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0. Background

This report is one of a series of studies stemming from

current research on electrohydrodynamic (EHD) power genera-

tion, sponsored by the Department of Energy. A certain EHD

scheme proposed by the Marks Polarized Corporation is presently

under development. The authors of this report have partici-

pated as consultants on various theoretical and analytical

aspects of this effort. One of our main objectives has been

to make an independent appraisal of the performance possi-

bilities and limitations inherent in the general type of EHD

system involved in this development. Another objective has

been to create a sound analytical basis for optimizing the key

design parameters of such a device, and to suggest design

improvements where appropriate.

The results of our first study are reported in detail in

Ref. (1) and are summarized more concisely in Ref. (2). This

work indicated that the design as initially proposed would

yield unacceptably poor performance and suggested a certain

design revision. Further work was done to analyze such a

revised design and is reported in the appendix of Ref. (1).

An improved, simplified and shortened version of this work is

reported in Ref. (3). Unfortunately, our results indicated

that the revised design, wnile showing somewhat improved per-

formance, still would not attain competitive overall efficiency

The Marks Polarized Corporation nas challenged these

pessimistic conclusions. They argue that in our analysis



the compressibility of the medium was not taken into account

and that if it had been, the predicted performance would have

been drastically improved. We have good reasons to conclude

that Marks' argument about compressibility is fallacious. In

the first place our analysis did consider all of the major

effects of compressibility; only certain minor effects in one

part of the system were neglected in order to simplify the

calculations. While a more elaborate and accurate treatment

of these neglected effects is certainly possible, we maintain

that this refinement will not suffice to change the generally

pessimistic conclusions established in our original analysis.

Fortunately, this difference of opinion between ourselves

and the Marks Polarized Corporation pertains to a question of

fact about which it is entirely possible to obtain objective

evidence. To this end we present in this report a revised

and improved analysis which takes all compressibility effects

exhaustively and minutely into account. Calculations based on

this revised analysis should eventually settle the above

question one way or the other. A typical trial calculation is

presented later in this report. This initial calculation has

been made manually, but systematic further work will be done by

computer. The full results and conclusions derived from these

calculations will be reported later.

It has also been conjectured by Marks and others that it

might be possible to improve greatly the performance of the



EHD generator by employing a two-fluid cycle. We therefore

present in this report a detailed analysis and procedure by

means of which the performance of any specified two-fluid EHD

system can be calculated. Our analysis takes into account

fully the compressibility of both fluids at all locations in

the system.

We propose to undertake systemic computer calculations

of this kind which should enable an objective assessment to

be made of the performance potentialities and limitations of

several proposed two-fluid EHD generators. Such results would

be of great value in helping decide whether the two-fluid EHD

generator shows sufficient promise to warrant further develop-

ment effort and, if so, what the optimum design point values

of the key parameters should be.

As far as we know, the present report is the only pub-

lished analysis of the two-fluid EHD generator which includes

the compressibility of both fluids and which considers the

complete thermodynamic cycle. The principal earlier effort

along tnese lines is given in Ref. (4) , but the present report

goes well beyond anything undertaken in Ref . (4) . In particu-

lar, Ref. (4) makes no attempt to analyze the complete thermo-

dynamic cycle. Moreover, although it contains certain useful

data and is correct in some respects, Ref. (4) is flawed by a

number of serious errors.



While the present report is otherwise self-contained, it

does assume that the reader has a general familiarity with the

type of EHD power generator described in Refs. (1) , (2) and

(3). It is recommended that the reader unfamiliar with this

general scheme first review briefly the introductory material

in the first section of any one of these references before

proceeding with the more detailed treatment in this report as

this earlier background information is not covered or repeated

in the present report. We do, however, include here a schema-

tic diagram, Fig. 0.1, which is taken from Ref. (3). It

illustrates one particular version of an EHD power generator.
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1. Introduction

For purposes of analysis, the overall thermodynamic pro-

cess in the two-fluid EHD generator may be represented by the

schematic flow diagram shown in Fig. 1.1.

Primary fluid enters the ejector at station 1, secondary

fluid enters at station 2 and the mixture leaves at station 3.

The mixture then passes through a diffuser, process 3-*4,

the basic purpose of which is to reduce the kinetic energy of

the flow and thereby decrease the associated friction losses

downstream of the diffuser. On the other hand the diffuser

introduces certain losses of its own so that some care is

necessary to optimize the design in this respect.

The gas mixture then passes through the electrical power

section, process 4+5, from which the gross electrical power is

extracted.

Finally, the gas mixture enters the condenser/separator

at station 5. The primary fluid is separated from the gas

mixture by condensation and leaves at station 6. The fluid at

this point is assumed to be compressed liquid at a known static

pressure P
g

and a known static temperature T
fi

. Kinetic

energy at station 6 is regarded as negligible. The secondary

fluid leaves the condenser/separator and enters the ejector at

station 2. We assume, moreover, that

and

P
6

= P
2

= P
x

(1.1)

T
6

= T
2

(1.2)
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The primary fluid which leaves the condenser/separator

at station 6 is circulated back through the pump and through

the boiler/superheater, process 7+1.

It should also be explained that the primary fluid at

station 1 is a condensible vapor of high molecular weight

which contains fine liquid droplets. Unless specifically

stated otherwise the quality z at this location is taken

as 0.95. The important thermodynamic static properties at

station 1 can be expressed in the following form.

h, = h
f

+ z h
f

Enthalpy (1.3)

s, = s.p + z s
f

Entropy (1.4)

Here subscript f denotes the saturated liquid and subscript

fg denotes the change between saturated liquid and saturated

vapor. All properties are evaluated at a specified pressure

P, ; the corresponding saturation temperature T, is then

also known.

The corresponding stagnation properties T , and h ,

are fixed when the stagnation pressure P -, is specified.

Of course the entropy has the same value s, at the stagna-

tion condition as at the corresponding static state. Thus

specification of P , and s, suffices to fix all othere si 1

stagnation properties.

While it is convenient to start the analyses by stipula-

ting the quality at station 1, it is also advisable later in

the calculation to determine the corresponding quality at



station 4, the entrance to the electrical working section.

It is essential that the fluid entering the working section

contain finely dispersed liquid droplets of the proper size.

These droplets carry the electrical charges that are the

central feature of EHD power generation. We assume tentatively

that acceptable droplet characteristics are obtained by

maintaining the quality at the inlet to the working section

in the range 0.92 to 0.98. These limits are only estimates.

The thermodynamic analysis would be greatly simplified

if both fluids were perfect gases with constant specific

heats. In fact only the secondary fluid satisfies this re-

quirement. Nevertheless, we can define an "equivalent perfect

gas" which adequately approximates the essential thermodynamic

properties of the primary vapor/liquid mixture. When carried

out judiciously, this procedure simplifies the analysis at the

5
cost of only a small loss in numerical accuracy .

The ratio of specific heats y of the "equivalent perfect

gas" may be deduced from the important relation

Yi/CYi ~ 1)

(P
al

/P
l

) = (T
sl

/T
l

} (1 ' 5)

Solving this for y, gives

,-1

Y l
= _ *n(Tsl/T l>

*n(P
sl

/P
l

)
(1.6)

Another fundamental property of the "equivalent perfect

gas" is its specific heat C , which may be evaluated from

the expression



<h
sl - h

i>
Cpl (T

gl
- T

x
)

(1 * 7)

where all quantities on the right are now known.

It then follows from standard perfect gas relations that

the gas constant R, and the molecular weight W, of the

"equivalent perfect gas" are, respectively,

"l-ftrrv'ri (1 - 3)

and

w = I (1-9)
1 R

i

where R = universal gas constant

= 8315 joules/kg °K

Eqs. (1.6) through (1.9) complete the definition of the

"equivalent perfect gas" which adequately simulates the essen-

tial thermodynamic properties of the primary vapor/liquid

mixture.

It should also be explained that the secondary fluid at

station 2 is predominantly a noncondensing gas of low molecu-

lar weight primary vapor.

It can be shown that the mass ratio oj of condensible

primary vapor to dry secondary gas at station 2 is given by

the expression

Wv W
" = ^ip 2

- wj (1 - 1)

10



where

W = true molecular weight of condensible vapor (not to

be confused with the "equivalent molecular weight

W-," considered earlier)

W„ = molecular weight of noncondensing gas

P (T
fi

) = vapor pressure of condensible primary fluid at known

temperature TV

P~ = known static pressure at station 2

The present analysis is restricted to conditions under

which co is very small compared with unity and may be neglec-

ted. Thus the fluid at station 2 may be treated as dry gas.

This greatly simplifies the analysis. Eq. (1.10) is useful for

verifying that this assumption is indeed satisfied in any par-

ticular instance.

It should be added that if it later becomes of interest

to make calculations for circumstances under which parameter

oo is not negligible, the present analysis can in fact be

generalized to include this effect. For the present, however,

we prefer to deal only with the simpler situation in which co

may be neglected.

11



2. Ejector

The ejector receives a primary stream of high molecular

weight gas at station 1, a secondary stream of low molecular

weight gas at station 2 and discharges the resulting mixture

at station 3. Static conditions at these three stations are

designated by subscripts 1 , 2 , 3 . Stagnation conditions

at the corresponding stations are designated by subscripts

si , s2 and s3 .

The following quantities are arbitrarily specified or

known at stations 1 and/or 2, namely,

Molecular weights: W, and W
2

Ratios of specific heats: y-i and y 2

Stagnation pressure of primary jet: P ,

Stagnation temperature of primary jet: T ,

Static pressures: P, = P
2

(= P
g )

Static temperature of primary jet: T, (= saturation tempera-

ture of primary fluid at pressure P,)

Static temperature of secondary jet: T~ (= T
fi

)

Mass flow ratio: m,/m~ = m,/(m, + nu) = x

Velocity ratio: v -]/vo
= ^

We treat the fluids at stations 1, 2, 3, 4 and 5 as per-

fect gases with constant specific heats.

