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PSEUDO WIGNER-VILLE DISTRIBUTION,

COMPUTER PROGRAM AND ITS APPLICATIONS

TO TIME-FREQUENCY DOMAIN PROBLEMS

by

Jae-Jin Jeon and Young S. Shin

ABSTRCT

Machinery operating in non-stationary mode generates a

signature which at each instant of time has a distinct frequency.

A time-frequency domain representation is needed to

characterize such signature. Pseudo Wigner-Ville distribution is

ideally suited for portraying non-stationary signal in the time-

frequency domain and carried out by adapting the fast Fourier

transform algorithm. The important parameters affecting the

pseudo Wigner-Ville distribution are discussed and sensitivity

analyses are also performed. Practical examples of an actual

transient signal are used to illustrate its dynamic features

jointly in time and frequency.

I. INTRODUCTION

The physical condition or state of health of machineries which

operate in transient or other non-stationary modes are difficult to predict

with any degree of accuracy. It is common to practice periodic preventive

maintenance on these machineries in order to avoid failures and prolong the

useful operating life of the equipment.



In order to assess the physical condition of machinery without

complete disassembly, a physical measurement of its vibrations is conducted

using an accelerometer. Other sensors, such as temperature or pressure

transducers, could also be used. There are other methods, including motor

current signature analysis on electrically driven machinery and wear debris

analysis which could be used. However, vibrations are used predominantly

for machinery condition monitoring. The vibrations are recorded in the time

domain.

There is a need for a method to represent the time dependent events

which occur with machinery operating in non-stationary modes. At each

instant in time as the speed of the machinery changes, the frequency content

will also change. The pseudo Wigner-Ville distribution(PWVD) is the method

which was chosen to portray these time dependent changes. This is a

continuation of work initially performed and published by Rossano, Hamilton

and Shin [1].

The pseudo Wigner-Ville distribution is a three dimensional (time,

frequency, amplitude) representation of an input signal and is ideally suited

for describing transient or other non-stationary phenomena. The Wigner

Distribution (WDF) has been used in the areas of optics [2,3,4] and speech

analysis [5,6]. Wahl and Bolton [7] used it to identify structure-borne noise

components. Flandrin et. al. [8] recently proposed its use in the area of

machinery condition monitoring and diagnostics, while Forrester [9] is

investigating its use in gear fault detection.

For such a non-stationary signal analysis, spectrogram is commonly

used, which is based on the assumption that it is a collection of a short

duration stationary signals. A major drawback of this approach is that the

frequency resolution is directly affected by the duration of short stationary

time, which subsequently determines the time resolution. A method for time-

frequency domain signal characterization that overcomes this drawback is

the Wigner distribution which was first introduced by Wigner [10] in 1932 to

study the problem of statistical equilibrium in quantum mechanics. The



frequency and time resolutions of the Wigner distribution are not determined

by the short duration but rather determined by the selection of desired

resolution of the signal itself.

This paper discusses the important parameters affecting the PWVD
in order to machinery condition monitoring and presents numerical examples

of PWVD using synthetically generated signals. It is found that the PWVD
is very effective in machinery condition monitoring which operates in non-

stationary modes.



II. PSEUDO WIGNER-VILLE DISTRIBUTION

A. Wigner Distribution Function

Signal associated with most vibrational phenomena are in general time

varying, which means that their characteristics change with time and they

have various features in different time frames. The general spectrogram

usually requires a large time-bandwidth product to reduce the estimated bias

and variability. In the case of a signal containing some transients or

nonstationary conditions, the traditional approach in signal analysis fails to

describe the dynamics of the signal's frequency component changes.

The general expression of the time-frequency distribution of a signal,

w(t,CO) is given by, [11]

w(t,co) = — JJJe"J
et -J xco~Jeu(()(0,i)s*(u--)s(u + -)dudTde (1)

2k 2 2

where s(u) is the time signal, s*(u) is its complex conjugate, and <p(6, T] is an

arbitrary function called the kernel. By choosing different kernels, different

distributions are obtained. Wigner distribution is obtained by taking <P(0, T)

= 1. The range of all integrations is from - oo to °° unless otherwise noted.

Substituting the kernel (f)(6,T) = 1 to Eq. (1),

w(t,G>) = JJs* (u
- -) e"

jxco
5(u - 1) s(u + -) dx du (2)

From Eq. (2) the Wigner distribution is obtained,

w(t,co) = Js*(t--) s(t + -) e~
jxco

dx (3)



One of the basic frequency representations of a signal is the power

density spectrum, which characterizes the signal's frequency component

distribution. The power spectral density function S(co) of a signal s(t) can be

related to the Fourier transform of the signal's autocorrelation function R(r):

S(fl>)= \t'
jC0TR(T)dr (4)

with

R(t) = Js(t) s(t+T)dt . (5)

From this relation a time-dependent power spectral density function

can be written as

w(t,(0) = jR
t
(x)e"

jC0X
dT (6)

where now /^(t) is a time-dependent or local autocorrelation function. Mark

[12] argued for symmetry,

/?
t

(r) = s"(t-|) s(t + |) (7)

which gives the Wigner distribution function.

B. Properties of the Wigner distribution function

The properties of the WDF [13,14] are summarized and reinterpreted

with this new formulation as follows:

(i) The WDF is a real-valued function.

w*(t,fi>) = w(t,fi)) (8)



(ii) The integral of the WDF with respect to frequency and time yields

the instantaneous signal power and the signal's power density spectrum,

respectively.

Jw(t,G)) dco = 2/r|s(t)| ,

—oo

2

Jw(t,fl))dt = 27r\S(o))\ .

(9)

(iii) A time or frequency shift in the signal have the shift in the WDF.

Ifs(t) -> s(t + t ),then w(t,6)) -» w(t + t ,fl)),

ifs(t) -> e
j(0°

{

s(t), then w(t,<y) -> w(t,G)+<0o ).

(10)

(11)

(iv) The WDF is symmetrical in time for a given signal.

Ifs(t) -» s(-t), then w(t,(tt) -» w(-t,<y),

ifs(t) -> s*(t), then w(t,fi)) -> w(t,-fi)).

(12)

(13)

(v) The WDF is not always positive.

(vi) The integration of the square of the WDF equals the square of the

time integration of the signal's power. This is the counterpart of Parseval's

relation of the WDF, called Mayol's fomula.

J|w(t,fi))| dtdco = Js
2
(t) dt (14)

(vii) The WDF possesses basic symmetry under the interchange of time

and frequency parameters with the Fourier transform of a given signal.

Let

1

s(t) = — fe
jwt

S(co)d(o;
2/r

J
(15)



then

w(t,fi)) =
In J

e
jCt

S(fl) + -)S*(0) - £)df.
2 2

b (16)



III. IMPLEMENTATION WITH DIGITAL SIGNAL PROCESSING

A. Discrete Wigner Distribution Function

There are two distinct advantages for the calculation of the WDF.

First, it has the form of the Fourier transform and the existing FFT

algorithm can be adapted for its computation. Second, for a finite time signal,

its integration is finite within the record length of the existing signal.

