
LtBRAffY

TECHNICAL REPORT SECTION
NAVAL POSTGRADUATE SCHOOL
MONTEREY. CALIFORNIA 93940

NPS52-81-014

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THE AUTOMATIC GENERATION OF SYNTAX DIRECTED EDITORS

Bruce J. MacLennan

October 1981

Approved for public release; distribution unlimited,

Prepared for:

feddocs laval Postgraduate School
D208.14/2:NPS-52-81-oi4

,onterey, Ca. 93940

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral J J 3 Ekelund D, A. Schrady
Superintendent Acting Provost

The work reported herein was supported by the Foundation Research
Program of the Naval Postgraduate School with funds provided by the Chief
of Naval Research,

Reproduction of all or part of this report is authorized.

This report was prepared by:

UNCLASSIFIED
N PS5?-R 1- (T14

SECURITY CLASSIFICATION OF THIS PAGE /Whan Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1 REPORT NUMBER

NPS52-81-014

2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

The Automatic Generation of Syntax Directed
Editors

S. TYPE OF REPORT & PERIOD COVERED

Technical Report

6 PERFORMING ORG. REPORT NUMBER

7. AUTHOR^

Bruce J, MacLennan

8. CONTRACT OR GRANT NUMBERfsJ

9. PERFORMING ORGANIZATION NAME ANO ADORESS

Naval Postgraduate School

Monterey, CA 93940

10. PROGRAM ELEMENT. PROJECT, TASK
AREA ft WORK UNIT NUMBERS

61152N;RR000-01-10
N0001481WR10034

II. CONTROLLING OFFICE NAME ANO ADDRESS

Naval Postgraduate School

Monterey, CA 93940

12. REPORT DATE

October 1981
13. NUMBER OF PAGES

14. MONITORING AGENCY NAME ft ADDRESS^// dllterent from Controlling Olllce) 15. SECURITY CLASS, (ot thla report)

UNCLASSIFIED

15a. DECLASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION ST AT EMEN T (olthis Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, i! dllterent trom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side il necessary and Identity by block number)

Syntax Directed Editor, Language Oriented Editor, Structure Editor,

Translator Writing System, Parser Generator, Syntax Directed Editor
Generator, Two Dimensional Language, Programming Environment, Table Driven
Parser, Table Driven Editor,,

20. ABSTRACT /Continue on reverse aide II necessary and Identity by block number)

A syntax directed editor is an editor oriented towards a particular
language. This paper describes a general table-driven syntax directed

editor and an algorithm for automatically generating a syntax directed
editor for a language from a description of that language. Aside from the

convenience of a syntax directed editor, it is also a yery efficient parser,

No syntactic error recovery is required since the editor does not permit
the user to make syntactic errors. Some of the implications of syntax

DD , JAN 73 1473 EDITION OF 1 NOV S5 IS OBSOLETE
S/N 0102-014- 6601

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Bntared)

UNCLASSIFIED
^LLUHITY CLASSIFICATION OF THIS PAGEfWhsn Data Entered)

directed editors for data structure manipulation and two dimensional
languages are briefly discussedo

SECURITY CLASSIFICATION OF THIS PAGEfWJien Data Entered)

- I -

The Automatic Generation of Syntax Directed Editors

B. J. MacLennan. 80/10/29.

1. Introduction

Recently many programmers have discovered the power and con-

venience of a syntax -directed editor (also called a language -

or iented editor or a structure -editor) . A syntax-directed editor

is specially designed for creating and modifying programs in one

language. This is in constrast to a conventional editor, which

treats a file as an amorphous sequence of lines or characters.

Since a syntax directed editor is tailored to a specific

language, it can be much "smarter", that is, it can incorporate

knowledge of the structure of the language. For instance using

an SDE (syntax-directed editor) it is simple to get from the then

part of an i_f statement to the corresponding else part. This can

be difficult with a conventional editor, since the else may be

any distance from the then and there may be any number of other

i f statements (each with their own then) nested between. Other

advantaaes and implications of SPEs will he ^iscussed later.

SDEs are not a new invention. One of the earliest (1970) is

the ECL "list structure editor" [2], which made use of the fact

that ELI programs were parsed on entry into a LTSP-like list

structure. Henceforth all editing was performed directly on this

list structure. When a user wished to display a part of his pro-

gram text, it was "unparsed" from lists back into ELI source

- 2 -

text. More recent examples of SDEs include those in Smalltalk

[13], the Cornell Program Synthesizer [10], Interlisp [11, 121,

Gandalf [8], and others.

This paper describes an algorithm for automatically generat-

ing an SDE for a language from a description of that language.

More precisely, it describes a language-independent algorithm

that works with a straight-forward encoding of the grammer to

perform syntax-directed editing. Aside from the convenience of

an SDE, we find that the SDE is a very efficient parser and that

the grammer can be encoded with a minimum of effort. Hence we

seem to have most of the advantages and few of the disadvantages

of a conventional parser.

2. Example Session

So that the reader may better understand the operation of

the system, we present in this section a short example of a ses-

sion with an SDE. Suppose the following program has been entered

into the system:

i := 1;

found := false;

while (i£n) and not found do

i := i+1;

if t = n then <stat> [else <stat>];

wi th

- 3 -

In this example, we wish to replace the statement i:=i+l

if key = List[i] then

found := true

else i := i +1

;

The cursor, "
, indicates that i:=l is the current node, or focus

of attention, of the editor. By pressing the right and left

arrow keys on the terminal (—», <r-) we can move forward or back-

ward in any sequence. Therefore, by pressing —> twice we can

advance our position to the while loop:

i := 1;

found := false;

while (i<n) and not found do

i := i + 1;

if i=n then <stat> [else <stat>];

From this position we can treat the while statement as a whole.

