustrated in Figure 13.
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Figure 13

"A Characteristic Trajectory and its Hyperbolic Approximation.

-36-



Appendix B

Asymptotic Trajectories

In this appendix, we study the dynamics of combat evolution, primarily with the

intent of understanding the nature of the multi-dimensional trajectories x(t), y(t) when

x and y are respectively N and M component vectors. The analysis is motivated by the

relatively simple results in the one-by-one case, discussed in Appendix A. Our objectives

are to uncover similar behavior in the M x N case, and to gain insight regarding how

to aggregate multi- dimensional forces into a 1 x 1 model having roughly equivalent

behavior.

State Equations : The combat model we analyze is a generalization of Lanchester's

equations, namely:

ii - -UiXi - xi 2J aijVj -^2^i3 yj + n ; i = 1,2, . .
.
,iV

' '

(19)

yj = -vjyj - yj 2^ cax i - 2^ dii Xi +3j ; i = i» 2, . .
.

,

M

i t

Whenever the replenishment terms (fj) and (sj) exactly cancel the losses, so that all

the time derivatives are zero, we have an equilibrium point , say (x°,y°), and

*?("« + Z) a<iy?) + X)*y*J = n;» = 1,2,... ,N
j '

(20)

y°j(v> + zl *>*?) + Y, diix°i
= «i;i = 1,2, ... ,m

In the vicinity of any equilibrium point, the combat evolution is governed by the

set of linear equations obtained by substituting

Xi = x*} 4- Sxj

yj = yj + Syj

which yields (for all i,j)

(21)

Sx t
= —

j

&yj = ~Y [
dij + c«>^?] ^« ~

i
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These last equations can be written conveniently in the matrix form

where the (N + M) x (JV -f- M) matrix C has the structure

(23)

C =

a it

e

V

fin

7ii

(24)

/

We are interested only in situations for which (x°,y°) is non-negative, in which case

all the elements of (C) axe non-negative.

Impermeable Boundaries : It is evident from (22) that neax an equilibrium point the

locus of all points on which any particular Sii is equal to zero is an (M+ l)-dimensional

plane; specifically

8ii = -* -ataSxi - ^2/3ij8yj = (25)

J

Thus the point (6xi, 6y) is beneath this plane if <5x, > 0, and conversely 8i{ < for all

points above the plane.

We now make the simple but crucial observation that in the linearized model:

If 8yj(t) > for all 7 & t, then any point that lies beneath the plane 8x{ = at t = to

will remain beneath the plane for all t > to . An easy way to verify this is to note from

(22) that if at any instant t* the point (8xi,8y) lies on the plane £x,- = 0, then the

facts

8ii = 0,8yj > (for all j)

imply that <$Xi is (instantaneously) constant, whereas by assumption all the {8yj} either

increase or are also constant. It follows that at time tk + dt

8x { <
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which implies that (8xi,8y) must again lie on or beneath the plane. Since the point

can never penetrate the boundary plane from below, obviously it can never get above

it.

Similar arguments lead to the additional cases summarized below:

If for all j {8yj > 0}, then 8i{ < endures for any i

If for all j {8yj < 0}, then 8ii > endures for any i

If for all i {8ii > 0}, then 8yj < endures for any j

If for all i {8ii < 0}, then 8yj > endures for any j

We conclude that the cone in our N x M (linearized) space for which either

{8yj > 0} and {8ii < 0} for all i,j

or

{8yj < 0} and {8i{ > 0} for all i,j

is a "trap" from which the operating point (8x,8y) can not escape. Since the cone

always exists, so does the trap.

The Non-Linear Case : The real problem posed by (19) differs from the incremental

case (22) primarily in that the state equations are non- linear. For any fixed value of

x,-, however, the locus of i{ = is still a plane in the (yj); we have from (19) that

Xi = Q-+y (bij + dijXi) yj = ri - u.Xj

j

The situation may be visualized as shown in Figure 14 for the case N = 1 and M = 2.

