
NPSCS-94-005

NAVAL POSTGRADUATE SCHOOL
Monterey, California

A Lower Bound for the Intersection of Regular Forests

by Dennis M. Volpano

October 1993

Approved for public release; distribution is unlimited.

Prepared for:

Naval Postgraduate School

Monterey, California 93943

FedDocs
D 208.14/2
NPS-CS-94-005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36721584?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NAVAL POSTGRADUATE SCHOOL

Monterey, California

REAR ADMIRAL T. A. MERCER HARRISON SHULL
Superintendent Provost

This report was prepared with research funded by the Naval Research Laboratory under the Re-

imbursable Funding.

Reproduction of all or part of this report is authorized.

This report was prepared by:

UNCLASSIFIED
URITV CLASSIFICATION 6F THIS PAGE

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATESCHOOL
MONTEREY CA 93943-5101

REPORT DOCUMENTATION PAGE
i. report SECURITY cLAssiPicaTiGN'

—
UNCLASSIFIED

» Security classification AUTh<5ftiTV

ib.REsTAicTivE MARKING

3. DisTRiBuTiOn/AVAIlABiliTY 6P REporT

Approved for public release;

distribution is unlimited
> decl^ssificATIcWdowngRaDinIg SCHEDULE

5. M6NiT6RiNg 6RgAMZATi6n REPORT nUMB£R(S)

Naval Postgraduate School
FEffFgRffliRB oRgAniZaT^n

1

RgRoRT KiUMBER(S)

NPSCS-94-005

NAME 6P peAfoAMing oRgAniZaTion
1

Computer Science Dept.

Naval Postgraduate School

6b. 6PPICE SVMB61
(if applicable)

CS

7a. NAME OF MONITORING ORGANIZATION

Naval Research Laboratory

:. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943

7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943

1. NAME OF FUNDING/SPONSORING
ORGANIZATION
Naval Postgraduate School

8b. OFFICE SYMBOL
(if applicable)

NPS

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
O&MN Direct Funding

10 S6UACE 6P PundiNg numBErs
. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943

PROGRAM
ELEMENT NO.

PROJECT
NO.

TASK
NO

WORK UNIT
ACCESSION NO

. TITLE (Include Security Classification)

A Lower Bound for the Intersection of Regular Forests

!. PERSONAL AUTHOR(S)

Dennis M. Volpano
la. TYPE OF REPORT
Final

13b. TIME COVERED
FROM 10/92 jo

9/93
14. DATE OF REPORT (Year, Month, Day)

October 1993 9
15. PAGE COUNT

i. SUPPLEMENTARY NOTATION

COSATI CODES

FIELD GROUP SUB-GROUP

1 8. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

tree automata, computational complexity

i ABSTRACT (Continue on reverse if necessary and identify by block number)

Regular IX-forests continue to play an important role in programming languages, specifically in the design of type

systems. They arise naturally as terms of constructor-based, recursive data types in logic and functional languages.

Deciding whether the intersection of a sequence of regular IX-forests is nonempty is an important problem in type

inference. We show that this problem is PSPACE-hard and as a corollary that the problem of constructing a regular

IX-grammar representing their intersection is PSPACE-hard.

i. DISTRIBUTION/AVAILABIUTY 6P ABSTRACT
3 UNCLASSIFIED/UNLIMITED

[~J
SAME AS RPT.

!a. NAME OF RESPONSIBLE INDIVIDUAL

DTIC USERS

Dennis M. Volpano

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED
22b. TELEPHONE (Include Area Code)

(408)656-3091
22c. OFFICE SYMBOL

CSVo
FORM 1473, 84 MAR 83 APR edition may be used until exhausted

All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

A Lower Bound for the Intersection

of Regular Forests

Dennis M. Volpano

Department of Computer Science

Naval Postgraduate School

Monterey, California, USA

email: volpano@cs.nps.navy.mil

October 5, 1993

Abstract

Regular EX-forests continue to play an important role in program-

ming languages, specifically in the design of type systems [MiR85,

AM91, Vol93]. They arise naturally as terms of constructor-based, re-

cursive data types in logic and functional languages. Deciding whether

the intersection of a sequence of regular SX-forests is nonempty is an

important problem in type inference. We show that this problem is

PSPACE-hard and as a corollary that the problem of constructing a

regular EX-grammar representing their intersection is PSPACE-hard.

