
3><^

NPS-EC-92-007

NAVAL POSTGRADUATE SCHOOL

Monterey, California

REAL-TIME EXECUTION CONTROL OF

TASK-LEVEL DATA-FLOW GRAPHS

USING A COMPILE-TIME APPROACH

Shridhar B. Shukla^
Brian Little
Amr Zaky

April 1992

J

FedDocs
D 208.14/2
NPS-EC-92-007

Approved for public release; distribution unlimited

Prepared for: Naval Sea Systems Command
Washington, DC

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36721622?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

3*. m

Naval Postgraduate School
Monterey, California 93943-5000

Rear Admiral R.W. West, Jr.

Superintendent chilli

Provost

Wash^glonrac"""
6
" ^ "* *"*** *» ^^ Sca SyStCmS C°mmand

'
PMS 412

>

Reproduction of all or part of this report is authorized.

This report was prepared by:

JTY CLASSIFICATIOH OF THIS PAGE

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL

REPORT DOCUMENTATION PAGE
REPORT SECURITY CLASSIFICATIOI

Unclassified

lb. RESTRICTIVE MARKIIGS

SECURITY CLASSIFICATIOI AUTHORITY

DECLASSIFICATIOI/DOWIGRADIIG SCHEDULE

3. DISTRIBUTIOI/AVAILABILITY OF REPORT

Approved for public release;

distribution is unlimited.

PERFORMIIG 0RGA1IZATI0I REPORT lUMBER(S)

NPS-EC-92-007

5. MOBITORIIG ORGAIIZATIOI REPORT IUMBER(S)

IAME OF PERFORMIIG ORGAIIZATIOI

Dept. of Elect. & Comp. Eng.
Vaval Postgraduate School

6b. OFFICE SYMBOL
(if applicable)

EC/Sh
'

7a. IAME OF HOIITORIIG ORGAIIZATIOI

TRW
ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5004

7b . ADDRESS (City, State, and ZIP Code)

Washington, DC 20362

IAHE OF FUIDIIG/SPOISORIIG
DRGAIIZATI01

YAVSEA

8b. OFFICE SYMBOL
(if applicable)

PMS 412

9. PROCUREMEIT IISTRUMEIT IDEITIFICATIOI IUMBER

ADDRESS (City, State, and ZIP Code)

Washington, DC 20362

10. SOURCE OF FUIDIBG IUMBERS

PROGRAM

ELEMEIT 10.

PROJECT
10.

TASK

10.

WORK UBIT
ACCESSIOI 10.

TITLE (Include Security Classification)

Real-time Execution Control of Task-level Data-flow Graphs Using A Compile-time Approach

PERS0IAL AUTHOR(S)

Shridhar B. Shukla, Brain Little, and Amr Zaky

TYPE OF REPORT

Technical Report
13b. TIME COVERED

FROM 10/1/90 TO 3/31/91.

14 . DATE OF REPORT (Year, Month, Day)

April 1991
15. PAGE C0UHT

29
SUPPLEMEHTARY I0TATI0I

The views expressed in this report are those of the author and do not reflect the

cial policy or position of the Department of Defense or the United States Government.

C0SATI CODES

ELD GROUP SUB--GR0UP

18 . SUBJECT TERMS ("Continue on reverse if necessary and identify by block number)

Compile-time, Data-flow, Graph Restructuring, Real-time, Run-time,

Scheduling, Signal Processing, Throughput, Task-level

ABSTRACT (Continue on reverse if necessary and identify by block number)

Efficient data-flow implementation requires fast run-time mechanisms to detect and dispatch schedulable tasks. However, the

cent non-determinism in data-flow executions and the requirement of fast, and therefore, simple run-time mechanisms necessitate

pile-time support to improve performance. In particular, for data-flow execution of applications, such as signal processing which

:haracterized by periodically received data, compile-time support can be used to control the run-time behavior to improve the

ictability and efficiency. In this report, a compile-time technique that supports a simple run-time mechanism to improve

ughput and predictability for a task-level data-flow programming model is described. This technique, called the revolving

vder analysis, restructures the application, described by a task-level data-flow graph. The restructuring is based on wrapping

projected data-flow execution trace on the curved surface of a cylinder whose area depends upon the number of processors

the sum of the task execution times. The behavior of the restructured graph is shown to be more predictable under the

; run-time mechanism than that of the old graph. Results on the performance improvement for two typical signal processing

ications, viz., a correlator and a fast Fourier Transform, are presented. The potential of this approach in determining the

nal granularity for an application is also described.

DISTRIBUTIOI/AVAILABILITY OF ABSTRACT

UICLASSIFIED/UILIMITED LJ SAME AS RPT. O DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATIOI

Unclassified
IAME OF RESPONSIBLE IIDIVIDUAL

Shridhar B. Shukla
22b . TELEPH0IE (Include Area Code)

(408) 646-2764
22c. OFFICE SYMBOL

EC/Sh
RM 1473, JUI 86 Previous editions are obsolete. SECURITY CLASSIFICATIOI OF THIS PAGE

Real-time Execution Control of Task-level Data-flow Graphs

Using A Compile-time Approach 1

by

Shridhar Shukla and Brian Little 2

Code EC/Sh, Dept. of Elect. & Computer Engineering

Naval Postgraduate School

Monterey, CA 93943-5000

Tel: (408) 646-2764 Fax: (408) 646-2760

E-mail: shukla@ece.nps.navy.mil

and

Amr Zaky

Code CS/Za. Department of Computer Science

Naval Postgraduate School

Monterey. CA 93943-5000

Tel: (408) 646-2693 Fax: (408) 646-2814

E-mail: zakyiacs.nps.navy.mil

1 This research has been supported in part by PMS 412, Naval Sea Systems Command, De-

partment of Navy, Washington DC. 20362

2 Currentlv at the Naval Submarine School. Groton. CT

This is technical report NPS-EC-92-007. It supercedes NPS-EC-92-002.