The velocity ratio of the ejector may be developed as

follows:

li - v - !i ^ J T i
R
i

T
si

M
i _i ,, ,,

V
2

y a
2

M
2
-W T 2

R
2

T
2 A

|T
sl/Tl

• M
2

12



We can now use this result and other standard perfect

gas relations to complete the calculation of key thermody-

namic properties at stations 1 and 2. It is convenient to

arrange these calculations sequentially as follows

:

M
i = VTTT^-rr (*r

'

')
(2 - 2)

M
2 =

(

V

$
II

R
l

T
sl

M
l

Y 2
R
2

T
2 U

T
sl

/T
l

(2.3)

^«s2 "^2 " 2

ff ' 1+ "iT- M
2

(2 - 4 '

T
s2 " T

2
(T s2/T2 ) (2 - 5)

(2.6)

P
S 2 = P

2 (gf)
(2 - 7 »

Before we can determine the actual conditions at station

3, the outlet of the ejector, it is first necessary to analyze

two other hypothetical cases as indicated schematically in

Fig. 2.1. In all three of these cases the flow is taken as

steady and adiabatic.

The first case, that shown in Fig. 2.1(a) , involves a

hypothetical device which receives two gas streams at stations

1 and 2 and discharges the resulting mixture at station x . In-

let conditions at 1 and 2 are identical to those of the actual

ejector.

13



w
(l-x)

©

Hypothetical Minimum

Loss Device

(a)

©

© ^

(?) **V (l-x)

©

Actual Ejector

(c)

©

Fig. 2.1 COMPARISON OF ACTUAL EJECTOR WITH IDEAL
EJECTOR AND WITH HYPOTHETICAL MINIMUM
LOSS DEVICE.
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Recall that the adiabatic mixing of two different gases is

an inherently irreversible process that always involves a cor-

responding entropy increase. We stipulate that the first case

is such that the only irreversibility which occurs is that asso-

ciated with this mixing. We term this mass mixing to distin-

guish it from another type of mixing considered below which we

term momentum mixing.

The second case, that shown in Fig. 2.1(b) , involves an

ideal ejector which receives two gas streams at stations 1 and

2 and discharges the resulting mixture at station y. Again,

the inlet conditions at 1 and 2 are identical to those of the

actual ejector. This case satisfies, among other relations, the

idealized one-dimensional momentum equation for frictionless

,

constant area flow. It can be shown that in this case there is

an overall entropy increase which includes not only the previ-

ously mentioned effect of mass mixing but also a further increase

associated with momentum mixing.

The third case, that shown in Fig. 2.1(c) , represents the

actual ejector itself which receives input streams at stations

1 and 2 which discharges the resulting mixture at station 3.

All three of the above cases refer to constant area pro-

cesses in the sense that

A
x

= A
y

= A
3

= (A
1

+ A
2

) (2.8)

Once the hypothetical operating conditions at stations x

and y have been found, it then becomes possible to express the

15



corresponding actual conditions at station 3. This is accom-

plished through the use of an ejector effectiveness n F .

This parameter is defined more explicitly in the later analysis.

Values of x)„ must be estimated by reference to test data on

ejectors (i.e., Ref. 6, 7, 8).

16



3. Adiabatic Mixing of Two Streams

The process in the ejector is treated as the adiabatic

mixing of two streams. The following relations can be shown

to apply.

R = 8315 Joule/kg°K (3.1)

R^f- (3.2)

R
2
=|- (3.3)

R = R = R. = x R.. + (1 - x) R. (3.4)X y 3 1 2

(3.5)c
pl

=
Y
l

R
l

<*1 - 1)

C
P2

=
Y 2

R
2

(Y
2

- 1)
(3.6)

C=C =C, = xC, + (l-x)C n (3.7)px py p3 pi p2

c
3

^x - ^y = ^3
=

(C
p3

P
- R

3
)

(3 ' 8)

Tsx = T
sy " T

s3 - C^ [X C
P 1

T
sl

+ U r X) C
P 2

T
s2 ] ^'^

Ax = A = A
3

= (A
x

+ A
2

) (3.10)

Notice that the quantities R , C , y , T and A all*
p s

have the same values at stations x, y and 3.

This fact may be used to simplify many of the subsequent

expressions. It is always permissible to substitute subscript

3 for subscripts x or y on any of these quantities.

17



4. Mass Flow

It is convenient temporarily to omit station subscripts

1, 2, 3, x, y and thereby develop certain needed mass flow

relations in generalized form. Thus the mass flow across an

arbitrary station may be written and developed as follows.

m = pAV = ( |^j A (/7RT m) = PAM^
P .A
s

T /T
s

Vrttt <Vp >

M (4.1)

This may be rewritten as

P A
m = —- f (M)

JM^y
(4.2)

where the auxiliary function f(M) is defined as follows.

It /t
f(M) = V7PT M = M i + (1^-i) m^

(Y + 1)

2(Y - 1)

(4.3)

Eq. (4.2) can be applied specifically to stations 1, 2,

x, y, 3 as follows

P A
m, = S1 L f(M

n
)

' 1 sl/y l

(4.4)

P , A
m, = -—^i—±- f(M )

2 s2' ' 2

(4.5)

18



P A-

K = SX
f (M) (4.6)

^R3
Ts3^3

P A
m = ^ — f(M ) (4.7)
"

V*3 Ts3^3
y

P - A
A 3 = S

\
f(M

3
) (4.8)

VR 3
Ts3^3

also

m
m~l - x (4.9)m
3

± = ± = * = m + ft. (4.10)x y 3 1 2

From Eqs. (4.4), (4.5), (4.9) and (4.10) we readily find

that

'tk\ - x /
P
S2\ /

R
l

T
sl Y2

f(M2>
A
2 )

' TT^1̂
\
P
sl//

R
2

T
s2 ~1W

Then from Eq. (2.10) we infer also that

(4.11)

\\ (A^)
A
3 / "(1 + A

1
/A

2
)

(4.12)

Since all quantities on the right side of Eq . (4.11) are

now known, Eqs. (4.11) and (4.12) fix the area ratios at/A2

and A /A_ .

From Eqs. (4.5), (4.6), (4.9), (4.10) and (2.8) we deduce

further that

19



(1 - A /A ) /P \ R T - y

«V "^r^ (fg)J*^ f "* (4 - 13)

All quantities on the right side of Eq. (4.13) except

P are now known. The method of determining P is ex-
sx 3 sx

plained in a later section; refer to Eq. (5.15). Once P
S X

has been found, Eq . (4.13) fixes f(M ) whereupon Eq. (4.3)

fixes M itself. The solution of Eq. (4.3) for M when

f(M) is known involves an iterative procedure which is ex-

plained later in this section.

From Eqs. (4.6), (4.7), (4.8) and (4.10) we also find that

P f(M ) = P f(M ) = P , f(M_) (4.14)
sx x sy y s3 3

Assuming P and M known, this relation along with Eq. (4.3)SX X

fixes P when M is specified; it also fixes f(M_) and
sy y 3

M_ when P -> is specified. The methods of calculating M
3 s3 r

y

and P -. are explained later; refer to Eqs. (6.8) and (7.14) .

Fig. 4.1 is a rough sketch of the function f(M) as defined

by Eq. (4.3) . This function vanishes at M = and at M = « .

The maximum value occurs at M = 1 and equals

( Y + 1)

,.|2
fmax Y + 1

2(Y ~ 1)

(4.15)

It is clear from the figure that in the range 0<f< f „., ,3 max

Eq. (4.3) has two positive real roots, one subsonic and the

other supersonic. Usually the supersonic root must be discarded

because it is not consistent with a further constraint imposed

by the second law of thermodynamics.

20
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f(M)

M >

Fig. 4.1 APPROXIMATE SKETCH OF FUNCTION f(M)

21



In order to solve Eq. (4.3) for M when values of f

and y are specified, we utilize an iterative procedure based

on Newton's method. Let M denote the nth trial value of
n

M . We then define a function F(M ) and its derivative
n

i

F (M ) as follows,
n

F(M )n
= f 1 + Y - 1 M

n

(Y + l)

2(y - l)
- M

n
(4.16)

F* (M )n
f(i^ M

n
1 + Y - 1 M

n

(3 -

2TT=
Y)
T7

- l (4.17)

The (n + l)3t trial value of M may now be taken as

F(M )

M, ,v = M„ -
!

n
(n + 1) n

(4.18)
F (M )n

The cycle of calculations defined by Eqs . (4.16) , (4.17)

and (4.18) is repeated until the result for M converges to

a stable value at the desired level of accuracy.

Thus

M = Him M

n (4.19)

It is readily apparent that the value of M so obtained

satisfies Eq. (4.3) for the prescribed values of f and y .

22



5 . Entropy

Consider the case shown in Fig. 2.1(a). The specific

entropy s of the discharged gas may be expressed in the

form

sx
= x

*pl
X

r. I |5
xl

n

+ (1 - x) C in
p2 2 n

x2
(5.1)

where P , and P are the partial pressures of the two com-xl x2

ponents of the gas mixture. Symbols P and T denote the

pressure and temperature of the ambient atmosphere. The en-

tropy of each component is assigned the value zero at this

reference state P , T
o o

Incidentally, the primary fluid, being condensible, might

well exist only in the liquid state at the reference condition

P , T . Nevertheless, so long as it is in the gaseous state
O O ' z> z>

at station x , Eq. (5.1) may still be used.