For instance, we could delete it, or move it elsewhere in the

program. In this case however, we don't wish to treat the while

as a whole; rather we want to change its do_ part. That is, we

wish to deal with the substructure of the while. This is accom-

plished by pressing the down-arrow key (V) , which positions us at

the left most of the while's components. (Observe that the while

has two components, ' (i<n) and not found', and 'i:=i+l'.) The

result is:

- 4 -

i := 1;

found := false;

while (i<n) and not found do

i : = i + 1

;

if i=n then <stat> [else <stat>l;

Since we really want the second component of the while (i.e. its

body, or do part) , we hit the —> key once.

i := 1;

found := false;

while (i_<n) and not found do

i := 1+1;

if i=n then <stat> [else <stat>];

Since we wish to replace this statement, we will press the delete

key (DEL) to remove it. The result is:

i := 1;

found := false;

while (i<n) and not found do

<stat>

if i=n then <stat> [else <stat>];

Notice that in place of the deleted statement, *<stat>' has

appeared. This indicates the syntactic category expected here,

- 5 -

namely a statement.

All of the commands executed so far are universal, i.e.,

they apply to a program in any language. The commands used to

enter a particular statement (i€ in this case) are peculiar to

the language and are indicated in the grammar. In this case we

will assume the 'i' key indicates an i f -statement . After press-

ing this key the display will show

i := 1;

found := false;

while (i_<n) and not found do

if <exp> then <stat> [else <stat>];

if i=n then <stat> [else <stat>];

Notice that the cursor has been positioned ready to enter the

first component of the il^, the condition. Since this is the only

line of the display that will change for a while it is the only

one that we will show. For the condition, we wish to test for

equality, so we push the '=' key:

if <exp> = <exp> then <stat> [else <stat>];

A

The first expression is a variable name. Since these are so com-

mon, they are produced by the space bar:

if <chars> = <exp> then <stat> [else <stat>] ;

A

The '<chars>' indicates that we may enter any string of charac-

ters, terminated by a carriage return. We enter 'key',

carriage-return:

if key = <exp> then <stat> [else <stat>l;

Notice that the cursor has automatically advanced to the next

free slot in the structure.

Next we type '[', indicating that a subscripted variable is

requested

:

if key = <id>[<exp>] then <stat> [else <stat>];

and the space-bar, 'List', carriage-return:

if key = List[<exp>] then <stat> [else <stat>1;

and then space, 'i', CR (carriage-return):

if key = List[i] then <stat> [else <stat>];

Now, we wish to enter the assignment 'found := true'; assignment

statements are requested by the 'a' key:

- 7 -

if key = Listfil then

<var> := <exp> [else <stat>];

We enter space, 'found', CR:

if key = List[i] then

found := <exp> [else <stat>1;

Next is the 't' key, for 'true':

if key = List[i] then

found := true [else <stat>];

It should be obvious how this process continues. To com-

pletely enter the if statement requires the following key-

strokes. ('_' indicates space-bar and '%' indicates carriage-

return.)

i=_key% [_Li st%_i%a_found%ta_i %+_i<Hl%

It can be observed that the order of keystrokes has a prefix fla-

vor about it. This is because this method of program entry is

completely top-down - even to the expression level. It is quite

natural, however, when adequate feedback is orovided through the

display. It is interesting to note that the above command

sequence requires 37 key-strokes, while the usual method of typ-

ing this i_f statement requires 43 or more:

- 8 -

i f_key=List [i]
_then_found : =true_else_i : = i + l

Some other aspects of the interface should be discussed. It

will be recalled that we deleted the statement * i:=i+l' and then

inserted the if statement. This required reentering 'i:=i+l'.

While this is not important in this case, it could have been if

this statement had been much larger. To avoid this, instead of

deleting the node 'i:=i+l' we could have "grabbed" it with the

"G" key. Grabbing a node deletes it from the program, but saves

it where it can later be accessed by a "put" command ('P 1 key).

Thus, instead of entering

a_i%+_i%#l%

We would just enter 'P', a savings of 10 keystrokes even in this

simple case. There is a wide repertoire of similar language-

independent editing commands.

One final aspect of the human interface must be discussed:

the display. It is intended that the user have all the informa-

tion relevent to his editing task upon the screen. While

Smalltalk-like windows [3, 11] may help him to view several

regions at once, the finite spatial resources of the display

require that detail be supressed when not needed. To do this,

there are two constraints on the region of the program tree which

is displayed. The display (or a window, in a multi-window sys-

tem) represents the current focus of attention of the programmer.

The programmer can focus the display on any node in the tree,

- 9 -

then only the subtree rooted at that point is seen on the screen.

This focus may be anywhere from the root of the tree, which

causes the entire tree to be displayed, to a single statement, or

variable. The second parameter which controls the display is the

depth 1 imi t . All structures of the program more deeply nested

(from the focus node) than the depth limit are suppressed and

shown as '...'. The intent is that the entire subtree rooted at

the focus-node will fit on the screen. The programmer can alter

both the focus and depth limit. These parameters can be visual-

ized :

focus no^e

depth limit
displayed region
of program tree

As an example, if we set the depth limit very low, and displayed

our previous example, we would see:

i := 1;

found := false;

whi le ... and ... do

if ... then ... else

- 10 -

if ... then ... [else ...];

3. The System

To better understand the SDE it is necessary to understand

the system in which it is embedded. This is diagramed in figure

1.

