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Measures of Change and the

Determination of Equivalent Change

C.L. Frenzen

Naval Postgraduate School

Monterey, CA 93943-5100, U.S.A.

Abstract

Equivalent change in percentages, probabilities, or other variables

belonging to a finite interval cannot be properly determined using

methods appropriate for the real or positive real numbers, since these

may require a variable to fail outside its interval of definition. A gen-

eral theory for determining equivalent change on any open interval

G of real numbers is developed. Properties for measures of change

are proposed which give G a group structure order isomorphic to the

naturally ordered additive group of real numbers. Different group

operations on G determine numerically different measures of change,

and numerically different results for equivalent change. Requiring the

group product on G to be a rational function of its factors yields famil-

iar results for equivalent change on the real and positive real numbers,

and a function recently proposed by Ng when G is the open unit inter-

val. Ng's function is not uniquely characterized by his twelve 'reason-

able' properties, but is uniquely determined when the group product

on G depends rationally on its factors. Geometrical interpretations

of these results for the real numbers, positive real numbers, and the

open unit interval are also given.

1. Introduction. The measurement of change and the determination of

equivalent change are common to many areas of human endeavor. Consider

" 1991 Mathematics Subject Classification. Primary 60A05, 20A05



three examples:

[1] The balance in a bank account changes from —$200 to $150. A sec-

ond account contains $150. What new balance in the second account gives

a change in its balance equivalent to the change in the first account?

[2] The enrollment in a course changes from 30 students to 20 students.

A second course has 9 students. What new enrollment in the second course

gives a change in its enrollment equivalent to the change in the first course?

[3] A teacher adjusts the test score of a student from 50% to 75%. A
second student has a score of 80%. What new score for the second test gives

a change in its score equivalent to the change in the first test?

The following question is common to each of these examples:

[Q] Variable x changes from X\ to x 2 . Given t/i, what new value y2 of y gives

a change in variable y equivalent to the change in variable xl

Common answers to it are obtained from

1/2
— Vi = x 2 — Xi (equal differences) (1)

and

— = — (equal proportions). (2)
V\ x i

They work best when x and y are real numbers or positive real numbers

respectively. Equations (1) and (2) are what most people apply to examples

[1] and [2] to obtain the answers $500 and 6 students. Answering question

[Q] for example [3] is not quite as straightforward for when variables x and

y belong to a finite interval, as percentages and probabilities do, (1) and (2)

no longer yield valid answers. To see this, suppose x and y represent the

first and second test scores respectively in example [3]. Then X\ = 50%, x 2

= 75%, and y\ = 80%. 'Equal differences' gives y2 — 105%, while 'equal

proportions' gives y2 = 120%. Both answers are unacceptable since the score

y cannot exceed 100% without falling outside its interval of definition.

Surprisingly, no agreed upon method for determining equivalent change in

percentages and probabilities appears to exist. Such a method would answer



question [Q] on the unit interval by expressing y2 as a, function of x\, x2 , and

t/i, in the same way that (1) and (2) give

y 2 = X 2 ~ xi + r/i (3)

and

V2 = — yi (4)

for the real and positive real numbers respectively. Ng [l] gave twelve 'rea-

sonable' properties for such functions when variables x and y belong to the

unit interval. He gave the specific function

*2yi(l -Xi)
* =

x,(l -*,)+»,(*,-*,)
(5)

as an example satisfying his properties and claimed that it was, in some un-

specified sense, the most natural answer to question [Q] in this case. Ng also

raised the question of uniqueness: to what extent do his properties uniquely

characterize the answer in (5)? No definite conclusions about uniqueness

were reached though, and no reasons were advanced for calling (5) the most

natural answer to question [Q]. Ng, however, stated his confidence that (5)

"provides one (if not the only) acceptable function for equivalent changes

that may lead to widespread practical application in many fields." (Ng [1],

p. 300) The purpose of this paper is to develop a general theory connecting

the answers to question [Q] in (3), (4), and (5), to explain what the word 'nat-

ural
1

means, and to show that Ng's properties do not uniquely characterize

the answer in (5).

We shall assume that variables x and y belong to an open interval G of

the real numbers R, perhaps infinite. Equations (3), (4), and (5) are then

possible answers to question [Q] when G = R, Rpos
, and (0,1) respectively,

where Rpos
is the set of positive real numbers and (0,1) is the open unit

interval. To see how an answer to question [Q] is determined, note, that each

side of (l),for example, is a measure of the change occurring in the variable

appearing on that side. Equivalent change in x and y occurs when these

measures of change are equal. Solving for y2 in terms of Xi,x 2 , and y\ then

gives the answer to question [Q] appearing in (3). A similar pattern occurs

in going from (2) to (4). The process of obtaining these answers begins with

the notion of a measure of change defined on the set G.



In the next section we propose several general properties for measures of

change on the open interval G; these properties are sufficient to give G an

ordered group structure which is isomorphic to (R, +), the naturally ordered

additive group of real numbers. Group operations on G allow us to define

a measure of change on G. Since there are many possible group operations

on G which give it a group structure order isomorphic to (R, +), there are

many possible measures of change on G and a unique answer to question [Q]

does not exist.

We shall denote by (G, *) a group defined on G with group product *.

Perhaps the 'simplest' conceivable group product on G is one which depends

rationally on its factors. In section 3 we show that a one-parameter family

of groups exists on G, each member of which has a group product depending

rationally on its factors. Every member of this family of groups is order

isomorphic to (R, +) and can be denoted by (G, * eo ) where e € G is the

identity element of the group (G, * eo )
and serves as a parameter indexing the

family. Though different values of the parameter e € G determine different

group products * eo and different measures of change on G, every group in

the one-parameter family {(G, * eo )
: e € G} determines the same answer

to question [Q]. This is the sense in which (5), (4), and (3) are the most

natural answers to question [Q] when G = (0,1), Rpos
, and R respectively:

to ensure appropriate properties for measuring change on the interval G,

a group structure must exist on G which is order isomorphic to (R, + ).

The resulting measure of change and answer to question [Q] determined by

the group structure on G are simplest when the group product depends

rationally on its factors. Under these conditions, (5), (4), and (3) are the

unique answers to question [Q] when G = (0,1), Rpos
, and R respectively. The

same approach yields unique answers to question [Q] when G is an interval

of the form (
— oo, a), (a, 6), or (a, oo), where a, 6 € R and a < b.

