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Abstract

We consider the problem of reconstructing Jacobi matrices and real

symmetric arrow matrices from two eigenpairs. Algorithms for solving

these inverse problems are presented. We show that there are reasonable

conditions under which this reconstruction is always possible. Moreover,

it is seen that in certain cases reconstruction can proceed with little or

no cancellation The algorithm is particularly elegant for the tridiagonal

matrix associated with a bidiagonaJ singular value decomposition.

Keywords. Jacobi matrix. Arrow matrix, inverse problem.

1 Jacobi matrices

Let T be an unreduced reaJ symmetric tridiagonal matrix (i.e. a Jacobi

matrix)

T =

01 »2 02

0n-\

(i;

with 0, > for i = 1,2, ...,n — 1. We use the notation introduced in

[11] and let UST(ti) denote the set of n x n real unreduced symmetric



tridiagonal matrices, and let UST+(»i) denote that subset of UST(n)
with positive 0,.

We wish to develop an algorithm to reconstruct T from the knowledge

of two of its eigenpairs (A, u) and (/i,v). The eigenvector recurrence for

symmetric tridiagonal matrices is

/?,_iu,_i + a,u, + /?,u, + i = Au, (2)

where (A, u) is any eigenpair of T, u, is the »th element of u, and 0o =
n = 0. Applying this relation to both eigenpairs gives

/?,'_itt|-i + ariUi + /?|U|+i = Au,

0,-i v,-i + ft, t', + fl,t',+ i = HVi.

Combining these two equations and eliminating a, gives

0,-i(v,u,-i - u,v,-i ) + 0,(u,+ iv, - v, + \u,) = (A - fi)u,v,. (3)

Since 0q = n = we get the following initial and terminal conditions

0l{u2 Vi - W2 «l) = (A-/i)Uit'! (4)

n -i(v n u n - i
- u n 7'„-i) = (X - n)u n vn . (5)

Combining (3) with (4) gives a special case of the Christoffel-Darboux

identity,

i

0,{u, + ii>, - i', + ia,) = (A — fi) 2_^ UkV k (6)

for i = 1,2 it — 1. There is also a backward formula,

n

^(ui+H'i - i'i+i«i) = -(A - fi) 2_, "*"«> (
7

)

fc=t+i

which follows from (3) and (5), or from (6) and the orthogonality of the

eigenvectors. In a similar manner, we can show that

2a, u,v, = (A + /i)u,n, - 0,-i(u,v,-i + v,u,-\) - 0,{u, + \v, +v1+ iu,). (8)

This formula uses all of the available information but it is possible to

obtain an equation for the o, using the 0, and a single eigenpair with the

formula

a,v, = fiv, - 0,-iv,-i - 0,v, + i. (9)

We can use these equations to reconstruct the original matrix from the

two eigenpairs provided that no element of the two eigenvectors is zero



and that j,u, + i
— u,v,+i £ for any » = 1, 2, ...,n — 1. If this is true, then

the equations for the a, simplify to

2a, = (A + ,j-^- 1 (^+^)-/?.(^i + ^±i
) (10,

V v, u, J \ v, u, /

O, = A - /?,_! P, . (11
u, u,

Notice that (10) is just the simple average of (11) over both eigenpairs.

Using (11), (C), and (7) we can reconstruct the original matrix in 13n — 9

flops.

In order to determine when these formulas can be applied, we need

some additional results. We introduce the following fact from [10].

Fact 1 Let T 6 UST + (7i) and assume that the eigenvalues are ordered

so that A] > A2 > ... > A„ . Then r/i< number of sign changes between

consecutive elements of the kth eigenvector of

T

, denoted Sk, is It— 1.

We refer the reader to [10] for a proof but note that it can be derived

from the Sturm sequence property for the characteristic polynomials of the

principal submatrices With this fact in hand we can prove the following

theorem.

Theorem 1 If T £ UST+(?i) and i/(A,u) and (/j,v) are the extremal

eigenpairs of T, that is A = Aj and /i = A n , then t',u, + i
— u.r.+ i ^ for

any 1 = 1,2, .... »i — 1

.

Proof. The proof follows trivially b, noting that the strict interlacing

property for unreduced symmetric tridiagonals (see [12] p. 300) guaran-

tees that none of the numbers u, , u, + i , r,, «,+] can be zero. And, since u,

and ti,+ i must have the same sign and i>, and v, + i must have opposite

signs (from fact 1), it follows that both terms in u,v,+] — i',u 1+ i have

opposite signs and are nonzero so this difference is really a sum of two

strictly positive (negative) numbers and hence is not zero.

Hence, if we choose the two extremal eigenpairs of a given element of

UST + we can always reconstruct the original matrix using the formulas

above. Notice that the denominator is computed without cancellation in

this case because of the sign pattern. Moreover, if we use the smallest

(largest) eigenpair in (9) to get the a,, then these can be reconstructed

from the derived 0, and the data without further cancellation if the matrix

is positive (negative) definite. If the matrix is indefinite then there is only

one additional cancellation for each of the a,. If the matrix is singular

then choosing the eigenvector associated with the zero eigenvalue prevents

further cancellation.

