NPS-MA-93-002
 NAVAL POSTGRADUATE SCHOOL Monterey, California

SOME INVERSE PROBLEMS FOR
JACOBI AND ARROW MATRICES
by
Carlos Borges
Ruggero" Frezza
W. B. Gragg

Technical Report For Period
July 1992 - September 1992

Jved for public release; distribution unlimited
FedDocs

NAVAL POSTGRADUATE SCHOOL

 MONTEREY, CA 93943Rear Admiral R. W. West, Jr. Superintendent
Harrison Shull
Provost

This report was prepared in conjunction with research conducted for the Naval Postgraduate School and funded by the Naval Postgraduate School.

Reproduction of all or part of this report is authorized. This report was prepared by:

REPORT DOCUMENTATION PAGE				Form Approved OMB NO 0704.0188
a REPORT SECURITY CLASSIFICATIO N UNCLASSIFIED	10. RESTRICTIVE NARK NGS 3 DISTRIBJTION AVA LABILITY OF REPOFT Approved for public release; distribution unlimited			
SECURITY CLASSIFICATION AUTHORITY				
PERFORMING ORGANIZATION REPORT NUMBER(S) NPS-MA-93-002	S MONITORIN NPS-MA-93	RRGANIZA 02	$\overline{P O R T}$	$8 E R(S)$
ja NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL (If applicable) Naval Postgraduate School MA	7a NAME OF Naval Pos	NITORING raduat	$\begin{aligned} & \text { ZATIO } \\ & 1001 \end{aligned}$	
bc ADDRESS (City, State, and ZIP Code) Monterey, CA 93943	$\begin{aligned} & \text { 7D ADDRESS } \\ & \text { Monterey, } \end{aligned}$	$\begin{aligned} & \text { State ar } \\ & \text { A } 9394 \end{aligned}$		
8a NAME OF FUNDING/SPONSORING 8D OFFICE SYMBOL (If applicable) ORGANIZATION Naval Postgraduate School MA	9 PROCUREN	INSTRUV	NTIFIC	$\therefore N U Q B E R$
8c. ADDRESS (City, State, and ZIP Code)	10 SOURCE O	UNDI:U		
Monterey, CA 93943	PROGRAM ELEMEN ${ }^{\top}$ NO	$\begin{aligned} & \text { PROJECT } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { TASK } \\ & \text { NO } \end{aligned}$	WORK UNTT ACCESSION NO

11 TITLE (Include Security Classification)

Some Inverse Problems for Jacobi and Arrow Matrices
12 PERSONAL AUTHOR(S)
Carlos Borges, Ruggero Frezza, William B. Gragg
13a TYPE OF REPOR

Technical
13b TIME COVERED

16 SUPPLEMENTARY NOTATION

COSATI CODES			18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Jacobi matrix, Arrow matrix, inverse problems
FIELD	GROUP	SUB-GROUP	

19 ABSTRACT (Continue on reverse if necessary and identify by block number) We consider the problem of reconstructin Jacobi matrices and real symmetric arrow matrices from two eigenpairs. Algorithms for solving these inverse problems are presented. We show that there are reasonable conditions under which this reconstruction is always possible. Moreover, it is seen that in certain cases reconstruction can proceed with little or no cancellation. The algorithm is particularly elegant for the tridiagonal matrix associated with a bidiagonal singular value decomposition.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED \square SANE AS RPT	\square DTIC USERS	21 ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED	
22d NAME OF RESPONSIBLE INDIVIDUAL CARLOS BORGES		$\begin{aligned} & \text { 22b TELEPHONE (Include Area Code) } \\ & \text { (408) } 646-2124 \end{aligned}$	$\begin{aligned} & 22 \mathrm{OFFICE} \text { SYMBOL } \\ & \text { MA/BC } \\ & \hline \end{aligned}$

Some Inverse Problems for Jacobi and Arrow Matrices

CARLOS F. BORGES
Code Ma/Bc
Naval Postgraduate School
Monterey. CA 93943

RUGGERO FREZZA
DEI, Univ. di Padova
via Gradenigo 6/A
35131 PADOVA - ITALY
W.B. GRAGG

Code Ma/Gr
Naval Postgraduate School
Monterey, CA 93943
October 15, 1992

Abstract

We consider the problem of reconstructing Jacobi matrices and real symmetric arrow matrices from two eigenpairs. Algorithms for solving these inverse problems are presented. We show that there are reasonable conditions under which this reconstruction is always possible. Moreover, it is seen that in certain cases reconstruction can proceed with little or no cancellation. The algorithm is particularly elegant for the tridiagonal matrix associated with a bidiagonal singular value decomposition. Keywords: Jacobi matrix, Arrow matrix, inverse problem.