In section 4 the results of sections 2 and 3 are summarized and used to

formulate a set of properties leading to a unique answer to question [Q] on

any open interval G. Geometric interpretations of the answers in (3), (4),

and (5) are also given. In an appendix we examine Ng's twelve properties

and the extent to which they constrain answers to question [Q] on the unit

interval (0,1). We show that his properties do not lead to a unique answer

to question [Q] on (0,1) and give some examples of this nonuniqueness.

The existence of a method to determine equivalent change on G allows

one to determine which variable undergoes the greatest change. For example,



using (5), the answer to question [Q] in example [3] is y2 = 12/13 ~ 92.3%.

Thus we can say that when y2 < 12/13 the change in y is less than the change

in x, but when y2 > 12/13 the change in y is greater than the change in x

However we caution that the answer y2 — 12/13 in this example, like the

answers given earlier for examples [1] and [2], is not unique and depends on

the group operations chosen for (G, *). As we shall see, X\ * x 2 represents

the element of G obtained by changing Xy by the amount x 2 (or x 2 by the

amount Xi). Since G is an open interval of R, for given xi,x 2 £ G we

feel intuitively that the 'simplest' definition of Xi * x 2 should employ only

the usual field operations of R—addition, subtraction, multiplication, and

division—to form xi *x 2 from X\ and x 2 . This means that the group product

Xi * x 2 depends rationally on its factors. Hence, our intuition impels us to

call (3), (4), and (5) the most 'natural' answers to question [Q] when G — R,

Rpos
, and (0,1) respectively. Indeed, it is difficult to think of answers for

examples [1] and [2] other than the 'natural' ones. We emphasize again that

the answer to question [Q] on the open interval G is not unique and arises

from the specific choice of group operations in (G, *), a group on G which is

order isomorphic to (R, +).

Finally, we remark following Ng [1], that other notions of equivalent

change may exist. For example, the age distribution of students in school

implies that it may be easy to reduce juvenile illiteracy to as low as 5%,

say, while it is substantially more difficult to reduce adult illiteracy below

15%. So, in some sense, it may be reasonable to say that reducing adult

illiteracy from 15% to 14% is equivalent to the reduction of juvenile illiteracy

from 15% to 5%. But since juvenile and adult illiteracy both start at 15%

i
x \ — Vi — 15%), clearly both must increase or decrease to the same percent-

age in order to register equivalent changes in a mathematical sense. As in Ng

[1], it is this mathematical sense of equivalent change which is discussed here,

since specific conditions, contingencies, and peculiarities associated with in-

dividual variables in particular problems cannot be incorporated into a single

theory.

2. Properties of Measures of Change. To answer question [Q] we

need a way to represent changes occurring in variables defined on G. Our

fundamental assumption is:



[A] For every ordered pair of elements (xi , x 2 ) G G there is a unique element

of G representing the change in variable x from Xi to x 2 .

How does one measure the change in variable x from Xi to X2? Our approach

first changes both X\ and X2 by an amount calculated to make the new value

of Xi equal to some chosen reference element of G. A symbolic representation

of this process might look like Xi h-> Xi * xf
1

, X2 •-> X2 * xj"
1

. The new value

of Xi is Xi * Xi , an element of G to eventually represent no change, and the

new value of X2 is X2 * xj" . Since X\ and X2 each change by the same amount

in this process, the measure of change between them remains the same and

equals the change from Xi * xj"
1

(the reference element of G) to X2 * x~[ .

We then take the reference element X\ * xj"
1
as origin and define this latter

change to be x 2 * xj"
1

itself, so that the change in variable x from X\ to X2

is the element X2 * x~[ . But given G, how can the operations * and (-)
-1

be

defined? This question will be answered in (15).

We denote the change in variable x from X\ E G to 12 € G by x 2 /xi.

Assumption [A] implies that / is a binary operation on G:

[P ] For every ordered pair (xj, x 2 ) of elements in G, x2 /xi is defined so that

X2/X1 = z is a unique element of G.

Given x\ G G, assumption [A] and property [Pq] imply that a unique element

Xi/xj G G exists which represents no change in variable x from x x to x\. We
shall require the element X\jx\ to represent no change for every element in

G:

[Pi] For every Xi,x 2 G G, x\jx\ = x 2/x 2 .

Property [Pi] singles out a unique element x\Jx\ 6 G to represent no change;

we call it the identity element of G. As suggested above, the identity element

may be used as a reference element from which to measure change. For

x 2 G G, the change from the identity X\jx\ to x 2 is x2/(x 1 /x 1 ). By property

[Pi] this change depends only on x 2 , so taking the identity element x\jx\ as

origin, we let X2 itself represent the change in variable x from X\jx\ to X2:

[P 2 ] For every xi,x 2 G G, x 2/(xi/xi) = x 2 .

For Xi,x 2 G G, the change in variable x from x2 to x3 should, in some

sense, be the inverse of the change in variable x from X3 to x 2 . Since property

[P 2 ]
implies (x 2/x3 )/(xi/xi) = x 2 /x 3 , we shall require:



[P3 ] For every x 2 ,x3 € G, (x 1 /xi)/(x 2 /x 3 ) = x 3 /x 2 .

These properties suggest a unary operation of inverse (-)
-1

defined on G by

x" 1 = {x 1 /x 1 )/xi. (6)

If x\ 6 G represents a certain change, xf is the inverse change. By using

properties [P 2 ] and [P3 ], we can show that

(xr
1 )" 1

= (*r7*r
1

)/*r
1

= xJiXx/X;} (7)

= Xi.

Expressed in terms of the inverse operation, property [P 3 ] is (x 2/x3 )

-1 —
x3/x 2 .

Next, we define a binary product * on G by

x 2 * x
:
= x 2/xr

!

(8)

for Xj, x 2 £ G. The measure of change in variable x from X\ to x 2 is then

x 2 /x! = x 2 /(x7
1

)

-1 = x 2 *x~\ (9)

giving the method of measuring change introduced following assumption [Aj.

Necessary for its success is the assumption that the change from Xi € G to

x 2 € G remains invariant when these elements are each combined with x\

using the binary operation /. In other words, if x\ >-> X\fx x and x 2 i-> x 2 /xi,

then (x 2/xi)/(xi/xi) = x 2 /xi. This is property [P2 ]. Additionally, we shall

require the measure of change between two elements x 2 ,x3 6 G to remain

invariant when each is combined with any element ii 6 G usmg the binary

operation / :

[P 4 ] For all X!,x 2 ,x 3 € G, (x 2 /x 1 )/(x 3 /x 1 ) = x 2 /x 3 .