Figure 1. The System

We can see that the program-tree is the central data base

through which all the tools interface. (There can, of course, be

many programs in the data base.) The SDE's are used for con-

structing, modifying and displaying the program tree. The code

generator (possibly several for various machines), interpreter,

and debugger are used to execute the program tree. Using one

universal format for the program tree accomplishes several

things. By being machine independent, it allows multiple

- 11 -

compatible code generators for one language. This permits pro-

grams to be more easily transferred from one target machine to

another. For instance, they can be debugged on a large machine

and then transferred to a smaller machine. Secondly, by using

one program tree format for several SDE's (and hence several

languages) a limited facility ^or language translation is pro-

vided. For instance, a program might be entered through the Pas-

cal SDE and displayed through the Ada SDE. Of course there are

limits to this simple form of translation: It can only be done

for programs in the semantic intersection of the two languages.

Nevertheless, many language do have a great deal of their seman-

tics in common, so it is possible to design a program tree format

that accomodates many of them. This is discussed in more detail

in the next section.

4. The Program Tree

The program tree is just a data structure which encodes as a

tree the abstract form of a program. Several of the characteris-

tics of the total system have encouraged a particular representa-

tion of this tree. Consider a node such as:

This represents an assignment statement, where the *dest* branch

leads to the destination, and the 'source' branch leads to the

source, the nodes x and y in this case. This node is represented

- 12 -

as a taqaed a-list, that is, a list of the forn

<xsn
Y^4
zsx. >ctes -t "><

In LISP notation this is

Source y

(asn (dest.x) (source. y)

)

In general a taqged a-list has the following form:

(tag (atrl.vall) (atr2.val2) ...)

where atr

i

is the name of the i-th attribute and val

i

is the

value of the i-th attribute. The first element of the list is

the tag , which tells us the sort of node we are dealing with. It

can be thought of as a data type. If we delete the tag from a

tagged a-list we are left with a conventional a-list, or associa-

tion 1 ist [6] :

((atrl.vall) (atr2.val2) ...)

To find the value of i-th attribute, atri, in node n, we can use

a function assoc which scans down the list looking for atri.

Speci f ically

:

assoc fatri, nl = (atri.vali)

Some LISP systems allow a-lists to be represented by hash tables

to decrease lookup time. While this is not necessary for the

small a-lists that occur in the program tree, it is desirable for

- 13 -

ome of the other uses of a-lists, discussed later.

There are several advantages to using tagged a-lists to

epresent the program tree. Ficst of all, the offspring are

tored in a position independent manner, which allows the

ffspring of the node to he created in any order. This is con-

enient for two reasons: First, use of an SDK permits one to

reate the components of a structure in any order (although it is

ptimized for left to right entry). Second, it permits a flexi-

le, open-ended structure for nodes. This is particularly impor-

ant for an experimental system, in which all attributes needed

n a node may not be known.

Some attributes may not necessarily correspond to program

omponents. For instance, some languages nay permit both left-

ard and rightward assignment operations:

d«— s and s—»d

^iese will presumably be encode'3 as the same tagged a-list (TAL) :

(asn (dest.d) (source. s))

Dwever, when the user displays this node it will usually be best

f it's seen as it was entered: either leftward or rightward.

lis problem is solved by adding an additional attribute, dir,

Tat indicates the direction, e.g.

d<-s => (asn (dest.d) (source. s) (dir.l))

- 14 -

S—»d => fasn (source. s) (dest.d) (dir.r))

This can be used by the display routines to show the assignment

properly. Any program to which the direction is irrelevant, such

as the interpreter, will not query the 'dir' attribute and thus

will be unaware that it's present. In this manner any amount of

additional information can be added to nodes without interfering

with programs that don't need that information. In addition to

attributes like 'dir' this extra information might include imple-

mentation suggestions (provided by the programmer or an optim-

izer) or even documentation.

For editing and program entry purposes it is necessary to

move about within the program tree. The four motions allowed are

those provided by the four arrow keys (—» «- ^ 4^) . The down

arrow moves to the first offspring (in source order) of the

current node; the right and left arrows move to the left and

right siblings, respectively; and the up arrow moves to the

parent of the current node. This last operation requires a

method of obtaining the parent of a node. There are many ways of

doing this; one of the most obvious is to have a 'parent' attri-

bute in each node, that points to the parent. For example:

asn

oles-fc x source y parent.

- 15 -

Due to the method used to address nodes (described in sec-

on 8) , the method used in this system makes use of a 'self*

tribute which gives the parent node and attribute of each node,

(••» \ A [/«•«/
C, • x)

(a s n (Jest '
\) (Source '/)(sel{' '))

(uar (td-*\/")(se/f^)) <r (—

;

*re is another attribute that is found in almost all nodes: the

/ntax' attribute. This attribute refers to the rule in the

ammar that generated that node; it is described further in sec-

)n 7.

Since the program tree is a tree, it can be represented in a

npact form as prefix bytes for storage in the file sytem. It

only converted to tagged a-lists for editing.

The one exception to this use of trees is the sharing of

les. This is required for language constructs such as ':+'

.so written '+:=' and '+='). The meaning of 'v:+k' is 'v:=v+k'.

i corresponding program tree must "logically" have two

stances of *v'. One way to do this is to actually have two

stances of v, e.g.