Abstract

Efficient data-flow implementation requires fast run-time mechanisms to detect and dis-

patch schedulable tasks. However, the inherent non-determinism in data-flow executions

and the requirement of fast, and therefore, simple run-time mechanisms necessitate compile-

time support to improve performance. In particular, for data-flow execution of applications,

such as signal processing which are characterized by periodically received data, compile-time

support can be used to control the run-time behavior to improve the predictability and effi-

ciency. In this report, a compile-time technique that supports a simple run-time mechanism

to improve throughput and predictability for a task-level data-flow programming model is

described. This technique, called the revolving cylinder analysis, restructures the applica-

tion, described by a task-level data-flow graph. The restructuring is based on wrapping the

projected data-flow execution trace on the curved surface of a cylinder whose area depends

upon the number of processors and the sum of the task. execution times. The behavior of

the restructured graph is shown to be more predictable under the same run-time mechanism

than that of the old graph. Results on the performance improvement for two typical signal

processing applications, viz.. a correlator and a fast Fourier Transform, are presented. The

potential of this approach in determining the optimal granularity for an application is also

described.

1 Introduction

Data-flow graphs not only describe the dependencies between different parts of the computa-

tion required in an application, but also provide built-in scheduling and synchronization. For

example, on a hypothetical system with no communication cost and an unlimited number

of processors, nodes can synchronize by sending data and a node can be scheduled as soon

as all the required data is present at its input. Due to the generality of this representation,

it can be used to specify parallelism at the instruction level [BroST, SFP83] as well as at

the task level [LMS7]. The theoretical foundation for the consistency of such representations

has been well studied [KM66, Lee91]. In practical implementations of this paradigm, the

machine must provide mechanisms to manage the data that flows through the graph and

to capture the intrinsic scheduling and synchronization. These mechanisms, typically oper-

ating at run-time, result in overheads that lead to suboptimal performance. The amount

of overhead depends critically on the granularity of the paraDelism expressed by .the graph

and on whether the computations have conditionals and recursion. A direct implementa-

tion in hardware of the data-flow paradigm for general applications results in unmanageable

overheads [GKWS5, BroST].

However, for classes of applications, such as signal processing, data-flow can be managed

very efficiently to obtain significant performance improvement. The two properties of these

applications that make this possible are availability of a prion knowledge of the amount

of data produced and consumed and negligible use of conditionals and recursion. When

the amounts of data produced and consumed by the nodes of a data-flow graph are known

exactly, the applications are called synchronous data-flow applications [LM87]. When the

data arrives periodically, they have been classified as pipelined function-parallel computations

[KCN90].

Any data-flow implementation must perform buffering and fetching of data, allocation of

graph nodes to processors, their ordering on each, and the exact times at which they are

scheduled. If all the related decisions are done at run-time, the efficiency of the implementa-

tion suffers. The overheads can be reduced effectively by using the node and arc attributes

of the data-flow graph at compile-time to simplify the run-time management.

Based on which decisions are made at compile-time and which ones are made at run-time,

data-flow implementations can be classified over a spectrum that ranges from fully-static to

fully-dynamic [LB90J. While dynamic implementations have more overhead, they are more

flexible and are easier to implement. They also degrade gracefully in the even of individual

processor malfunction. On the other hand, static implementations are more efficient and lead

to predictable performance which is crucial to real-time systems. However, they are difficult

to realize, are inflexible, and do not degrade gracefully. Their effectiveness is determined

by how accurately the -computational requirements of the application are known. This is

typically a difficult problem and its solution of using the worst-case estimate can result in

large inefficiencies. Therefore, real-time systems must strike a careful balance between the

compile-time effort and run-time complexity to get the desired and guaranteed performance.

In real-time signal processing applications, the trade-offs between compile-time and run-

time has an additional dimension because of the periodic arrival of data. When external

data arrives periodically, the intrinsic non-determinism, of data-flow execution results in

unpredictable program behavior. As a result, processed data arrives unpredictably leading

to the possibility of intolerable delays and insufficient buffer space, especially under high

loads.

The focus of this work is on compile-time mechanisms for controlling data-flow implemented

using a simple run-time mechanism for real-time signal processing applications. We present a

technique in which, instead of generating information, such as schedules, to control allocation

or ordering on processors at run-time, a new data-flow graph is obtained as a result of the

compile-time analysis. The behavior of this new graph is more predictable under the same

run-time mechanism than that of the old graph. Section 2 describes a model for task-level

data-flow processing and illustrates the problems associated with fully dynamic data-flow

execution of real-time signal processing applications. Section 3 describes the proposed ap-

proach and presents the graph restructuring algorithm. Section 4 describes the effectiveness

of this approach on two applications using the results of a simulation. Finally, in Section

5, the potential of graph restructuring and how this approach can be developed further is

described.