Property [P 4 ]
gives the set G and the binary operation / a certain homo-

geneity with respect to the measurement of change.

Properties [Poj-fP-i] are sufficient to ensure that the set G with the unary

operation of inverse (-)
-1 and the binary product * is a group; see, for exam-

ple, Hall [2], p. 6. Whittaker [3] has shown that a group structure on the set

G can be inferred from a binary operation / on G satisfying property [Po]

and a stronger form of property [P 4 ]:



[P
4 ] For all 2:1,2:21 J/i j J/2 € G, (x2/xi) = (j/2/2/1) if, and only if, there is a

z £ G such that y2 = 2:2/2 and y\ — X\/z.

Assumption [A] gives the elements of G an additional role as measures of

change on G, so the group product X\ * £2 has two possible interpretations

depending on the particular roles given to its factors Xi, x 2 . If x 2 € G and

2:1 represents a measure of change, the product 2:1 * x2 could be interpreted

as the new element of G obtained by changing x 2 by the amount x\. Under

this interpretation (9) implies that the change in variable x from £2 to X\ *x 2

is

(2;! * X 2 )/x 2 = (xj. * x2 ) * xj 1 = Xi * (x 2 * x^ 1

) = Xi, (10)

since the product * is associative and X2 * x2

l
is the identity element of

(G, *). However, if xi € G and X2 represents a measure of change, the group

product xi * x 2 might also be interpreted as the new element of G obtained

by changing xi by the amount x 2 . Under this interpretation we should have

(Xi * X 2 )/x\ = X\ * x 2 * xj"
1 = X 2 . (11)

Now the second equality in (11) is valid for all X!,x 2 € G if and only if the

group (G,*) is abelian, or commutative. When expressed in terms of the

binary operation /, (11) becomes

[P 5 ] For all xi,x2 € G, x 2 = Xi/(xi/x2 ).

Whittaker [3, p. 637] gives properties [P ], [P4], and [P 5 ]
as necessary and

sufficient conditions for the group (G, *) to be abelian. However the reasons

for adopting property [P 5 ] are not immediate so we will not assume it. The

group (G, *) does not obviously have to be abelian, but considerations of

order will require it to be so.

The interval G inherits the natural linear order < of the real numbers

R. Since G is a nonempty open interval of R, each Dedekind section of G
determines one and only one element. Suppose a, b € G and a < 6. If xi G G,

we claim that a natural requirement is

Xi * a < xi * 6, (12)

no matter which interpretation is given to the group product: inequality

(12) reflects necessary properties of change on the set G. To see this, note

8



that when measures of change appear on the right in the group product and

elements of G on the left, X\ changed by amount a is less than or equal to

x\ changed by amount 6 and (12) should hold. Conversely, if measures of

change appear on the left in the group product and elements of G on the

right, then since a and 6 are each changed by the same amount Xi and a < b,

(12) should again hold. For x l5 x 2 ,a,6 £ G, and a < 6, a repetition of this

same argument indicates that we should also require

Xi * a * X2 < X\ * b * X2- (13)

Clearly the validity of (13) for all Xi,x 2 G G also implies a < b. These

considerations of order suggest the following property for the group (G, *):

[O] For a, 6 € G, a < b if and only if Xi * a * x 2 < x\ * b * x 2 for every

x\, x 2 6 G.

Property [0] makes (G,*) a linearly ordered continuous group. In this context

the adjective continuous means that each Dedekind section of the set G
determines one and only one element of G. We now recall the following result:

Theorem. Suppose (G,*) is a continuous linearly ordered group which is

not trivial (i.e., which consists of more than just the identity element).

Then (G, *) is order isomorphic to (R, +), the naturally ordered ad-

ditive group of real numbers; that is, there exists an order preserving

isomorphism between (G, *) and (R,+).

For further references and proofs of this theorem, see Minassian [4], Fuchs

[5], and Loonstra [6]. A different approach, beginning with the functional

equation in property [P4 ]
and leading to essentially the same conclusion, is

given by Aczel [7], pp. 273-278. The theorem implies that (G,*) is abelian so

that both interpretations of the binary product x\ * x 2 considered previously

are valid: Xi*x 2 is the element of G obtained by changing x x by the amount x 2

or by changing x 2 by the amount X\. The theorem also implies the existence

of an order preserving isomorphism between (G, *) and (R,+), that is, an

increasing bijection / : R —
> G satisfying

r i
(x 1 *x 2 )

= /- i
(x 1 ) + r i

(^), (H)

for all Xi,x 2 G G.



What group products * are possible, and what choice do we have for

bijections / : R -> G satisfying (14)? Since the sets G and R have the

same cardinality, any bijection / : R —> G induces a group structure on G
isomorphic to (R, +) with group product and inverse defined by

xi*z 2 = /(/-^xo + r 1

^)),

(15)

Ui)-
1 = /(-r

1

^)),

for xi,x 2 £ G. To be an order preserving group isomorphism, the bijection

/ must be strictly increasing and hence continuous. The inverse map /
_1

is

strictly increasing and continuous too. Consequently any increasing bijection

/ : R —> G induces group operations on G through (15) and, at the same

time, becomes an order preserving group isomorphism between the induced

group (G, *) and (R, +) which is also a homeomorphism.

Clearly there are many possible group products on the set G. Precisely

what constitutes a 'natural' group product for G will be examined in the next

section. For the moment, let us see how the induced group (G, *) determines

an answer to question [Q]. We define the change in variable x from X\ to x 2

and the change in variable y from y\ to y2 to be equivalent if they are equal:

x 2 /xi = y2 /yi- (16)

Equation (9) allows (16) to be written in terms of the induced group opera-

tions:

x 2 *x~
l = y2 *y^. (17)

The notion of equivalent change in (16) and (17) generates an equivalence

relation ~ on G x G, the set of ordered pairs of elements of G. We write

(xi,x 2 )
~ (yi,y2 )

if, and only if, (16) and (17) are satisfied. Now suppose we

are given Xi,x 2 , and y\ € G. The value y2 of y answering question [Q] must

make (yi,y2 )
~ (x 1? x 2 ), or x 2 * xj"

1 = y2 * yf . Solving for y2 then gives

y2 = x 2 *x~
1 *y 1 (18)

as the answer to question [Q]. Since there are many possible group products

on G, there are many possible measures of change (9), and many possible

answers to question [Q] of the form (18).