- i r> -

This creates problems in editing since it is possible to cause

the tree to become inconsistent by altering one instance of v but

not the other. This could result in a structure that couldn't be

unparsed

.

The alternative is to allow sharing in a specially res-

tricted way: only object nodes are allowed to be shared. For

instance, v:+k would be represented:

o&J

iA

n

Since there is only one copy of v, there is no consistency prob-

lem in editing. This does mean the program "tree" is no longer a

tree and that it can no longer be represented in prefix form on

backing store. However, the fact that object nodes are the only

nodes that can be shared allows them to be handled specially.

5. Grammatical Notation

The part of an SDE that varies from language to language is

the specification of the grammar and the translation rules for

- 17 -

that language. The form of this specification is a simple trans-

lation grammar, with extended BNF used for analysis and with node

building templates used for synthesis. The details of the nota-

tion are based on the Argot translator writing lanquage [4, 5],

The grammar in the Appendix (which is the grammar for an

Algol Subset) will be used for the following examples. Notice

that the grammar begins with a name for the language (
M iniGol in

this case), and the name of the goal symbol ('block' in this

case) and is followed by a sequence of rule (or non terminal)

definitions .

Consider the rule for assignment statements:

<assignment> : % <var> := <exp> asn (D:<var>, S:<exp>);

This corresponds to the BNF rule

<assignment> ::= <var> := <exp>

There are several obvious differences: The BNF expresses

analysis (i.e. our '% <id>_: =_<exp> ') but not synthesis (our

1 asn (D: <var> , S:<exp>)'). The reader will notice that our nota-

tion encludes an extra terminal, viz., "%", that does not appear

in the BNF. The "%" is a carriage-return or newline character.

This is formatting information for the display processor and

indicates that each assignment statement is to be displayed on a

new line. The set of required formatting requests has not been

- IB -

delimited and probably depends on the type of terminal in use.

We can envision commands for newlines, tabbing and vertical

alignment so that clearly formatted program displays can be pro-

duced. More ambitious two dimensional output is discussed later.

The inclusion of formatting information in the "syntax" of a

language may seem unusual, but in our notation, the lefthand (or

analysis) side of a rule is not so much a specification of what

the programmer will type as what will be seen. Thus, in a tradi-

tional batch-oriented compiler the user types

i_:=_i+l

which agrees pretty well with the syntax:

<var> := <exp>

In an SDE, however, the user types

a_i%+_i%#l%

and sees on the screen

i := i + 1

Thus the expression

% <var> := <exp>

is primarily used to determine how an 'asn' node is displayed

- 19 -

Where does the 'a' command, which calls for the creation of

an assignment statement, get defined? We can see this in the

rule for statements:

statement: 'b' <block>

I 'a 1 <assignment>

I

' i <if stat>

I

' w' <while>;

This is an example of an alternation . Whenever the user is in a

state where a 'statement 1 is expected the four alternatives shown

above will be available. One of these can be selected by typing

one of the command characters 'b' f 'a 1

, 'i' or 'w'. If 'a* is

typed then an uni ti

t

ial i zed 'asn' node will be created and

<var> := <exp>

will be displayed on a new line. If the user types a command

that is not allowed by the current alternation, then an error

indication is produced.

The construction of nodes is indicated by the right hand (or

synthesis) side of rules. Consider again the rule for assign-

ments :

<assignment> : % <var>_: =_<exp> => asn(D:<var>, S:<exp>);

The synthesis side, ' asn (D: <var> , S:<exp>)', says that this rule

generates an 'asn* tagged node with two attributes, called 'D'

- 20 -

and 'S' (for 'destination' and 'source'). The D attribute will

be a node constructed according to the '<var>' rule and the S

attribute will be a node constructed according to the ' <exp> '

rule.

The definition of an expression illustrates several i^eas:

<exp>: '+' <exp>+<term> => apply (op: "plus" , 1 : <exp> , 2:<term>)

I

'-' <exp>-<term> => apply (op: "minus" , l:<exp>, 2:<term>)

I

' ' <term>;

Here we see an alternation in which the command (or key) of the

last alternative is empty, i.e. ''. This is interpreted in the

following way: if a command character (for example '*') is

entered when the editor is expecting an <exp>, then it will be

compared against '+' and *-'. If it is neither of these (as is

the case in our example), the editor will check to determine if

it can be processed by a ' <term> ' (which it will be in our exam-

ple, see the definition of '<term>'). This "chaining" of rules

can occur to any depth.

Another facility is illustrated by the rule for ' <exp> '
:

notice that both the '+' and '-' commands generate an 'apply'

node. The difference is the operation applied in each case:

x^-y

las

c\pp}<

,
x-y

''"rniviui"

- 21 -

An attribute value that is a constant, that is, that isn't the

value generated by another nonterminal , can be defined by "attri-

bute : value" .

A number of modifiers can be appended to non-terminal names.

The simplest is the question-mark, indicating optionality, which

we see in the 'if-stat' rule:

<if-stat>: %if__ <relation> _then <sta tementXel se-par t?>

=> i f (cond

:

<relation> , conseq: <statement>,

alt: <else pa rt?>);

<else-part>: %else_ <sta tement)

;

The 'if 1 node generated by the '<if-stat>' rule has the following

form:

if

durs^r

The 'alt' attribute can be in one of three states of definition.