2 A Model for Task-level Data-flow in Signal Process-

ing

Figure 1 shows the architectural model under consideraiion for task-level data-flow. This

model closely resembles the AN/UYS-2 parallel signal processor developed by the US Navy

[Ric90]. Thejnodel has four basic types of elements, viz.. the processors (P), memory modules

(M), scheduler (SCH), 'and the interconnection network. The processors execute individual

nodes of the data-flow graph. Each processor has a local memory in which data on all the

input queues as well as the instruction stream corresponding to the node are first fetched.

All input and output queues of the graph l
are stored in the memory modules. The memory

modules monitor the state of these queues, i. e.. whether there is space for additional data,

the amount of data has gone above or below certain predetermined threshold and capacity

levels. Changes in the status of a queue are sent to the scheduler. This information is used

by the scheduler to make run-time decisions. Memory modules also store the instruction

streams for all the nodes in the graph. The instruction stream and data are moved between

the processors and the memory modules across the interconnection network. The scheduler

itself is a simple run-time dispatcher that matches the free processors in the free processor list

(FPL) with the ready nodes in the ready node list (RNL). The operation of this architecture

is brieflv described below.

2.1 Data-flow Execution

Applications are specified as data-flow graphs which are directed, acyclic graph with nodes

representing large grain computations 2 chosen from a library of signal processing functions.

The edges of a graph represent queues which receive data from the source node and supply

data to the destination node. Each queue is allocated to a memory module for storage

which maintains its current size and the remaining capacity. As data arrives on all the input

queues of a node, the threshold values associated with each queue is eventually exceeded.

Threshold refers to the minimum number of data items that must be present in a queue for its

destination to become ready. A node is ready (or execution when two conditions are satisfied.

1 Unless otherwise mentioned, the term graph always refers to a data-flow graph in the rest of the report.
2 Each node can be a complex program.

M M M M M

INTERCONNECTION NETWORK

Free processor

list (FPL)

Ready node

list (RNL)

The SCH maintains the FPL and RNL. When a processor completes

setting up of the task assigned to it, it becomes free. When a node has

all the data available on its input queues, it becomes ready. If there is

a free processor, a ready node is assigned to it. Each memory module

keeps track of the state of queues assigned to it and sends changes

to SCH. At any time, a processor may execute a node, set up the next

one and breakdown the previous one.

Figure 1: Model of A Parallel Task-level Data-flow Processor

All its incoming queues exceed their thresholds and all its output queues must be under their

capacity values. All memory modules communicate the events of threshold/capacity crossing

to the scheduler which determines if a node is ready. Initially all processors are on the FPL

and the scheduler assigns them to nodes on the RNL. When a node is assigned to a processor,

it fetches the data and the instruction stream corresponding to the node from appropriate

memory module. When the entire instruction stream and queue data have been fetched,

the setup of 4,he node is complete. A processor communicates this event to the scheduler

to get itself placed on the FPL so that the next node may start getting set up. Thus, the

node already setup begins execution while the next node gets setup with the restriction that

a processor may have only one node setup and pending to execute at any time. The data

generated by the execution is first stored locally. Upon completion, a processor transfers

the data to appropriate memory module storing the output queues in what is referred to as

the breakdown phase. Thus, any node goes through three phases at a processor, viz., setup,

execution, and breakdown. Since their functions are independent and the set-up/breakdown

operations may require time comparable to the execution time, these operations can be

overlapped by providing independent functional units for execution unit and data movement

unit within a processor.

Upon arrival of sufficient data at the nodes which receive data only from the external world.

an instance of the graph is started and its execution proceeds according to the data-flow

principle. As a result of the data-flow execution, which corresponds to asynchronous task-

level pipelining, several instances of the graph are active simultaneously. Aside from the

requirement that the required throughput must be met by the machine, real-time perfor-

mance may require that all instances of the graph should complete in the same amount of

time. Between the completion of the setup of a node at a processor and the actual start of its

execution, there may be a delay because the execution unit at a processor has not completed

the previous node. This delay, that may be experienced by a ready node, is in addition to

the delay it may experience waiting on the RNL. Both delays result in an increase in the

latency of the graph execution. On the other hand, an execution unit may have to wait for

the setup completion of the next node assigned to it after it completes its current node. If

this happens, execution cycles are lost and the machine throughput degrades.

To maximize throughput, all execution units must run all the time, and therefore, each

processor must have some node set up for execution at the time it finishes the previous node

computation. Since the scheduler is a simple run-time dispatcher that matches RNL nodes

to free processors, the delays described above depend upon the application execution profile.

This profile depends upon the data rate, the spatial and temporal parallelism in the graph,

the number of processors, the number of memory modules, and the allocation of queues

to memory modules. Since task-level parallelism is being considered, performance can be

improved significantly if setup and breakdown cost can be minimized. One method to reduce

this cost is to chain successive nodes together and execute them on a single processor one

after the other. This results in saving the breakdown cost for the first node and setup cost

for the second node.

2.2 Unpredictability in Program Behavior

In real-time environments, the ability to predict the program performance is critical for

efficient allocation of resources such as memory modules, processors, and queue sizes. How-

ever, the first-come-first-served (FCFS) assignment of processors to ready nodes in the above

data-flow model is intrinsically non-deterministic. This non-determinism manifests itself as

degraded performance in two ways, viz.. irregular execution patterns and interference at the

memory modules.