10



3. Unique Answers to Question [Q]. For a given open interval G, any

increasing bijection / : R —>• G induces, through (15), a group structure on G
order isomorphic to the additive group of real numbers (R,+). Though essen-

tially only one group structure for G exists, individual bijections may induce

different group products which determine numerically different measures of

change on G and numerically different answers to question [Q]. It is possible,

however, for two increasing bijections and the group operations they induce

on G to determine the same answer to question [Q]. Two groups, (G, o) and

(G, *), will be called equivalent if they determine the same answer to question

[Q]. We shall denote equivalence of these groups by (G, o) = (G, *). By (18),

(G, o) = (G, *) if and only if

Z2°(x!) oy
1
= x 2 *x 1 *yi (19)

for all Xi, x 2 , y\ G G, where o and {-)^
1 are the group operations of (G, o) and

* and (-)
-1

are the group operations of (G,*). Since the results of section 2

imply that the group structure appropriate for measuring change on G and

answering question [Q] is order isomorphic to (R, -f), the equivalence relation

= partitions the set of all group structures on G order isomorphic to (R,+)

into disjoint equivalence classes. Two groups belong to the same equivalence

class if and only if both yield the same answer to question [Q].

Suppose e G G is the identity element of (G, o) and (G, o) = (G, *).

These groups are both order isomorphic to (R, +), so they are isomorphic

to each other. Since they are equivalent, though, the relationship between

them takes a special form. If we put X\ = e in (19), then

x 2 oyi = x 2 * t/i * e~
l

(20)

for x2 ,y\ G G. (Note that e" 1
in (20) is the inverse of e with respect to the

group (G, *).) If we put x 2 = e and y\ = e in (19), we conclude that

{x^- 1 = x' 1 *e *e (21)

for X\ G G. Conversely, the group (G, o) defined by the operations in (20)

and (21) has e G G as its identity element and is equivalent to the group

(G, *). It follows that the equivalence class of the group (G, *) with re-

spect to the equivalence relation = is the one-parameter family of groups

11



{(G, *e ) : e € G} whose members's group operations are defined by

(22)

Xl *e x 2 = X
X * X 2 * e

1

,

(*l) e

The parameter e 6 G indexing the family {(G, * Co ) : e„ E G} is the identity

element of the group (G, * eo ) and determines its group operations through

(22). Every member of this one-parameter family of groups necessarily de-

termines the same answer to question [Q]—that given in (18). Equation (22)

implies that the equivalent groups (G, * eo ) and (G, *) are isomorphic with

isomorphism

feo :G->G; feo (x) = x*e , (23)

so that

x\ * eo x 2 = /Co (/eo (xi)*feo
(x 2 )) = x x *x 2 *e ,

(Zl)e"
1 = /eo([/e-

1
(^l)]-

1
) = ^ 1 *e *e

,

(24)

for X\,x 2 E G. When e is also the identity element of the group (G, *) (23)

and (24) imply that the map /Co : G —> G is the identity and the groups

(G, * eo ) and (G, *) are identical.

What distinguishes the familiar answers to question [Q] for G = R in

(3) and G = Rpos
in (4)? To obtain (3), we can take (G,*) = (R,+), so

that x\ * x 2 = Xi + x 2 and the measure of change in x from X\ to x 2 is the

difference x 2 * xj"
1 = x% — X\. Thus equivalent change is synonomous with

equal differences, as in (1). To obtain (4), we can take (G,*) = (Rpos
, •),

so x\ * x 2 = X\ • x 2 and the measure of change in x from x\ to x 2 is the

ratio or proportion x2 * x^ 1 = £i
. Thus, equivalent change is synonomous

with equal proportions, as in (2). To see what is special about these group

products, measures of change, and answers to question [Q], consider G = R,

for example, and the increasing bijection / : R —
> G; x *-> x3

. The group

(G, *) induced on G by the bijection / has group operations given by (15):

~ *~ / 1/3
,

^.1/3x3
Xi * x 2 = (x

1
+ x 2 ) ,

x
1

— —X\

(25)

12



for X\,x 2 € G. The corresponding measure of change and answer to question

[Q] determined by the group (G, *) are given by (9) and (18) respectively:

„ -1 r !/3 l/3i3
x2 * x, = [x 2 - x{

J ,

y2 = x 2 *x x

l *y x
=

(26)

1/3 1/3 1/3
2

— x
\

"+"
2/l

What is most evident about the group product in (25) and the measure of

change and answer to question [Q] given in (26) compared to those deter-

mined by (R, +) is their lack of rational dependence on X\,x 2 , and y\. It is

rational dependence of the group product on its factors which gives a par-

ticularly simple form for the new element X\ * x 2 obtained by changing the

element xi, say, by the amount x 2 . (We shall see that this rational depen-

dence also carries over to the measure of change and the answer to question

[Q] determined by (G, *).)

For a given interval G, what, then, is the most general increasing bijection

/ : R —>• G whose induced group product * defined on G by (15) depends

rationally on its factors ? We would like

Xi * x 2 = /?(xi,x 2 ), (27)

where R is a rational function of X\,x 2 € G. If we combine (27) with (15),

this means we are seeking increasing bijections / : R —> G which satisfy the

equation

/[r
i

(^i)+r
1

(^)] = JR(x 1 ,x2 ), (28)

for xi,x 2 € G. Let Xi = /(^i) and x 2 = f{u 2 ) for iti,U2 € R. Then (28)

implies that any increasing bijection / : R —> G which induces a rational

group product on G must satisfy the equation

/(u 1 + «2 ) = -R(/(i»i),/M), (29)

for all 1*1,1*2 € R and some rational function R. Simply put, the increasing

bijections we seek, necessarily continuous, must satisfy a rational addition

theorem.

L.E. Dickson [8], W. Alt [9], and A. Kuwagaki [10] have shown that

the only continuous functions satisfying a rational addition theorem on an

interval are those of the form

Ax-rB Ae~ + B
fa{x) = CxTd' Mx) = c^Td' (30)

13



where A,B,C,D, and c are arbitrary (perhaps complex) constants; see Aczel

[7], p. 61. Hence, if / : R —> G is an increasing bijection with one of

the forms in (30), the resulting induced group (G, *) is order isomorphic to

(R, +) and the induced group product * in (15) depends rationally on its

factors. It is the open interval G which determines the appropriate map in

(30).