The discrete time Wigner distribution as developed by Claasen and

Mecklenbrauker [13] is expressed by,

w(t,co) = 2 i°Vj2c0I
s(t + X) S* (t - T) (17)

X=-oo

The discrete version of Eq. (17) for a sampled signal s(n), where n=0 to N-l,

has the form,

1 N-l j.
-j—nk

w(^,k) = — X s(^ + n)s (^-n)e N
, k=0,l,2,...N-l (18)

N n=0

where s(m)=0 for m < and m > N-l. However, in order to utilize the FFT

algorithm, it must be assumed that the local autocorrelation function has a

periodicity of N. This is just for operational convenience and should not apply

to the interpretation of s(m). Eq. (18) can be rewritten as,

i N-l _yl£n(k+m
N)

w[^k + m(N/2)] = — ]Ts(^ + n)s (^. n )e N 2

N
n=0

= -£s(* + n)s «-n)e N t
)mn2n

(19)
N

n=o

= w(*,k)



since e"
jmn n - 1 for m=integers.

Eq. (19) indicates that the WDF has a periodicity of N/2. Hence, even

when the sampling of s(t) satisfies the Nyquist criteria, there are still aliasing

components in the WDF. A simple approach to avoid aliasing is to use an

analytic signal before computing the WDF. In 1948, J. Ville [15] proposed the

use of the analytic signal in time-frequency representations of a real signal.

B. Analytic Signal

An analytic signal is a complex signal which contains both real and

imaginary components. The advantage of using the analytic signal is that in

the frequency domain the amplitude of negative frequency components are

zero. This satisfies mathematical completeness of the problem by accounting

for all frequencies, yet does not limit the practical application since only

positive frequency components have a practical interpretation. The

imaginary part is obtained by Hilbert transform. The analytic signal may be

expressed by,

S(t) = s r (t) + jH{s
r
(t)} (20)

where H{s
r (t)} is a Hilbert transform and generated by the convolution of

the impulse response h(t) of a 90-degree phase shift as follows:

H(s
r
(t)} = s r

(t) * h(t)

_ 2 iinW2)
i (21)

m
= 0, t = 0,

where * denotes the convolution. Rewriting Eq. (21) to discrete form,

oo

H{s
r
(n)} = Ih(n-m)s r (m) (22)

m=-°°



The distribution resulting from an analytic signal being processed through

the Wigner distribution is commonly termed as Wigner-Ville distribution.

C. WDF with Digtal Signal Processing

To calculate the Wigner distribution of the sampled data, it is

necessary that Eq. (18) be modified to Eq. (23), because the WDF has N/2

periodicity.

2N-1

w(mAt,kAfi>) = 2At £s[(m + n)At] s*[(m-n)At] e
-j2mk/im

(23)

n=0

where Aco = 7t / (2NAt) and At is the sampling interval. The algorithm used

in this paper is based on one written by Wahl and Bolton[7] and can be

expressed as:

w(mAt,kAw) = Re[2AtFFT(corr(i))]

corr(i) = s(m + i-l)s (m-i + 1), m > i ,24)

= 0, m < i

where 1 < i < N +

1

corr(2N - i + 2) = corr*(i), 2 < i < N

The frequency resolution, Aco, in Eq. (23) is different from that obtained by

FFT of the original N point time record in two respects. The first difference is

that the argument of the time signal and its conjugate contains a factor of

1/2, and secondly, the autocorrelation of the time signal is twice the length of

the original record and therfore the FFT is evaluated over 2N points. The

result is, that the WDF frequency resolution is one forth the resolution of an

ordinary power spectrum density function.

Before processing the WDF, a modified Hamming window is applied to

the time domain signal to reduce the leakage caused by the discontinuity of

the finite record of data, which will be called as data tapering. This type of

10



window is preferable since it alters the amplitude of fewer data points at the

beginning and the end of the data block. A modified Hamming window, D(t) is

given by:

0.54 - 0.46 * cosdOrct/T),

D(t) = { 1.0,

0.54 - 0.46 * cos(107c(T-t)/T),

< t < T/10,

T/10 < t < 9T/10,

9T/10 < t < T.

(25)

D(t)

Fig. 1 Modified Hamming Window

Two other characteristics of the WDF should be also noted. First, the

WDF of the sum of two signals is equal to the sum of the WDF of each signal

plus cross term that appear when the cross-correlation of the two signal is

non-zero. Second, the WDF may have negative values, which may be largely

caused by interference due to the presence of these cross terms. In the case

of input signals that contain multi-frequency components, the Wigner-Ville

distribution of most signals are very complicated and difficult to interpret.

There are two methods to suppress the interference components of the

WDF. Claasen and Mecklenbrauker[12] describe the application of a sliding

window in the time domain before calculating WDF. The WDF obtained with

a window function is called the Pseudo- Wigner distribution function. A
second option is to smooth the WDF with a sliding averaging window in time-

frequency plane. In both case the result is to deemphasize components

11



arising from calculations and to emphasize deterministic components.

Obviously, averaging a Wigner-Ville distribution will result in a Pseudo

Wigner-Ville distribution.

In this research, a sliding exponential window in the time-frequency

domain was chosen. That is, a Gaussian window function, G(t, co) is selected

to reduce the interference and to avoid the negative values as follows:

let

2 2

l
-fcr + rzr)

G(t,co) = e
z°

l
za

<°
, (26)

27io
t
o

co

then

w(t,co) = — ft w(t\(0')G(t-t\(0- to') dt'dto' >0 (27)

where a
t

, O^ > and C^O^ > 1/2 [16]. The time and the frequency

resolution At and A(0 of this Gaussian window are related by,

C
t
=j At, Ow = k Aft) (28)

in the discrete form. Then the condition for the WDF to be positive in this

case is

j At k A(0 > 1/2. (29)

This is the time-frequency version of Heisenberg's uncertainty relation[14].

If the segmentation of time and frequency for a given signal from Eq. (3)

violates this uncertainty principle, the corresponding WDF may not be

positive.

To perform the convolution on the sampled WDF, the Gaussian window

function was applied to the range ±2
t
and ±2ow . Selecting co and t to be

the multiple of time and frequency steps, the sampled Gaussian window

function is expressed by,

12



G(p,q) =
1

2 A

2j
2 2k 2

2k j k AtAco
(30)

where p and q are an integer numbers in the range ±2j and ±2k, respectively.

The convolution of the sampled WDF and the Gaussian window function can

be evaluated as follows:

At Au) (+ i m+k
w'(/,m) =^ I Iw(p,q)G(p-f,q-m)

p=^-j q=m-k
(31)

where w'(£,m) is the smoothed WDF or Pseudo Wigner-Ville distribution.

Fig. 2 shows a block diagram for computational sequence of the Pseudo

Wigner-Ville distribution. A time-varying signal sampled with the Nyquist

rate is first high passed through a digital filter if the signal involves the zero

frequency component, i.e., DC component, and converted into the analytic

signal through a Hilbert transform. Then, the time-dependent correlation

function is computed and the result is the WDF in terms of both time and

frequency domain by FFT. The final step is to compute the convolution with a

Gaussian window.

HILBERT
TRANSFORM SMOOTHING

TIME
DEPENDENT

CORRELATION
FUNCTION

SAMPLED
SIGNAL

ANALYTIC
SIGNAL

WDF PWDF

DIGITAL
FILTER

FFT

Fig. 2 Computational block diagram of Pseudo Wigner-Ville Distribution
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D. Highpass Digital Filter

Filters are a paticularly important class of linear time-invariant

system. Strictly speaking, the term frequency-selective filter suggests a

system that passes certain frequency components and totally rejects all

others, but in a broader context any system that modifies cetain frequencies

relative to others is also call filter. The design of filters involves the following

stages : (1) the specification of the desired properties of the system; (2) the

approximation of the specifications using a causal discrete-time system; and

(3) the realization of the system.

