
5H /-

NPS-MA-93-016

NAVAL POSTGRADUATE SCHOOL

Monterey, California

NEURAL NetWork IDENTIFICATION O*'

KEYSTREAM GENERATORS

by

Jeffery J. Leader

LT James E. Heyman

Technical Report For Period

January 1993 - March 1993

Approved for public release; distribution unlimited

"—»ared for: Naval Postgraduate School

FedDocs Monterey, CA 93943
D 208.14/2
NPS-MA-93-016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36721595?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

33-OKp

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CA 93943

Rear Admiral T.A. Mercer Harrison Shull

Superintendent Provost

This report was prepared in conjunction with research conducted for the Naval Postgraduate

School and funded by the Naval Postgraduate School.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL
MONTEREY CA 93943-5101

REPORT DOCUMENTATION PAGE
Form Approved
OMB No 0704 0188

1a REPORT SECURITY CLASSIFICATION

Unclassified

lb RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY

2b DECLASSIFICATION /DOWNGRADING SCHEDULE

3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;

distribution unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S)

NPS-MA-93-016

5 MONITORING ORGANIZATION REPORT NUMBER(S)

NPS-MA-93-016

6a NAME OF PERFORMING ORGANIZATION

Naval Postgraduate School

6b OFFICE SYMBOL
(If applicable)

MA

7a NAME OF MONITORING ORGANIZATION

Naval Postgraduate School

6c. ADDRESS {City. State, and ZIP Code)

Monterey, CA 93943

7b ADDRESS {City, State, and ZIP Code)

Monterey, CA 93943

8a NAME OF FUNDING /SPONSORING
ORGANIZATION

Naval Postgraduate School

8b OFFICE SYMBOL
(If applicable)

MA

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

OM,N
3c. ADDRESS (City. State, and ZIP Code)

Monterey, CA 93943

10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TASK
NO

WORK UNIT
ACCESSION NO

1 TITLE (Indue Classification)

Neural Net* identification of Keystream Generators

2T PE.8SONAI AIJTHQR(S) _ _ __
Jeffery J. Leader, James E. Heyman

3a TYPE OF REPORT

Technical

13b TIME COVERED
FROM 1-93 TO 3-93

14 DATE OF REPORT {Year, Month. Day)

6 May 93
15 PAGE COUNT

15

6 SUPPLEMENTAP^ DOTATION

COSATI CODES

FIELD GROUP SUB-GROUP

18 SUBJECT TERMS {Continue on reverse if necessary and identify by block number)

Keystream generators

9 ABSTRACT (Co i iue on reverse if necessary and identify by block number)

Applications such as stream ciphers and spread spectra require the generation of binary

keystreams to implement, and the simulation of such keystreams to break. Most cryptanalytic attacks

are of the known generator type, that is, they assume knowledge of the method used to generate the

keystream. We show that a neural network can be used to identify the generator, and in some cases to

simulate the keystream.

DISTRIBUTION/AVAILABILITY OF ABSTRACT

£l UNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS

21 ABSTRACT SEQJRIT.Y CLASSIFICATION
Unclassified

la NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code)

Jpfff.ry T, If^flrj 408-656-2335
22c OFFICE SYMBOL

MA/Le
) Form 1473, JUN 86 Previous editions are obsolete

S/N 0102-LF-014-6603

SECURITY CLASSIFICATION OF THIS PAGE

Neural Network Identification of Keystream Generators

LT James E. Heyman and Jeffery J. Leader

INTRODUCTION

There are many applications that require the generation of

pseudorandom bitstreams, that is, sequences of zeros and ones that

meet certain criteria. A partial list of these applications

includes coding, communications, spread spectrum techniques (both

for frequency allocation and security) , simulations, and security

access.