For G = R an increasing bijection from R to G of the form (30) must be

an affine map of the form

fQ : R -> G; x h> Ax + B, (A>0,BgR). (31)

For G = Rpos
, the map

fpi :R->G;x^eAx+B
,
(A>0,£€R), (32)

is the only increasing bijection from R to G of the form (30). Finally, the

map

fe;R->g;«H il'eA*+B >
(^>o,B€R) (33)

is the only increasing bijection from R to G of the form (30) for G = (0, 1).

The two-parameter families of maps defined by (31), (32), and (33) for A >
and B G R are related. For each yl>0,5GR, the maps fpi and f^ are

determined from fQ by

fp\ = exp o fa ,

(34)

f/32 = r o f01 = ro exp o /Q ,

where exp : R —> Rpos
; x h-> e

x
is the exponential function and

r :RPOS
->(0,1); x H- —^— (35)

is a linear fractional transformation.

To investigate the group operations, measures of change, and answers to

question [Q] determined by these families of increasing bijections, we first

consider G = R. Given A > and B € R, the group operations induced on

G by a map in (31) are

Xi*X 2 = fa{fa
~ 1

{Xl) + fa
~ 1 (x2))=X1 +X2 -B,

(36)

^r
1 = fa (-f;

l

(x i )) = -x 1 + 2B,

14



for an, a-

2 G G. Note that the group operations defined in (36) depend on

the parameter B only. We shall denote the one-parameter family of groups

on G determined by the operations in (36) by {(G, *b) ' B G R}. The group

operations in (36) associated with (G,*b) will be denoted by *b and (-)b
1

-.

where

X\ *b x 2 = x-i + x 2 — B,

(37)

{x x
)-
B

l = -an+2£,

for X\,x 2 G G and B G R. The parameter B G R used to index the

family {(G, *s) : B G R} is the identity element of the group (G, *b)- The

group operations in (37) result from (22) if in those equations we take e =
B and (G, *) = (R, +). Hence, when G = R and B G R, the groups

(R, +) and (G, *b) are equivalent, (R, +) = (G, *jg), and the equivalence

class of (R,+) is the one-parameter family {(G, *s) : B G R}. The measure

of change determined by (9) and the group (G, *b) is

^2 *s (an )b
2 = x 2

- xi + B, (38)

a translate of the difference x 2 — x\. Finally, from (18), the answer to question

[Q] common to each of the groups (G, *b), B G R, is

V7 = x 2 *B (^i)fi
1

*B V\ = {x 2 - xj + B) + yj - B = x 2 - xi + yi. (39)

This is the 'equal differences
1

result in (3). We conclude that the 'equal

differences
1

value of y2 in (3) is the appropriate unique answer to question

[Q] when G = R and the group used to determine a measure change on

G, necessarily order isomorphic to (R, 4-), has a group product depending

rationally on its factors.

When G = Rpos
, A > 0, and B G R, a map of the form (32) induces the

following group operations on G:

X!*x 2 = h01 {hQl(x 1 )-r h^(x 2 )) = -^,

(40)

e
2B

Zi
1 = hpii-hpHxi)) = .

an

15



Again, the group operations in (40) depend only on the parameter B G

R, or equivalently the element e
B

G Rpos
. The one-parameter family of

groups on Rpos determined by the operations in (40) will be denoted by

j
(G, *

es) : e
B
G Rpos

, B G R} . The group operations in (40) associated with

(G, *
e E>) will be denoted by *

es and (-)~Ji where

X\ *
eB X 2 =

X\X 2

i

(41)

eB

e
2B

(site
1

- —
for xi, x 2 G G and e

B G G. The identity element e
B of the group (G, *

es) has

been chosen as the parameter indexing this one-parameter family. Again, the

group operations in (41) result from (22) if in those equations we take e = e
B

,

and (G, *) = (Rpos
, •), the multiplicative group of positive real numbers.

Hence the groups (Rpos
, •) and (G, *

es) are equivalent, (Rpos
, •) = (G, *

es)

for all e
B € G, B € R. When G = Rpos the equivalence class of the group

(Rpos
, •) is the one-parameter family of groups UG,* eB ) : e

B € Rpos
, B G RJ.

The measure of change determined by (9) and the group (G, *
sb) is

e
B Xo

X2* eB (xi)~b = , (42)
X-i

a dilatation of the proportion £i
. The answer to question [Q] in (18), common

to each of the groups (G, *
e e), e

B G G, is

/ \-i
eBx

2 y\ x 2 fAQ .

y2 = x 2 * eB (xi) B *
£b y1 = 5 = —y x . (43)

xi e° X\

This is the 'equal proportions' result in (4) . We conclude that the 'equal

proportions' value of y2 in (4) is the appropriate unique answer to question

[Q] when G = Rpos and the group used to determine a measure change on

G, necessarily order isomorphic to (R, +), has a group product depending

rationally on its factors.

When G = (0, 1) the group operations induced on G by a map in (33) are

xi * x 2 = h0 2 (hp2
(x 1 ) + n

p2 (x 2 ))
=

ix 2 + (l -ziX 1 ~ x 2 )e
B '

16



(44)

«r' = M-^'(*>)) =
1 + (e

.2B _ 1)xi
-

The one-parameter family of groups on (0,1) determined by the operations

in (44) will be denoted by {(G, * r(eB)) : r(eB ) € (0,1), B € R}, where

eB

'(«") = Y^B («)

is the identity element of (G, *
r

(
eB)) and the map r : Rpos —» (0, 1) is defined

in (35). The group operations in (44) associated with (G, * r ( e
s )) wiU De

denoted by * r
(
e s) and (-)~Ab\, where

X\X2
Xl *

r^ X2 = XlX2 + (l- Xl )(l- X2
)
eB'

(46)

(*i)
_i 1 - X\

>r(eB)
l + (c-2B -l)a;i'

for ii, X2 £ G and 5 € R. They result from (22) if in those equations we set

e = r(eB ), and define the group (G, *) by

X\X2
X\ * X2 —

J
T"7 T,x^ + (1 — ^i)(l _

^2)

(47)

(xj)
-1 = 1 - x x

for Xi,a: 2 € G. Thus for B € R the groups (G, * r (eB ))> r (e
S

) £ G, and (G, *)

are equivalent, (G, * r (eB )) = {G, *)> and when B = the two groups are iden-

tical. For G = (0, 1) the equivalence class of the group (G, *) defined by (47)

is the one-parameter family of groups |(G, * r (ee )) : r
(
eB

) € (0, 1), B € RJ.