In this paper, Nonrecursive(finite impulse response - FIR) highpass

filter was used for the elimination of undesired low frequency components.

The basic design was to use a symmetric filter of the form,

M
y(i) = £b k s(i-k) (32)

with

and

k=-M

b.k = b k (33)

sin 27rBkT
, ,

bk
= (34)

7TK

where b k is the filter weights, y(i) is the filtered signal, B is the cutoff

frequency, T is a sampling interval and M is the span of the filter; 2M+1

weights are employed because of symmetry, only M+l need be generated.

The b k weights are computed over the range -M to M. The weights are

multiplied by a window function. Potter discusses a number of windows in

the referenced work. His P310 window was found to be appropriate for filter

implementation. It takes the form,

c kwk = ~
w

where

d + 2 X d
p
C0S^TT

p=-3 M

14

(35)



and

Ck = - k = ± M
2

= 1 otherwise

do = 1

<J-i
= dj = 0.684988

d.2
= d 2

= 0.202701

d-
3
= d

3
= 0.0177127

w
3

= d + 2Xd= 2.8108034
p=-3

(36)

(37)

For a highpass filter with pass band from the cutoff frequency(B) to the

maximum frequency, generate a low pass filter on the range - B, and then

subtract the central weight from unity and change the signs of the remainder

of the weights.

15



IV. EXAMPLES AND DISCUSSIONS

Machinery operating in transient mode generates a signature in which

the frequency content varies at each instant of time. To characterize such

signatures and to understand the vibrational behavior of such machineries,

time-frequency domain representation of the signal is needed. As discussed

in the previous sections, Wigner distribution is a signal transformation that

is particularly suited for the time-frequency analysis of nonstationary signals.

There are many advantages of using PWVD for both steady and transient

signals. However, there are also several disadvantages, for example, the

drastic increase of peak value when the frequency content of signal changes

abruptly. A computer program has been developed for PWVD. Two different

versions are available at the present time; workstation and IBM PC

compatible.

A. Harmonic Wave

Fig. 3 shows the PWVD of the pure sine wave with two frequency

components (100Hz, 400Hz), respectively. The modified Hamming window

was applied to the time domain signal and the Gaussian smoothing window

function was applied on time-frequency domain Winger-Ville distribution.

The slope of the end edges are due to data tapering by using the modified

Hamming window. Fig. 4 shows the PWVD of the sine wave that have the 10

% and 50 % signal to noise ratio, respectively. The shape of PWVD is

changed at the crest by the contamination of noise. The crest has the

complicated shape with decreasing of signal to noise ratio. However, the

PWVD well represents the signal components from the given signal with

noise. The practical example is shown in Fig. 14. The notation fs and N
used in the figures are sampling frequency and the total number of time data

points.

16



Fig. 3 Pseudo Wigner-Ville distribution of 100 and 400 Hz Pure Sine Waves
(f =1000 Hz, N=256 and Smoothing Window Size=10xl0)
a

17



o.o^00

(a)

O.OAOO

(b)

Fig. 4 Pseudo Wigner-Ville distribution of 300 and 750 Hz sine waves; signal

to noise ratio (a) 10 % and (b) 50 % .

(fs = 2048 Hz, N=1024 and smoothing window size=18xl8)

18



B. Harmonic Wave with Stepwise Frequency Changes

Fig. 5 shows the PVWD of the sine wave with 500 Hz in the time from

0.085 sec to 0.17 sec. The PWVD well represents the time delay of the signal.

The Fig. 6 shows (a) the sine wave with stepwise frequency changes, 100 Hz,

250 Hz and 500 Hz and (b) its PVWD. The PVWD shows the time delay and

frequency component of the signal. The wide spread of PWVD at the edge of

each frequency region is noticed. This phenomenon is caused by the

discontinuity of the signal in time domain and the leakage in digital signal

processing. This effect may be reduced by applying the data tapering to the

actual signal block. Nevertheless the PVWD represented the characteristics

of the signal well. PWVD can portray the characteristics of the steady state

signals involving time delay and multi-frequency components . If different

size of the smoothing window are applied, the PVWD amplitude changes, but

the total energy remains unchanged.

o.oioo

Fig. 5 500 Hz sine wave with finite duration
(f
s
=2000 Hz, N=512 and Smoothing Window Size=10xl0)

19



0.0 32.0 64.0 06.0 128.0 160.0 192.0 224.0 256.0

Time (msec)

(a) Time signal

(b)PWVD

Fig. 6 Sine Wave with Stepwise Frequency Changes: 100, 250 and 500 Hz
(f
s
=2000 Hz, N=512 and Smoothing Window Size=10xl0)

20



C. Composite Signal with Two Frequency Components at Each Time

The PWVDs of the nonstationary signals were studied and the results

were shown in Fig. 7 through 10. Fig. 7 shows (a) the time signal composed

of two sweeping frequency components at each time, one increasing and the

other decreasing with the same rate, and (b) its Wigner-Ville distribution

(before applying the smoothing window) (c) its contour plot ofWDF and (d) its

pseudo Wigner-Ville distribution (after applying the smoothing window),

respectively.

The effect of cross (or interference) term is significant and appeared in

the average frequency region. This is one of the disadvantages of using

Wigner-Ville distribution but it is a characteristic of the distribution. When

Gaussian window was applied to Wigner-Ville distribution, the effect of cross

term disappeared. The main lobe of PWVD is wider and its amplitude is

significantly reduced. The large peak at the intersection point of two

sweeping frequency signals is mainly caused by the doubling effect of

amplitudes of two signals.

10.0

0.4 o.e

Time (sec)

(a) Time signal

Fig. 7 (continued)

21



(b)WDF

N
X

128.

se.o

64.0

82.0

0.0

0.0 0.2 0.4 0.6

Time (sec)

o.i 1.0

(c) Contour plot ofWDF

Fig.7 (continued)

22



<2s vj

(d)PWVD

Fig. 7 Composite Signal with Two Frequency Components at Each Time

s(t)=4cos(27c 32t
2

) + 4 cos{2rc(40+32(2-t)]t}

(f =256 Hz, N=256 and Smoothing Window Size=10xl0)

23



D. Linear Chirp Signal

Another type of a non-stationary signal sweeps up and down in

frequency is called a linear chirp signal and is shown in Fig. 8(a). This signal

has only one frequency component at each time. The effect of cross terms

appears in the Wigner-Ville distribution, as shown in Fig. 7(b). The

smoothing window was applied to Wigner-Ville distribution and the result is

shown in Fig. 7(d). Fig. 8 (c) is the contour plot of WDF. As expected, the

effect of cross term is significantly reduced. However, the unusual peak

(called 'ghost' peak) appeared at the point where the direction of sweep

changes. To understand the cause of this phenomenon, the PVWD was

integrated along the frequency axis and it was found that the square root of

the resultant amplitude was the amplitude of original time signal, implying

that the energy content remained constant. The following function was used

to generate the linear chirp signal:

s(t) = sin

s(t)= -sin

2 ,|30 *°SJ>'
I

256

2Mi0 + miiLi) m56 . t)

1 < i < 256

256 < i < 512

(38)

where t = (i-1) dt and dt=0.0005
1.5

0.0000 0.0512 0.1024 0.1536

Time (sec)