1 Jacobi matrices

Let T be an unreduced real symmetric tridiagonal matrix (i.e. a Jacobi matrix)

$$
T=\left[\begin{array}{ccccc}
\alpha_{1} & \beta_{1} & & & \tag{1}\\
\beta_{1} & \alpha_{2} & \beta_{2} & & \\
& \beta_{2} & & \ddots & \\
& & \ddots & & \beta_{n-1} \\
& & & \beta_{n-1} & \alpha_{n}
\end{array}\right]
$$

with $\beta_{1}>0$ for $i=1,2, \ldots, n-1$. We use the notation introduced in [11] and let UST(n) denote the set of $n \times n$ real unreduced symmetric
tridiagonal matrices, and let $\operatorname{UST}_{+}(n)$ denote that subset of UST($\left.n\right)$ with positive β_{t}.

We wish to develop an algorithm to reconstruct T from the knowledge of two of its eigenpairs (λ, u) and (μ, v). The eigenvector recurrence for symmetric tridiagonal matrices is

$$
\begin{equation*}
\beta_{1-1} u_{1-1}+\alpha_{1} u_{2}+\beta_{2} u_{1+1}=\lambda u_{1} \tag{2}
\end{equation*}
$$

where (λ, \mathbf{u}) is any eigenpair of T, u_{1} is the t th element of \mathbf{u}, and $\beta_{0}=$ $\beta_{n}=0$. Applying this relation to both eigenpairs gives

$$
\begin{aligned}
\beta_{1-1} u_{1-1}+\alpha_{1} u_{1}+\beta_{1} u_{1+1} & =\lambda u_{1} \\
\beta_{1-1} v_{1-1}+\alpha_{1} v_{2}+\beta_{1} v_{i}+1 & =\mu v_{1}
\end{aligned}
$$

Combining these two equations and eliminating α_{1} gives

$$
\begin{equation*}
\beta_{1-1}\left(v_{1} u_{1-1}-u_{1} v_{1-1}\right)+\beta_{1}\left(u_{1+1} v_{1}-v_{1+1} u_{1}\right)=(\lambda-\mu) u_{1} v_{1} \tag{3}
\end{equation*}
$$

Since $\beta_{0}=\beta_{n}=0$ we get the following initial and terminal conditions

$$
\begin{align*}
\beta_{1}\left(u_{2} v_{1}-v_{2} u_{1}\right) & =(\lambda-\mu) u_{1} v_{1} \tag{4}\\
\beta_{n-1}\left(v_{n} u_{n-1}-u_{n} v_{n-1}\right) & =(\lambda-\mu) u_{n} v_{n} \tag{5}
\end{align*}
$$

Combining (3) with (4) gives a special case of the Christoffel-Darboux identity,

$$
\begin{equation*}
\beta_{1}\left(u_{1+1} v_{s}-v_{1+1} u_{1}\right)=(\lambda-\mu) \sum_{k=1}^{i} u_{k} v_{k} \tag{6}
\end{equation*}
$$

for $i=1,2, \ldots, n-1$. There is also a backward formula,

$$
\begin{equation*}
\beta_{1}\left(u_{1+1} v_{1}-v_{1+1} u_{1}\right)=-(\lambda-\mu) \sum_{k=1+1}^{n} u_{k} v_{k}^{\prime}, \tag{7}
\end{equation*}
$$

which follows from (3) and (5), or from (6) and the orthogonality of the eigenvectors. In a similar manner, we can show that

$$
\begin{equation*}
2 \alpha_{1} u_{1} v_{1}=(\lambda+\mu) u_{1} v_{1}-\beta_{1-1}\left(u_{1} v_{1-1}+v_{1} u_{1-1}\right)-\beta_{1}\left(u_{1+1} v_{1}+v_{1+1} u_{1}\right) \tag{8}
\end{equation*}
$$

This formula uses all of the available information but it is possible to obtain an equation for the α, using the β_{1} and a single eigenpair with the formula

$$
\begin{equation*}
\alpha_{1} v_{1}=\mu v_{1}-\beta_{1-1} v_{1-1}-\beta_{1} v_{1+1} \tag{9}
\end{equation*}
$$