The partial pressures of the two components are propor-

tional to the respective mol fractions. Hence

xl
X R

1

X R + (1 - x)R
2

X R. /P
_1 / X

(5.2)

x2 (1 - x)R
2

x R
x

+ (1 - x)R
2

(1 - x)R,

rT
X

(5.3)

23



Upon substituting Eqs. (5.2) and (5.3) into (5.1) and

simplifying we may obtain the result in the form

s
x

s
m

+ C
p3

£n
(¥) - R

3
£n

(**) (5 - 4 »

where

s^ = R In R
3

- x R
x

£n (x ^) - ( 1 - x)R
2

£n [(1 - x)R
2

]

(5.5)

It can be shown that this quantity s represents them c

entropy increase associated with the mass mixing of the two

different gases.

Moreover, since the entropy of the stagnation state s

is by definition identical to that of the corresponding static

state x , we may replace T and P in Eq. (5.4) by T

and P , respectively. Thus we obtain

s
x = sm + C

p3
tn

(ff) " R
3

£n
(If)

(5 - 6)

In previous studies of this series, we have considered

only the special case in which the same fluid is employed for

both the primary and secondary streams. In that case we have

R
±

= R
2

= R = R (5.7)

C,=C =C, = C (5.8)
pi p2 p3 p

y 1
= Y 2

= Y 3
= Y

( 5. 9)

Moreover, in this special case there is no mass mixing, so

that we must set
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s = (5.10)m

Consequently, Eq. (5.6) now simplifies to

s
x

= o+ c
P

*n (H - R£n (iH <5 - ii)

Next reverting to the case of two different gases, let

At denote a ,time interval during which unit mass crosses

station x . During this same interval x units of mass cross

station 1 and (1 - x) units of mass cross station 2. The

entropy which leaves across station x must equal the entropy

which enters across stations 1 and 2 plus the entropy increase

caused by the mass mixing. Thus

s =s + x s, + (1 - x)s~ (5.12)
x m 1 2

where

s
i

= V ln C^r) ' R
i

*n l^
1
)

(5 - l3)

s
2 " C

p2
£n

(ff)
" R

2
ln

(Jf)
(5 - 14)

Upon eliminating s between Eqs . (5.6) and (5.12), we
A

find that s also cancels from the result. It is then a
m

simple matter to solve for the exit stagnation pressure in the

form

*n (H = k i

c
P 3

*n Gn - * s
i

- (1 - x)s
2 }

<5 - i5)
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Thus the sequence defined by Eqs . (5.13), (5.14) and

(5.15) now fixes P . Next referring back to Eq. (4.13),

we can calculate the value of f (M ) ; finally, from Eqs.
A

(4.16), (4.17), (4.18) we can calculate M itself. Once
ft

P , T = T and M are known, it is a simple matter to
sx sx s3 x r

calculate the corresponding conditions P , T from the
X X

usual perfect gas relations.
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6. Momentum

Consider the idealized one dimensional constant area

ejector shown in Fig. 2.1(b). The momentum equation for this

system may be written

(p
l

+ p l
V
1
2)A

1
+ (p

2
+ p

2
V
2
2)A

2
= (P

y
+ p

y
V
y
2)A

y
(6>1)

The mass conservation relation for this system can be

expressed in the form

Pl h \ . »2 *2 V
2 .

p A v (6 . 2)
x (i - x) y y y

Let us divide the three terms of Eq. (6.1) by the corres-

ponding three terms of Eq. (6.2). Notice that the areas can-

cel out of the result. In this way we obtain

(Pl + Pl v,
2

) (p
2

+ p 2
v
2

2
) _ ( Py + p

y
v
y
2

)

Pl V
l

( }

P 2
V
2 " ^ V

y

(6.3)

Temporarily dropping the station subscript, we next deve-

lop the typical term of Eq. (6.3) in generalized format as

follows.

(P ± pV2
) u

[P * h ( ^ RT)M2
] = FT (1 + YM

2
)

pV L, /Trt m v Y m /t-7t
RT '

s'

JRTRTS (1 ± YM
2

)

(6 ' 4)

Observe that the pressure P cancels from the result.

It is convenient to define the auxiliary function
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g(M) - 5- A + (3L-I_Jl) M
2

(6.5)
(1 + yM )

With this notation Eq. (6.3) may be rewritten in the

form

x /
R
l

T
sl (1 - x) 7*2 T

s2 1 7*3 T
s3

glM]T/ y x
'

+
gTMp / y 2

glM^T / y
3

(6,6)

Rearranging gives

7*3 T
s3 i x Al T

_sl (1 - x)
g(V " / y

3 7TV / y 1
"gTM^T

Since all quantities on the right are known, Eq. (6.7)

fixes g(M ) . Then M itself can be found by inverting
y y

Eq. (6.5). Fortunately, an explicit solution is possible in

2
this case as Eq. (6.5) can be reduced to a quadratic in M

The result is

,2 _ (1 - 2 Y g
2

) ± /l - 2(y + D g
:

1 - Yd ~ 2 Y g
2

)

M* = vx M^ - yx " v

jj
Z ±12 (6.8)

The general character of the function g(M) is sketched

in Fig. 6.1. Notice that g(M) vanishes at M = , reaches

its peak value g at M = 1 , and decreases toward thev ^max

limit g as M-*» . It can be shown that

g = (6.9)maX
^2( Y + 1)

-\/^^ <«•">
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t
g(M)

M

Fig. 6.1 APPROXIMATE SKETCH OF FUNCTION g(M)
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Fig. 6.1 discloses the existence of a supersonic root over

the range g <g<g „ , . This root should not be accepted until

a check calculation is made to determine whether the result is

consistent with the second law of thermodynamics. The subsonic

root is found by retaining only the negative sign before the

radical in Eq. (6.8).

Once M has been found from Eq. (6.8) , the corresponding

value of P may be found from Eqs . (4.3) and (4.14). This
sy J

suffices to fix all properties at states y and sy .
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7. Availability

The entropies s
1

and s~ of the two input streams

were defined earlier in Eqs. (5.13) and (5.14). The corres-

ponding steady flow availability functions with respect to an

ambient atmosphere at pressure P and temperature T may

be written

*I
= C

P 1
(T
sl - V " T

o
s
l

(7 - 1)

*2 " C
p2

(T
s2 ' V " T

o
S
l

(7 - 2>

Consequently the total available energy entering the sys-

tem becomes

^m
= x ^

1
+ (1 - x)^

2
(7.3)

The respective entropies of the streams leaving at stations

x , y and 3 are

s
x

Sm
+ C

p3 ^ (ff) " R
3

ln
(5f

)

(7 - 4)

s
y " sm + C

p3
ln

(ff) " R
3

to
(if

)

(

'

7 ' 5)

s
3 " s

m
+ C

p3
ln

(ff) " R
3 *n (if)

(7 " 5)

where s has been previously defined in Eq. (5.5).

The corresponding availabilities of the streams leaving

at stations x, y and 3 may therefore be written
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tJ> -C Q (T,-T)-T s (7.7)y x p3 s3 o ox v
. /

f =C,(T,-T)-T s (7.8)y
y p3 s3 o o y

*, = C - (T - - T ) - T s. (7.9)r
3 p3 s3 o o 3

Now consider the losses of availability listed below.

By substituting the above expressions for the quantities on

the left and simplifying we readily obtain the expressions

shown on the right. Thus

<*m " *x> " T
o

s
m

(7 - 10>

(*x" V "
R
3

T
o

ln

(^)
<7al)

<*x" *3> " R
3

T
o

4n
(?Jf)

<7,12)

These results are very significant. Eq. (7.10) defines

the loss of available energy caused by the mass mixing of the

two different gases. Eq. (7.11) defines the further loss of

available energy caused by the momentum mixing in an idealized

ejector. Eq. (7.12) defines the augmented loss of available

energy caused by the momentum mixing in the real ejector.

It is useful to postulate an empirical relation between

these last two losses which is shown below on the left. The

expression on the right then follows from Eqs. (7.11) and

(7.12). Thus

(* x
- *

3
)

- ^E - ^ (P
s3

/Psx )

< 7 - 13 '
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We term n E
the ejector effectiveness. Its value,

which is always less than unity, must be estimated from appro-

priate test data on ejectors.

If we treat n E
as known, Eq. (7.13) fixes P

3
. The

solution is simply

1_
n E

P = P [
sy_

]
(7.14)

s3 sx \ P /
\ sx /

We can next find f(M_) from Eq. (4.14) and M, from

Eqs. (4.16), (4.17) and (4.18). This suffices to fix all pro-

perties at states 3 and s3 thereby completing,, the analysis of

the ejector.
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8. Diffuser

It is convenient to analyze the diffuser in terms of the

concept of availability in steady flow. However, we wish to

deal with the characteristics of the diffuser itself and these

cannot depend on the arbitrary values P , T which happen

to characterize the condition of the ambient atmosphere. We

can achieve our objective by defining the availability with

respect to a reference state P-. , T-. which characterizes

the diffuser rather than with respect to the ambient state

P , T .

o ' o

Under these circumstances we may write the appropriate

availabilities at diffuser inlet and outlet as follows

*s3 " C
p3 <

T
s3 - T

3' " T
3 l

C
p3

ln
(ff)-

R
3

tn
(ff) }

(8 - 1)

*s4 = C
p3

(T
s3 - T

3> " T
3

C
p3

£n ft
1
)- R

3
ia

(?r)l
<8 - 2)

These equations make use of the fact that T „ = T _^ s4 s3

Also, states s3 and 3 are at the same entropy so that

< S
S 3 - S 3> " ° " C

p *" (ff) " R
3 ^ (Jr)

<8 - 3)

From Eqs. (8.1) and (8.3) we conclude that

IP , = C . (T . - T.) = (-4-

J

(8.4)r s3 p3 s3 3 \ 2 /
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This result shows that the available energy at the

diffuser inlet is simply the inlet kinetic energy itself.