When data arrives periodically, the unpredictable execution patterns arise due to the absence

of direct control over execution of nodes that depend only upon the receipt of data from the

external world. If the output queue capacities for these nodes were unlimited, they would

execute at a rate that matches the input arrival and is independent of the rate at which

other nodes execute. In the presence of finite queue sizes, they execute at the input rate

until the output queues get filled; and then, stall until nodes down the graph create space

in the queues by consuming data. This leads to the individual graph instances not being

executed in a uniform manner. This is undesirable in real-time scenarios. In addition, the

machine throughput will degrade because the memory access patterns may be such that

there is interference at the memory modules while setting up and breaking down nodes.

This problem of controlled dat-flow execution has been addresses in different contexts before.

For example, in [SMS90], input control has been applied to real-time execution of of graphs

on multicomputers. In order to achieve predictability, a custom operating environment called

AMOS has been developed. In [SA91], similar unpredictability has been observed due to

the FCFS nature of self-routing of messages in a multicomputer network. The solution

proposed therein is a sequence of explicit scheduling of the communication resources. In

the following section, a framework is presented that introduces additional dependencies in

the graph based on the technique of revolving cylinder analysis. While only the problem

of controlling execution is addressed in this report, the technique is general enough to be

addressed to other problems such as reducing the memory contention and determining the

optimal granularity- for a given machine configuration.

3 Graph Restructuring Using Revolving Cylinder Anal-

ysis

The important resources to be assigned in the model of Fig. 1 are processors and memory

modules. We do not address the problem of allocating data queues to memory modules

so that memory contention is minimized in this report. The scheduler assigns processor

resources on a FCFS basis. The key idea in restructuring based on RC analysis is that

inserting dependencies in the graph can produce a graph with better performance. This idea

can be traced back to algorithms for overlapping complex operations on pipelined processors

[RGPS2]. This restructuring selectively changes the conditions when a node will enter the

RNL; however, choosing the processor to schedule it on is left to the run-time dispatcher.

This enables the actual scheduling to remain dynamic keeping the run-time overhead low.

3.1 Revolving Cylinder (RC) Analysis

Given a graph as in Fig. 2, it is possible to systematically determine whether it can be

mapped on a certain number of processors while satisfying the required data rates. For

simplicity, we neglect the breakdown and setup times of each node. It can be proved that

the graph could be scheduled (ignoring overheads) such that the consecutive graph instances

are separated - on the average - t steps away from each other, where t is equal to the total

execution time of the PGM divided by the number of processors. This corresponds to the

maximal average throughput since the processors will be fully utilized. Thus, for the graph

Figure 2: A Simple Data-flow Graph

of Fig. 2, in which the execution times are shown alongside the nodes, a new instantiation

could be started every 6(= y) cycles when 2 processors are used. We assume, for simplicity

of explanation, that data arrives at this exact rate, although it is not a necessary condition

for the algorithms discussed later. The graph of Fig. 2 can be modified by inserting delays

as shown in Fig. 3. A schedule for an instance of the modified PGM is shown in Table

1. Another instance of the modified graph can be overlapped with the first instance after

six clock cycles, and so on. The idea of adding delays to improve overall throughput at

the expense of latency for a single instance has been discussed in the context of hardware

pipelining in [KogSl].

For this graph, except for the first 6 processor cycles, which represent a transient, every

subsequent group of six consecutive cycles could be summarized by the schedule in Table

2. Table 2 could be derived from Table 1 as follows. Assume that there is a cylinder whose

circumference is the intended length of Table 3.1 (6 in this example) and whose height is the

number of processors, 2 in this example. Hence, Table 2 (or any table of size 6 by 2) could be

wrapped around the cylinder such that its end meets its beginning. The line on the surface

of the cylinder that separates the end from the beginning has the effect of a divide-by-C

counter, where C is the circumference, every time it is crossed to enter the beginning from

the end. Now, the first six cycles of Table 1 could be wrapped around the cylinder, then the

Figure 3: Example graph with Delays Inserted

Table 1: A Schedule for One Instance of the Example Graph with Delays

Cycle # 1 APl j
AP2

1 a

2 b

3 c
1

4 c
1

5 d e

6 d e

7
1

e

8
1

a

9 /
10 /

Table 2: Compact Representation of RC Assignment

Cycle # (?' > 1)
I

APi
j
AP2

6z — 5 ai | e,_i

6z -4 bi ti-\

6* -3 * 1 /i-i

6z - 2 Ci
1 fi-l

6z - 1 dt t{

6t di et

second six cycles (and generally the process is continued until the table is fully wrapped).

The choice of delays in the graph of Fig. 3 and the circumference of the cylinder is such

that when Table 1 is wrapped around the cylinder, no node is going to lay over another

node. Hence, the cylinder mapping is conflict-free. One minor complication to. the above

procedure is to assign indices to the nodes on the surface of the cylinder to match those in

Table 2. This is established by initially giving index i to all nodes and subtracting from the

index of a node the number of revolutions taken around the cylinder before it is assigned

its processor cycle(s). This is done to preserve the correctness of the graph, since for our

example. t\ cannot be started at the same time as o.\ is, yet to can be.

Figure 4 illustrates how the entries of the cylinder are indexed. It illustrates that a node can

start and continue across the surface boundary. The execution of a node. X, can be split in

two parts of length a and b as shown. The upper part has index i — 1 because, even though

it is a continuation of the lower part, the index has decreased by one as we go around the

surface once.