We can use these equations to reconstruct the original matrix from the two eigenpairs provided that no element of the two eigenvectors is zero
and that $v_{1} u_{1+1}-u_{1} z_{1+1} \neq 0$ for any ${ }_{1}=1,2, \ldots, n-1$. If this is true, then the equations for the a, simplify to

$$
\begin{equation*}
2 \alpha_{1}=(\lambda+\mu)-\beta_{1-1}\left(\frac{v_{1-1}}{v_{1}}+\frac{u_{1-1}}{u_{1}}\right)-\beta_{1}\left(\frac{v_{1}+1}{v_{1}}+\frac{u_{1+1}}{u_{1}}\right) \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
\alpha_{1}=\lambda-\beta_{1-1} \frac{u_{1-1}}{u_{1}}-\beta_{1} \frac{u_{1+1}}{u_{1}} . \tag{11}
\end{equation*}
$$

Notice that (10) is just the simple average of (11) over both eigenpairs. Using (11), (6), and (7) we can reconstruct the original matrix in $13 n-9$ flops.

In order to determine when these formulas can be applied, we need some additional results. We introduce the following fact from [10].

Fact 1 Let $T \in \mathrm{UST}_{+}(n)$ and assume that the cigenvalues are ordered so that $\lambda_{1}>\lambda_{2}>\ldots>\lambda_{n}$. Then the number of sign changes between consecutive elements of the k th eigenvector of T, denoted s_{k}, is $k-1$.

We refer the reader to [10] for a proof but note that it can be derived from the Sturm sequence property for the characteristic polynomials of the principal submatrices. With this fact in hand we can prove the following theorem.

Theorem 1 If $T \in \mathrm{UST}_{+}(n)$ and if (λ, \mathbf{u}) and (μ, \mathbf{v}) are the extremal eigenpars of T, that is $\lambda=\lambda_{1}$ and $\mu=\lambda_{n}$, then $v_{1} u_{1+1}-u_{1} v_{1+1} \neq 0$ for any $:=1,2, \ldots, n-1$.

Proof. The proof follows trivially b, noting that the strict interlacing property for unreduced symmetric tridiagonals (see [12] p. 300) guarantees that none of the numbers $u_{1}, u_{1+1}, v_{1}, v_{1+1}$ can be zero. And, since u_{1} and u_{1+1} must have the same sign and v_{1} and v_{1+1} must have opposite signs (from fact 1), it follows that both terms in $u_{1} v_{1+1}-v_{1} u_{1+1}$ have opposite signs and are nonzero so this difference is really a sum of two strictly positive (negative) numbers and hence is not zero.

Hence, if we choose the two extremal eigenpairs of a given element of UST_{+}we can always reconstruct the original matrix using the formulas above. Notice that the denominator is computed without cancellation in this case because of the sign pattern. Moreover, if we use the smallest (largest) eigenpair in (9) to get the α_{i}, then these can be reconstructed from the derived β_{1} and the data without further cancellation if the matrix is positive (negative) definite. If the matrix is indefinite then there is only one additional cancellation for each of the α_{1}. If the matrix is singular then choosing the eigenvector associated with the zero eigenvalue prevents further cancellation.

Note that any element of $\operatorname{UST}(n)$ has exactly $2 n-1$ real degrees of freedom and that two eigenpairs contain $2 n+2$ numbers but, in fact, also have $2 n-1$ real degrees of freedom since there are two arbitrary scaling
parameters for the eigenvectors and a single orthogonality condition. The eigenpairs contain precisely the right amount of information.

This algorithon is especially robust when applied to the tridiagonal matrix associated with the bidiagonal SVD. It is well known [7] that the Jordan-Lanczos matrix

$$
A=\left[\begin{array}{cc}
0 & B^{T} \tag{12}\\
B & 0
\end{array}\right]
$$

where $B \in \Re^{n \times n}$ is an unreduced bidiagonal with positive elements, can be reduced via the perfect shuffle to an unreduced tridiagonal T of the form

$$
T=\left[\begin{array}{lllll}
0 & \beta_{1} & & & \tag{13}\\
\beta_{1} & 0 & \beta_{2} & & \\
& \beta_{2} & & \ddots & \\
& & \ddots & & \beta_{n-1} \\
& & & \beta_{n-1} & 0
\end{array}\right]
$$