The loss of availability through the diffuser may be

found by subtracting Eq. (8.2) from (8.1). The result is

(
*s4 " *s3> - A * " + R

3
T
3

in

(^j
(8 - 5)

We now define the diffuser effectiveness as

;H" n D (8 - 6)

S3/

so that

/
P
s3

- , _ , \ R
3

T
3

in f
—^

s3 " ^s4 \ Aip _ n » \ s4 /

T";

—

J
- j— ~ (1 " ri D ) " C I (T I - TO (8 - 7)

r s3 /
r s3 p3 s3 3

This reduces readily to

P
s3

In

(i - n.J =
P
s4/ (8.8)

D / » 2
\

Solving for the pressure ratio gives

2
Y 3

M,
P
s4 " (1 " n D ) "2-

e
P
s3 (8.9)

This is the result required. It fixes P . when P
3 ,

M_ and ri n are specified.
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Assuming the area ratio A o/A4 to be arbitrarily spec-

ified, we can find M from the continuity relation. Refer-

ring to Eq. (4.8) we may write

m-. = s3 3
- f(M ) = s4 4

- f(M ) = m (8.10)

^3 Ts3^3 ^3 T
s3' Y 3

Consequently

f ("4> =

fe) ft)
f <M3> "- 11 '

Eq. (8.11) fixes f( M
4 ) • Then M. follows in the usual

way from Eqs. (4.16), (4.17) and (4.18). The result suffices

to fix all properties at states 4 and s4 . Thus

W-GW-^P^W
T
4

= T
s3
/(T

S3/
T4> (8 - 13)

;« &^ (8.14)

P
4 " P

s4
/(P

S4/V (8 - 15)

The configurations studied in earlier work did not incor-

porate a diffuser. For the purpose of comparing the results

of the present analysis with corresponding earlier work, it is

desirable to be able to eliminate the effects of the diffuser

in certain cases. This can be accomplished in the present

analysis simply by setting
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n D
= l (8.16)

and

It is easy to confirm that under these circumstances

T
s4

= T
s3

(8.18)

P
s4

= P
s3

(8.19)

M
4

= M
3

(8.20)

A
4

= A
3

etc. (8.21)

and all diffuser effects disappear,

37



9. Electrical Power Section

The power conversion process in an EHD duct is usually

treated on the basis either of constant area or of constant

static state. Inasmuch as electrical power output per unit

mass is small, the numerical differences between the results

computed by these two methods is negligible. For definite-

ness in this analysis, however, we assume constant area.

The electrical power that can be obtained from an EHD

duct of constant area, negligible change of density and optimum

length can be estimated from the one dimensional version of

Poisson's equation which governs the electrical field. The

solution is well known and will not be derived here; a detailed

derivation may be found in Ref . (3) . The essential result may

be written in the form

P
e

=
I £E

b
A
4
V
4

{9 - 1]

where

P = gross electric power output, watts

e = permittivity of medium

-12
= 8.854 x 10 farad/m (for any gas)

E, = dielectric strength of medium, volts/m

A, = area of duct (constant)

V . = velocity
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According to the test data analyzed in Ref. 4, the dielec-

tric strength is well approximated by the expression

E
b CB3

R
3 P4 (9 - 2)

where C„
3

is a characteristic constant of the medium. The

data show that Eq. (9.2) applies to air or steam up to about

10 atmospheres pressure with

' CB3
= 9.49 x 10

3 m
2

°K/cmb (9.3)

In this study we assume that Eq. (9.2) can be extrapolated

up to about 100 atmospheres pressure. We also assume that an

expression of the same form applies to other media besides air

or steam but that each medium has its own characteristic value

of the breakdown constant C_

.

a

In the two-fluid system, the separate values of the

breakdown constants CR , and C„2 are usually known, but the

breakdown constant CR3 of the resulting mixture is seldom

known. In the absence of adequate test data bearing on this

point, we tentatively assume that CR3 can be estimated from

the hypothetical relation

CB3 " k; [xR
l
CBl

+ (1 " X)R
2
C
B2 ] (9 * 4)

Upon substituting Eq. (9.2) into (9.1) and dividing

through by the mass flow rate, we find the electrical work out-

put per unit mass of fluid in the form:

2 2
P /£ C_- R-\

f •
( i ) H = C

P 3
(T
s4 " T

s5 >
< 9 ' 5 >
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By use of standard perfect gas relations, Eq. (9.5) can

be changed to a more useful form. In this connection set

(T
s4 " T

s5> = AT
s

(9 ' 6)

and
2

a
C
B3

P
o (9.7)

3T
o

2
where P = ambient pressure, N/m

T = ambient temperature, °K

Notice that 3 represents a dimensionless version of

the electrical breakdown constant.

Eq. (9.5) now yields the important result

^
S = 6 fl3li\f!5ilf!o ,

: ^_-_ ;,,
T
s4

1\P^ \T

The corresponding gross electrical work output per unit

mass of fluid is then simply

W* = C„ AT (9.9)
e P3 s

Unfortunately, the known value of e and the typical

experimentally measured values of C~ are very small. Con-

sequently, the dimensionless breakdown constant 3 is ex-

tremely small compared to unity. Hence the drop in stagnation

temperature AT and the gross electrical work per unit mass

W* are also typically very small. This is a very basic and

serious limitation on the performance that can be obtained from

an EHD generator.

Treating the process 4+5 as isentropic, we may write
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Y
3

(y
3

- i)

P = P [
S5) (9.10)

By analogy with Eq. (4.8) we write the continuity rela-

tion as

K = f MA ) =
S5 5 - f(M,.) = m_ (9.1D

/*3 Ts4^3 /*3 T
s5/Y 3

It then follows that

f(M=' =

7Sfe) f<v
This fixes f(M_) whereupon M_ may be found in the

usual way from Eqs . (4.16), (4.17) and (4.18). However, con-

vergence should now be very rapid since we may take as a

first approximation

M_ w M. (9.13)
5 4

This solution now suffices to fix all properties at

states 4 and s4 .
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10. Condenser/Separator

The primary fluid which leaves the condenser/separator

at station 6 is assumed to be compressed liquid at known

static pressure P
fi

= P_ = P. and at known static temperature

T. = T_ . The kinetic energy of the liquid at station 6 is
b A

assumed to be negligible.

Temperature T
fi

must be equal to or greater than the

ambient temperature T in order to satisfy the requirements

of a heat balance on the condenser/separator. No attempt is

made in this analysis to formulate this actual heat balance;

instead T
fi

is simply treated as a given or known quantity.

However, it may be of interest later to investigate the

effects of varying T
fi

on the overall performance of the EHD

system.

The secondary fluid which leaves the condenser/separator

and enters the ejector at station 2 consists primarily of a

low molecular weight noncondensing gas. It also contains some

secondary vapor , but the mass fraction of this vapor is treated

as negligible in this analysis. Thus the secondary fluid at

station 2 is treated as dry gas. The kinetic energy at station

2 is not negligible and must be taken into account in the ana-

lysis .

In analyzing the thermodynamic process in the condenser/

separator, it is again useful to employ the concept of avail-

ability in steady flow. The availability function is always

defined with respect to some suitable reference state. Nor-

42



mally this is fixed by the conditions P , T of the ambient
o o

atmosphere. In some cases, however, we seek to characterize

the performance of some component of the system in a manner

which is independent of the ambient conditions P . T . Inr o o

such cases it is useful to choose as a reference state some

condition that actually occurs in the component in question.

We used such a procedure to good advantage in analyzing the

diffuser and in defining the diffuser effectiveness n D . We

now use it again in analyzing the condenser/separator and in

defining a friction loss coefficient c- which characterizes

the operation of this component. For this purpose we choose

as the appropriate reference state of zero availability the

static conditions P
g

, T, in the condenser/separator.

It also clarifies matters further if we choose the con-

dition P_ , Tr as the datum state of zero enthalpy and zero
6 o

entropy. In this way we ensure that our analysis in this sec-

tion makes no reference whatever to the state P , T
o o

Remember also that P- = P- = P, and T, = T_ .6^1 62
Thus we may now write

s
5

= sm+ c
p3

zn(^j - r
3
ln(^j (10.1)

S
2 = C

P 2 *
n
(*f) "

R2^) =
°

il0 ' 2)

s„ = (10.3)
6

The quantity s in Eq. (10.1) is the same as previously

defined in Eq. (5.5). It expresses the entropy increase asso-

ciated with mass mixing.
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The availabilities at stations 5, 2 and 6 are therefore

ip- = C , (T _ - T ) - T c s cr
5 p3 s5 2 6 5

*2 = C
p2

(T
s5 - V " °

*6 = h
6 " T

6
S
6 = °

(10.4)

(10.5)

(10.6)

The irreversibility I of the process which occurs in the

condenser/separator with respect to the specified reference

state P
fi

, T
fi

may be expressed in terms of the above avail-

abilities as follows

I - 1|>- - (1 - X) *, - x>^ (10.7)

We postulate that this irreversibility can also be corre-

lated with the inlet kinetic energy in terms of an empirical

friction loss coefficient c- as follows

V
I = c

where as usual

/C
f ^3 R

3
T
s5 _^5

(T
s5

/T 5>
(10.8)

s5
1 +

<Y 3
- 1>

M r (10.9)

Of course the above friction loss coefficient c
f

must

be estimated from suitable experimental data.