Note that any element of UST(n) has exactly 2n — 1 real degrees of

freedom and that two eigenpairs contain 2n + 2 numbers but, in fact, also

have 2n — 1 real degrees of freedom since there are two arbitrary scaling



parameters for the eigenvectors and a single orthogonality condition. The

eigenpairs contain precisely the right amount of information.

This algorithm is especially robust when applied to the tridiagonal

matrix associated with the bidiagona] SVD. It is well known [7] that the

Jordan-Lanczos matrix

A = BT

B (12)

where B £ 5\
nx " is an unreduced bidiagona! with positive elements, can

be reduced via the perfect shuffle to an unreduced tridiagona] T of the

form

0i

01 7

T =

n -i

0n-l

(13)

The matrix T is 2ti x 2?i and its eigenvalues occur in plus-minus pairs.

It is not difficult to show that if (A, u) is an eigenpair of T then (
— A, Su)

is also an eigenpair where 5 is diagonal with 1 and —1 alternating as the

diagonal elements. The reconstruction formula for this matrix simplifies

considerably since we need only a single eigenpair. In particular, the 0,

are given by

D'A
0,= [-^Y(-l) ku^ (14)

As a special case of the more general algorithm it is obvious that the

denominator li.+ iu, is not zero provided we use the eigenvector associated

with the largest eigenvalue. Even more intriguing is that, provided none

of the principal submatrices shares an eigenvalue with the full matrix,

this denominator will be non-zero for any eigenpair since in this case no

element of any eigenvector can be zero. In other words, the reconstruction

from any eigenpair is well-posed provided that the given eigenvector has

no zero elements. The algorithm requires 5n - 7 flops working with (14)

and the backward equation

• 41

UkU k - (15)

Notice that this matrix has only n — 1 real degrees of freedom which

is exactly what is given by one eigenpair since the eigenvector contains

an arbitrary scaling parameter and must satisfy the special orthogonality

condition



£(-!)•«? = 0. 16)

We point out that this algorithm can be interpreted as the reconstruc-

tion of an unreduced bidiagonal B from its largest singular value and both

associated singular vectors.

2 Arrow Matrices

We can reconstruct the arrow matrix in a similar manner to that given

above. The arrow is of some importance as it occurs in certain divide and

conquer schemes for finding the eigenvalues of a tridiagonal matrix [1, 8].

The arrow is also an element of the class of symmetric acyclic matrices

(as is the Jacobi matrix) and hence it is possible to find its eigenvalues

with "tiny componentwise relative backward error", [5].

The general form of an arrow matrix is

A =

«i

0i

Q 2

01

02

Ori-1 /?„_]

/?„-! 7

0'

If 0, / for j = 1,2 ?) — 1 and if a, ^ a
}

for any t ^ j then

we shall say that A £ USA(ti), where USA(n) is the set of unreduced

symmetric arrow matrices. Proceeding ;< before, we let (A,u) and (ft, v)

be two eigenpairs of A. The eigenvectoi recurrence is

o,u, + 0,un = Xu, (18)

Q,V, + t Vr, = /if, (19)

for i = 1,2,..., n — 1. Moreover, the eigenvector relation also gives

n-l

= n ) 0,v, (20)

for any eigenpair (/i,v) of A. If we combine (18) and (19) and eliminate

a, we get

0x{v, «„ - U.t'n) = (A - (i)u,V,.

Similarly, eliminating 0, gives

(21;

0,(1',

u

n - u,vn )
= fiv,u n - Xu,vn . (22)

This gives a very simple, easily vectorizable reconstruction algorithm.

The only remaining question is whether the quantities vn u, — u n v, are all



nonzero. In order to show that this is true under the correct conditions, we

need to first establish some facts about the eigenvectors of an unreduced

arrow matrix. We begin by noting that

A- XI = D - XI b

7-A

where D = diag(ai, 02, ...,a„-i), and b = [81,82,-

[8] we compute the Gauss factorization

(23)

.,/?„_i]
r

. Following

D- XI b / D- XI b

b T 7-A bT{D- a;)- 1

1 o
r -/(A)

where /, the spectral function, is given by

/(A) = A-7 +
/?,

2

(24)

(25)

From (24) and (25) the zeros of / are the eigenvalues of A. Further-

more, if A is unreduced, then the eigenvalues of A are strictly interlaced

by the a,. It follows that the eigenvector associated with A is

v(A) =
(XI -D)

1

(26)

Note that distinctness of the a, is critical since it guarantees that (XI — D)

is nonsingular. Combining this description of the eigenvectors with the

fact that the a, interlace the eigenvalues, we have the following fact

Fact 2 Let A be an unreduced arrow matrix with 3, > for t = 1,2, ..., n—
1. Then the following hold.

1. If u is any eigenvector of A then u, ^ for any i = 1,2,..., n.

2. If we order the eigenvalues of A so that Ai > A2 > ... > A n and

let Uk be the eigenvector, from (26), associated with A*, then the

first k — 1 elements of u*. are less than zero, and the last n — k + 1

elements are greater than zero.