The matrix T is $2 n \times 2 n$ and its eigenvalues occur in plus-minus pairs. It is not difficult to show that if (λ, u) is an eigenpair of T then $(-\lambda, S \mathrm{u})$ is also an eigenpair where S is diagonat with 1 and -1 alternating as the diagonal elements. The reconstruction formula for this matrix simplifies considerably since we need only a single eigenpair. In particular, the β_{1} are given by

$$
\begin{equation*}
\beta_{1}=\frac{(-1)^{\prime} \lambda}{u_{1}+1 u_{1}} \sum_{k=1}^{1}(-1)^{k} u_{k} u_{k} \tag{14}
\end{equation*}
$$

As a special case of the more general algorithm it is obvious that the denominator $u_{1+1} u_{1}$ is not zero provided we use the eigenvector associated with the largest eigenvalue. Even more intriguing is that, provided none of the principal submatrices shares an eigenvalue with the full matrix, this denominator will be non-zero for any eigenpair since in this case no element of any eigenvector call be zero. In other words, the reconstruction from any eigenpair is well-posed provided that the given eigenvector has no zero elements. The algorithm requires $5 n-7$ flops working with (14) and the backward equation

$$
\begin{equation*}
\beta_{2}=\frac{(-1)^{1+1} \lambda}{u_{1+1} u_{1}} \sum_{k=n}^{i+1}(-1)^{k} u_{k} u_{k} \tag{15}
\end{equation*}
$$

Notice that this matrix has only $n-1$ real degrees of freedom which is exactly what is given by one eigenpair since the eigenvector contains an arbitrary scaling parameter and must satisfy the special orthogonality condition

$$
\begin{equation*}
\sum_{i=1}^{n}(-1)^{i} u_{i}^{2}=0 \tag{16}
\end{equation*}
$$

We point out that this algorithm can be interpreted as the reconstruction of an unreduced bidiagonal B from its largest singular value and both associated singular vectors.

2 Arrow Matrices

We can reconstruct the arrow matrix in a similar manner to that given above. The arrow is of some importance as it occurs in certain divide and conquer schemes for finding the eigenvalues of a tridiagonal matrix $[1,8]$. The arrow is also an element of the class of symmetric acyclic matrices (as is the Jacobi matrix) and lience it is possible to find its eigenvalues with "tiny componentwise relative backward error", [5].

The general form of an arrow matrix is

$$
A=\left[\begin{array}{cccl}
\alpha_{1} & & & \beta_{1} \tag{17}\\
& \alpha_{2} & & \beta_{2} \\
& & \ddots & \vdots \\
& & \alpha_{n-1} & \beta_{n-1} \\
\beta_{1} & \beta_{2} & \beta_{n-1} & \gamma
\end{array}\right]
$$

If $\beta_{1} \neq 0$ for $i=1,2, \ldots, n-1$ and if $\alpha_{1} \neq \alpha$, for any $: \neq$, then we shall say that $A \in \mathrm{USA}(n)$, where $\mathrm{UC} \therefore(n)$ is the set of unreduced symmetric arrow matrices. Proceeding before, we let (λ, \mathbf{u}) and (μ, v) be two eigenpairs of A. The eigenvector recurrence is

$$
\begin{align*}
\alpha_{1} u_{1}+\beta_{1} u_{n} & =\lambda u_{1} \tag{18}\\
\alpha_{2} v_{1}+\beta_{1} v_{n} & =\mu v_{\mathrm{t}} \tag{19}
\end{align*}
$$

for $i=1,2, \ldots, n-1$. Moreover, the eigenvector relation also gives

$$
\begin{equation*}
\gamma=\mu-\frac{1}{v_{n}} \sum_{i=1}^{n-1} \beta_{1} v_{1} \tag{20}
\end{equation*}
$$

for any eigenpair (μ, v) of A. If we combine (18) and (19) and eliminate $\alpha_{\text {, }}$ we get

$$
\begin{equation*}
\beta_{1}\left(v_{t} u_{n}-u_{1} v_{n}\right)=(\lambda-\mu) u_{1} v_{1} \tag{21}
\end{equation*}
$$

Similarly, eliminating β_{1} gives

$$
\begin{equation*}
\alpha_{1}\left(v_{1} u_{n}-u_{1} v_{n}\right)=\mu v_{1} u_{n}-\lambda u_{1} v_{n} . \tag{22}
\end{equation*}
$$