First, it can be open , which is the state any attribute is in

before it's created or after its deleted. Second, it can be

defined , which is the case if some statement has been entered as

the <else-part>. Finally, it can be closed , which is the state

when the user has elected to have no <else-part> to this state-

ment. If the current node is open, as indicated in the above

diagram, it can be closed through a carriage return command to

- 22 -

the editor. For instance, to enter

if i=0 then i : =1

;

we would type " i_i %=#0%a_i% ft IV and see

if i=0 then

i=l <else-part?>;

on the screen. An else part could now be entered directly, but

to suppress it we type *%' and see:

if i=0 then

i=l;

If we later wish to add an <else-part>, we can press the 'V key,

which opens the closed node. The display will show:

if i=0 then

i = l <else-part?> ;

as before. Thus the carriage return toggles a node between open

and closed status. One new feature can be seen in the definition

of <else-part>: there is no synthesis part. A rule of this form

is called an identity rule because the value returned by the rule

is the sane value as that returned by the one non-terminal in its

analysis part.

- 23 -

The open/closed dichotomy is also used to control the con-

struction of sequences. These are indicated by the '*', ' + ' and

'...* modifiers on non-terni nals.

The '+' modifier, which means one or more repetitions,

appears several places in the example grammar. The simplest is

the ' number ' rul e

.

<number>: <digit+> => num (val : <d iq

i

t+>)

;

The node that will ultimately be generated by this rule has the

form:
warn

or, in Lisp notation:

(num (val.(seq (l.dl) (2.d2) (n.dn))))

The di are the (one or more) digits allowed by the <digit+> in

the rule. When this rule is entered, we see

<digit+>

displayed on the screen. If we then enter the digits "512" we

will see

512 <digit+>

- 24 -

Notice that the display is prompting us to enter more digits.

That is, the sequence is still open . We can close it by typinq a

carriage return, in which case we see

512

If we wish to reopen this sequence, say to add the diqit '0', we

can use the carriage return again.

entered

%

%

d i splay

512

512 <digit+>

512D <digit+>

5120

The remaining non-terminal modifiers are simple variations of the

'+'. The '*' modifier (Kleene star) indicates zero or more

repetitions of the non-terminal. This can be seen in the rule

for blocks:

<block>: %begin_ <decl*Xsta tement ; . . . >_end

=> block (head

:

<decl*> , body : <sta tement ;...>)

;

'Jse is exactly like ' + ' except that a closing an empty sequence

is permitted for '*' but not for '+'.

The above rule also contains an example of delimited repeti-

tion :

- 25 -

Ota tement ; . . . >

This means: a sequence of one or more <sta temen t>s separated by

semicolons. The protocol for entering these sequences is the

same as for *+'; the display f ormat is different. Suppose a

function invocation is defined:

<func-call>: <id> (<exp, . . * >) => ;

and we wish to enter "f(X, Y-l)". Here is the command sequence.

commands display

_f% f (<exp>, . . .)

_X% f (X, <exp>, . . .)

-_Y%U% f(X f Y-l, <exp>,..)

% f(X, Y-l)

Of course, another carriage return would reopen the sequence.

Some additional language-independent facilities are provided

for editing sequences. These include the ability to extract or

delete a subsequence of an existing sequence, to insert such

subsequences within another sequence, and to add new elements

within sequences. These work on any sequences, whether they

represent sequences of statements, actual parameters or charac-

ters in an identifier.

- 26 -

One final modifier must be discussed, the prime. This does

not alter the meaning of a non-terminal, it is used just to dis-

tinguish multiple occurences of the same non-terminal. An exam-

ple is in the rule ' <rela tion> '

:

<relation>: <exp><relop><exp '

>

=> apply (op:<relop>, l:<exp>, 2: <exp'>);

This completes the discussion of the grammatical notation.

We should add that the fact that parsing is driven by commands

from the user means that there are very few restrictions on the

class of grammars usable. For instance, they can be either left

or right recursive. There is no need for look ahead. This

greatly simplifies the parsing process, since the user is driving

the parse through the commands entered.

6 . Processing the Grammar

In this section we will discuss the translation of the gram-

mar into the internal form used by the universal SDE. The gram-

mar as a whole is translated into an a-list that associates non-

terminal names with the data structures representing their defin-

itions. These latter structures are easily understood through

examples. Consider the rule for assignments:

% <var> _:=_<exp> => asn(S:<exp>, D:<var>);

The data structure representing this, in Lisp notation, is:

- 27 -

(
("%" (var) "_:=_" (exp)

)

(asn (D. (nt var)) (S. (nt exp)))

(((var). (D))

((exp) . (S))))

i.e.

ana
part

% (Vno -•=-

(r\t var) (nt exp)

Vt the outermost layer, we can see that a rule A => S is

•epresented by a three element list (A S D) , where D is the

'non-terminal dictionary". The analysis side is just a list of

:he representations of the terminals and non-terminals. Non-

:erminals with affixes are translated in accord with these exam-

- 28 -

pies

:

<else part?> =>

<exp'> =>

<exp' *> =>

<statement ; . . .

>

=>

(nt else_part ?)

(nt exp '

)

(nt exp ' *)

(nt statement : ";")

The synthesis side is represented by a fragment of program

tree in which non-terminals are represented by lists tagged 'nt'.

The third part of a rule is the non - terminal dictionary , which

must be generated by the grammar processor. This is an a-list

which associates each non-terminal appearing in the rule with the

path for reaching the corresponding subtree. The use of the

non-terminal dictionary is described in sections 7 and 8.