The above procedure assumes that the cylinder's circumference and the modified graph with

delays on its edges are given. The circumference of the cylinder is equal to the length of Table

2 and is equal to the smallest integer such that a new graph instance could be separated from

the previous one. On the other hand, the delays on the edges are not part of the original

problem and were used for the sake of clarity. In reality, the delays are not needed to be

known a priori A scheduling algorithm could be devised to take the graph in Fig. 2 and

obtain the cylindrical assignment of Table 2 without using the information given in Fig. 3

or Table 1. This algorithm is given Fig. 5.

10

Upper pan is a continuation

of X, but has a lower index

because the cylinder has been

traversed completely once. Unfolded cylinder

/ 1

/
b

/ T

x
,-l

- X ends here

C

- X starts here

T

\ i

\ a
1

x
l

' Total execunon rime of X = a + b

(less than or equal to the circumference, C)

Figure 4: Illustration of Index Assignment

11

procedure AssignJFtC (G, p): /*G is directed acyclic graph*/

l*p is the number of processors*/

q *— topological sort (G); /*0(e). q is a queue*/

for all nodes rn

est(nt-)
<— 0: /* est is the earliest starting time of a node*/

circumference «—

for all nodes n«

circumference *— circumference -f ty(n,-)

/
x
w(rii) is the size of node n,*/

circumferences- fSESB^SEEft];

while q is not empty

temp *— remove_top(q);

t <— schedulejnode(temp. est(temp). cylinder) :

for all descendents of temp

est(descendent) «— max(est(descendent), t -f w(temp):

end(while)

procedure schedule_node(temp. t, cylinder)

scheduled «— false:

while not scheduled

try to place temp on cylinder surface slot

starting at V = t mod circumference

if inserted -

scheduled <— true;

else t' *— (f + l)mod circumference;

end(while);

return t'\

Figure 5: An Algorithm to Perform RC Assignment

12

The algorithm of Fig. 5 is guaranteed if all the node execution times are equal, otherwise

there is a chance that it can fail. However, this drawback can be easily remedied as follows.

Assign_RC can be used to schedule k copies of the graph. G. on a cylinder whose circum-

ference is - J2 node weights and k is iteratively increased until it works. The case of k = p

is guaranteed to work since the circumference then equals the sum of node weights: however,

it is desirable to have k as small as possible.

It should be noted that different schedules which sustain the maximal load could be obtained

for any graph. Any assignment of nodes on the surface of the cylinder such that no node

is preempted, and no two nodes are mapped to the same square is valid. The availability

of multiple schedules which could sustain the same throughput has an important advantage

with respect to determining the optimal granularity. For example, nodes can be grouped

together on the surface of the cylinder so as to introduce optimizations to minimize the ioss

of processor cycles due to such overheads as setup and breakdown times or to minimize the

interference due to memorv accesses.

3.2 Graph Restructuring

Since the run-time mechanism of the scheduler is fixed, any execution sequence enforcement

must be accomplished by compile-time techniques. The dashed lines in Fig. 6 show the graph

of Fig. 2 with the additional data-dependencies used to enforce RC assignment at run-time.

Each dashed line represents a queue of tokens generated by the source and absorbed by the

destination. Each source generates a single token when it completes execution. The 2-tuple

associated with each indicates the threshold and consume amounts for the control token flow

on these arcs. The threshold amount refers to the number of tokens that must be present on

the arc for its destination node to be eligible for execution. The consume amount refers to

the number of tokens removed from the arc when it executes once. Thus, the arc from b to c

forces node c to go on the RL only after b has completed. Given such restructuring, the setup

and breakdown times for arcs (a. 6), (b, d) (a. c) and (e, /) are saved by employing chaining

as described at the end of subsection 2.1. It is assumed that implementing the control-token

queues has an overhead cost that is negligible with respect to the cost of implementing data

queues. It is further assumed that a node can be declared ready if all the data queues

have crossed their thresholds, thus enabling a processor to begin its setup by fetching the

13

(141

Figure 6: Restructured PGM Graph

instructions and data associated with it although the control queues have not reached the

threshold. Thus, the control token queues simply control the execution sequence on each

processor. The algorithm to restructure the graph is given in Fig. 7.

The restructuring of the graph in the example above is not unique. Since there are several

ways of filling the table, there is a corresponding set of additional arcs. Even for a single

assignment, there exist several sets of additional dependencies. This introduces the problem

of selecting the best assignment and a suitable set of arcs associated with it for an arbitrary

graph. The criteria that can be used for such selection are minimization of the contention

for resources or the number of additional arcs introduced.

3.3 Advantages of RC Analysis

There are several advantages of such node-AP assignment if a compile-time technique can be

found to enforce it on the scheduler run-time mechanism. Compile-time analysis of whether

the machine will meet the required data rate becomes easy. Data-flow execution can be

carried out in a controlled manner, thus improving predictability. Since the nodes are sched-

uled relative to each other at compile-time, it becomes possible to take into consideration

14

procedure Restructure_graph (cylinder, circumference, G);

l*nr ,n a are nodes of graph, G*/

for all nodes. nT

check index i of nr

find the latest node, n,, that ends

before nr starts on the cylinder

check index j of n,

/*if nr starts at the top of the cylinder, the latest*/

/*node ends at the bottom of the cylinder.*/

/*In this case, j should be decremented by one*/

introduce a synchronization arc from n t to nT

if i > j

put i — j initial tokens on the arc

set threshold = 1, consume = 1

else if i < j

put initial tokens on the arc • •

threshold = j — i, consume = 1

end(for)

Figure 7: Algorithm to Restructure the graph

15

the granularity of the graph. Chaining has been mentioned as a technique to minimize the

cost of setup/breakdown of each node. However, unrestrained use of chaining decreases the

amount of parallelism in the application. RC analysis offers a systematic method to deter-

mine the nodes to be chained and the resulting performance gain. For example, although

it is possible to assign nodes in the above example in several ways, the assignment shown

enables chaining nodes a. 6. c, and d together and chaining e and / together to minimize the

setup and breakdown overheads. Thus, such an assignment can potentially cake into account

the overhead costs while mapping the cylinder. Once it has been determined which nodes

are to be chained, the data queues can be allocated to memory modules so that contention

is minimized.