This gives a very simple, easily vectorizable reconstruction algorithm. The only remaining question is whether the quantities $v_{n} u_{1}-u_{n} v_{1}$ are all
nonzero. In order to show that this is true under the correct conditions, we need to first establish some facts about the eigenvectors of an unreduced arrow matrix. We begin by noting that

$$
A-\lambda I=\left[\begin{array}{cc}
D-\lambda I & \mathrm{~b} \tag{23}\\
\mathrm{~b}^{T} & \gamma-\lambda
\end{array}\right]
$$

where $D=\operatorname{diag}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}\right)$, and $\mathbf{b}=\left[\beta_{1}, \beta_{2}, \ldots, \beta_{n-1}\right]^{T}$. Following [8] we compute the Gauss factorization

$$
\left[\begin{array}{cc}
D-\lambda I & \mathbf{b} \tag{24}\\
\mathbf{b}^{T} & \gamma-\lambda
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
\mathbf{b}^{T}(D-\lambda I)^{-1} & 1
\end{array}\right]\left[\begin{array}{cc}
D-\lambda I & \mathbf{b} \\
0^{T} & -f(\lambda)
\end{array}\right]
$$

where f, the spectral function, is given by

$$
\begin{equation*}
f(\lambda)=\lambda-\gamma+\sum_{i=1}^{n-1} \frac{\beta_{1}^{2}}{\alpha_{1}-\lambda} \tag{25}
\end{equation*}
$$

From (24) and (25) the zeros of f are the eigenvalues of A. Furthermore, if A is unreduced, then the eigenvalues of A are strictly interlaced by the α_{1}. It follows that the eigenvector associated with λ is

$$
\mathbf{v}(\lambda)=\left[\begin{array}{c}
(\lambda I-D)^{-1} \mathbf{b} \tag{26}\\
1
\end{array}\right]
$$

Note that distinctness of the α_{1} is critical since it guarantees that ($\lambda I-D$) is nonsingular. Combining this description of the eigenvectors with the fact that the α_{1} interlace the eigenvalues, we have the following fact
Fact 2 Let A be an unreduced arrow matrix with $\beta_{1}>0$ for $1=1,2, \ldots, n-$ 1. Then the following hold.

1. If u is any eigenvector of A then $u_{1} \neq 0$ for any $i=1,2, \ldots, n$.
2. If we order the eigenvalues of A so that $\lambda_{1}>\lambda_{2}>\ldots>\lambda_{n}$ and let u_{k} be the eigenvector, from (26), associated with λ_{k}, then the first $k-1$ elements of u_{k} are less than zero, and the last $n-k+1$ elements are greater than zero.
Proof. The proof of the first fact follows directly from formula (26) and the interlacing property. The second fact follows from formula (26), the interlacing property, and the positivity of the β_{1}.

This simplifies the reconstruction formula since, if we assume that the eigenvectors are normalized so that their last elements are equal to one, the reconstruction formulas can be rewritten as

$$
\alpha_{1}=\lambda-\frac{(\mu-\lambda) v_{1}}{u_{1}-v_{1}}
$$

$$
\begin{align*}
\beta_{1} & =\frac{(\mu-\lambda) u_{1} v_{1}}{u_{1}-v_{1}} \tag{27}\\
\gamma & =\mu-(\mu-\lambda) \sum_{1=1}^{n-1} \frac{u_{1} v_{1}^{2}}{u_{1}-v_{1}}
\end{align*}
$$

Using these formulas, we can reconstruct the arrow matrix in $10 n-8$ flops. Under the previously mentioned conditions, it is easily shown that none of the denominators in the reconstruction formula are zero and hence we can always reconstruct the matrix from two eigenpairs.

Theorem 2 If A is an unreduced arrow matrix, and if λ and μ are any two destract eigenvalues of A uith associated eigenvertors u and v, normalazed to have thear last elements equal to one, then $u_{1}-v_{1} \neq 0$ for $:=1,2, \ldots, n-1$

Proof Assume that $u_{1}=r_{1}$. The eigenvector relation implies that

$$
\left[\begin{array}{ll}
u_{1} & 1 \tag{28}\\
v_{1} & 1
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
\beta_{1}
\end{array}\right]=\left[\begin{array}{l}
\lambda u_{1} \\
\mu v_{1}
\end{array}\right]
$$

which implies that $\lambda=\mu$, but this contradicts the distinctness of the eigenvalues. Hence, it follows that $u_{1} \neq r_{1}$.