In addition to the typical measures of pseudorandomness,

applications dealing with communications security impose the

additional requirement that any attempt to retrieve the method of

generation should be extremely difficult. For these cases it is

useful to move beyond the scorecard of specific tests to a "larger"

definition of a suitable sequence as one in which no amount

knowledge of previous bits gives an indication as to what the next

bit will be.

At least philosophically, it should be clear that any

repeatable scheme that we as humans can come up with has to be

deterministic (i.e. nonrandom) and therefore, at some level,

predictable. It could be that the period is very large but that is

not the point. The point is that it is logically possible.

An immediate reaction to the fact that pseudorandom sequences

are being generated for security related applications is that it

seems like a good idea to develop methods to attack them.

Eventually the goal is to be able to accurately predict future bits

based on previous ones (assuming that through known plaintext or

some other method we are able to retrieve pure keystream) . Our

preliminary goal, however, is a bit more modest: To determine the

nature of the generator that was used to generate a particular

bitstream. Although modest this aim is far from trivial for while

there is much documentation concerning how to attack a sequence if

the type of generator is known there is no obvious way of deciding

which generator was used except by trial and error. As such, due

to the prevalence of shift registers, the standard strategy is to

attempt to simulate the sequence using Berlekamp-Massey (assuming

a reasonable linear complexity) and if that doesn't work then to

try something else. As more generation schemes appear this method

becomes rather tedious and inefficient. For our purposes we

restricted our investigation to three major generation methods:

Shift registers, a quadratic planar map, and the linear

congruent ial generator.

METHODOLOGY

Our proposed method of attack involves the use of a neural

net. Specifically, we used the BrainMaker neural net software

package to set up a back propagation model with fixed training and

testing parameters which was used to test a series of n bits to

predict one bit with n running from one to 25. It must be noted

that throughout the experiments all of parameters such as learning

rate, momentum, test rate, etc. were fixed. This was done to

demonstrate the viability of the scheme in general (as opposed to

finding specific solutions to specific coding problems) . For all

schemes bitstreams of length 1000 were used.

The basic idea is that for each family of generation schemes

this process results in a characteristic training and testing curve

that serves as a "fingerprint" of the process. The implication is

that given a bitstream from an unknown source this attack will

result in the determination of the family of generation schemes

from which it came.

SHIFT REGISTERS

The most common scheme for generating pseudorandom bitstreams

is the linear feedback shift register (LFSR) , the details of which

can be found in Golomb (1982) . For our immediate purposes all that

needs to be known is that an appropriately wired n-stage shift

register will generate a binary sequence of length 2 n-l. This

results in the favorable result that a fairly small shift register

with, for example, only 64 stages can produce a sequence that is

approximately 1.8 x 10 19 bits long. Intuitively it would seem that

such a sequence could baffle even the most powerful supercomputers

but it turns out that, by utilizing the Berlekamp-Massey or Zeigler

algorithm, a LFSR can be fully simulated if only 2n sequential bits

are known. (This is not a difficult program and can be completed

in 30 lines of MATLAB code.) Admittedly getting 2n bits of pure

keystream might pose a problem but it surely is much less a problem

than dealing with the entire sequence.

In as much as an effective algorithm exists for attacking

shift register generated bitstreams it is reasonable to expect that

any proposed new attack at least be able to match the efficacy of

the known algorithms.

The first example is a LFSR defined by the function f(x) =

x A 13 + x*12 + x A ll + x + 1. This function is primitive over GF(2)

and as such the resultant sequence will have a full period of 8191.

The following graph shows the result of applying the neural net in

the manner described above.

f(x) — x-13 + x~12 + x~11 + x + 1

As can be seen, the profile is similar to that of the linear

complexity in the sense that the pattern is quickly determined (at

n=13) and at that point any extra input bits are ignored. Of

particular interest is how both the training (solid) and testing

(dashed) lines remain relatively flat until the length of the shift

register is reached, at which point both spike up to perfect

training and testing. It is also noteworthy that once past that

point that it usually took around 50 data passes to complete the

training. Another facet is that it is possible to go back into the

net and isolate which input bits have a direct effect on the

output. The procedure is as follows: Label the bits as they

correspond to the stages of an n-long shift register. Then, one by

one, change the bits from zero to one (or one to zero as the case

may be) and observe whether a given bit flips the output. If it

does then the corresponding shift register stage of that bit has a

direct effect on the output. Upon checking all of the input bits

this results in the ability to recreate the polynomial associated

with the actual LFSR that was used.