Assuming that c- is a specified constant, the trial

solution obtained for an arbitrary trial value of x and

arbitrary fixed values of the various other input parameters
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will not necessarily satisfy Eq. (10.7). It is therefore

convenient to represent the residual error in this equation

in the form below. The factor R-, T c is inserted on the left

to make E(x) dimensionless . Thus

R
3

T
6

E(x) = 4»
5

- (1 - x) m
2

- - I (10.10)

The foregoing relations can be assembled and rearranged

as follows. Let

Y
3

(Y, " 1)

(10.11)

K^sfUf- 1
"

(10 - 12)

Then the final energy balance equation reduces to

E(x) = K + K, x (10.13)
o 1

By holding all other input parameters fixed and allowing

x to take on a range of possible values, it will normally be

possible to find by trial a value of x such that

E(x) = (10.14)

This then is the value of x which is consistent with

the other specified input parameters and which defines a pos-

sible EHD thermodynamic cycle.
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Of course, if the various fixed input parameters are not

properly chosen, Eq. (10.14) cannot be satisfied for any trial

value of x which lies in the useful range 0<x<l and no

solution exists under these conditions.

If a solution exists it can be found by some suitable

iteration technique. One useful method is to set E(x) =

in Eq. (10.13) and then solve this equation for x but to

relabel this as x . Thennew

Assuming that conditions have been so specified that a

solution for x actually exists, and assuming that an initial

trial value of x has been chosen that is sufficiently close

to the true root, repeated application of Eq. (10.15) should

finally yield convergence to the true root itself.

Incidentally, any trial solution for which E(x)<0 re-

presents a physical impossibility because it violates the

second law of thermodynamics. Any trial solution for which

E(x)>0 satisfies the second law but represents a condition

in which the losses in the condenser/separator exceed the

value prescribed by Eq . (10.8). Only the case for which

E(x) = satisfies both Eq. (10.8) and the second law.
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11. Cycle Efficiency

Once a solution has been found such that E(x) = , it

becomes a straightfoward matter to calculate the correspond-

ing overall cycle efficiency.

Because of the pressure drop through the boiler/super-

heater , the pressure P_ = P -. at boiler inlet is slightly

higher than the stagnation pressure P , of the primary

fluid at the ejector inlet. We assume that the ratio P . /P -J si s7

is a specified constant. Hence with P , specified, P _,c si ^ s7

is also known. Also the pressures P, = P n are known.
D 1

*
Consider the ideal pump work w done per unit mass of

primary fluid. For the present consider the hypothetical case

of a reversible pump. Also note that density changes across

the pump are negligible. Hence we may write

*
(P
s7 " Vw = —— — (11.1)

P P
6

The ideal gross electrical work output per unit mass of

mixed fluid has earlier been established in Eq. (9.5). It is

*
denoted by symbol w

Let us now denote the net useful electrical work output

per unit mass of primary fluid by symbol w . It may be

* *
related to w and w in the following way

e p ' J

/
* *\

T\ W W \

w . = ——- £ Joule/kg (11.2)
net y x rip/

where n , the excitation efficiency, allows for the small

electrical power expended to excite the system and where n ,
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the pump efficiency, allows for irreversibilities in the pump.

The heat input in the boiler/superheater per unit mass

of primary fluid may be written

*

«i*- (h
si - v -!j (ii - 3)

where h
fi

is the enthalpy of the primary liquid at conditions

P.. , T as listed in suitable tables of properties,
o o

The overall thermal efficiency of the cycle can now be

calculated from the simple formula

n c =^ (11 .4,

Both n and w are useful parameters which charac-
c net e

terize the overall thermodynamic performance of the EHD sys-

tem.

Eq. (11.2) shows clearly how the ejector serves as a

kind of amplifier which increases the electrical work output

per unit mass of primary fluid. This effect is shown by the

presence of the parameter x in the denominator of the first

term. Notice the beneficial effect of a low value of x on

parameters w and n . Unfortunately, the value of xe net c 2

cannot be stipulated independently in advance; it is fixed

by the other specified input parameters as explained in the

previous section.
*

Notice that owing to the fact that w is normally3 e

very small, it is possible in some circumstances for w ,* ' r net
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to take on values which are actually negative. When this

happens it means that electrical power output is insufficient

to drive the pump.

The relationships developed in this and the preceding

sections make it possible to carry out systematic parametric

studies of various one-fluid and two-fluid EHD cycles, with

realistic allowances for the various losses that occur. Such

studies can establish optimum design parameters and perfor-

mance limits under various circumstances. These results in

turn can finally permit informed conclusions to be drawn con-

cerning the ultimate feasbility of this general type of EHD

power generator.
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12. Calculation Sequence for Two-Fluid System

In this section we summarize the various equations pre-

viously derived in the approximate order in which they would

be used in the calculation of system performance. Also listed

are the initial input parameters whose values must be specified

in order to start the calculation and various further input

parameters whose values must be specified in order to proceed

with various successive stages of the calculation.

Initial Input Data : p
x

= P 2
= P

6 '
T
l '

P
sl '

T
sl '

(h
sl

" h
l

} '

R = 8315 Joule/kg°K

*i "
I

1 -IHTp^7pp-) (12 - 1)

<h
sl - h

l>

R
i

=
(^T-| c

p1 U2 - 3)

"i"^ <12 - 4)

Further Input Data: W , W_ = W~ , T = Tc , P (T^)c v ' G 2 ' 2 6 ' v 6

" - % IP
2

- PV (T
6

)

]

< 12 - 5 >

Verify that oo<<1
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V,

Further Input Data : y 2 / I 77- )
= Y

M
l =

/ ( Yl - 1)

si - 1 (12.6)

M, M Ai R
i

T
si

M.

l/V Y 2 *2 x
2

V
/T

sl
/T

1

(12.7)

Verify that M
2
<1 (12.8)

¥) - - P^ »
2

2

T
s2 = T

2
(T

s2
/T

2
}

(12.9)

(12.10)

y
2

s2 s2
(12.. 11)

P
s2 " P

2 P
s2 (12.12)

Further Input Data: x (trial value)

R
2 " W.

R
3

= xR
x

+ (1 - x) R
2

(12.13)

(12.14)

y 2
R
2

p2 (Y, - 1) (12.15)

C , = X C , + (1-x) C
p3 pi p2 (12.16)
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*p3
"
3 (C

p3 " R
3

)

(12.17)

? o = tt1- [x C , T . + (1 - x) C T ]s3 C 3 pi sl p2 s2 J (12.18)

f(M
1

) = M,
Y l " 1

2
1 + ^- Ml

2

(Yjl + 1)

2(y
x

- i:

(12.19)

f(M
2

) = M
2

Y
2 " 1

2
1 + -i-2— M

2

2

(Y 2
+ 1)

2 ^
2

" 1)

(12.20)

P
s2\ /

R
i

Tsl ^2 ^ (M 2>

A
2

(1 " X)
\
P
sl/\/

R
2

T
s2 Y l

f(M
l

}

(12.21)

(A
x
/A

2
)

A
3

(1 + A
1
/A

2
)

(12.22)

Further Input Data: P , Tc o o

s
i - c

P i
£n (W - R

i ^(r1 (12.23)

s
2 " C

P 2 *n (ff) " R
2

£n
(Jf (12.24)

to (5?)-5rj c
p3 ^iM" xsi~ (1 " x) s

2 (12.25)

£n (P /P )

sx' o
P = P esx o (12.26)
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(1 - A /A
3

) /P
2
\ R

3
T 3 yV

(Y 3
+ 1)

'max \y-5 + 1

2(Y, " 1)

(3 - y,)

F 1 (M ) = f
n' ^' 4'^ «.f

VJ
" l

53

(12.2 8)

Verify that f(M ) = f<f (12.29)2 x max

For first approximation set M = M~ (12.30)

Iterate using Eqs. (12.31), (12.32), (12.33).

(Y 3 + i>

( (*3 ~ X
) 2\

3

F(M > = f 1 + X^-^ ' M„ - M (12.31)
n I z n I n

- 1)

(12.32)

F(M )

M
(n + 1) " M

n " F^THT (12 - 33)

n

Iteration converges to fix M
A

M
l \

Y l
' X

2
g (M ) = ± *_ \/l + (-^5 ) M/ (12.34)

(1 + Yl Mi ) V *

M
2 . Y2 " 1

g(M ) = 1 \ i + (_fL ) m/ (12.35)
2

(1 + Y2 *V )



v-1

g(M
y

)
= g =

R
3

T
s3 x

,R
1

T
sl

+
(1 - X)

Y 3 I g(M
x

) / y 1
g(M

2
) V y 2

R T
s2

(12.36)

M
2 =

(1 - 2y
3 g ) - y 1 - 2 (y

3
+ 1) g

1 - Y 3
(1 - 2y

3 g
2

)

(12.37)

Eq. (12.37) applies provided that g ^ g^ =
(Y 3

" 1)

(12.38)

If g = gOT
the solution reduces to

M
Y

=
(Y 3

" 1)

2Y
(12.39)

Once M is known from Eq. (12.37) or (12.39!

l
)

(Y 3
+ 1)

f(M ) = M
y y

( fr,"1+
2

V "J
f(M )

p - p
x

sy sx f(M )

Further Input . Data: rir?

(12.40)

(12.41)

l/n.

p ^ = p
sy

s3 sx I p
sx,

(12.42)

f(M
3

) = -sx

s3,

f(M )x

Verify that f(M
3

) = f<f
Max

(12.43)

(12.44)
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For a first approximation take M_ = Mr^
3 y

(12.45)

Iterate using Eqs . (12.31); (12.32), (12.33)

Iteration converges to fix M~ .

T
s3 (

Y
3

" X
) 2

1 + L^_' M
3

2
(12.46)

T
3 = T

s3
/(T

83
/T

3
) (12.47)

Y

(Yt - i)

s3 s3
(12.48)

P
3 = P

s3/
(P
s3

/P
3

)

Further Input Data : r\ , I
—

P a = p
-> e

s4 s3

1 - n

(12.49)

(12.50)

f(M
4

) - f -
l

!sl)(^|f(M
3

)
(12.51)

Verify that f(M
4

) = f<fmax

For a first approximation take M. = [»•— 1 M o

Iterate using Eqs. (12.31), (12.32), (12.33)

Iteration converges to fix M, .