The reconstruction algorithm has another very important property: if the two extremal eigenpairs (λ_{1} and λ_{n} and their associated eigenvectors) are used, then the β_{1} can be found, up to the scaling factor $\lambda_{1}-\lambda_{n}$, without cancellation. This follows from the fact that if the corresponding eigenvectors are nornalized so that their last elements are both one, then all the remaining elements must have opposite signs. This is fortuitous since it means that the differences that appear in the denominator do not involve cancellation. Moreover, if A is indefinite there are no cancellations whatsoever in computing the β_{1}. Conversely, if A is definite there are no cancellations in computing the α_{1}. If A is semi-definite (and singular) then there is no cancellation at all, including the computation of γ. The computation of γ involves one cancellation if the matrix is indefinite, and none if it is defmite, or semi-definite, provided we choose the correct eigenvector for its computation. In any case, whenever there is cancellation in this algorithm, it is benign.

3 Breakdown of the Jacobi reconstruction

On seeing that the reconstruction algorithm for the arrow is well posed for any two eigenpairs, it is tempting to believe that this might also be the case for the Jacobi matrix algorithm since the same conditions apply - unreduced, no principal submatrix shares an eigenvalue with the full matrix. Unfortunately, it is not true. Consider the matrix

$$
\left[\begin{array}{llll}
6 & 2 & 0 & 0 \tag{29}\\
2 & 4 & 5 & 0 \\
0 & 5 & 4 & 2 \\
0 & 0 & 2 & 6
\end{array}\right]
$$

which is an element of UST + and satisfies the condition that no principal submatrix shares an eigenvalue with the full matrix. The eigenvalues of this matrix are $10,(5+\sqrt{65}) / 2,5,(5-\sqrt{65}) / 2$ and the eigenvectors associated with 10 and 5 are $\left[\begin{array}{lll}1 & 2 & 2\end{array} 1\right]^{T}$ and $\left[\begin{array}{llll}-2 & 1 & 1 & -2\end{array}\right]^{T}$, respectively. Note that the reconstruction algorithm breaks down for these two eigenpairs and cannot uniquely determine β_{2}. Some manipulation of the scalar equations shows that the two eigenpairs in question are eigenpairs of any matrix of the form

$$
\left[\begin{array}{cccc}
6 & 2 & 0 & 0 \tag{30}\\
2 & 9-\gamma & \gamma & 0 \\
0 & \gamma & 9-\gamma & 2 \\
0 & 0 & 2 & 6
\end{array}\right]
$$

Fortunately, we can say a few things about breakdown. First of all, if the algorithm breaks down in the computation of β_{1} then it cannot break down in the computation of β_{1-1} or β_{1+1} since this implies that two distinct eigenvalues share the same eigenvector. Second, if there is a breakdown then it is possible to reconstruct a parametrized matrix with the specified eigenpairs by setting $\beta_{1}=\gamma$ and solving for α_{1} and α_{1+1} in terms of γ. Setting $\gamma=0$ will yield a reduced tridiagonal with the specified eigenpairs.

4 Stabilizing divide and conquer algorithms

We note that there are several other important inverse problems for the symmetric arrow matrix. Of interest, is the reconstruction of the symmetric arrow from the eigenvalues and the shaft of the arrow (i.e. the elements α_{8}). In this case it is also possible to reconstruct the arrow in a straightforward manner since we need only determine the β_{1} and the element γ. Clearly, we can obtain γ from the trace formula, that is

$$
\begin{equation*}
\gamma=\sum_{i=1}^{n} \lambda_{i}-\sum_{i=1}^{n-1} \alpha_{i} \tag{31}
\end{equation*}
$$

The β_{1} can be computed directly since the $-\beta_{1}^{2}$ are the residues of the partial fraction decomposition

$$
\begin{equation*}
f(\lambda)=\frac{\prod_{1=1}^{n}\left(\lambda-\lambda_{i}\right)}{\prod_{i=1}^{n-1}\left(\lambda-\alpha_{1}\right)}=\lambda-\gamma+\sum_{i=1}^{n-1} \frac{\beta_{i}^{2}}{\alpha_{i}-\lambda} . \tag{32}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
\beta_{j}^{2}=\lim _{\lambda \rightarrow \alpha_{k}}\left(\alpha_{k}-\lambda\right) f(\lambda)=-\frac{\prod_{1=1}^{n}\left(\alpha_{j}-\lambda_{1}\right)}{\prod_{1 \neq 1}\left(\alpha_{j}-\alpha_{1}\right)} \tag{33}
\end{equation*}
$$

This algorithm is used in [3] for the reconstruction of a periodic Jacobi matrix. It call also be applied to stabilize the extension based tridiagonal divide and conquer algorithms $[1,8]$.