It remains to discuss the representation of alternations.

These are represented as tagged a-lists so that the appropriate

rule can be selected, given a command character. For instance,

the rule for statements:

w

is represented:

<block>

<assignment>

<if stat>

<while loop>

- 29 -

(ALT ("b". (((block)) nil))

("a" .(((assignment)) nil))

("i" . (((if_stat)) nil))

("w". (((while_loop)) nil)))

e 'nil' represents an identity-rule; otherwise the translation

exactly as described before. (I.e., (block) represents

lock>, so ((block)) is an analysis part containina only <block>

d (((block)) nil) is an identity rule with this analysis part.

sp notation does have its disadvantages!)

There are, of course, nore compact ways of storing the gram-

r, although most grammars are sufficiently small that these

chniques aren't required. It is also possible to improve the

rformance a little by constructing indexes or hash tables to

orten a-list searching. However, most of the a-lists are suf-

ciently short that this seems unlikely to show a great benefit.

The Unparsing Algorithms

In Section 2, Example Session , we presented several examples

the use of the display during program editing. We also dis-

ssed how the focus/depth parameters determine what is

splayed. In this section we will describe the unparsing alcro-

thms , the algorithms that regenerate the source form of the

ogram from its abstract, or tree, form.

- 30 -

Recall that each node has a 'syntax' attribute which points

to the grammar rule which generated this node. This pointer is

established whenever a node is created. An example, in diagram-

matic form is:

% <var> := <exp>
=> asn(D:<var>, S:<exp>)

hct
<i/ar> !

T)

<e*p> ! S

<char+> => id(n:<char+>

j.a.
<char+>! n

dich
<digit+> => num (val

:

<digi t+>)

<digi t+> • val

This provides all the required information. The LHS (e.g.,

"%<var>_:=_<exp>") provides the display format and the NT Dic-

tionary correlates attributes and non-terminal names e.g.,

(((var).(D))
((exp) . (S))) . Hence, unparsing a node is a simple

recursive procedure that proceeds as follows:

(1) Use the 'syntax' attribute to get the rule that gen-

erated the current node. Separate its analysis and dictionary

parts.

(2) Consider each item in the analysis part in order.

- 31 -

(3) If it is a terminal, then display it. This nay include

ing formatting commands (e.g., newline or tab).

(4) If it is a non-terminal, then one of two actions is

n, as described below.

(5) If the depth limit has been reached, then "
. .

. " is

layed for the substructure.

(^) Otherwise, look up the non-terminal in the non-terminal

ionary to get a path for accessing the node. Follow this

in the program tree.

(7) If the node found by the above process is a non-

inal (i.e., that attribute is undefined) then display the

terminal ' s name

.

(8) If the node found is not null, then it will be pro-

2d in accordance with the modifiers on the non-terminal:

(9) If there are no modifiers or an "option" modifier

'., '?') then the node is unparsed recursively (i.e., from

(1)).

(10) If there is a sequence modifier (i.e., '*' or *+')

t unparse each descendent of the sequence node, recursively.

(11) If there is a list modifier (i.e., ':* in list form,

in source form) then unparse each descendent of the

I'nce node, recursively. The delimiter is displayed between

I sequence element.

- 32 -

(12) This process is continued until the entire analysis

part is processed.

Thus, unparsing is driven by the analysis part of a rule.

8. The Parsing Algorithms

One of the advantages of using a syntax-directed editor is

that parsing is so much simpler than in a traditional batch-

oriented compiler. We will describe the processing that occurs

when a user strikes a key on his terminal. Before this can be

done, the reader must know that the current position in the tree

is recorded as a node/path pair, called CN and CP. For instance,

if the current position is the undefined 'S' attribute of a par-

ticular 'asn' node, (indicated by 4 below),

£N
CP OS')

cursor

then CN points to this 'asn' node and CP is (S). This two-

coordinate method of designating positions in the tree is used

because it is only allowable to position the cursor on nodes that

- 33 -

correspond to non-terminals (i.e., well-defined subparts of the

program)

.

Any key the user strikes is either a language independent

executive command or a language specific editing command. The

executive commands will be described first. The user is only

allowed to position the cursor to nodes which correspond to

source language constructs (i.e., to non-terminals in the gram-

mar). When using the positioning keys (—> «— ^ v) any other

nodes are skipped.

This can be done by using the non-terminal dictionary. This

is an a-list which maps non-terminals into the corresponding

paths. It is stored in the order in which the non-terminals

occur in the LHS. Suppose we have the following non-terminal

dictionary for an if statement:

(((relation) . (cond))

((statement) . (conseq))

((elsepart?) . (alt)))

If CP = (conseq), then it is easy to process either =» or

4=. For =» we set CP to (alt) and for 4= we set CP to (cond) .

If there is no attribute to the right or left, respectively,

these commands are equivalent to .^=S> or b<= respectively. That

is, they search for the next component at the next higher level.

The V key is processed in a simple way: follow the CP path from

- 34 -

CN to give the new CN. The path from the first entry of the

non-terminal dictionary associated with this new node becomes the

new CP. To obey the ^ key, the 'self' attribute of CN must be

accessed. This gives the new (CN, CP) pair. e.g.