(a) Time signal

Fig.8 (continued)

0.2048 0.2580
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(c) Contour plot ofWDF

Fig.8 (continued)
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(d)PWVD

Fig. 8 Linear Chirp Signal with One Frequency Component at Each Time
(f =2000 Hz, N=512 and Smoothing Window Size=16xl6)
s
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E. Composite Signal of Sweeping-up and Steady Frequency

The signal which sweeps up along the frequency for first 0.5 second

and holds to a constant frequency for next 0.5 second was considered. This

signal is typical speed profile of start-up stage of pump. Fig. 9 shows (a)

PWVD and (b) its contour plot. The interesting phenomenon was observed in

PWVD that the sweep-up portion of signal (first half seconds) has a lower

amplitude and wider main lobe compared with the steady frequency region of

signal (second half seconds). When the PWVD was integrated along the

frequency axis and it was found that the resultant amplitudes in these two

regions are same. The following functions were used to generate the desired

signal:

s(t) = 4cos(27t32t
2

), < t < 0.5 sec.

s(t) = 4cos(27i64t), 0.5 < t < 1.0 sec.

Fig. 10 is the PWVD of the signal which sweeps up along the frequency

with a logarithmic rate, that is, the sweep rate is propotional to the square

root of time. It was found that the maximum magnitude of the PWVD
increases with increasing the frequency. This fact is shown that the PWVD
of the stable signal has a larger magnitude than the unstable signals

although having the same magnitude in time domain and the PWVD is the

good tool for the analysis of the stability of the signal. The following

functions were used to generate the desired signal:

s(t) = 4 cos {In (30 + 60t 1/2
)t}. (40)

The instantaneous frequency of the Eq.(40) is the derivative of the argument

of the cosine function which is

.1/

f(t) = 90t 1/z
+ 30 (41)
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126.0
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(b) Contour plot ofPWVD

Fig. 9 PWVD of a Composite Signal of Sweeping-up and Steady Frequency
(f =256 Hz, N=256 and Smoothing Window Size=10xl0)
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Fig. 10 PWVD of a signal of sweeping-up with a logarithmic rate with time.

(fs=256 Hz, N=256 and Smoothig Window Size = 10x10)
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F. Sweep Rate Effect

The effect of sweep rate on PWVD was investigated. The sweep rate is

the frequency change per unit time. The power spectrum density of a typical

swept sine is shown in Fig. 11. The incorrect assumption is often made that a

swept sine of constant amplitude has a flat spectrum. As can be seen from

the plot this is not so. Fig. 12 shows the PWVDs of the linear chirp signal

with a various sweep rates:(a) has zero sweep rate and (b) has lower sweep

rate than (c). It can be seen that the amplitude of PWVD decreases with

increasing sweep rate but energy remains unchanged. This result appeared to

be caused by Heisenberg's uncertainty relation between time and frequency.

However, based on this study, it is clear that the 'ghost' peak (see Fig. 8)

appears due to the instantaneous zero sweep rate at the point where the

direction of sweep changes. Also the peak value is affected by the size of

smoothing window.

^i^m^^i^^^

3 00

m

FO - 1 00
F1 = ?0 00
P * 2250

6 00 9 00 12 00 15 00 18 00 21.00 24 00 27 00
Frequency

Fig. 11 Swept sine wave spectrum.

(Frequency range 1 to 20 Hz, sweep time 22.5 sec)

30



(a) s(t) = cos (2k 60 t)

«f/?-c

(b) s(t) = cos (2tc 32 t2 )
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(c) s(t) = cos (2ti 64 t2 )

Fig. 12. The Effect of Sweep Rates To Pseudo Wigner-Ville Distribution

(f =256 Hz, N=256 and Smoothing Window Size=10xl0)
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G. Harmonic Wave with Some Glitches

The interesting phenomena on the signal with an abnormal

components as a fault were investigated. Fig 13 shows the PWVD of the

harmonic wave with glitch at a small region of the time record: (a) is the time

signal, (b) is the PWVD and (c) is the contour plot of the PWVD. It can be

seen that the PWVD of the signal Fig. 13(a) well represents the loacation of

each glitch and its frequency components. This characteristic of the PWVD is

useful to detect the faults or glitch and to monitor the condition on the

vibrational machinery having the periodicity such as a gear train. The

general rotating machinery has a periodic signal pattern in time domain.

(a)

0.00 .26 0.50

Time (sec)

0.76 1.00

Fig. 13 (continued)
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(b)

(c)

0.0 0.2 0.4 0.6 0.8

Time (sec)

Fig. 13 PWVD od the signal with gltches: (a) time signal, (b) PWVD and (c)

contour plot of PWVD.
(fs=256 Hz, N=256, smoothing window size 10x10)
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H. Actual Fan Signal

The acceleration signal of a fan was measured at the steady state

speed and the result was shown in Fig. 14. The crest has the complicated

shape on time axis as shown in Fig. 4. The first peak is the fundamental

frequency of the blade rate and the second peak is 3rd harmonics. The third

peak is the fundamental frequency of motor by the pole. The measured

vibration signal was contaminated with the noise. If the measured signal

involves the faults, the PWVD will represent the different pattern having the

abnormal frequency components in comparison with the normal condition

with time.

1 ••••«.

Fig. 14 PWVD of the actual fan signal in the constant speed,

(fs = 512 Hz, N=512, smoothing window size 13x13)
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I. Actual Pump Start-up RPM Signal

The start-up transient speed of the pump was measured and the

results were shown in Fig. 15. The time signal is measured by magnetic

sensor and has the same magnitude independently on time. The PWVD is

shown in Fig. 15(a) and the contour view is shown in Fig. 15(b). The contour

plot shows that the speed of the pump runs up when initially started, reaches

the maximum RPM and coasts down gradually. Near the maximum speed

during the run up, the sweep rate was rapidly decreased and, as a result, the

peak value was rapidly increased. When the sweep rate is close to zero at the

normalized time of 0.4, the amplitude attains the maximum value.

(a)

Fig. 15 (continued)
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1.0<H

(b)

0.00
0.00 0.29 0.50 0.75

Normalized Time
1.00

Fig. 15. Pseudo Wigner-Ville Distribution of Transient Speed of the Pump;
(a) PWVD and (b) contour plot.
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V. CONCLUSIONS

The pseudo Winner-Ville distribution has been investigated and applied

to analyzing non-stationary signals typical of transient machinery signatures.

The results of this research will be a valuable asset for condition monitoring

of transient machinery. The following conclusions can be drawn:

(1) The pseudo Wigner-Ville distribution is ideally suited for portraying non-

stationary time signals.

(2) The use of modified Hamming window to time signals is effective to

reduce the edge effect of discontinuity.

(3) The use of the analytic signal in calculating the Wigner distribution

eliminates aliasing problem.

(4) The Gaussian window function for smoothing the Wigner-Ville

distribution is very effective and the presence of cross terms is significantly

reduced.

(5) Both the amplitude and the main lobe of the pseudo Wigner-Ville

distribution is significantly affected by the sweep rate. As the absolute sweep

rate increases, the amplitude of the PWVD decreases and the main lobe

becomes wider.