For ii = 0, we require

(611 +an xi)yi +(&i2 +ai2*i)y2 = r x - mxi

so that

ri — u\Xi
y2 = - yi =

&n +auXi
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which is a hyperbola with asymptotes at y\ = —u\/an and x\ = —611 /an, and

n-uiari
yi = -» y2 =

&12 + 012^1

which is a hyperbola with asymptotes at y2 = —^1/^12 and Xi = — 612/012 • The

surface £1 = is generated by the straight lines joining points on the two hyperbolas

corresponding to the same value of x\ , as shown in Figure 14.

It is worth noting that the slope of the generating lines is

Ayi 612 + Q12S1

At/2 hi +ansi

which varies from &12/&11 at a?i = to cl\2/cl\\ as x\ —* 00. By contrast, the slope of

the corresponding lines in the incremental case (2) is constant. The obvious effect of

the non-linearity is a "twisting" of the surfaces {6ii = 0}; the amount of twisting is,

however, limited to < 90° by the non-negativity of the attrition coefficients.

A second observation is that the surfaces i{ = and t/j = preserve their identity

throughout the (extended) positive quadrant, defined by the positive branches of the

hyperbolas. Thus the twisting of these surfaces causes the trapping cone near an

equilibrium point to deform into a non-linear "tube", but can neither destroy the

existence of the trapping region nor change its nature. Indeed, the only way this tube

can vanish is for it to contract into another cone at a second equilibrium point, and

of course the tube then continues on the other side (with reversed Sx^s and ^y/s) as

the cone passes through the equilibrium point. We conclude that such a tubular trap

must always exist.
3 Moreover, evidently it is unique, i.e., only one such tube can exist

in the extended positive quadrant.

3 The tube exists even when there is no equilibrium point in the extended positive

quadrant, a fact which may be deduced (for example) by reducing all r's by a scale

factor (keeping all other parameters constant) until an equilibrium point does exist.
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Figure 14 - "The Attracting Tube for the 1 x 2 Problem."
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Implications : A number of conclusions follow from the preceding analysis. With regard

to the cones emanating from any equilibrium point, we note that:

(1) The dominant eigenvector4 of the matrix -C in (24) must lie inside the trap-

ping cone, because in the linear case any trajectory must ultimately converge

onto the dominant eigenvector.

(2) All (6xi) components of the eigenvector must have the same sign, and be

opposite in sign to all the (Syj) components because all the time derivatives

have this property and no trajectory can escape the cone.

(3) All trajectories in the vicinity of the cone will be attracted into it, because it

contains the dominant eigenvector.

Shifting our attention to the non-linear trapping tube, we note that:

(4) All equilibrium points in the extended positive quadrant must lie along the

tube, because there can only be one tube and each equilibrium point generates

a cone.

(5) The equilibrium points along the tube must alternate between stable and

unstable, because all Si{ and Syj in a cone lead either towards or away from

the apex.

(6) The trapping tube is an attractor, and we strongly surmise that all trajec-

tories originating in the extended positive quadrant ultimately approach the

trajectory generated by the dominant eigenvector at any cone. Although we

have as yet no formal proof for this asymptotic property, its validity is con-

sistent with geometrical similarity to the linearized model and accords with

our computational data.

By "dominant eigenvector" we mean the eigenvector corresponding to the largest

eigenvalue of -C
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Appendix C

Equilibrium Solutions

In this appendix, we describe a technique to find the equilibrium points of N x N

Lanchester systems. Specifically, we seek solutions of the equations

x
» I

u
* + ^2 aiJ yj }

+p[^2 bi'y>
~ ri

)

= 0; * = 1
'
2

' • • >
N

1=

n 7 (26)

yj
(

v
j + ^2 C{

J Xi )
+ p

{ S d
*JXi

~ s
j) = °;i = !^ 2, . .

.
, iv

with the parameter p = 1. One can find them using continuation techniques, by

numerically tracking the roots for p = 0, which are called the trivial solutions, as p is

increased incrementally from zero to one.