4Sn

IP M
id

n y\
«x »

-

r^r^n

va

Ca)V)

CN = the 'asn'

CP = (S 1)

CN = the ' if*

CP = (alt)

Typing ^ moves from 1» to 2P. The new (CN, CP) is (the if, alt),

the 'self attribute of the old CN.

The other executive commands (delete, grab, put, copy,

open/close, etc.) are straight forward manipulations of the tree.

- 35 -

We will now consider those keys that do not correspond to

executive commands. These are keys that are defined in the gram-

mar for the language. Since these keys cause the creation of

nodes in the program tree, they are only legal if the current

position is undefined or an open sequence. If it is undefined,

then the key is processed as follows:

(1) Access the 'syntax' attribute of CN. This gives the

rule that generated the parent node of the current position.

(2) Search the non-terminal dictionary of this rule for CP,

that will give the non-terminal associated with the current posi-

tion.

(3) The key entered must be compatible with this non-

terminal. There are six possible classes into which this non-

terminal may fit:

1. Primitive, e.g., <char>, <digit>, <letter>.

2. Simple, e.g., <block>, <exp>.

3. Optional, e.g., <else part?>

4. Star, e.g., <decl*>

5. Plus, e.g., <digit+>

5. Listing, e.g., <statement ; . . . >

These are described individually, below.

- 3* -

(4) Primitive: if the character is in the indicated class

(e.g., <digit> or <letter>) then it is placed at the current

position in the tree.

(5) Simple : The rule corresponding to the non-terminal '

s

name is looked up in the grammar table. This either an

analysis-synthesis rule or an alternation a-list. (a) Suppose we

have a simple analysis-synthesis rule. If it is an identity rule

(null synthesis part) then we extract the non-terminal name from

the analysis part and repeat step (5). Otherwise we create the

node specified by the synthesis part, set the current node

(CN/CP) to be this node, and continue from step (1). (b) If, on

the other hand, we have an alternation a-list then we look up the

command character in this a-list. If it is defined then this

will give us an analysis synthesis rule to be processed as in (a)

above. If it is not defined, then we check for r> default alter-

native, and if its found process according to (a). In all other

cases the command is illegal.

(5) Optional : The character is processed according to the

underlying non-terminal (<else part> in the example above). See

step (5) .

(7) Star : If the current position is undefined, then create

an empty 'seq* (sequence) node. If it was undefined or not,

ensure that the element of the sequence is undefined by adding a

new list element if necessary. Process the key according to the

- 37 -

underlying non-terminal ('<decl>' in the example above).

(8) Plus and Listing : these are processed exactly like the

star, except that they are unparsed differently.

9. Implementation Details

A prototype implementation of the algorithms described in

this paper has been implemented in the MACLISP T7, 141 dialect of

LISP on MIT's Multics machine. The use of LISP allowed the

author to implement and debug the system in about 15 hours over a

week period. The use of LISP in an interactive environment is to

be credited with the speed with which these algorithms were

debugged

.

A similar system has been designed by Shockley and Haddow,

which is described in [9]. This system is more general but

requires the grammar to be described at a lower level. This

thesis also provides a theoretical basis for grammar-driven edit-

ing and discusses the wider implications of SDEs.

10. Impl icat ions

We review some of the results of the previous sections and

discuss their implications. We have seen that a syntax-directed

editor is much more effective for program entry than a conven-

tional text editor. The user is continually prompted with the

allowable syntactic category and is not allowed to enter a

- 38 -

syntactically incorrect program. Further, the user is provided

with convenient editing mechanisms because the editor "under-

stands" the structure of the programming language. There are no

complicated parsing algorithms and no concerns about look ahead,

because the parsing process is entirely driven by keyboard com-

mands from the user. There is no need for complicated error-

recovery algorithms because the user is never permitted to make a

syntactic error. Thus, we have a small, efficient, very easy to

use parser.

Syntax-directed editors of the kind discussed in this paper

are very easy to generate automatically. The grammatical specif-

ication is about the minimal possible: a BMF specification of

the syntax, translation rules describing the trees to be gen-

erated for each construct, and an association of command keys

with grammar rules. A small amount of additional processing gen-

erates the internal tables required by the simple parsing and

unparsing algorithms. It is also simple to process this informa-

tion to generate menus and other editing aids. In summary, it is

very easy to generate syntax-directed editors. Hence, we seem to

have the best of both worlds: a system which is easy to use,

efficient in operation and simple to generate automatically.

Finally, we note some of the generalizations and future

directions suggested by this work. As was indicated briefly,

earlier, the use of a language independent program tree format

provides for a limited ability to translate between languages.

- 39 -

For instance, a tree could be constructed using a Pascal syntax

and then unparsed using an Ada syntax. For this purpose the

grammar is processed to yield an inverted description, that takes

node types into the syntax rules that generate them. This is

used to build new 'syntax* attributes in the program tree.

A more general view of a syntax-directed editor is that it

is a convenient human interface for constructing data structures.

In our previous discussion the interface was a programming

language and the data structure was a program tree, but it should

be clear that the mechanisms are more generally applicable. For

instance, the data structure to be manipulated might be a user's

file directory. Ideas similar to this are discussed in [1].

Although a major application of syntax-directed editors will

be the manipulation of conventional linearly structured

languages, such as Pascal and Ada, we can see that they are not

limited to languages of this sort. With somewhat more elaborate

formatting constructs in the grammar, these same algorithms can

be used for parsing and unparsing tables, mathematical equations

and other two dimensional notations. The old card or line

oriented notion of a language's syntax is no longer necessary.