The measure of change determined by (G, *
r

(
es\), r(eB ) € G, and (9) is

x 2 (l - Xi)
X 2 * r(eB) (XO^U) "

a:a(l_ a
.

1 ) + a!l (l-. a:a)e-B
(48)

and the answer to question [Q] common to each member of this one-parameter

family of groups is, from (18),

/ \-i x 2 yi{l - x^
V2 = * 2 .„.., (*,),(,*, *,<<*) m =

Xi{l _ Xi) + yi{xi _ Xi y
(«)
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This is the result in (5). We conclude that the value of y<i in (5) given by

Ng [1] is the appropriate unique answer to question [Q] when G = (0,1) and

the group structure used to determine a measure of change on G, necessarily

order isomorphic to (R, +), has a group product depending rationally on its

factors.

4. Properties leading to (3), (4), and (5). In this section we sum-

marize sections 2 and 3 by formulating a set of properties for determining

equivalent change on G which leads to a unique answer to question [Q]. We
also give geometrical interpretations of the answers to question [Q] in (3),

(4), and (5) for G = R, Rpos
, and (0, 1) respectively.

Given an open interval G of R, we assume that for every ordered pair

(xi, X2) of elements of G there is a unique element of G which represents the

change in variable x from Xi to x 2 (Assumption [A]). We assume that a mea-

sure of change exists on G, the binary operation /, which satisfies properties

[P ]

— [P4] of section 2, and, upon considering the notion of order, that the

resulting group (G, *) satisfies Property [0]. Then the theorem of section 2

implies that the group (G, *) is order isomorphic to (R, +). Now any increas-

ing bijection / : R —> G induces such a group structure on G through the

group operations in (15), and different bijections induce different measures

of change (9) and different answers (18) to question [Q]. Motivated by (1)

and (2), we call simple any group product on G which depends rationally on

its factors. Restricting attention to simple group products narrows the class

of possible bijections down to those given in (30). Some calculation then

implies that when G = R, Rpos
, and (0,1) and the group product in (G, *) is

simple, (3), (4), and (5) respectively arise from (18) as the unique answers

to question [Q].

Figures 1, 2, and 3 give geometrical interpretations of the answers to

question [Q] in (3), (4), and (5). Each figure shows two copies of the set G,

Gx for variable x and Gy for variable y. Given xi,X2 € Gx , and y\ 6 Gyi to

determine the answer to question [Q] we begin at y\ G Gy
and use the map

T:Gy ^Gx ; y h> y * x, * yf
1

(50)

to 'transfer' to Xi £ Gx : T(yi) = X\. Once at X\ € Gx , the map

C : Gx —> Gx \ x !->• x * x 2 * x^ 1

(51)
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'changes' xi by the amount x 2 * x
1

1 and moves us to x 2 € Gx : C{x\) = x 2 .

Next we use the inverse of the map in (50),

T- 1 :G->G', y^y*xi 1 *y1 , (52)

to 'transfer' back to y2 € Gy
:

y2 = T _1
(x 2 ) = x 2 *x~* *y x . (53)

This is the answer to question [Q] in (18). If we combine (50), (51), and (52),

the answer to question [Q] on G is given by y2 = T~ l o C o T(yi), where the

map
T' 1

o C o T : Gy
-> Gy ; y^x 2 *x~

1 *y (54)

'changes' variable y G Gy by x 2 *x^ , the change occuring in variable x £ Gx .

When G = R, from (39), (50), (51), and (54) we have

T : Gy
-» Gx ; x h-> x + {xi — yi),

C : Gx —> Gx ; x •-> x + (x2 — xx), (55)

T~ l oC oT :Gy
^ Gy ] y i-> y + x 2 -X!,

so that the maps in (50), (51), and (54) are translations. When (7 = Rpos
,

(43), (50), (51), and (54) give

T : Gy
—> Gx \ x i-> x—

,

V\
Xo

C7 : Gx —» Gx ; x •-> a;—

,

(56)
Xi

T~ l oC oT : Gy
-¥ Gy \ y v-> y—

,

Xj

so the maps in (50), (51), and (54) are dilatations. Finally, for G = (0,1),

from (49), (50), (51), and (54) we have

T-r ^r.-r. s(si)(l ~y\)
T : Gy

-* Gx ; x *-> — —— -,

J/i(l - an) + x(xx - t/i)

r r ,n x(x 2 )(l -xQ
C : Gx -> G x ; x i-> —— —— (57)

Xi(l — x 2 ) 4- x(x 2 — X!)

i-l -n-m.n . /-r . . .

y(*2)(l — 3?l)r'oCoTiG^G^y ^>
Xi(l -x 2 ) + y(x 2 - xi)'
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and the maps in (50), (51), and (54) are linear fractional transformations.

Figure 3 and (57) imply that the answer to question [Q] in (5) is geometrically

determined by projection from a point P. The points and 1 in Gx and Gy
are

fixed under projection from P, and P itself is determined by the intersection

of the lines through x^ 6 Gx ,y\ G Gy
and 1 6 Gx , 1 G Gy (the acute angle

between the two copies of G affects the location of P but does not affect the

answer y2 ). Once P is determined, the answer y2 £ Gy is obtained as the

projection of x 2 € Gx from P to Gy
. This geometrical interpretation implies

that the cross-ratios of the points {0,xi,:r 2 ,l} and {0,yi,y2 ,l} are equal,

that is

i?(0,x 1 ;x 2 ,l) = JR(0,y 1 ;y2 ,l), (58)

where

R(x,y;z,t) = /-
; (59)z-y t-y

see Burn [8, p. 43], for example. A combination of (58) and (59) yields the

value for y2 given in (5).

Appendix. In [1], variables x and y belonged to the closed unit interval

[0,1], and the answer to question [Q] was assumed to have the form

V2 - F(x 1 ,y1 ,x2 ), (60)

where F : [0, l]
3 —>• [0, 1] is a map from the closed unit cube [0, l]

3
to [0,1].