Proof. The proof of the first fact follows directly from formula (26)

and the interlacing property. The second fact follows from formula (26),

the interlacing property, and the positivity of the 0,.

This simplifies the reconstruction formula since, if we assume that the

eigenvectors are normalized so that their last elements are equal to one,

the reconstruction formulas can be rewritten as

a, = X- (/*- A)f,

v,



0, =
(u - X)u,v,

v,
(27)

1 = ^ - (^ - A

n-l

^—' u. —
ti.t',

Using these formulas, we can reconstruct the arrow matrix in lOn — 8

flops. Under the previously mentioned conditions, it is easily shown that

none of the denominators in the reconstruction formula are zero and hence

we can always reconstruct the matrix from two eigenpairs.

Theorem 2 If A is an unreduced arrow matrix, and if A and u are any

two dtstinct eigenvalues of A with associated eigenvectors u and v, nor-

malized to have their last elements equal to one, then u, — v, ^ for

i = 1,2 n-l.

Proof Assume that u, = v,. The eigenvector relation implies that

a, Au,
(28)

which implies that A = u, but this contradicts the distinctness of the

eigenvalues. Hence, it follows that u, ^ r,.

The reconstruction algorithm has another very important property: if

the two extremal eigenpairs (A] and A n and their associated eigenvectors)

are used, then the /?, can be found, up to the scaling factor Aj — A„,

without cancellation. This follows from the fact that if the corresponding

eigenvectors are normalized so that their last elements are both one, then

all the remaining elements must have opposite signs. This is fortuitous

since it means that the differences that appear in the denominator do not

involve cancellation. Moreover, if A is indefinite there are no cancellations

whatsoever in computing the 8,. Conversely, if A is definite there are no

cancellations in computing the o,. If A is semi-definite (and singular)

then there is no cancellation at all. including the computation of 7. The
computation of 7 involves one cancellation if the matrix is indefinite, and

none if it is definite, or semi-definite, provided we choose the correct eigen-

vector for its computation. In any case, whenever there is cancellation in

this algorithm, it is benign.

3 Breakdown of the Jacobi reconstruc-

tion

On seeing that the reconstruction algorithm for the arrow is well posed

for any two eigenpairs, it is tempting to believe that this might also be

the case for the Jacobi matrix algorithm since the same conditions apply

- unreduced, no principal submatrix shares an eigenvalue with the full

matrix. Unfortunately, it is not true. Consider the matrix



6 2

2 4 5

5 4 2

2 6

6 2

2 9-1 7

1 9-7 2

2 6

(29)

which is an element of UST + and satisfies the condition that no principal

submatrix shares an eigenvalue with the full matrix. The eigenvalues of

this matrix are 10, (5 + vG5)/2, 5, (5 — v65)/2 and the eigenvectors

associated with 10 and 5 are [12 2 1]
T and [-2 1 1 - 2]

T
, respectively.

Note that the reconstruction algorithm breaks down for these two eigen-

pairs and cannot uniquely determine 02- Some manipulation of the scalar

equations shows that the two eigenpairs in question are eigenpairs of any

matrix of the form

(30)

Fortunately, we can say a few things about breakdown. First of all,

if the algorithm breaks down in the computation of 0, then it cannot

break down in the computation of 3,-\ or /?,+ ) since this implies that

two distinct eigenvalues share the same eigenvector. Second, if there is a

breakdown then it is possible to reconstruct a parametrized matrix with

the specified eigenpairs by setting /?,• = 7 and solving for a, and q, + ]

in terms of ->. Setting 7 = will yield a reduced tridiagonal with the

specified eigenpairs.

4 Stabilizing divide and conquer algo-

rithms

We note that there are several other important inverse problems for the

symmetric arrow matrix. Of interest, is the reconstruction of the sym-

metric arrow from the eigenvalues and the shaft of the arrow (i.e. the

elements a,). In this case it is also possible to reconstruct the arrow in

a straightforward manner since we need only determine the 0, and the

element 7. Clearly, we can obtain 7 from the trace formula, that is

n n—

1

1=] 1=1

The 0, can be computed directly since the —0\ are the residues of the

partial fraction decomposition

fw = to
n:.7(A -a.) ^ <*>

2
,

(32)



Thus we have

# = Km (a fc -A/(A) = - "'=1 J

(33)

This algorithm is used in [3] for the reconstruction of a periodic Jacobi

matrix. It can also be applied to stabilize the extension based tridiagonal

divide and conquer algorithms [l, 8].

We note that this is very similar with the inverse problem first con-

sidered in [2] and then used in [9] to stabilize the modification based

Cuppen-Dongarra-Sorensen algorithm [4, 6]. In particular, the zeros of

the spt ctral function

/(A) =1+5" '—
(34)

^—' q, — A
i=]

are the eigenvalues of D + bb . The authors of [9] show that loss of

orthogonality in computing the eigenvectors can be avoided by using the

computed eigenvalues A, in the reconstruction formula

7 U" ,(A. -<*,)

- • T
and then computing the eigenvectors of D + bb from their explicit ex-

pressions. The enlightened use of shifts of the origin [9] is crucial to both

algorithms.
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