We can thus conclude that even though we used more bits than

the Berlekamp-Massey algorithm would require we were able to

generate the same results. More work needs to be done on the

effectiveness of this method as the total number of bits analyzed

is reduced in relation to the total length of the bitstream.

This experiment was then repeated on a LFSR based on the

function f (x) = x A 18 + x A
7 + 1 with the resulting curves displayed

below.

f(x) - x~18 + x~7 + 1

Note that the exact same fingerprint shows up. In conclusion,

we believe that this combination of a training curve that stays low

and flat combined with a testing curve that hovers around .5 until

both jump up to 100% is indicative of the use of a linear shift

register. In addition, by examining the net at the point of the

jump the actual function can be retrieved and thus the shift

register itself can be recovered.

QUADRATIC MAP

In previous work, Heyman (1993) , the possibility of using a

non-linear chaotic system to generate pseudorandom bitstreams was

investigated. The process basically consists of following an orbit

on the classic Henon (1976) attractor and assigning a zero or a one

based on whether the point was on the left cr right side of a

previously defined median point. Although there were some

anomalies concerning the "runs" property the overall conclusion was

that it did generate a reasonably pseudorandom sequence based on

the larger definition of predictability. Although bitstreams of

the same length as earlier (1000) were used these represent a

minuscule percentage of the total bitstream length since this

generation scheme has an approximate period of at least 10 15 when

generated on a personal computer. The following two graphs

summarize the results of the neural net attack on bitstreams

generated using this method.

henon(IOOO.O.O)

1

henon(1000..J,.2)

i.**"

0.8

^T jf'
* \ .»

. /
,•'

\ "•'

•.
_

' m _

I
o
u
c

if

0.6

0.4

0.2

n

m

,•'

.•• •••
.•• • ••

.•-•••• V
.«r'

• ••

-

10 15

n predict 1

20 25

Notice that both show a constant testing level of about 75%

while the training curve merges with the testing curve at n=15 and

then breaks out above at n=25. This same behavior was observed on

other Henon bitstreams.

Inasmuch as the Henon attractor is topologically conjugate to

a wide class of quadratic mappings of the real plane (all those

with constant Jacobian) , it is expected that future work which

applies this method of attack to other quadratic mappings will

generate similar results. As such, at this point we are confident

that this fingerprint is indicative of a bitstream which was

generated with the Henon scheme and we believe that a similar trace

will be generated by any other planar quadratic mapping (used to

generate a binary sequence as indicated in Heyman (1993)).

LINEAR CONGRUENTIAL

The next generation method used was based on the MATLAB random

number generator, with the standard conversion from (0,1) to {0,1}.

What makes the results surprising is that MATLAB uses a basic

linear congruential generator which generally is not considered

very sophisticated (although it is, of course, nonlinear; see

Gillespie (1992)). Be that as it may, and whatever its other

weaknesses are, as can be seen on the following graph, it does very

well on this test (in terms of unpredictability) . Nonetheless, it

does have a distinctive fingerprint and thus the generation method

can still be identified.

1

0.8

rond(1000.1)

<

I
ou

0.6 _ /-

*"*x^V

if 0.4

0.2

-•*• <• • •• .
••'

_
.»• ••• •

•'

_*,

«

•

'•'

*

•

• >
/ »

10 15

n predict 1

20 25

The distinguishing features of this fingerprint- are a testing

curve that hovers near 50% and a training curve that grows slowly

until the two curves intersect in the range of n equal to 20 to 25.