Ng gave twelve 'reasonable
1

properties he felt the map F should have, and

showed that the answer in (5) has all of them. We have seen in sections 2, 3,

and 4 how the answer to question [Q] in (5) is determined. In this appendix

we shall examine the extent to which Ng's twelve properties constrain pos-

sible answers to question [Q] on G = (0,1). The results of section 2 imply

that measurement of change on G requires a group structure (G, *) order

isomorphic to (R, -f). e will assume that the answer to question [Q] is

given by a combination of the group operations in (15) and (18):

y2 = x 2 * x' 1
* yi

= f(r
1(^)-r 1

(x 1)+r i

(yi )) <6i)

= F(xi,yi,:r 2 ),
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where / : R —» G is the increasing bijection inducing the group structure

(G, *) on G and the map F : G3 —> G is defined in terms of the bijection

/ by the third equality in (61). What constraints do Ng's twelve properties

put on the map F in (61), and more specifically, what constraints do they

put on the increasing bijection / : R —> G on which F depends? We shall

see that only one of Ng's properties, Property 9, puts a real constraint on

the increasing bijection / : R —> G.

Before we compare the properties postulated by Ng for the map in (60)

with those of the map F in (61), we must reconcile a difference in their

domains. In Ng [1], the domain and co-domain of the map F in (60) are

defined to be the closed unit cube [0,1]
3 and the closed unit interval [0,1]

respectively. In (61) the domain and co-domain of the map F are the open

unit cube G3 and the open unit interval G, where G = (0,1). Now the

function proposed by Ng in (5) is not defined everywhere on [0,1]
3 (the points

(0,0,2:2) and (l,yi,l), for example, do not belong to its domain), so it is clear

that the domain of F needs modification. Since / : R —> G is an increasing

bijection, the extended real numbers —00 and 00 (the greatest lower and

least upper bounds of R) correspond to the numbers and 1 (the greatest

lower and least upper bounds of G) respectively. The numbers and 1 are

also the greatest lower and least upper bounds for measures of change on

G, and play roles for G analogous to the roles played by the extended real

numbers —00 and 00 for R. They cannot be included in the group (C, *) in

exactly the same way that the extended real numbers —00 and 00 cannot be

included in the additive group (R, +). We therefore modify Ng's properties

appropriately so that the domain and co-domain of the map F in (60) agree

with those of the map F in (61). Ng's first two properties are

PROPERTY 1 (COMPLETENESS). F(-) exists for all xu yu and

x 2 between and inclusive of zero and one.

PROPERTY 2 (UNIQUENESS). For each and every value of

(zi, 1/1,2:2), F(-) is unique.

We change 'inclusive' in Property 1 to 'exclusive' as mentioned above. Prop-

erty 2 is satisfied by (60) and (61) since both are maps.

Recall from section 2 that we defined an equivalence relation ~ on G x G,

the set of ordered pairs of G:
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(x a ,x 2 )
~ (2/1,2/2) if and only if x 2 * x

1

1 = y2 * y x

1
. (62)

Clearly (xi,x 2 )
~ (2/1,2/2) if and only if y2 is defined by the map F in (61).

A second relation as on G x G can be defined by the map F in (60):

(xi,x 2 ) ~ (1/1,2/2) if and only if y2 = F(xi, 2/1, x 2 ). (63)

Ng's next three properties are

PROPERTY 3 (INTERCHANGEABILITY).
F(ar2 ,F(xi,t/i,x2 ),Xi) = y x .

PROPERTY 4 (PARITY). F(x 1 ,y 1 , x 2 ) = x 2 for all Xi = y x and

all X2.

PROPERTY 5 (IDENTITY). F{xuyu x2 ) = y x if x2 = xj.

Property 3 holds for the map F in (61), since y2 = F(xi, ja, x 2 ) iff (xi,x2 )
~

(2/1,2/2) if Z2 * xf
1 = 2/2 * 2/f

1

iff ^1 * x
2

l = 2/1 * y^
1

iff (^2,^1) ~ (2/2,2/1)

iff 2/1 = F(x 2 ,y2 ,x x )
(where iff stands for

l

if and only if). Properties 4 and

5 also hold for the map F in (61). Property 4 states that when x and y

have the same initial value, x x =2/1, the final value y2 of y giving a change

in y equivalent to the change in x must be equal to the final value x 2 of

x. Property 5 states that if variable x remains unchanged, variable y also

remains unchanged.

The next property considered by Ng is

PROPERTY 6 (LIMITATION). F(x
1 ,y 1 ,0) = 0; F(si,yi,l) = 1.

We modify Property 6 so that the domain of the map F in (60) agrees with

the domain of the map F in (61):

PROPERTY 6' (LIMITATION). For xu yx € G,

lim F(x 1 ,y 1 ,x 2 )
= , lim F{xu yu x 2 )

= 1.

X2— 0+ X2—!"
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Property 6' is satisfied by the map F in (61) because, for fixed X\,y\ G G,

f~
1

(
x 2) —> —°° as x 2 ~^ + ar>d f~

l

{
x i) -> oo as i 2 -> 1" since / : R —» G

is an increasing bijection. This property illustrates the role of and 1 as

the greatest lower and least upper bound respectively for change on G; if

X] G G, and x<i —>•
+

, variable x undergoes the largest decrease possible.

For variable y, starting from y\ G G, to undergo an equivalent change we

must have y2 -+ + too. Similarly, if £ 2 —> 1~, we must have y2
—> 1~.

PROPERTY 7 (MONOTONICITY). (i) F(x 1: y 1? x 2 ) monton-

ically increases in x 2 ;
(ii) F(xi, yi, x 2 ) monotonically increases

in yi and decreases in X] except when it has already reached its

limiting points (e.g., when y2 = #2 = 1)-

Disregarding the qualification in part ii) of Property 7 which has been dis-

cussed previously, we note that this property is also satisfied by the map F
in (61) since / : R. —Y G is a monotone increasing bijection.

For fixed Xi,yi G G\ Ng defined the function /* : G —>• G by /
!

(.r) =

F(xi,y\,x) His next property discusses the smoothness of the function f
l

:

PROPERTY 8 (DIFFERENTIABILITY). Each and every func-

tion /
!

(:r) is continuous and differentiable at all points [of its

domain].

From (61), the map f
l

: G —> G is defined for Xi,j/i G G by

f(-r) = /(.r
1 (.r)-/- 1

(xi) + r 1

(yi)), (64)

for x G G. It is continuous since / : R —V G is a homeomorphism, and its

differentiability can be ensured by requiring / to be a diffeomorphism. Note

that when the group product * induced on G by the bijection / depends

rationally on its factors, the function f
1

in (64) is given by (5) with x 2 = x

and is a diffeomorphism.