4

(12.52)

(12.53)

T A ~ T "5

s4 s3 (12.54)
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T
s4 f

Y 3 " X
) 2^ = 1 +

V —=2—g— :

' M/ (12.55)

T
4

= T
s4
/(T

s4
/T

4
) (12.56)

Y
3

P T (Y 3 " 1]
s4 s4p^ = ^- (12.57)

F
4

x
4

?4
= P

s4
/(P

s4
/P

4
)

'

< 12 - 58 >

-12
Further Input Data : £ = 8.854 x 10 farad/m, C-, , C_.~,

Dl QZ
3 2

(C_ = 9.5 x 10 m °K/cmb for air or steam)

C
B3 "

SJ
[X R

l
C
B1

+ (1 " X) R
2

C
B2 ] < 12 - 59 '

£ C
B3

2
P
o

(12.60)

ATs
= 3 (Irff^iV^

2

fx + ,!L^,. 2f
/<Y3

"aL,T
s4 \

2^3 i\ Po il
T
s4'

AT
S5 = (1 - =-£) (12.62)

T . s4
s4

T -
T
3
/(Y

3 " 1J

P
s5 " P

s4 't
5
? < 12 - 63 '

s4
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f (Me ) = f = /-^- I
-^i

15
v
T
s4 yS5i 4 < 12 - 64 >

Verify that £(M„) = f<f _ (12.65)

For a first approximation take M,. = M. (12.66)

Iterate using Eqs. (12.31), (12.32), (12.33)

Iteration converges to fix M_ .

sf
J

1 + ir-T-j M
s

2
(12 - 67)

T
5 WWV (12.68)

<y
3

- n
Ps5\ /

T
s5

P
5 / \

T
5 /

(12.69)

Further Input Data : c
f

sm = R
3

in R
3

- x R
x

£.n (x 1^) (12.71)

- (1 - x) R
2

in [(1 - X ) R
2

]

«» =

-
(Jf

)
*^MH -^- - fr

Sm Cf^/ T
5\ M 2

" R" " —2— (fj )

M
5 (12.72)

K
l

= R^(t^ "
y C12.73)
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Verify that K <02 o

X
K

new K.

(12.74)

(12.75)

Iterate from Eq. (12.14) until x converges.

Further Input Data: ( psl/
p
s7 ) / P

6
> (h

gl
- h

g
) , n x , n

P
s7 " P

sl
/(P

sl/
P
s7

)

e p J s

w
* =

(P
s7 " V

(12.76)

(12.77)

(12.78)

*
n w w

w . -I-5-S - JEL

W
q, n = (h , - hj - -J^m si 6 n

RESULT (12.79)

(12.80)

w
net

C qin
RESULT (12.81)
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13. OPTIMUM VELOCITY RATIO

The calculation sequence summarized in the preceding sec-

tion reveals that a comple cycle calculation requires us to

specify numerical values for about thirty input parameters.

One of these is the velocity ratio (V../V2) = y . The calcula-

tion procedure outlined above then permits us to find the cor-

responding value of the mass flow ratio x , assuming that

there exists a value of x which satisfies the governing

thermodynamic relations for the specified values of the other

input parameters.

If we now change the value of y but hold all other in-

put parameters fixed, we can repeat the above procedure and

find a corresponding new value of x , if such a value exists.

It is evident, therefore, that x becomes some definite

function of y as long as we remain in the domain where a

real solution exists. Of course all other dependent variables

of the cycle are also functions of y . In particular, the

overall cycle efficiency n is some definite function of y .

Moreover, for prescribed values of the other input parameters,

there will be some definite value of y , let us designate it

as the optimum value y , which yields the greatest value

of ti that is possible under the specified input conditions.

Our basic purpose therefore is to determine for any prescribed

values of the other input parameters, the value of y .
an(3 the

correspondina value of ri )_ • Of course the values of x,, .c c max opt

and other dependent variables are also of interest.
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Once a working computer program is available to establish

values of y , , i"i ) „ v , x and so on for prescribedopt c max cpt

values of the other input parameters, we can then proceed to

study the effects of changes in these other parameters and to

search systematically for such values of the most important

input parameters as will yield the best overall performance

of the system.
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14. CALCULATION SEQUENCE FOR ONE-FLUID SYSTEM

The calculation sequence summarized in Section 12 simpli-

fies for the special case where the same condensible fluid is

used for both the primary and secondary streams. This special

case is summarized below.

Initial Input Data: P, = P„ = V r , z-, , Pi/ T- = T£s 1 2 6 1 si 2 6

Assuming pressure P, * and quality z, are specified, we

may find from tables of properties of the saturated fluid

h
l
= hg " t 1 - ^fg (14.1)

S
l

= S
g " (1 " V s

fg (14 * 2)

Then with s, fixed and P , specified, we may also find

T and h , from tables of properties of the superheated

vapor.

In addition with T
fi

specified somewhere in the range

T <_ T r <_ T, , and with P^ = P, specified, we may find ¥l-
f the

enthalpy of the liquid at state 6 from the tables of properties.

The primary fluid can now. be approximated by an "equivalent

perfect gas" whose properties are as follows

-1

f
2,n(T /T )\

(h
sl " V

C
P

=
(T

sl
- Tp (14 ' 4 >

R =
(

Y " 1
)C (14.5)

Y
P
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The secondary fluid is represented by the same "equivalent

perfect gas" and is therefore assigned the same values of

Y , C and R
P

Further Input Data ; (V^/V ) = y

M.
(Y - 1)

'I )

- 1 (14.6)

n.

v
i i

T
i •-

2 ) k M
i

Verify that M
2

< 1

(14.7)

(14.8)

s2 = 1 + (^) M

s2 = T
2
(T
s2/

T
2

)

(14.9)

(14.10)

pf " <
T
s2/T2>

Y/(Y " 1) (14.11)

P
s2 " P

2
(P

s2
/P

2
}

(14.12)

Further Input Data: x (trial value)

T -j = xT, + (l-x)T
s3 si s2 (14.13)

f(M
x

) = M
±

f (M
2

) = M
2

i + (
:l-t^)m

2

1

-(Y + 1)/2(y " 1)

_-(Y + D/2(Y " 1)

1 + (
Y

2

1
)M

2

(14.14)

(14.15:

A
l^ _f

P
s2\J T

sl
f(M

2
} x

PsljV T
s2

f < M
l>

tl - x) (14.16)
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a
A
x
/A

2

(1 + A
1
/A

2
)

(14.17)

Further Input Data: P , T (ambient conditions)£ o o

= c
p
£n

o v o/
(14.18)

88 Vn r
- R£n (14.19)

£n
sx

R IS "
n

's3
x s, - (1 - x) s

2

sx
P e
o

£n(P /P )

sx' o ;

(14.20)

(14.21)

f(M )x

max

(1 - AVA,) /P \ . T .
32\\l_sl f(M2)

(1 - x)
sx/ « s2

1)/2(y " 1)

\y + i

Verify that f(M ) = f < f
X iuci..X

For a first approximation set M ~ IA and iterate

Iterate using Sqs. (14.26), (14.27), (14.28).

(14.22)

(14.23)

(14.24)

(14.25)

F(M
n ) = f 1 + (

Y 1 2
\(y + D/2(Y " 1)

- -) M'
2 n

- M
n (14.26)

F' (M ) = f
n <^4 iH±<)

13 ' Y>/2(Y
" "i <14 - 27)

L_ m = M -
F(M )n

(n + 1) n F' (M
n )

(14.28)
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Iteration converges to fix M

M.
= ^- s/l + (I^-ijM^

(1 + yMJ)
^ x (14.29)

M,

g(M
2

)

(1 + YMJ)

A + (I^-i)M^

g (M- ) = g =
I

2

x "\/
T
sl , (1 - xn

/

T
s2

g(M
1 ) Vts3 g(M

2
) ill

3

M _ (1 - 2yg
2

)
- y/l

-"
2( Y + 1) g

2

(14.30)

Y
1 - Yd " 2 Y g )

It can also be shown that in the special case where

(14.31)

(14.32)

1 /v - l
g = g^ = — v-i—2^

/ tne above solution degenerates to

Once M is found from Eq. (14.32) or (14.33)
y

f (M
y

) = M
y

sy
= P

1 + (I^)M
y

f (Mx )

- (y + 1)/2( Y - 1)

sx f(M )

y

Further Input Data: n..,

(14.33)

(14.34)

(14.35)

1/tU

s3
= P

sy
SX P

sx

f(M3) =

fe)
f(MX)

(14.36)

(14.37)

64



Verify that f(M-) £ < f (14.38)
o max

For a first approximation, take I' Z M (14.39)
•5 y

Iterate using Eqs . (14.26) , (14.27) , (14.28) .

Iteration converges to fix 1^ .

T
s3 = . (y - 1) 2 • (14.40)

T 2
u
3

T, = T ~/-(T ~/T,) (14.41)

p q , y/(y - l)
gSLi = (1' /TO (14.42)

P
3 = Ps3/ (Ps3/P 3

) (14 ' 43)

A-l
3

Furtner Input Data: ru / *

—

u a
4

-(1 - n n ) (Y M?/2)
P
s4

- P
s3

e (14.44)

fU
4
)=f - (fS)(^)

f(M3) (14 * 45)

Verify that f(M,) = f < f (14.46)1 4' max

For a first approximation take M, Z
|
^-j M-, . (14.47)

Iterate using Eqs. (14.26), (14.27), (14.28) .

Iteration coverges to fix M.. .