Here, we describe how to find the trivial roots and a technique to track them to

their final values, and illustrate this with data from the 2x2 examples in the paper.

It is important that terms are so parameterized that there are as many trivial roots as

there are final roots. This is assured by parameterizing only linear and constant terms.

It is also important that the trivial system

(
N

\
xi I ui + 22 ^ijVj I

= 0; i = 1,2, . .

.

,N

\ J=1 '
(27)

Vj
(

vi + 5^ cux<) =0;i = l,2,...,iV

have readily determined solutions. One solution exists for all Xi and y;
equal to 0.

Another solution exists when

Ui + Y^aijyj
J

=0;i = l,2,...,JV

'
(28)

Uj+j^cysi) =0;j = 1,2,. ..,JV
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These axe simple systems of linear equations with unique non-zero solutions, providing

they are linearly independent.

Other unique solutions are found by setting various combinations of the x,- and y; ,

but not all of them, to zero. For example, letting x# and y# equal zero we have

x i
I
M * + 5Z a*3y3 1

= 0; * = !> 2, . .
. , iV - 1

^ 3=1
(29)

Vj
(

vj + J2 CiJXi
J

= 0;i = 1,2, . .
.
,iV - l

For the remaining Xj and y7
not necessarily zero, we must have the two systems of

N — 1 linear equations in the brackets equal to zero. In general, there is one unique

solution to these equations providing they too are linearly independent.

For Xi = 0, there are
( ) = iV possible y/s to select as zero. Since this is true for

each of the
( x ) choices of the x, to be zero, there are

( j
) = N2

trivial solutions with

exactly one x* and one y;
=0.

We may now take any two of the x^'s = and any two yj 's = 0, leaving two systems

of N — 2 linear equations in brackets that must equal zero. For each pair of x,'s, there

are
( 2 ) ways of picking pairs of y/s equal zero. This can be repeated for each way of

picking pairs of x^'s = or
( 2 )

times. Thus there are
( 2 ) solutions with exactly two

Xj's and two y/s equal zero.

This procedure can be repeated, picking 3, 4, ...,..., N — 1 Xj's and y/s simulta-

neously equal zero and solving the remaining sets of linear equations. There are
( k )

ways of picking k y^'s equal zero for each set of k Xj's = 0. This can be repeated
( k )

times for each way of picking k x,'s = 0, thus producing
( Jb )

solutions with exactly

k Xi's and k yj's equal zero.

We can not in general obtain solutions by taking different numbers of x,'s and y^-'s

equal zero. This may be illustrated as follows. Suppose we take xjv = but not, in
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general, any of the y/s. From (27), we must have

.v-i

Vj+^djXi =0 j = 1,2, AT (30)

i=i

which cannot be consistent (unless they are linearly dependent) since there are N

equations to satisfy with N — 1 variables. A similar argument pertains any time we

attempt to put an unequal number of x^'s and t/j's to zero. Thus we see that there are

at most 5

-'(W-ffl'-gffl'-ff) «->

unique solutions to (27). Table VIII below shows the growth of trivial solutions for N

from one to ten.

Table VKE

Equilibrium Solutions

N1234567 8 9 10

Q 2 6 20 70 252 924 3432 23870 48620 184756

By way of illustration, consider the trivial solutions of the 2x2 problem. The

5 See C. L. Liu, Introduction to Combinational Mathematics, McGraw-Hill, 1968,

pp. 27 - 28, for proof of the identity
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trivial equations are:

xi(ui + anyx + aX2 y2 ) =

x2 (u 2 + a2\y\ + a22 y2 ) =

yiOi +cn xi + c2i x 2 ) =

y2 (v2 + ci2 xi + c22 x2 ) =

and the six solutions are

(1) x x =x2 = 0,yi = y2 =0

(2) x 1 = 0, x2 = -v2 /c22 , yi = 0, y2 = -u 2 /a22

(3) xi = 0, x2 = - vi /c2 i , yi = -u 2 /a21 , y2 =

(4) X! = -v2 /c12 , x2 = 0, yi = 0, y2 = wi /a 12

(5) X! = -vi /en , x2 = 0, yi = -wi /an , y2 =

plus the solution to the equations

(6) vi +cnxi +c21 x2 =0, U! +an yi + aX2 y2 =

u2 + ci2 xi + c22 x2 =0, u 2 4- a2i yi + a22 y2 =

We note that all solutions of the trivial system (27) are real and, except for the

all zero root, have at least one negative component. The only equilibrium points of

the Lanchester system (p = 1) that are physically significant are real points with all

non-negative components. Unfortunately, one does not know which trivial roots, if any,

correspond to final real, positive ones. Therefore all must be tracked, and as p increases

from zero, provisions must be made for them to become complex, and once complex,

to become real again as p increases even further. Note also that since the coefficients

of (26) are real, complex roots occur in conjugate pairs.
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A general technique of tracking the roots involves a combination of "predictor"

and "corrector" steps. For the particular parameterization we have selected, these two

steps are remarkably similar, each requiring solution of linear equations which differ

only in their right hand sides.

We first describe the predictor step. The solutions of (26) obviously depend on p.

If we perturb p, we expect a perturbation in the solution. Thus perturbing (26) by Sp

and retaining only first order perturbation terms in the state vector gives

Sxi I Ui + ^2 aijVj
)
+ x

» 1 X a{
J 6yJ I

+ Sp
I X hii yi

~ ri
)

+ p
I X h{J 6yJ

)

= °

;z- = l,2,...,iV

% (
v
j +x ^j** )

+ yj
( X co^x « ) + sp ( x^*« ~ *i ] +p( y^^j^»i =0

;j = l,2,...,JV

(32)

which is recognized as a system of 2iV Hnear equations in the perturbations vectors 6x_

and 6y upon rewriting as

Sx { I "i +X °«> y> I
+X ('•"•i + Pbij) SyJ = 6P\ ri-^2 bi>yJ

J

'

*
=

-1
' • * •

N

% (
u
i +X c'> x '

)
+X (yJ

c
'-' + pdij)Sxi =8p\sj ~Y^ dijXi

J
; j = 1, . .

.
N

(33)

If (£> y) is a root at p, then (x + Sx, y + 8y) is the best linear prediction of the root at

p + 6p. Since 6x and 8y_ are also potentially complex, solving (33) involves solving a

system of 4iV linear real equations.

After a few predictor steps, errors begin to creep in such that the predicted root

deviates from the true root. A sequence of "corrector" steps are initiated, keeping

p constant, until the error is reduced to an acceptably small value, at which point

prediction is resumed. In this work, we employed a generalized Newton's Method for
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correction. Let

exi - Xi luj + y] aijVj
]
+ P I ^ hiJ yJ

~ rA 5
i = 1, • • • N

\ i I \ i /
(34)

ey> = Vj (
Uj + ]T] c*;*» ) + P

(S *i*« ~ 5
J

) ' 3
= *» *

•

'

N

be 2iV complex error terms associated with a point (x,y).

Let us expand these in a Taylor series about a current guess for a root (x',y'),

which is near the true value, and retain only the first order terms. The errors are

exi = ex'i + -Q-^-txi + X, ~W~
±Syi ; * = 1»2, . .

.
iV

(35)

• /f-r, • V = 1 9 AT

dy> ^ dxi
*»* = e

»i + 7E?*w +E ??'*' ;i = i,2,...jv

where the partials are to be evaluated at (x', y'). We find the new point (x' + £x, y' +

6y ) by solving for (£x, £y) such that the new errors (ex, ey) are simultaneously zero.

Carrying this out one obtains the 2N complex linear equations.