Ng's first eight properties require little of the increasing bijection / :

R —> G defining the map F in (61). The next property is the first, and only

property of Ng's to impose a substantial constraint on /.

PROPERTY 9 (COMPLEMENTARITY).
F{\ - xu 1 - yi,l - x2 ) = 1 - F(xi,yi,x2 ).
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If x is the probability/percentage of event X, then 1 — x is the probabil-

ity/percentage of non-X. Similarly for y. To understand Property 9, consider

the following example given in Ng [1]. Suppose the male employment rate

changes from 90% to 99% and we believe that the female employment rate,

starting at 70%, must increase to, say. 77% to undergo an equivalent change.

Then we must also accept that when the male unemployment rate changes

from 10% to 1%, the equivalent change for female unemployment, starting

from 30%, must be to decrease to 23%.

If we use (61) to express Property 9 for the map F in terms of group

operations, we must require

(1 - x2 ) * (1 - J])"
1

* (1 - yi) = 1 - [x 2 * z]"
1

* y\). (65)

for Xi,X2,i/] E G. For a E G, set X] = l,t/i = a, and x 2 = \ — a in (65) to

obtain

a * I"
1

*(1 -a) = 1 - [(1 -a)* ^

_1
* a]. (66)

Since (6',*) is abelian (66) implies

a*{l-a)-\*\ (67)

for a E G. When expressed in terms of the increasing bijection / : R —
> G,

(67) takes the form

/(/- 1
(a) + /- 1 (l-a))=/(2/- 1 (i)), (68)

for a E G. If we put a = | — x for x E (
— |, ^j, (68) implies that the map

A : (-1,1) -> R; fc(x) = r 1

(* + |) - r 1

(1) (69)

is odd:

/i(-x) = -/i(j-) (70)

for x E (-5,5). Since / : R —> G is an increasing bijection, the map
2' 2

/? : f— ^,1) —>• R in (69) is also an increasing bijection. Thus if the answer

to question [Q] determined by the map F in (61) is to satisfy Property 9, the

increasing bijection / : R —t G defining F must be given by

/(x) = i + /i
- i (x-r i (i)) (7i)
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for x (E R, and its inverse /
l

: G —> R by

/-i(x)=/->(l)+fc(x-l), (72)

for x 6 C, where /i : (—^'i)
~~^ R i s an odd, increasing bijection and

/
_1

(|) G R. Conversely, when /
_1

(|) 6 R and /i : (-§,§) ^ R is an

odd, increasing bijection, the increasing bijection / : R —> G defined in (71)

determines, through (61), an answer to question [Q] satisfing Property 9.

We note that the answer to question [Q] in (5) satisfies Property 9, since

for A > and B € R each of the increasing bijections fp2 : R —> C in (33),

determines, via (69), the same odd, increasing bijection

h : (-1,1) 4R;,h h(x) = fg (x + \)
- f£ (l) = log \±^. (73)

2
X

Any odd increasing bijection h : (—I'D ~~
* ^ defines an increasing

bijection / : R —> G in (71) whose resulting map F in (61) satisfies Property

9. If this increasing bijection / : R —> G is not a member of the family

of maps in (33), the group product on G defined by (15) will not depend

rationally on its factors and the answer to question [Q] it determines in (18)

will not be given by (5). For example, take

M-i. «->**" •«(£££)• (74)

If we choose /
_1

(|J
= in (71), the increasing bijection in (71) determined

by (74) is

/ : R -» G) x^l tan
_1

(e
x
). (75)

The group operations induced on G by the increasing bijection in (75) are

X\*X2 = ^ tan
-1

(tan ^Xi tan |x2),

(76)

xj"
1 = I tan

-1
(cot fxi),

for X\ 6 G and the answer to question [Q] satisfying Property 9 is, by (61),

j/2 = F(i 1 ,y1 ,i 2 ) = Man
f
— l—

. (77)
\ tan \x x )
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The next two properties ensure that the relation « defined in (63) by the

map F in (60), is symmetric and transitive respectively.

PROPERTY 10 (ANONYMITY).
F(y 1 ,xu F(x 1 ,y 1 ,x 2 )) = x 2 .

PROPERTY 11 (TRANSITIVITY). If y2 = F(x 1 ,t/1 ,x2 ), and

z2 = F(xi,zu x2 ), then y2 = F(zu yu z2 ).

The map F in (61) satisfies them since y2 = F(x\,y\,x2 ) if, and only if,

(xj,x 2 )
~ (yi,y2 ), where ~ is the equivalence relation defined in (62). Since

Property 4 implies that the relation % is reflexive, Properties 10, 11, and 4

together imply that ~ is an equivalence relation too.

Ng gave one further property to "narrow down the permissible functions

defining equivalent changes, preferably to a unique function y2 = F(x x , t/i, x 2 )

or a unique family of functions y — /'(x)'
1

. (Ng [1], p. 298) This was

PROPERTY 12 (MONOTONICITY IN dy/dx). U Xl is larger/smaller

than yi, then dy2 /dx 2 monotonically increases/decreases in x2 .

Ng argued that this was a reasonable property for the answer to question [Q],

and he showed that (5) has it. However, as the next example shows, Property

12 together with the previous eleven do not suffice to uniquely determine the

answer in (5). Consider the increasing bijection given in (75). Through (61)

it determines the map F given in (77), and this latter map satisfies Ng's

first eight properties. Property (9) is also satisfied by F since (75) and (69)

together determine the odd, increasing bijection h : f—h,h) —> R given in

(74). Properties 10 and 11 are satisfied by the map F in (77) too. Direct

calculation from (77) yields

(Py2 nK
dxl (cos 2 fx 2 + A'2 sin

2
fx 2

)

:

1— A sin —x 2 cos — x 2 , (78)

where
tan ^t/iK= ^-. (79)
tan \

x

x

v ;

Hence if X\ is larger/smaller than yi, K in (79) is smaller/larger than one

and cPy2 /dxl in (78) is greater/less than 0. This implies that dy2 /dx 2 mono-

tonically increases/decreases with respect to x2 . Therefore the map F in (77)

2e;



satisfies all twelve of Ng's properties, yet is not the answer to question [Q]

found in (5).
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