T . = T . (14.48)
S4 s J

T
;4

1 + (Y - 1) m
2

T ,

X +
2 ^4

4

(14.49)
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T
4

= T
s4'

/(T
S 4
/T

4
) (14.50)

^ = (T
3 4/

T
4
)Y/(Y 1} (14.51)

P
4 " P

s4/
(P s4/P 4>

(14 - 52)

Note: If it be desired to omit the diffuser, merely set

n n = 1 and At/A. = 1 . The result is
D o 4

T
s4

= T
s3 (14.53)

T
4

= T
3

(14.54)

P
s4

= Ps3
(14.55)

P
4

= P
3

(14.56)

M
4

= M
3

etc (14.57)

and all effects of a diffuser disappear from the result.

-12
Further Input Data : e = 8.3b4 x 10 farad/m for all gases

Cg
= 9 . 5 x. 10 m K/cmb for air or steam

2
ECBP

T
2

o

(14.58)

AT
s

s4
^ (y fe)

2

1

1 + ^ 4
1/<Y^ 4 - 59 '

T - = T ,
- AT (14.60)

so s4 s

P
si

= P
s4

(T
s5

/T
s4 ) (14.61)

f( 'v =
(fe)(fe?)

f( -v (14 ' 62)
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Verify that f(MK ) = f < f (14 g313 max UH,DJ ^

For a first approximation take M- ~ M, . (14.64)

Iterate using Eqs. (14.26), (14.27), (14.28) .

Iteration converges to fix M,- .

3rt

T,-

1 + (y ~ $ M
2

1
2 o (14.65)

= T
s5

/(T
so
/T

5 )
(14.66)

(5f)
- ( T

s 5/
T 5)

Y/(Y
" " < 14 ' 67 >

(14.68)o sr sb /
5

Further Input Data : c-

Note: For a single fluid cycle s_ =3 * m

K
i =TT^TT (ff "

x
)

(14 - 70)

E(x) = K
Q

+ K, x (14.71)

K
o

Xnew " K, (14.72)

Return to Eg. (14.13) an(j iterate until x converges and

E(x) =0 .
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Further Input Data : ( psl/
p
37 ) t P

6
/ ( h sl

" hg) , n , n

s7 " ^l^sl^s?*

w = C AT
P s

P

(14.73)

(14.74)

w
(P
s7 " V (14.75)

wnet

n w w*
x e p
x n7

RESULT (Joule/kg) (14.76)

lin si 6' n
P

(14.77)

w
net

qin
RESULT (14.78)-
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15. SAMPLE CALCULATION FOR A ONE -^LUID SYSTEM

In this section we illustrate numerically how the calcu-

lations for a one -fluid system may be carried out for one

arbitrary but typical operating point. To find an optimum

operating condition would require the repetition of similar

calculations for a large number of such trial operating points,

No attempt is made in this section to find such an optimum. *

We arbitrarily choose to calculate a case which is in

some respects similar to that identified as case B in the

appendix of Ref. (1) . Thus, we have for both of these cases -

Medium

Maximum pressure

Quality at state 1

Ejector effectiveness

Friction factor

Dielectric strength

Diffuser characteristics

Excitation efficiency

Pump efficiency

Pressure ratio across
bo i le r

Nevertheless, despite these similarities, these two cases

are not identical. Case B treats the densities at states 1, 2,

x, y, 3, 4, 5 as equal. The present analysis takes the true

Steam

P
sl

1500 psia

z
l

0.95

nE
0.9

C
f

0.1

CB 9,4 90 m
2 °

No diffuser

n x
1

n
p

0.9

P
sl/

p
s7

1
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density changes at these states fully into account. Also it

is expedient in the present compressible analysis to define

the parameters r\ and c
f

somewhat differently than they

are defined in Ref (1) .

Ref.(l) also shows that a comparatively good performance is

obtained by choosing

P, = P., = V a = 600 psia (15.1)12 0^
and

tt = y = 4 ' 25 (15.2)
v
2

Therefore we arbitrarily choose the same values for the

present numerical example, despite the fact that it is not

entirely equivalent to case B of Ref (1) . We also choose to

set T
6

= T
]_

(15.3)

The above conditions now suffice to fix the following

properties. These are obtained from Keenan and Kayes steam

tables and are listed on page 10A of Ref. (1) .

T , = 1115.9 °R
si

T, = T
2

= T
6

= 946.2 °R (15.3)

(h , - h
1

) = 78.9 Btu/lbm

(h , - h
g

) = 673.9 Btu/lbm

We designate ambient conditions as follows

P = 14.696 psia = 1.013 x 10
5
N/m

2
(15.4)

o c

T = 520 °R = 2 38.9 °K
o
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The properties of the "equivalent perfect gas" may now be

computed as follows

&n « P8l/
P
l)

(l
*n(1115. 9/946. 2)A , , 10 - ,__ -.

"
\

X
£n(1500/600)

j
" 1 * 2196 (15 * 5)

c m
(h

sl " V _ 78.9
p (T

gl
- T

x
) (1115.9 - 946.2)

= 0.4649 Btu/lbm (15.6)

r = (Y - 1)
C - °- 2196

(0 4649)K
Y P 1.2196 ^ u - 4b^

= 0.08371 Btu/lbm °R = 65.15 ft lbf/lbm °R (15.7)

The following constants will prove useful for later appli-

cation

Y " 1 = 0.1098 ,

—

^-r, = 4.5537
2 (y - 1)

Hr1 = 1 - 1098 iY±l) = 5 .0537 (15.8)
2 (y-1)

-* = 5.5537 (3 - y)(Y-D --—
2( Y -i)

= 4 ' 0537

Also the dielectric breakdown constant can be expressed in

dimensionless form as

2 2

Q
ZC

B
P
o (8.854 x 10"12

) (9.49 x 10
3

) (1.013 x 10
+5

)

p 2 5

T (288. 9)
Z

o

= 0.9678(10)" 3
(15.9)
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The Mach numbers at the ejector inlet are

M
l =

(Y ~ 1) T
(aSi-X) =

0.2196 x 94.62
1115.9

- 1)

= 1.2781 (15.10)

M = (

V
2 \ M, =

1 4.25 (1) (1.2781)

= 0.3007 (15.11)

The following functions are calculated for later use

- ( Y + 1)/2( Y - 1)

f (M
1

) = M
x
(l+ T

2

XM
1

Z
)

=12781(1 + 0. 1098(1. 2781)
2 )" 5 - 50537

= 0.5552 (15.12)

f(M
2

) = M (14 I-Z-lM
2

2 )- (y + 1)/2(y -' 1:

= 0.3007(1 +» 0. 1098(0. 3007)
2 )" 5 * 0537

= 0.2861 (15.13)

max (rr-r )

= 0.5907

2 (Y + D/2(Y " 1) 5.0537
= ( 2.2196

g(M
x

) =
M ^ 1 + Y - 1 M 2

(1 + Y M^)

1.2781 VI + 0. 1098(1. 2781)
2

(1 + 1. 2196(1. 2781)
2

)

(15.14)

= 0.4639 (15.15!

g(M
2

) =
(l + ym

2

2
)

72



= 0.3007 \/ 1 + 0.1098 (0.3Q07)
2

(1 + 1. 2196(0. 3007)
2

)

= 0.2722 (15.16)

Stagnation conditions at station 2 are calculated next.

(T
s2
/T

1
)

= 1 + (

Y ~ 1
)M

2

2 = 1 + 0. 1098(0. 3007)
2

= 1.0099 (15.17)

T
2

= T
2
(T

s2
/T

2
)

= 94 ^. 2(1. 0099)

= 955.6 °R (15.18)

(P
s2

/P
2 }

= (T
s2

/T
2
)Y/(Y " 1}

= d.0099)
5 * 5537

= 1.0562 (15.19)

P
s2

= P
s
(P

s2
/P

2
)

= 600 -° d-0562)

= 633.7 psia (15.20)

In this particular case the entropies at stations 1 and 2

happen to be equal. They can be calculated either from the stag-

nation temperatures and pressures or from the static temperatures

and pressures. The latter choice gives:

s
±

= s
2

= c
p
£n(T

1
/T

o ) - R £n(P
1
/P

Q )

= 0.4649 £n(946. 2/520.0) - 0.08371 £n (600 . 0/14 . 696)

=-0.0322 Btu/lbm °R (15.21)

Further Data Input : x = 0.472 (trial value)

The above value of x was found by previous trial calcula-

tions not shown here. The calculations which follow verify that

this value of x does indeed satisfy the energy balance equation

of the system to within the round-off error.
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T
s3

= x T
sl

+ (1 " x)T
s2

= °- 472 ( 1115 -9) + 0.528(955.6)

= 1031.3 °R

x
(1 - x)

X P

p o(A T f(M
2

)

sl
t
s2

Hm^T (15.21)

0.472 , 633.7 >

0.528 l 1500.0 ; ^F^^^tHH^ = °' 2103
<
15 - 22 >

A
x
/A

2 0.2103
A
3

(1 + A
1
/A

2
)

" 1.2103 0.1738 (15.23)

Since s, = s
2

in this case, Eq. (14.20) simplifies to

P , T -

o F o

P = P
sx oe

0.08371

4.1876

[0.4649 g>n( i??
1
I
3

) + 0.0322] = 4.1876 (15.24)

= 14.696e

520.0

4.1876 = 967.9 psia (15.25]

(1 - A,/A-) P -

f <Mx> " (1 - x) <P^
sx

^if(M
2

)

s2

(1 - 0.1726) . 633.