N \ N
6xi I Ui + ^2 aiJy'j I

+ 5Z (x '»a*> + p6,> )^ = ~ex '« * — li 2, . .
.
jv

/ N \ N
8Vj

\

v
j

; + Yl C{
J
x

i 1
+S (y'j Ci' + pdij) 6xi = _ey

> ; i = 1> 2, . .
.
JV

(36)

which are identical to (33) except the right hand sides have been replaced by the current

errors. Thus, the predictor step and the corrector step both require solution of the same

system of 4iV real linear equations.

We have programmed the root tracking equations to track all six roots of the 2x2

problem (which requires a system of 8 linear equations) and tested it for a number of

cases including the four cases described in Section II of this paper. The six trivial,

or initial, roots (p = 0) and six final roots (p = 1) for these are given in Table IX.

At this stage, our program remains quite interactive in order to handle trajectories as
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an individual component passes through a singularity or as pairs of real roots merge

to a complex conjugate pair or as complex roots separate into two distinct real roots.

Nevertheless, the Continuation Method does work satisfactority and we are convinced

it is a straightforward, albeit computationally intensive, means to find the equilibrium

points of low order Lanchester systems.
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Table IX

Equilibrium Points

Initial Roots(p = 0) Final Roots (p = 1)

Xi X2 y\ V2

-4.74

x 2

-1.66 -15.2

V2

17.7

+J.09 +J1.31 -J12.5 -J24.2

-7.5 0/R -3 8.42 -2.37 -1.78 -1.72

Case 20 -3.33 -4 48.7 -31.9 -4.33 -3.31

-7.5 -10 -34.0 -5.84 -4.17 3.66

-5 -5 #1 Conjugate

-12.5 -5.6 1.2 -6.29 -.899 -23.5 17.8

4.89 5.01 .79 1.39

-7.5 -3 22.9 -123. -1.80 -2.0

Case 22 -3.33 -4 85.0 -39.0 -3.70 -1.30

-7.5 -10 -6.20 -1.53 -18.25 -248.

-5 -5 2. 2. 3. 3.

-12.5 5 -5.6 -1.2 -7.15 .245 -34.9 93.4
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2. 2. 3. 3.

-7.5 -3 18.0 -141. -1.8 -1.88

-3.33 -4 68.8 -36.3 -3.86 -1.04

Case 2s -7.5 -10 9.35 -4.15 -7.51 -11.1

-5 -5 -2. -2. 104 13.86

-12.5 5 -5.6 1.2 -5.62 -1.26 -24.3 88.2

2. 2. 3. 3.

-7.5 -1.25 -3.02 -2.51 -39.9 50.1

i +J1.00 -jl.13 +J18.2 +J3.10

-3.33 -1.67 #2 conjugate

Case 2u -7.5 3 20.7 -17.6 .95 -2.52

+J13.6 +J27.7 +J2.16 -J2.70

-5 -1.5 -6.13 -4.53 -14.5 -42.7

-12.5 5 -1.4 -.2 #4 conjugate
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Appendix D

2x2 Asymptotes

In this appendix, we describe how to find the asymptotes of the 2x2 system

x 1 = -Xi (ti! + alx yi + a i2 y2 ) - (&uyi + &12V2) + H

x2 = -x2 (u 2 + a2 iyi + a22 t/2) - (&212/1 + b22V2) + r2

(37)

yi = -yi Oi + cnxi + c21 x2 ) - (duxi + <f2ix2 ) + si

V-i — -V2 (v2 + ci2 xi + c22 x2 ) - (di 2 xi + d22 x2 ) + s2

At the X asymptotes {X^i , XA2 } either one or both components of y are increasing

without bound and xi = x2 = so that from (37)

v frnyi +&i2 y2 v &2iyi+&22y2 ,OQ x

&i — -*ai = ; ,*2—> * A2 = (ds)
anyi + ai 2 y2 a2iyi + a22 y2

Also, from (37), the growth rates of y are approaching

yi = - («i + cnxi -I- c2i x2 ) yi

y2 = -(V2 +c12 X! + c22 x2 )y2

at the asymptotes. Now if the growth time constants are different and

(39)