4 The Effectiveness of Graph Restructuring

This section presents simulation results on the usefulness of graph restructuring for controlled

data-flow execution of two typical signal processing applications. The correlator graph is a

simple application while the fast Fourier Transform is a communication intensive graph. The

predictability is modeled as the non-uniformity in the interval between two successive graph

instance completions. This non-uniformity is observed as the interval between successive

input data sets is varied up to the maximum possible on an ideal machine for the given

graph. As mentioned previously, the minimum input data period is obtained by summing

the task execution times and dividing by the number of processors. The plots in the next

section are obtained by plotting the input data periods normalized by this maximum on the

horizontal axis. The quantities plotted on the vertical axes are the arithmetic mean of graph

instance completion times, the standard deviation among the completion times, and the %
application processor (AP) efficiency.

The instance completion times are normalized with respect to the input arrival period. Thus,

the normalized instance completion time should be unity on ideal machines that meet the

application requirements for any input rate. Ideally, a value greater than unity indicates

that the machine cannot meet the application rates. However, in this case, due to a finite

sized window of observation of the application behavior, the average values plotted are

approximately unity when the machine meets the application requirements.

16

The plots of standard deviation between the instance completion times give a better idea of

the non-uniformity in execution. The input period is used to normalize the difference between

the completion time of an instance and the ideal completion time. The % efficiency indicates

the time for which the execution unit at the application processor was busy performing useful

computation and not waiting for data.

4.1 Correlator Application

This graph was chosen to represent a simple, yet realistic, signal processing application. The

corresponding graph appears in Fig. 8 [Tec90b]. The circles indicate the nodes to be executed

and the arrows represent the queues holding the data required by the nodes. "Tr
represents

the threshold value required before the destination node becomes ready. "R" represents

the amount that is read by the destination node on execution setup. "CT represents the

amount that is consumed on destination node breakdown. "P
r

represents the production

amount from the previous node. Actual execution times for the primitives listed beside the

nodes were obtained from the signal processing primitives library [Tec90aj. It was simulated

assuming five processors and five memory modules.

The points obtained for the graphs plotted in the case of the correlator graph were taken at

5%intervals except in the region of close similarity where the interval was 1%. The results

for normalized mean are shown in Fig. 9 and 10. While the difference between FCFS and

RC is not discernible in Fig. 9. Fig. 10 clearly indicates that the RC algorithm reaches

unity 5% before the FCFS algorithm. At all times the RC curve remains below the FCFS

curve on the graph. The normalized standard deviation, shown in Fig. 11, indicates that the

RC algorithm provides a more uniform output than does the FCFS algorithm throughout

the range of input data periods. Due to the dependencies inserted by the RC algorithm,

the processor efficiency is lower for the RC case than for the FCFS case until uniformity in

output is obtained as shown in Fig 12. This result is caused by the dependencies inhibiting

the earlier nodes in the graph from executing until they are satisfied. While the efficiency is

slightly lower for the RC approach, the lower normalized mean and standard deviation results

indicate an improvement by use of the RC algorithm over the FCFS scheduling technique.

External Incut Queue ii 1L External Input Queue
T-R-C-16384 f) f) T-P-C- 16384
1: RXFU.-5000 \S \S 2: RXFL2 • 5000
T-R-C-16384' 11 It T-R-C-16384
3: BAND1 - 15000 () (N 4: BAND2- 15000

T-R-16423.C- 16384 jf if T-P-16423.C-16384
5: RR1- 10000 (\ (\ 6: RR2 • 10000

J Q T-P-C-4096
T-R-C-4096 /*S 7: 2ERORLL-50O0

JL T-R-C-4096
8: FFT1 -100000 [) C ") 9: FFT2- 100000

T-fl-C-4096 JL J)
T-R-C-4C95

10: WINDOW1 -40000 (Js~«-^_ .<=*> 11: WINDOW2-40000

T_fl_C-a096 /^^^^^^N ^^?:)^^ T-fl-O-4096
12: MULTXY-7500 \) \) U 13: POWERX - 1 00000
7-RH3-4096 ^%* st^ T-R-C-4096
15: INVERSEFfT- A T*^ 14: POWERY - 1 00000

100000 _y _J 7-R-04.T-R-C-4
NS. // 16: MULTPWR.SQRT

-

N\ tf 5000
T-R-C-513.P-2052 Nv rf T-R-C-1.P-4

T-R-C-513 _-a2) 17: INTEGRATE

-

/"-s-cs5*5^-^ 20000
18: EXPAVG-5000 \J Nv T-R-C-513
T-R-C-513 V

N (\ 19:GRAMOLTT- 10000
S\ \S T-R-C-513

20: ASCANOUT-10000 M
External Output Queue j| ExtemaJ Output Queue

Figure S: Data-flow Graph for the Correlator Application

18

1.7

FCFS Mean Dashed. RC Mean Solid, for Correlator Graph

s

E
o
z

L6I-

1.5 r

1.4

1.2T

1.2

1.1-

\

0.9'