11 . Acknowledgements

Many of the ideas described in this report were developed in dis-

cussions with Bill Shockley and Dan Haddow in conjunction with

- 40 -

their thesis research [9]. Their project and the development of

their system helped stimulate the work described here.

12. References

[1] Fraser, C.W., A generalized text editor, CACM 23 , 3 (March

1980), 154-158.

[2] Holloway, G., Townley, J., Spitzen, J., and Wegbreit, B.,

ECL Programmer ' s Manual , Center for Research in Computing

Technology, Harvard University, December 1974.

[3] Learning Research Group, Personal dynamic media, IEEE Com-

puter Magazine , March 1977, 31-41.

[4] MacLennan, B.J. Prototype Linear Argot System Users '

Manual , June 1978, available from author.

[5] MacLennan, B.J. Semantic and Syntactic Speci f ication an^

Extension of Programming Languages , Purdue University PhD

Dissertation, December 1975.

[6] McCarthy, J. et al., LISP ^.5 Programmer ' s Manual , The

M.I.T. Press, 1959.

[7] Moon, D. MACLISP Reference Manual , Version 0, MIT Labora-

tory for Computer Science, Cambridge, Mass., April 1974.

Parts 1, 2, and 3 revised 1978.

[8] Notkin, D.S. and Habermann, A.N., Software Development

Envi ronment Issues as Related to Ada , Carnegie-Mellon

- 41 -

University Computer Science Department, 1979.

[9] Shockley, W.R. and Haddow, D.P., A Conceptual Framework for

Grammar - Dr iven Synthesis , Masters thesis, Computer Science

Department, Maval Postgraduate School, December 1980.

r 1
"J

Teitelbaum, T. and Reps, T. , The Cornell program syn-

thesizer: a syntax-directed programming environment, CACM

2_4, 9 (September 1981), 563-573.

[11] Teitelman, W., A Display Oriented Programmer ' s Assistant ,

Xerox Palo Alto Research Center, CSL-77-3, March 1977.

[12] Teitelman, W. , et al., Inter 1 i so Reference Manual , Xerox

Palo Alto Research Center, December 1975.

[13] Tesler, L. The Smalltalk environment, Byte

1981), 90-147.

(August

[14] Winston, P.H. and Horn, B.K.P. Lisp, Addison Wesley, 1981.

- 42 -

APPENDIX: vinictol Translator

Minigol: <block>;

<block>: %begin_<decl*> <sta tenent ; . . . >_end

=> block (head: <decl>*, body: <sta tenent ;...>) ;

<decl>: <type>_<id> => decl(n: <id>, t:<type>);

<type>: 'n' integer => int()

I 'r' real => real();

<statenent>: 'b' <block>

I

' a ' (assignment)

I

' i <if stat>

I
'w 1 <while loop);

<assignment> : %<var> _:=_<exp> => asn(D:<var>, S:<exp>);

<if stat>: %if_ <relation> _then (statement) <else part?>

=> if (Cond

:

<relation>, Conseq : (statement) , Alt: <else part?>);

<else part>: %else_ (statement);

<while loop>: %while_ <relation> _do (statement)

=> whi le (Cond

:

<rela tion> , body : (statement))

;

<relation>: <exp>_<relop>_<exp '

>

=> apply (op: <relop> , l:<exp>, 2:<exp'>);

<relop>

:

t =>

"eq M

- 43 -

I

'>'

I

'1'

•g'

> "It"

> "gt"

> "le"

> "ge";

<exp>: '+' <exp> + <term>

=> apply(op: "plus", l:<exp>, 2:<term>)

I

'-' <exp> - <term>

=> apply (op: "minus" , l:<exp>, 2:<tern>)

I

' ' <term>;

<term>: '*' <term>*<f actor>

=> apply (op: "times" , l:<term>, 2:<factor>)

I
'/' <term>/<factor>

=> apply (op: "over " , l:<term>, 2:<factor>)

I
" <factor>;

:factor>: '
(

' (<exp>)

I

' ' <primary>;

primary): '#' <number>

I '
' <var>;

var>: '_' <id>

I
'[' <id> [<exp>] => subs(a:<id>, i:<exp>);

id>: <char+> => id(n: <char+>);

number): <digit+> => num(val: <digit+>).

-44-

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2

Cameron Station
Alexandria, VA 22314

Dudley Knox Library 2

Code 0142
Naval Postgraduate School

Monterey, CA 93940

Office of Research Administration 1

Code 01 2A
Naval Postgraduate School

Monterey, CA 93940

Chairman, Code 52Bz 40

Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

Professor Bruce J. MacLennan, Code 52M1 12

Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

Bill Brown 1

Intel Corporation
Aloha, OR 97005

John Banning 1

Zylog Corporation
10460 Bubb Road
Cupertino, CA 95014

Jeffrey D Liotta 1

Amdahl Corporation
1250 E. Arques Avenue
PcOo Box 470
Sunnyvale, CA 94086

Susan L. Graham 1

Editor in Chief, T0PLAS
Computer Science Division - EECS
University of California at Berkeley
Berkeley, CA 94720

Christopher W. Fraser 1

Department of Computer Science
The University of Arizona
Tuscon, AZ 85721

Tim Teitelbaum
Department of Computer Science 1

Cornell University
405 Upson Hall
Ithaca, NY 14853

U198905

°
n°

L

m
KN°X UBRARV - RESEARCH REPORTS

5 6853 01057736 4

Ul * U 7