We note that this is very similar with the inverse problem first considered in [2] and then used in [9] to stabilize the modification based Cuppen-Dongarra-Sorensen algorithun [4,6]. In particular, the zeros of the spectral function

$$
\begin{equation*}
f(\lambda)=1+\sum_{i=1}^{n} \frac{\beta_{1}^{2}}{a_{i}-\lambda} \tag{34}
\end{equation*}
$$

are the eigenvalues of $D+\mathrm{bb}^{T}$. The authors of [9] show that loss of orthogonality in computing the eigenvectors can be avoided by using the computed eigenvalues $\bar{\lambda}_{1}$ in the reconstruction formula

$$
\begin{equation*}
\dot{\beta}_{j}^{2}=\frac{\prod_{1=1}^{n}\left(\tilde{\lambda}_{1}-\alpha_{j}\right)}{\prod_{1 \neq 1}\left(\alpha_{1}-\alpha_{j}\right)} \tag{35}
\end{equation*}
$$

and then computing the eigenvectors of $D+\bar{b} \bar{b}^{T}$ from their explicit expressions. The enlightened use of shofts of the origin [9] is crucial to both algorithms.

5 Acknowledgements

The first and third authors were supported by direct grant from the Naval Postgraduate School. The third author also acknowledges support from the Interdisciplinary Project Center for Supercomputing at the ETH, Zürich.

References

[1] P. Arbenz, Davide and conquer algorithms for the bandsymmetric eigenealue problem, in Parallel Computing '91 (D.J. Evans, G.R. Joubert and H. Liddell, editors), Elsevier Science Publishers B.V., Amsterdam, 1992, pp. 151-158.
[2] J.L. Barlow, Error analysis of update methods for the symmetric eigenualue problem, SIAM J. Matrix Anal. Appl., to appear.
[3] D. Boley and G.II. Golub, A modified method for reconstructing periodic Jacobi matrices, Math. Comp., 42, 165, (1984), pp. 143-150.
[4] J.J.M. CUPPEN, A divide and conquer method for the symmetric tridiagonal eigenproblem, Numer. Math., 36, (1981), pp. 177-195.
[5] JAMES W'. DEMMEL AND W.B. GragG, On computing accurate singular values of matrices with acyclic graphs, Linear Algebra Appi., to appear.
[6] J.J. Dongarra and D.C. Sorensen, A fully parallel algorithm for the symmetric eigenvalue problem, SIAM J. Sci. Statist. Comput., 8, (1987), pp. 139-154.
[7] G.II. Golub and W. KAhan, Calculating the singular values and pseudo-mverse of a matrix, J. Soc. Indust. Appl. Math. Ser. B Numer. Anal., 2, (1965), pp. 205-224.
[8] W.B. Gragg, John R. Thornton and Daniel D. Warner, Parallel divide and conquer algorithms for the symmetric tridiagonal eigenproblem and bidiagonal singular value problem, Modeling and Simulation, Volume 23, Proc. 23rd Annual Pittsburgh Conf., Univ. Pittsburgh School of Engineering, 1992.
[9] M. Gu and S.C. Eisenstat, A stable and efficsent algorithm for the rank-one modification of the symmetric eigenprowem, Department of Computer Science, Yale U'niversity, working paper, 1992.
[10] B. Parlett, The symmetric esgenvalue problem, Prentice Hall lnc., New Jersey, 1980.
[11] B. Parlett and W'-D. W'u, Eigeneector matrices of symmetric tridiagonals, Numer. Math., 44 (1984), pp. 103-110.
[12] J.II. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, England, 1965.

```
Research Office
Code 81
Naval Postgraduate School
Monterey, CA 93943
```

Library
code 52
Naval Postgraduate School
Monterey, CA 93943
Professor Richard Franke

32768003366451