7

>

0.528 l 967.9 ;

1031. 3

955.6 (0.2861) = 0.3045 (15.26

Solving for M from Eqs. (4.16), (4.17), (4.18) gives
2%

M = 0.3225
x

(15.27)

For an ideal ejector

-1

x
g(V U(M

X
) |t^

3

+
g(M

x )

X

s3

0.472
0.4639

1115.9 0.528
1031.3 0.2722 U031.3

955.6 = 0.3418 (15.2

M (1 - 2y
2

^ \fg ) - If 1 - 2(y + l)g'

1 - Yd - 2T g^)
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Ill - 4.= [1 - 2.4392(0.3418)^] - Vl - 4 . 4392 (0 . 3418) _

1 - 1.2196 [1 - 2.4392(0.3418)
2

]

= 0.1658 M = 0.4071 (15.29)

M
f(M ) = X

Y Y _ i 2 (Y + D/2(y - 1)

2 y

= 0^4071 = 0.3716 (15.30)
[1 + 0.1098(0.1658) ]°- UDJ/

f(M
x ) 3045

P
sy =

P
sx fWT = 967 -- 9(8f37lf )

= 793 ' 1 P3ia (15 ' 31)

Psv 1/nE 791 1
1/0 ' 9

P
s3 = P

sx ( P
£
7 ) " 967 ' 9 (f6TTT ) = 775 * 7 Psia (15 * 32)
So

p
f(M

3
) = (^)f(M

x ) =
(

9

^

7

;

9
) (0.3045) = 0.3799 (15.33)

s3

Solving for M, from Eqs. (4.16), (4.17), (4.18) gives

M. = 0.4183 (15.34)

In the absence of a diffuser we may write

T , = T , = 1031.3 °R
S4 S3

P , = P -, = 775.7 psia
s4 s3 c

M
4

= M
3

= 0.4183

f(M
4

) = f (M
3

) = 0.3799

(15.35)

The drop in stagnation temperature through the working

section is given by the following expressions.
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AT

*s4

, P . T 2

^Y ^o s4

[1 + (^-=-^-)M
4

2
]

1/(Y - 1)

n Qg-7o/in\-3/ 0.1098w 775.7 w 520.0.0.9678(10)
( TT 2T96 ) ( T4T696 ) fmiTT*

(15.36)

-3

[1 + 0. 1098(0. 4183)
z

]

4.5537
= 1.0722(10)

AT.
-3 (15.37)

= T
s4 ( AT

s/Ts4 ) = 1031.3(1.0722) (10)
J

= 1.1057 °R

Notice that this temperature drop is only about 1.1 °R or

about one tenth of one percent of the absolute stagnation tempera-

ture!

T
s5

= T
s4

" AT
s

= 1031 - 3 ~ 1 - 1 * 1030. .2 °R (15.38)

P
s5 = P

s4(
T
s5
/T

s4
)

Y/(Y - 1)

= 775 7 (

1030 -2
)//D,/ *1031.

3

;

5.5537
= 771.1 psia (15.39)

f(M
5

)
=

Ts5 P
s4

s4 s5

1030.2 , 775.7 .

(Q „ qq .

1031.3 (T7T7T ) (°'3799) = 0.3820 (15.40)

Solving for M
5

from Eqs. (4.16), (4.17), (4.18) gives

M
5

= 0.4210 (15.41)

(T _/T c ) = 1 + (

Y ~ 1
)M C

2 = 1 + 0. 1098(0. 4210)
2

= 1.0195 (15.42)
S3 D Z D

T
5 = W^.s'V = OjM = 1010 ' 5

°
R (15.43)
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To verify the energy balance in the condenser/separator we

calculate

P
s5 y

T
s5

C *Y T
5

K
o = * n

<pf)
- ttHt Zn{^ - -i- (

Tf
)M

5

„„ ,
711.1 , - cc ,- ,1030.2, 0.12196, 1010.

5

wn ,,..,2= £n(
600T0 ) " 5 * 5537 An( 946.2 } 2 ( 946.2 } (°- 421Q >

= - 0.2330 (15.44)

T
K
l

=
( Y - 1)

( T^" " 1] = 5 - 5537 ( 946? 2

2
" 1] = °' 4930 (15.45)

The final energy balance now gives

E(x) = K
Q

+ K
1

x = - 0.2330 + 0.4930 (0.472)

= - 0.0003 (15.46)

This verifies that the energy balance is satisfied to within

round-off error. It also confirms that the value x = 0.472 is

the mass flow ratio that corresponds to the various independent

input conditions stipulated in this sample calculation.

Now that the value of x has been confirmed, we may complete

the thermodynamic cycle.

Since the pressure drop across the boiler is taken as negli-

gible in this example

P , = P , = 1500.0 psia (15.47)
s7 si

The gross electrical work output per unit mass is

w * = C AT = 0.4649(1.1057) = 0.5140 Btu/lbm (15.48)
e p s

The ideal pump work is
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* s7 " P
6

} 144 (1500.0 - 600.0)w
p P

6
778.26 49.75

= 3.3472 Btu/lbm (15.49)

The net useful work of the cycle is therefore

* *
nx
W
e

W
p (1) (0.5140) 3.3472

wnet ' x n 0.4 72 0.9
P

= - 2.6301 Btu/lbm (15.50)

Notice that the net work of the cycle happens to be negative

at this particular operating point. In other words the electrical

power output is insufficient to drive the pump under these condi-

tions.

The net heat input to the cycle is

*

q.. = (h , - hj E- = 673.9 -
3
'l

4
l
2

^m si 6' n 0.9
P

= 670.2 Btu/lbm (15.51)

Finally, the overall thermal efficiency of the system at this

operating point is

n c
= -^^ = "^n

3
.
1

= - 0.003924 (15.52)
q. 670 .

2

Although the performance at this arbitrary operating conditions

is very poor, the fact remains that there exists some (as yet

unknown) value of the parameter vi/v o
= Y f°r which the efficiency

n reaches its maximum possible value.
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This optimum value of y can be determined by further

systematic trial calculations similar to the above sample

calculation.

The foregoing calculations have established the values of

T
s

, P
g

and M at all stations. The corresponding values of

T , P , p and s at these locations can then be determined

from the following relations.

T

^ 1 + (

Y ~ 1
)M

2 = 1 + 0.1098M2
(15.53)

T = T
g
/(T

S
/T) °R (15.54)

P_ T y/(Y - 1) T 5.5537
p^ =

(t
1

) = <^> (15.55)

P = P /(P /P) psia (15.56)

P 1 44 p "5

P =
ST

=
(F5TT5 ) T lbm/ft (15.57)

T P
s = Cln (=2-) - RJln(=£) (15.58)

p o o

T P
= 0.4649£n(

5 ^ Q Q
) - . 08371£n (^ 696 ) Btu/lbm °R (15.59)

The calculation of the above properties has been completed

in this way and the results are summarized in Table 15.1. These

same states are shown on a temperature entropy diagram in Fig. 15.1

Notice from the tabulation that in passing through the

3
ejector, the fluid density p changes from 1.402 lbm/ft to

31.524 lbm/ft , an increase of about 8.5% . In passing through

the working section, the density changes from 1.524 lbm/ft to
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3
1.515 lbm/ft , a decrease of well under 1% . These data support

the principle that it is permissible to neglect the density changes

across these components for purposes of simplifying the analysis.

This is particularly justified because at present the uncertainity

in the value of the empirical ejector effectiveness r\„ far

exceeds the small error introduced by neglecting these minor density

variations. Moreover, the present sample calculation applies to a

velocity ratio vi/v o °^ 4.25 which is an extreme case. For

efficient ejector operation the ratio Vi/V 9 should be only

slightly greater than unity and under these circumstances the den-

sity change across the ejector is expected to be far less than

8% . Thus there is little substance in the argument that an

analysis which neglects these minor compressibility effects must

be seriously in error. Such an argument runs counter to the

fundamental principles of fluid mechanics. A more correct appraisal

of the situation is that the inclusion of these detailed compressi-

bility effects can be expected to improve the accuracy of the

analysis to some degree, but that they should not be expected to

change the overall results in any radical way.
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16. Nomenclature

A - area

a - speed of sound

C - characteristic breakdown constant (Eqn 9.3)
a

C - specific heat at constant pressure

c f
- friction loss coefficient - condenser

E, - breakdown electric field strength

E(x) - Eqn. 10.13

F(M )- Eqn. 4.16

f(M) - Eqn. 4.3

f - Eqn. 4.15
max ^

g(M) - Eqn. 6.5

g - Eqn . 6.7

q - Eqn. 6.9
^max ^

9oo - Eqn. 6.10

h - enthalpy

I - irreversibility

K
o

- Eqn. 10.11

K
l

- Eqn. 10.12

M - Mach number

m - mass flow rate

P
e

- gross electrical power

P - pressure

q in
- heat input

R - gas constant

R — universal gas constant
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s - entropy

s - entropy of mixing

T - temperature

V - velocity

W - molecular weight
*

w - gross work out per unit mass
*

w - ideal pump work per unit mass

w useful electrical output per unit massnet r c

x - itu/m-

xnew
' E<3"- 10 " 15

y - v
1
/v

3

z - quality of vapor

B
- Eqn. 9.7, dimensionless breakdown constant

y
- ratio of specific heats

A ( )
- change of

e - permittivity of the medium

n - overall cycle efficiency

t)
- Eqn. 7.13, ejector effectiveness

E

n n
- Eqn. 8.6, diffuser effectiveness

D
- pump efficiency

ri
- excitation efficiency

p
- gas density

iP
- steady flow availability

w - mass ratio of condensible primary to dry secondary
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Subscripts

- ambient conditions

1 - primary, entrance to ejector (exit from boiler/superheater)

2 - secondary, entrance to ejector (exit from separator)

3 - mixture, exit from ejector entrance to diffuser

4 - mixture, exit from diffuser entrance to generator

5 - mixture, exit from generator entrance to condenser

6 - primary, exit from condenser entrance to pump

7 - primary, exit from pump entrance to boiler

f - saturated liquid

G - gas or secondary

g - saturated vapor

n - next value

s - stagnation

v - vapor

x - exit station of hypothetical minimum loss device

y - exit station of ideal ejector
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