It is quite arguable, philosophically or physically, that

there are no macroscopic random processes. However, for most

purposes, it is acceptable to consider the flip of a coin as a

reasonably random event. For completeness, the neural net attack

was then attempted on a bitstream generated by 1000 coin flips and

the results follow.

As expected, the training lines hums right along around 50%.

This is in keeping with the fact that even a neural net can't make

progress on a truly random process. However, what is noteworthy is

that the training line does seem to show a continual improvement.

Since "progress" is purely a testing term this is not terribly

1000 coinflip*

a.

if

8.

0.8 -

0.6 -

0.2

important except that it gives a secondary feature of the

fingerprint, which is similar to the linear congruential generator

discussed earlier.

CONCLUSION

As bitstream generators become more sophisticated and schemes

involving non-linear and chaotic processes become commonplace the

traditional linear methods of attack will prove to be inadequate.

Our proposal of using a neural net addresses this by utilizing it's

inherent nonlinear workings to attack this nonlinear problem: We

are fighting fire with fire. The graphs clearly indicate the value

of this method for finding the generator. We mention that many

standard attacks are of the "known generator" variety, and in this

sense the neural net fills in a crucial gap between theory and

practice by determining that generator. We have intentionally used

the net in an unsophisticated manner, without varying the net

parameters, in order to demonstrate the viability of this approach

in general. The development of a library of fingerprints of known

generators and of adapted artificial neural networks to identify

them would certainly appear to be a worthwhile undertaking for the

cryptanalyst.

Beyond the idea of generator characterization considered in

this paper, and as evidenced by the testing results from the Henon

scheme, we further believe that this method will be effective in

the actual prediction of bitstreams given some number of bits known

to be correct. To achieve this, future work will have to include

adaptive setting of the neural net software as well as the

investigation of different types of neural nets. However, at the

very least, we are absolutely convinced that neural nets can play

a significant, and perhaps dominant, role in the process of

attacking procedures that depend on pseudorandom bitstreams for

their security.

BIBLIOGRAPHY

Gillespie, Daniel T. Markov Processes: An Introduction for Physical

Scientists, Academic Press 1992, p. 47-8

Golomb, Solomon W. , Shift Register Sequences, Aegean Park Press

1982

Henon, Michel "A Two-dimensional Mapping with a Strange Attractor"

,

Comm. Math. Physics, 50:69-77, 1976

Heyman, James E. , On Lhe Use of Chaotic Dynamical Systems to

Generate Pseudorandom Bitstreams , Naval Postgraduate School Masters

Thesis, March 1993

DISTRIBUTION LIST

Director (2)

Defense Tech Information Center

Cameron Station

Alexandria, VA 22314

Research Office (1)

Code 81

Naval Postgraduate School

Monterey, CA 93943

Library (2)

Code 52

Naval Postgraduate School

Monterey, CA 93943

Professor Richard Franke (1)

Department of Mathematics

Naval Postgraduate School

Monterey, CA 93943

Dr. Jeffery J. Leader, Code MA/Le (10)

Department of Mathematics

Naval Postgraduate School

Monterey, CA 93943

LT James Heyman (1)

PSC 825 Box 58

FPO AE 09627

Dr. Hal Fredricksen, Code MA/Fs (1)

Department of Mathematics

Naval Postgraduate School

Monterey, CA 93943

Dr. Ismor Fischer, Code MA/Fi (1)

Department of Mathematics

Naval Postgraduate School

Monterey, CA 93943

Dr. Todd A. Rovelli (1)

Division of Applied Mathematics

Brown University

Providence, RI 02912

LT Antonio Fontana, Code MA (1)

Naval Postgraduate School

Monterey, CA 93943

Dr. Herschel H. Loomis, Jr., Code EC (1)

Naval Postgraduate School

Monterey, CA 93943

DUDLEY KNOX LIBRARY

3 2768 00329110 5