(6) The PWVD characterizes the time-frequency domain distribution of the

signal well and may be useful tool for the machinery condition monitoring.
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APPENDIX A. USER'S GUIDE OF THE PROGRAM

This program calculates either the Wigner-Ville distribution or the

smoothed Wigner-Ville(Pseudo Wigner-Ville) distribution(PWVD) of a time

series. This program uses the FORTRAN 77 language and it is possible to

run at workstation and IBM-PC compatible computer. The user supplies

the real data of the time history, the sampling parameters, the digital filter

parameters, the smoothing parameters and the output parameters. The

program outputs 2-D array containing the Wiger- Ville distribution

(rwdf.out) and the smoothed Wigner-Ville distribution, i.e, the pseudo

Wigner-Ville distribution (rswdf.out) dependently output parameters.

A-l. PROGRAM INPUT/OUTPUT (Main Program)

This program is interactive and displays an explanations about a

desired values. Fig. A-l is a flowchart of this program and the

computational block diagram is shown in Fig. 2.

1) INPUT

This program displays the input variables as follow.

Enter name of signal input file

The user must supply the input filename under 25 characters.

Number of the sampled data point

The user must input the number of sample data(dp). If dp is larger

than 2048, the user must change np in a available memory size of the user's

computer and recompile the source program. The dp must be a multiple of

2 because of FFT.
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c START J

INPUT
FILENAME

L INPUT DATA 7

SUBROUTINE
INDATA

(read the input file)

SUBROUTINE
DTCALC

THEN

SUBROUTINE
MEAN

ELSE

Fig. A-l Flow chart (continued)
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OUTPUT
RWDF.OUT

SUBROUTINE
FILTER

SUBROUTINE
HAMMG

SUBROUTINE
ANAL

SUBROUTINE
WIGNER

c STOP ^̂

FFT

OUTPUT
RSWDF.OUT

Fig. A-l Flow chart
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The next step is,

Do you wish to remove the mean value ?

Enter 1 for yes or for no.

The user inputs the desired value in according to the characteristics

of input time signal. If the time signal have the DC components, the user

had better select mvopt=l.

Do you want to apply highpass digital

filter to the original data ? (y/n)

If 'y' is selected, the desired cutoff (half-power point) frequency is inputed

after displaying the follow command.

Enter the cutoff frequency of

the digital highpass filter (in Hz)

This program uses the non-recursive(finite impulse response - FIR)

highpass filter for the elimination of undesired low frequency components.

If the user wants to pass the highpass filter, input the desired cutoff

frequency in Hz.

The next procedure is,

Input the desired reduction size

input 1 for 64 by 32

input 2 for 128 by 64

input 3 for 128 by 128

input 4 for 256 by 128
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This input statement describes the desired output file size for the output

and the plotting because the original Wigner distribution involving the all

domains needs the huge memory size.

As the next step, this program chooses the

The desired smoothing window size

input the smoothing parameter for

frequency in Gaussian function(nf)

input the smoothing parameter for

time in Gaussian function(mt)

The smoothing parameters for frequency (nf) and time (mt) depend on the

number of the sampled data. The user inputs the integer values satisfying

the following condition,

nf * mt > -£ (A-l)
n

We recommend to select the square smoothing window size.

2) OUTPUT

This program generates the two output files. One is the file for the

unsmoothed Wigner-Ville distribution and the other is the file for the

smoothed Wigner-Ville distribution. The output files consist of one column

along with the time and frequency axis dependently the output parameter

as following descriptions.

0.00000E+00 : initial time

0.10000E+01 : time record length
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O.OOOOOE+00

0.25600E+03

0.53830E-06

0.49456E-06

0.18271E-06

128 64

starting frequency

end frequency

reduction size

the results of PWVD or WVD

The graphic output of the results used of CA-DISSPLA version 11.0.

The 3-D graphic program describes the unsmoothed or smoothed Wigner-

Ville distribution(or pseudo Wigner-Ville distribution). The 2-D graphic

program describes the contour plot of the results and the time series.
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A-2. EXPLANATIONS OF INPUT VARIABLES

Variable names Descriptions

inname Input file containing the real time signal.

dp The number of the sampled data point.

mt Smoothing parameter for time in Gaussian Fn.

nf Smoothing parameter for frequency in Gaussian

Fn.

mvopt Option with respect to removing mean value

if mvopt = 1, then zero mean.

if mvopt = 0, then no.

bw Cutoff frequency of highpass filter
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A-3. SUBROUTINES

1) indata(dp,tin,ain)

This subroutine reads the input file 'inname'. The input data file

involves the time and amplitude in real value. The reading format is a free

format.

2) dtcalc(dp,tin,dt)

This subroutine calculates the mean time interval dt from the input

time signal. Because the obtained data from A/D converter or signal

processor doesn't have the exactly same interval. Delta time(dt) is given as

follow,

dt = (total record length) / (number of data point- 1) (A-2)

3) mean(dp,ain)

This subroutine calculates the mean value and removes the mean

value of the fignal under the condition of the input variable mvopt. In the

case the signal has the DC component, it is recommended to remove the

mean value. A highpass digital filter must use for the elimination of DC
component.

4) filter(m,fc,t,bk)

This subroutine generates a nonrecursive (finite impulse response -

FIR) filter weights and uses the method devised by Potter, Bickford and

Glaze. Nonrecursive highpass filter was used for the elimination of
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undesired low frequency components. The variables m, b, t, and bk are the

number of the weights, the cutoff frequency of the filter, the time interval

and the storage array of the filter weights, respectively.

The basic design was to use a symmetric filter of the form,

m

with

and

y(i) =

b , =

b, =

5> k s(i-k)

k=-m

sin 2/r/?kt

7rk

(A-3)

(A-4)

(A-5)

where b k is the filter weights, y(i) is the filtered signal, s(i) is the original

signal, b is the cutoff frequency, t is a sampling interval and mo is the span

of the filter; 2m+l weights are employed because of symmetry, only m+1
need be generated. The b k weights are computed over the range -m to m.

The weights are multiplied by a window function. Potter discusses a

number of windows in the referenced work. His P310 window was found to

be appropriate for filter implementation. It takes the form,

Wi. =

where

w
d + 2 £ d cos

p=-3

7Tpk

m
(A-6)

c k = -
k

2
k = ± m

= 1 otherwise

d = 1

d., = d,
- 0.684988

d.2 = d 2
- 0.202701

d.
3
= d

3
— 0.0177127

(A-7)
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and
3

w = d o + 2 X d = 2.8108034 (A-8)

p=-3

For a highpass filter with pass band from the cutoff frequency(B) to the

maximum frequency, generate a low pass filter on the range - B, and then

subtract the central weight from unity and change the signs of the

remainder of the weights.

The filtered signal in the main program is generated by using the

calcultaed filter weights as follows.

do k=-m,m

j=k

if(k.lt.0)then

j=k*(-l)

endif

(A-9)

bb=-bk(j)

if(k.eq.O) then

bb=l.-bk(j)

endif

y(i)=y(i)+bb*s(i-k)

end do

5) hammg(dp,dt,pi,ain)

This subroutine is a data tapering by using the modified Hamming

window. It is often desirable to taper a random time series at each end to

enhance certain characteristics of the spectral estimates. Tapering is

multiplying the time series by a data window analogous to multiplying the

correlation function by a lag window. Thus tapering the time series is
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equivalent to applying a convolution operation to the raw Fourier

transform. The purpose of tapering when viewed from its frequency

domain effect is to suppress large side lobes in effective filter obtained with

the raw transform. When looked at from the time domain, the object of

tapering is to round off potential discontinuities at each end of the finite

segment of the time history being analyzed.