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Normalized Input Data Interval

Figure 9: Correlator Graph - Mean Instance Completion Times

FCFS Mean Dashed, RC Mean Solid, for Correlator Graph

1.16

e
3

0.98
0.72 0.74 0.76 0.78 0.8 0.82

Normalized Input Data Interval

0.84 0.86

Figure 10: Correlator Graph - Blow-up of Mean Instance Completion Times

19

0.35

= 0.3

55

J 0.25
m
£
o
z 0.2

0.15

FCFS Sid. Dev. Dashed. RC Std Dev. Solid, for Correlator Graph

1

I

0.45 r

,-t
,-'

!

1

0.4J-

|

!

1

0.1

1

/I

/
;
/I

. xx

X?
7
^

1
'

1

" /^
1

1

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Normalized Input Data Interval

Figure 11: Correlator Graph - Standard Deviation

FCFS Dashed. RC Solid, for Correlator Graph

0.55 :

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Normalized Input Data Interval

Figure 12: Correlator Graph - Processor Efficiency

20

4.2 Fast Fourier Transform Data-flow Graph

The fast Fourier Transform (FFT) algorithm was chosen to examine the effects of the RC

analysis on a communication intensive graph. The graph for a 2-D FFT can be represented

in terms of that of a one dimensional (1-D) FFT. This application assumes a 256 point vector

of inputs. The 1-D FFT can be calculated in log 256 stages of operations with 128 operations

per stage. Each stage can be divided into p parallel tasks, with 4p operations per task. As

the tasks in stage i finish, they send their outputs to the tasks in stage i -j- 1. The data-flow

graph for a 2-D FFT uses 2 log 256 stages to transform a 256 x 256 matrix of inputs. 256 1-D

FFT's are computed for rows followed by another 256 1-D FFT's for columns. Tasks in the

first 8 stages perform 1-D FFT's on all 256 rows with each task performing — operations.

Tasks in stage log 256 send data to tasks in stage (8 -f 1) in such a way that the second set of

8 stages performs 256 column transforms. The numbers beside the queues represent queue

over threshold, production, and consume values in micro- seconds. The 2-D FFT graph is

shown in Fig. 13.

This data-flow graph was simulated on a machine with 8 processors and S memory modules.

The normalized mean for FFT is shown in Figs. 14 and 15. Here also, the input data rate

is met 5% before that of the FCFS algorithm when RC-based restructuring is used. Due

to the high communication overhead as compared to the previous graph, the input rate

met satisfied by this machine is lower. The normalized standard deviations are shown in

Figs. 16 and 17. Again, clearly the RC standard deviation outperforms the FCFS standard

deviation throughout the spectrum of input data rates. The normalized standard deviation

is consistently less than 0.5 regardless of load level. Figure 18 demonstrates the differences

in processor efficiency for the FFT graph. The low values are caused by the communication

overhead involved in processing this type of graph. The restructured graph yields a greater

processor efficiency due to the assigned dependencies limiting the data movement traffic.

This implies that a much more uniform output results from the RC algorithm regardless of

load.

21

Node 11 11 1] 11 32763

. Execution (\ C\^ J^J ^L)
Times
are >*"^^t?^^y^^^^T^^^v] 1 6384

1638 (

micro- p^Y 16384

seconds li^^ 7 i/Zif *^v

I if | | 32768

A" a^j°'n 'n9
r} pj p P) Queues in this

< region are also

< 32763

8192

T//syi\ f?r/§\ (T^sNs

\

I

i
, 16384

Tl^ji ilWjl 16384

CT X) O 32768
O O O O All adjoining

Q Q Q O Queues in this

Q Q Q Q region are also

32768

Figure 13: 2-D FFT Data-flow Graph

oo

FCFS Mean Dashed. RC Mean Solid, for 64 Node Graph

8
S
"8

c

Z

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Input Data Interval

Figure 14: FFT Graph - Mean Instance Completion Times

FCFS Mean Dashed. RC Mean Solid, for 64 Node Graph

B
3

"8

E
o
z

0.22 0.24 0.26 0.28 0.3 032 0.34 0.36

Normalized Input Data Interval

Figure 15: FFT Graph - Blow-up of Mean Instance Completion Times

23

FCFS Std. Dev. Dashed. RC Sid. Dev. Solid, for 64 Node Graph

Q

o
z

0.4 0.5 0.6 0.7 0.;

Normalized Input Data Interval

Figure 16: FFT Graph - Standard Deviation

FCFS Std. Dev. Dashed. RC Std. Dev. Solid, for 64 Node Graph

Q
o

•s

o
Z

0.22 0.24 0.26 0.28 0.3 0.32 034 0.36

Normalized Input Data Interval

Figure 17: FFT Graph - Blow-up of Standard Deviation

24

0.56

FCFS Dashed. RC Solid, for 64 Nod© Graph

0.48-1-

o.: 0.4 0.5 0.6 0.7 0.;

Normalized Input Data Interval

0.9

Figure 18: FFT Graph - Processor Efficiency

5 Concluding Remarks and Future Research

In conclusion, the major contribution of this work has been to present a compile-time ap-

proach to the enable efficient use of the data-flow paradigm in real-time applications with

periodic arrival of data. We have shown that the proposed approach of RC analysis provides

a framework in which optimizations related to data-flow execution at the task-level can be

carried out. In order to control the execution when input data arrives periodically, this

technique restructures the application graph that has a more predictable behavior under

the same run-time mechanism. The results have been presented using typical applications.

viz., the correlator and FFT graphs. They show that this approach does make the indi-

vidual instance completion time more uniform regardless of the the input period and the

communication overhead.