- («i + cn xi + c21 x2 ) > - (v2 4- c i2 xi + c22 x2 ) (40)

then yi will grow exponentially faster than y2 and eventually dominate so that

XAl — —l>il/<*ll,XA2 = ~&2l/«21 (41)

Combining (40) with (41) implies that

(cu - ci 2 ) H (c2 i - c22 ) > («i - t>2) (42 )

an a2 i

Thus, if (42) holds then (41) gives X^A and y\ is the dominant y component.
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Conversely, if near the asymptotes

-(v2 +ci 2 xi +C22X2) > ~(v i +cn xi +C21X2) (43)

then t/2 is growing exponentially faster than y\ so that

Xa\ = 612/012 , Xa2 = -622/^22 (44)

Combining (43) with (44) implies that

(en - C12) H (c2 i - c22 ) > (v2 - vi) (45)
012 022

Thus if (45) holds, then (44) gives X_a an<^ Mi 1S ^ne dominant y component.

Finally, suppose near the asymptotes that y\ and y2 grow exponentially at the

same rate, i.e. that

v2 + cuxi -f C22X2 — v2 + cnxi + C21X2 (46)

and so remain in a constant ratio k = 1/2/1/1 to one another as they grow. Combining

(46) with (38) means that this constant ratio k must satisfy the non-linear equation:

bu + kbw , v &21+fc&22 / x ,,-n—r

—

(cii-ci 2 )
+ 7— (C21 - c22 ) = vi - v2 (4/)

an + «ai2 021 — *a22

From k, we find the asymptotes as

bxl + kbi2 „ 621+^622 ,AO ,

J-Al = —
\

j -*.42 = —
7 < 4°J

an t KCL12 cloi + fca22

The Y asymptotes, Y_A are found by similar means. The results for X_A and Y_A

are displayed in Table X for single dominant components.
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Table X

2x2 Asymptotes

Dominant Component Test Asymptotes

» fc

(

c" - c^) + Hi- (
C21 - c") > (•» - «*) x^I'Cm,

1

fc-(«u-«ii) + fe(«»--«»)>("i-«i) rsnfcft;

fc-(«ii-«ii) + fe<«u-«»)>(«*-«i) IrSI-Sfe
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Figure 1 - "Typical Trajectories of a 1 x 1 System with a Single Stable Equilibrium Point."

Figure 2 - "Characteristic Aggregate Trajectory and Boundary Curve for a 2 x 2 System

with No Equilibrium Points."

Figure 3 - "Characteristic Aggregate Trajectory and Boundary Curves for a 2 x 2 System

with Two Equilibrium Points."

Figure 4 - "Characteristic Aggregate Trajectory and Boundary Curves for a 2 x 2 System

with a Single Stable Equilibrium Point."

Figure 5 - "Characteristic Aggregate Trajectory and Boundary Curve for a 2 x 2 System

with a Single Unstable Equilibrium Point."

Figure 6 - "Characteristic Trajectory and Boundary Curves for a n "equivalent" lxl System

with a Single Unstable Equilibrium Point."

Figure 7 - "Characteristic Trajectory and Boundary Curve for an "equivalent" lxl System

with a Single Unstable Equilibrium Point."

Figure 8 - "Characteristic Trajectory and Boundary Curves for an "equivalent" lxl System

with two Equilibrium Points."

Figure 9 - "Characteristic Trajectory, Asymptotes, and Boundary Curve for an "equivalent" lx

1 System with No Equilibrium Points."

Figure 10 - "Comparing Force Component Evolution With and Without Aimed Fire Reallo-

cation."

Figure 11 - "Comparing Aggregate Phase Plane Trajectories With and Without Aimed Fire

Reallocation."

Figure 12 - "The Four Distinct Cases of the 1 x 1 Problem."

Figure 13 - "A Characteristic Trajectory and its Hyperbolic Approximation."

Figure 14 - "The Attracting Tube for the 1 x 2 Problem."
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