The used data window in this program is a modified Hamming

window as given in Eq.(A-lO).

0.54 - 0.46 * cosUOTrt/T) < t < T/10.

W(t) = { 1.0 T/10 < t < 9T/10 (A-10)

0.54 - 0.46 * cos(107c(T-t)/T) 9T/10 < t < T

6) anal(dp,pi,ain,s)

This subroutine converts a real signal to an analytic one by using the

Hilbert transform given as follow,

, . , 2 sin
2
(7m/2)

h(n) = -, n * 0,
it n

= 0, n = 0.

(A-ll)

The Wigner distribution has a periodicity of N/2, where N is the

number of data. Hence, even when the sampling of signal satisfies the

Nyquist criteria, there are still aliasing components in the Wigner

distribution function. If we sample the signal with Nyquist rate, its power

density spectrum does not overlap with its own components. For Wigner

distribution function, there are additional spectrum components causing

the aliasing interference. However, a simple way to alleviate this problem

for practical purpose is to increase the seperation of the spectrum groups by

either doubling sampling rate or by interpolating with additional data
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points according to sampling theorem before the transform process.

Another approach to avoid the aliasing is to use only the positive part the

signal's frequency components, the analytical signal, before computing the

Wigner distribution function. The analytic signal approach is convenient

since it can be easily obtained with the Hilbert transform, which can also

use the efficient FFT algorithm.

This program uses the later case. The real time signal converts to

complex variable by the Hilbert transform, that is, the imaginary part is

generated by the convolution of the impulse response h(n) shown as follow,

oo

H{s
r
(n)} = £ h(n-m)s

r
(m) (A-13)

m=-oo

where sr is the original input signal.

The analytic version of the real signal is made up of the real signal

plus an imaginary part composed of the Hilbert transform of the real

signal.

s(t) = s
r
(t) + jH{s

r
(t)} (A-14)

7) wigner(dp,dt,pi,s,c,mm,nn,wdf,mt,nf)

This subroutine calculates the Wigner distribution function. The

Wigner distribution function is obtained by using fast Fourier transform

(FFT) of the local correlation of signal. At first, the local correlation of the

signal is obtained and 2N points FFT is carried out. This program

generates the results wdflij) of the Wigner distribution function and

pseudo Wigner-Ville distribution function on the given time series. The

Wigner distribution has 1/2 of the frequency resolution of the power

spectrum because 2N points FFT and the argument of the time signal and

its conjugate contains a factor of 1/2. That is, df = l/(4*dp*dt).
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To avoid the negative values and the elimination of the interference

by the cross correlation term, this program uses the smoothing technique

with Gaussian window function as following Eq.(A-15).

t

2

CO
2

G(t,w) = e
2 °: 2ai

(A-15)
27rcr

t

crw

The smoothing is obtained by the convolution integration the Wigner

distribution and a Gaussian window function as given Eq(26). To perform

the convolution on the sampled wdflij), the Gaussian function was first

truncated so that it spanned the range ± 2<7
t
and ± 2(7^. To avoid the

negative value, Gaussian window size must have a larger or equal integer

value mtand nf than (dp/n)^'*. For example, in the case of dp=1024, at least

Gaussian window size must be 18x18 or larger. We recommend to select

the square windows size.

8) fft(dp,pi,c)

This subroutine is a program about the Fast Fourier Transform by Jim

Cooley's method.
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APPENDIX B. PROGRAM LIST

B-l. PROGRAM LIST ABOUT THE CALCULATION OF WDF

PROGRAM PWVD

* *

* PSEUDO WIGNER-VILLE DISTRIBUTION FUNCTION *

* PC VERSION 1.0 JAN. 1993 *

* (by using highpass digital filter) *

* *

*

*

* This is the program about the pseudo Wigner-Ville

* distribution(PWVD). The PWVD is a three dimensionaKtime,

* frequency, amplitude) representation of an input

* signal and is ideally suited for portraying transient

* phenomena.
*

* VARIABLES
*

* dp = the number of the sampled data point

* mm = output parameter for time

* nn = output parameter for frequency

* mt = smoothing parameter for time in Gaussian Fnc.

* nf = smoothing parameter for frequency

* in Gaussian Fnc.

* inname = input filename (sampled data)

* mvopt = option with respect to removing mean value

* if mvopt=l, then zero mean
* if mvopt=0, then no
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* df = frequency resolution

* dt = sampling interval

*

* ARRAYS
*

* tin(i) = sampled time data

* ain(i) = sampled magnitude data

* fain(i) = filtered data

* wdf(i,j) = reduced array of PWVD
* bk(i) = filter weights

* s(i) = analytic signal

* c(i) = local auto-correlation or the results of FFT
*

* VARIABLE DECLARATION *

* *

* Notes: For sample sizes greater than 2048, change

* the parameter np.

integer dp,dp2,mvopt,redopt,mm,nn,nf,mt

parameter (np=2048)

real pi,tin(np),ain(np),wdf(256,128),dt,fain(np),

1 bk(llOO)

complex s(np*2),c(np*2)

character*25 inname

character as

pi=atan(l.)*4.

************************************************************

* — Print description of program —

print*,' Pseudo Wigner-Ville Distribution'
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print*

* — Set input parameters —

print*,' Enter name of signal input file'

read(5,901) inname

print*

print*, Number of the sampled data point'

read(5,902) dp

dp2=dp*2

do 100 i=l,dp2

100 s(i)=cmplx(0.,0.)

print*,' Do you wish to remove the mean value?'

print*,' Enter 1 for yes or for no'

read(5,902) mvopt

print*

*

print*,'Do you want to apply a highpass digital'

print*, 'filter to the original data ? (Y/N)'

read(*,903) as

if (as.eq.'Y.or.as.eq.'y') then

print*,'Enter the cutoff frequency of

print*,'the digital highpass filter (in Hz)
'

read(*,*) bw

if

*

end

fmin=0.
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print*, Input the desired reduction size'

print*,' input 1 for 64 by 32
'

print*,' input 2 for 128 by 64
'

print*,' input 3 for 128 by 128
'

print*,' input 4 for 256 by 128
'

read(5,902) redopt

print*

if (redopt.eq.l) then

mm=dp/32

nn=dp2/64

elseif (redopt. eq.2) then

mm=dp/64

nn=dp2/128

elseif (redopt. eq.3) then

mm=dp/128

nn=dp2/128

else

mm=dp/128

nn=dp2/256

endif

*

print*,'Input the desired smoothing window size

print*

print*,' input the smoothing parameter for frequency'

print*,' in Gaussian function'

read(5,902) nf

print*,' input the smoothing parameter for time'

print*,' in Gaussian function'

read(5,902) mt

* The calculation part of the program *

*************************************************************
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* Read the sampled data file

open(4, file=inname,status='old')

call indata(dp,tin,ain)

print*, 'finished subr. indata'

close(4)

* calculate the mean time interval

call dtcalc(dp,tin,dt)

print*, 'finished subr. dtcalc'

if (mvopt.eq.l) then

call mean(dp,ain)

print*, 'finished subr. mean'

endif

* Signal modifications

*

Application of highpass digital filter

if (as.eq.'Y'.or.as.eq.'y') then

mo=dp/2

* calculate the filter weighting

call filter(mo,bw,dt,bk)

* pass the highpass filter

do 160 i=l,dp

160 fain(i)=0.