Currently, the following issues with regard to the use of compile-time data-flow graph analysis

are being investigated.

25

• Chaining of nodes results in saving the breakdown and setup overhead. However,

unrestrained chaining results in loss of parallelism and could be detrimental to processor

efficiency. It is difficult to predict the effect of chaining two nodes for a FCFS execution;

but if chaining is specified within the framework of RC analysis, its effect can be

accurately predicted.

• Given a specific assignment, it is known which queues are accessed at the same time.

This information can be used to algorithmically assign memory modules to queues, so

that the interference between nodes at a module is minimized.

• There are several ways in which the additional ^dependencies can be introduced. The

criteria to select the minimal set of dependencies to be introduced that provide the

minimal, yet effective, control of the execution are being developed.

References

[BroST] S. A. Brobst. Organization of an instruction scheduling and token storage unit

in a tagged token data flow machine. In Proceedings of the 1987 International

Conference on Parallel Processing, volume 3. August 1987.

[GKW85] J. R. Gurd. C. C. Kirkhame, and I. Watson. The Manchester Prototype Dataflow

Computer. Communications of the ACM. January 1985.

[KCN90] C.-T. King, W.-H. Chou. and L. M. Ni. Pipelined data-parallel algorithms: Part

i—concept and modeling. IEEE Transactions on Parallel and Distributed Systems,

October 1990.

[KM66] R. M. Karp and R. E. Miller. Properties of a model for parallel computations: De-

terminacy, termination, queueing. SIAM Journal of Applied Mathematics. 14(6).

November 1966.

[KogSl] P. M. Kogge. The Architecture of Pipeline Computers. McGraw-Hill. 1981.

[LB90] E. A. Lee and J. C. Bier. Architectures for statically scheduled dataflow. Journal

of Parallel and Distributed Computing, 10:333-348, December 1990.

26

[Lee91] E. A. Lee. Consistency in dataflow graphs. IEEE Transactions on Parallel and

Distributed Systems. 2(2), April 1991.

[LM87] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous dataflow

programs for digital signal processing. IEEE Transactions on Computers. C-36(l).

January 1987.

[RGP82] B. R. Rau, C. D. Glaeser. and R. L. Picard. Efficient code generation for horizontal

architectures: Compiler technique and architectural support. In Proceedings of

the 9th International Symposium on Computer Architecture, 1982.

[Ric90] M. L. Rice. Navy's new standard digital signal processor: The AN/UYS-2. In

Proceedings of the Association of Scientists and Engineers 27th Annual Technical

Symposium, May 1990.

[SA91] S. B. Shukla and D. P. Agrawal. Scheduling pipelined communication in dis-

tributed memory multiprocessors for real-time applications. In Proceedings of the

18th Annual International Symposium on Computer Architecture, May 1991.

[SFPS3] P. S. Sawkar, T. J. Forquer. and R. P. Perry. Programmable modular signal

processor - a data flow computer system for real time signal processing. In Pro-

ceedings of the 1983 International Conference on Parallel Processing, volume 3.

August 1983.

[SMS90] S. Som, R. R. Mielke, and J. W. Stoughton. Strategies for predictability in real-

time data-flow architectures. In Real-time Systems Symposium, pages 226-237,

1990.

[Tec90a] AT&T Technologies. AN/UYS-2 graph primitives library - floating point. Tech-

nical Report 5885404, AT&T Bell Laboratories, 1990.

[Tec90b] AT&T Technologies. ECOS workstation user manual. Technical Report Alpha

890301-01, AT&T Bell Laboratories, 1990.

27

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

Cameron Station

Alexandria, VA 22304-6145

2. Library, Code 52

Naval Postgraduate School

Monterey, CA 93943-5002

3. Lieutenant Commander Steve Kasputis

Department of the Navy

Naval Sea Systems Command (PMS 412)

Washington. DC 20362-5101

4. Mr. Richard Stevens

Commander of Naval Research Laboratory

4555 Overlook Avenue

S. W. Washington, DC 20375-5000

5. Mr. Jerome L. Uhrig, WH 46243

AT&T Bell Laboratories

67 Whippany Road

P. 0. Box 903

Whippany, NJ 07981-0903

6. Chairman, Code EC
Department of Electrical &z Computer Engineering

Naval Postgraduate School

Monterey, CA 93943-5004

7. Prof. Shridhar B. Shukla, Code EC/Sh
Department of Electrical & Computer Engineering

Naval Postgraduate School

Monterey, CA 93943-5004

8. Prof. Amr Zaky, Code CS/Za

Computer Science Department

Naval Postgraduate School

Monterey, CA 93943-5004

9. Mr. Al Miller

TRW Inc.

Suite 800

1735 Jefferson Davis Highway

Arlington, VA 22202

10. Research Office

Code 08

Naval Postgraduate School

DUDLEY KNOX LIBRARY

3 2768 00343061 2