do 200 i=l,dp
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do 170 k=-mo,mo

j=k

if(k.lt.0)then

j=k*(-l)

endif

H+i
ll=i-k

ifdl.lt.Dthen

ll=ll+dp

elseif (ll.gt.dp) then

ll=ll-dp

endif

bb=-bk(j)

if (k.eq.O) then

bb=l-bk(j)

endif

fain(i)=fain(i)+bb*ain(ll)

170 continue

200 continue

do210i=l,dp

210 ain(i)=fain(i)

print*, 'finished digital filtering'

endif

* Window application(modified hamming windows)

call hammg(dp,dt,pi,ain)

print*, 'finished subr. hammg'

* Conversion of real signal to an analytic one

call anal(dp,pi,ain,s)
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print*, 'finished subr. anal'

open(9,file='rwdf.out',status='new')

open(10,file='rswdf.out',status=
,

new')

*

* Writing the WDF to output file
*

ttime=dp*dt

df=l./(4.*dp*dt)

fmax=2.*dp*df

nx=dp2/nn

ny=dp/mm

write(9,904) tin(l),ttime,fmin,fmax

write(9,*) nx,ny

* Calculation of the Wigner distribution:

print*, Calculating the PWVD'

call wigner(dp,dt,pi,s,c,mm,nn,wdf,mt,nf)

print*, 'finished wigner ville distribution function'

close(9)

*

* Writing of reduced & smoothed WVD to output file

*

write( 10,904) tin(l),ttime,fmin,fmax

writedO,*) nx,ny

do 500 i=l,dp/mm

do500j=l,dp2/nn

write(10,905) wdflj,i)

500 continue

* Format statements
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901 format(a25)

902 format(i6)

903 format(al)

904 format(el2.5,/,el2.5/,el2.5y,el2.5)

905 format(2x,el2.5)

close(lO)

print*,'terminate the excution of Wigner-Ville distribution'

stop

end

* *

* SUBROUTINES *

* *

subroutine indata(dp,tin,ain)

integer dp

real tin(*),ain(*)

********simple loop to read in time & amplitiade*************

do 100j=l,dp

read(4,*) tin(j) , ain(j)

100 continue

return

end

**************************************************************
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subroutine dtcalc(dp,tin,dt)

*

* This subroutine calculates the delta t of the signal

*

integer dp

real tin(*),dt

dtsum = 0.0

dol00i = l,dp-l

delt = tin(i+l) - tin(i)

dtsum = dtsum + delt

100 continue

dt = dtsum / float(dp-l)

return

end

subroutine mean(dp,ain)

*

* This subroutine calculates and removes the mean value

* of the signal.

integer dp

real ain(*),meanv
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asum = 0.0

do 100 i = 1 , dp

asum = asum + ain(i)

100 continue

meanv = asum / dp

do 200 i = 1 , dp

ain(i) = ain(i) - meanv

200 continue

return

end

subroutine f!lter(mo,b,t,bk)

*

* Routine generates FIR filter weights.

* Method devised by Potter, Bickford and Glaze.

* There are a total of 2M+1 weights... filter generates M+l.
*

* — variables —
* t = the sampling interval in second.

bw = cutofflhalf-power point) of the filter in Hz;

* must be on the range from o to l/2t.

*

* Results are stored in bk
*

* —
- Note; in the case of highpass filter, the value of

* weight bO must use 1-bO instead of bO.

*

dimension bk(*),d(3)

datad0/0.35577019/,d(l)/0.2436983/,d(2)/0.07211497/,

* d(3)/0.00630165/

65



pi=atan(l.)*4.

m=mo
* first generate plain boxcar weights

fact=2.*b*t

bk(l)=fact

fact=fact*pi

do 5 i=l,m

fi=i

5 bk(i+l)=sin(fact*fi)/(pi*fi)

* trapezoidal weighting at end

bk(m+l)=bk(m+l)/2.

* Now apply the Potter p3 10 window

sumg=bk(l)

do 15 i=l,m

sum=d0

fact=pi*float(i)/float(m)

dol0k=l,3

10 sum=sum+2.*d(k)*cos(fact*float(k))

bk(i+l)=bk(i+l)*sum

15 sumg=sumg+2.*bk(i+l)

ml=m+l
do20i=l,ml

20 bk(i)=bk(i)/sumg

return

end

subroutine hammg(dp,dt,pi,ain)

*

* This subroutine applies a modified hamming window

* to the signal ain(t)

integer dp
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real pi,ain(*),dt,mtime,del l,del2,const

*

mtime=(dp-l)*dt

dell=0.1*mtime

del2=0.9*mtime

const=pi/dell

do 100j = l,dp

t = (j-l)*dt

if(t.le.dell)then

ain(j) = ain(j) * (.54-0.46*cos(const*t))

elseif ((t.ge.del2).and.(t.le.mtime)) then

ain(j)=ain(j)*(.54-0.46*cos(const*(mtime-t)))

endif

100 continue

return

end

subroutine anal(dp,pi,ain,s)

*

* This subroutine converts a real signal to an

* analytic one by using Hilbert transform.

*

* s(i) = analytic signal.
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*

*

integer dp

real pi,ain(*),sum,sumb,val,sval

complex s(*)

do 100 i=l,dp

sum=0.0

do200j=l,dp

sumb=0.0

if(i-j.eq.0)goto200

n=i-j

val=pi*n/2.

sval=sin(val)

sumb=ain(j)*sval*sval/val

200 sum=sum+sumb

s(i)=cmplx(ain(i),sum)

100 continue

return

end

subroutine wigner(dp,dt,pi,s,c,mm,nn,wdf,mt,nf)

"t* ^P *T^ T" *P T T* "I* "P *l* *F T V T^ T^ *P Bp *T* *T* *!* T* *P T* "T" "P "t" "T* T* "P *T^ "P *T^ *P *P "T* *T* *T* "T* *P T^ T^ T^ T^ H^ T^ T^ T^ T^ T T ^r T^ T ^F T T T

*

* This subroutine calculates the WDF of the signal
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integer dp,dp2

realpi,dt,coef,wdfl256,128),hg(-60:60,-60:60)

complex s(*),dum,c(*)

dp2 = dp*2

coef=2.0*dt

df=l./(4.*dp*dt)

nf2=nf*2

mt2=mt*2

fl=float(mt)

f2=float(nf)

* Gaussian function

val=l./((2.*pi)**2*fl*f2*df*dt)

do20j=-mt2,mt2

ql=float(j)

do 10 i=-nf2,nf2

q2=float(i)

cf=-((ql*ql)/(2.*fl*fl))-((q2*q2)/(2.*f2*f2))

hg(i,j)=val*exp(cD

10 continue

20

*

continue

*

*

initialize wdfl

do 100 i=l,256

do 100 j= 1,128

100 wdf(ij)=0.

do 5000 j = 1 , dp

* local auto-correlation

do 1000 i = 1 , dp+1
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if (j.ge.i) then

dum = s(j-i+l)

else

dum = cmplx(0.,0.)

endif

c(i) = coef * (s(j+i-l)*conjg(dum))

if (i.ne.l.and.i.ne.dp+1) then

c(dp2-i+2) = conjg(c(i))

endif

1000 continue

call fft(dp,pi,c)

ik=mod((j-l),mm)

if (ik.eq.O) then

do 1500 i=l,dp2,nn

write(9,1400) real(c(i))

1400 format(2x,el2.5)

1500 continue

endif

ml=0

do 4000

m=l,dp,mm

ml=ml+l

nl=0

if (abs(j-m).le.mt2) then

do 3000 n=l,dp2,nn

nl=nl+l

do 2500 kk=n-nf2,n+nf2

kl=kk

iflkk.lt. I)kl=kk+dp2

iftkk.gt.dp2) kl=kk-dp2

wdfTnl,ml)=wdflnl,ml)+real(c(kl))*hg(kk-nJ-m)*df,c

dt
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2500 continue

3000 continue

endif

4000 continue

5000 continue

return

end

subroutine fft(dp,pi,c)

* This subroutine is the Fast Fourier Transform
*

integer dp,dp2,val,coef,coefl

real pi

complex dum,c(*),dum3,dum2

dp2 = dp*2

const=float(dp2)

val=alog(const)/alog(2.)+.l

j=l

do 40 i=l,dp2-l

if (i.ge.j) go to 10

dum3=c(j)

c(j)=c(i)

c(i)=dum3

10 k=dp

20 if(k.ge.j)goto30

j=j-k

k=k/2

go to 20

30 j=j+k

40 continue

71



do 70 n=l,val

coef=2**n

coefl=coef72

dum2=cmplx(l.,0.)

theta=pi/float(coefl

)

dum=cmplx(cos(theta),-sin(theta))

do60j=l,coefl

do 50 i=j,dp2,coef

ii=i+coefl

dum3=c(ii)*du

m2 c(ii)=c(i)-

dum3

c(i)=c(i)+dum3

50 continue

dum2=dum2*dum

60 continue

70 continue

return

end
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B-2. PROGRAM LIST OF 3-D PLOT

PROGRAM 3DPLOT
*

* This program uses the graphic package CA-DISSPLA to plot

* the results ofWDF
*

* ttime = time record length

* tini = initial time

* fmin = start frequency

* fmax = stop frequency

* nx = the number of the frequency data at time n x dt

* ny = the number of the time data at frequency m x df

*

Declaring variables

real rwdfI32768)

integer nx,ny

character*25 fname

write(*,*) 'input file name ?'

read(*,20) fname

20 format(a25)

open(15,file=fname,status='old')

read(15,*) tini

read(15,*) ttime

read(15,*) fmin

read(15,*) fmax

read(15,*) nx,ny

write(*,*) tini,ttime,fmin,fmax,nx,ny
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n=nx*ny

do 100 i=l,n

read(15,*) rwdfti)

100 continue

close(15)

smax=rwdf(l)

do 200 i=l,n

if (smax.lt.rwdfli)) then

smax=rwdf(i)

endif

200 continue

%

write(*,*) 'smax =', smax

write(*,*) 'input maximum z-axis value'

read(*,*) fac

call pdev('ln03', ieer)

* plotting

call hwshd

call swissm

call shdchr(90., 1,0.002,1)

call height(0.2)

call physoKO. 7,0.625)

call area2d(7.5,9.75)

call messagCWIGNER-VILLE DISTRIBUTION $',100,1.1,8.2)

call blsur

call volm3d(8.,8.,9.)

call x3name('Frequency (Hz) $',100)

call y3name('Time (sec) $',100)
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call z3name('Amplitude $',100)

call vuangl(-60.,30.,30.)

call zaxang(90.)

tstep=ttime/4.

fstep=(fmax-fmin)/4.

tmax=tini+ttime

call graf3d(fimn,fstep,fmax,tini,tstep,tmax,0.,'SCALE',fac)

call surmat(rwdf,l,nx,l,ny,l)

call end3gr(0)

call endpl(o)

call donepl

stop

end
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B-3. PROGRAM LIST OF CONTOUR PLOT

PROGRAM CONTOUR
*

* This program uses the graphic package CA-DISSPLA to plot

* the results ofWDF

= time record length

= initial time

= start frequency

= stop frequency

= the number of the frequency data at time n x dt

= the number of the time data at frequency m x df

* ttime

* tini

* fmin
* fmax
* nx
* ny
*

* T

*

Declaring variables

real r(64,128)

common work(9000)

integer nx,ny

character*25 fname

write(*,*) 'input file name ?'

read(*,20) fname

20 format(a25)

open(15,file=fname,status='old')

read(15,*) tini

read(15,*) ttime

read(15,*) fmin

read(15,*) fmax

read(15,*) nx,ny

write(*,*) tini,ttime,fmin,fmax,nx,ny
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smax=0.

do 100 i=l,ny

do 100j=l,nx

read(15,*)r(ij)

if(r(ij).lt.0.)r(ij)=0.

if (smax.lt.r(ij)) then

smax=r(i,j)

endif

100 continue

close(15)

* Normalizing

do 200 i=l,ny

do200j=l,nx

r(ij)=r(ij)/smax

200 continue

write(*,*) 'smax =', smax

write(*,*) 'input maximum z-axis value'

read(*,*) fac

call pdev('ln03', ieer)

* plotting

call hwshd

call swissm

call shdchr(90., 1,0.002,1)

call height(0.2)

call page(8.5,ll.)

call physor(1.5,1.5)
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*

call area2d(6.,6.)

call headinCWIGNER-VILLE DISTRIBUTION CONTOURS',
* 100,1.1,1)

call blsur

call yname( 'Frequency (Hz) $',100)

call xnameCTime (sec) $',100)

call yaxang(0.)

tstep=ttime/5.

fstep=(fmax-fmin)/5.

tmax=tini+ttime

call graf(tini,tstep,tmax,fimn,fstep,fmax)

call frame

call bcomonOOOO)

scale=l./30.

call conmak(r,ny,nx, scale)

* contour plot

*

call conlin(0, 'SOLID', 'NOLABELS',1,3)

call conlin(l.,'DASH', 'NOLABELS',1,1)

call conang(50.)

call raspln(0.25)

call contur(2,'LABELS','DRAW)

call endpl(o)

call donepl

stop

end
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B-4. PROGRAM LIST OF PLOT OF TIME SERIES

PROGRAM TIMEPLOT
*

* This program uses the graphic package CA-DISSPLA to plot

* the time series.

Declaring variables

dimension x(4000),y(4000)

character*60 title

character*25 inname

write(*,*) 'input file name ?'

read(*,1000) inname

1000 format(a25)

writeC*,*) "title ?'

read(*,1001) title

1001 format(a60)

writeC*,*) the number of the data point'

readC*,*) np

writeC*,*) maximum scale of the time in a figure'

readC*,*) xmax

writeC*,*) 'maximum scale of the magnitude in the figure'

readC*,*) ymax

open(8,file=inname,status='old')

dol00i=l,np

read(8,*) x(i),y(i)

100 continue
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close(8)

call pdev('ln03', ieer)

plotting

cal

cal

cal

cal

cal

cal

cal

cal

cal

cal

cal

cal

cal

cal

cal

cal

cal

hwshd

swissm

shdchK90., 1,0.002,1)

height(0.2)

page(8.5,ll.)

physor(1.5,1.5)

area2d(6.,6.)

xnameCTime (sec) $',100)

yname('Frequency (Hz) $',100)

headin(title,60, 1.1,1)

thkfrm(O.Ol)

yaxang(90.)

graf(0.,xmax/4.,xmax,-ymax,0.5,ymax)

grid(l,l)

curve(x,y,np,0)

endpl(o)

donepl

stop

end
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