1 Introduction

Regular EX-forests are playing an increasingly important role in language

design and in particular in the design of type systems. Type inference then

usually relies upon various operations over regular forests, one of which is

RF-INT , deciding the emptiness of their intersection.

Definition 1.1 The problem RF-INT is given a sequence of regular Y,X-

grammars G1} . .
.

, Gm , decide whether fl^Li T{Gk) is nonempty.

Regular forests have been used to characterize the types of logic and func-

tional programs [Mis84, MiR85, HeJ90, AM91] as well as overbadings intro-

duced through classes in Haskell [Kae88, Vol93]. For example, Heintze and

JafFar propose what amounts to regular EJV-grammars as inferred "types"

or approximations of the semantics of logic programs. Corresponding to a

logic program, say

p{a).

p(f(X)) - p(X).

r(b).

r(f(Y)) - r(Y).

q(Z) «- p(Z),r(Z).

is a set of equations

X = aU f{X)
Y = bUf(Y)
z = xdy

whose simultaneous least fixed point is an approximate meaning of the pro-

gram. The inferred approximation or "type" is given by

X = aU f(X)
Y = bUf(Y)
Z =

Solving for variable Z requires deciding whether the intersection of the two

regular forests described by the first two equations is nonempty.

One can also view the logic program above as describing a set of valid

overloadings in Haskell for p and r as operators where p has instances at

types a and /, and r at b and /:

class P a where p :: a
instance P a where p = . .

.

instance PA' => P f(X) where p =.. .

class R a where r ::a

instance R b where r = . .

.

instance R Y =$> Rf(Y) where r = ..

.

Instance declarations for an overloaded operator in Haskell describe a regular

forest. So for example, deciding whether term p = r is typable requires

deciding whether the regular forest arising from p's instance declarations

intersects with the forest described by instances for r.

2 Forests and Regular EX-grammars

Given an alphabet A, an A-valued tree t is specified by its set of nodes (the

"domain" dom(t)) and a valuation of the nodes in A. Formally, a k-ary,

,4-valued tree is a map t : dom(t) —> A where dom(t) C {0, . . .,k — 1}* is a

nonempty set, closed under prefixes. The frontier of t is the set

{w € dom(t)
|
-<3i.wi 6 dom(t)}.

It is assumed that A is partitioned into a ranked alphabet E and a frontier

alphabet X . A ranked alphabet, or signature, is a finite nonempty operator

domain. For any E and X, we denote the set of all finite EX-trees by F^(X).

A forest, or tree language, T C F%(X) is called regular if and only if for some

finite set C disjoint from E and X, T can be obtained from finite subsets

of F%(X U C) by applications of union, concatenation -

c (defined using tree

substitution), and closure
* c where c £ C [Tho90].

A regular forest can alternatively be defined as a tree language generated

by a regular EX-grammar [GeS84].

Definition 2.1 A regular HX-grammar G consists of

• a finite nonempty set N of nonterminal symbols,

• a finite set P of productions of the form A —> r where A £ N and

r e Fx(N\JX), and

• an initial symbol S £ N

.

Definition 2.2 If G = (N,H,X,P,S) is a regular T,X-grammar then the

T,X -forest generated by G is

T(G) = {te FL(X) \S=**G t}

Regular EX-grammars are a class of context-free grammars that define

the same family of forests as those recognized by nondeterministic root-to-

frontier (NDR) EX-automata. A root-to-frontier automaton can be viewed

as an attribute evaluator for a tree whose attributes are states prescribed

by an attribute grammar with inherited attributes only. Formally, a NDR
EX-automaton A is a tuple (.4, A', a) such that

1. A is a finite NDR E-algebra (A, E),

2. A' C A is a set of initial states, and

3. a : X —* pA is a final assignment.

In a NDR E-algebra (A, E), A is a nonempty set of states and every

a £ Em with m > 1 is realized as a mapping oA : A —> p(Am). For a £ Eo,

a is a subset of A.

For example, a NDR EX-automaton A = (.4, A', a) recognizing set

Mar, j/), cr{y,x)}

can be defined as follows. Let E = E 2 = {&}, X = {x,y}, and the set of

initial states A' = {S}. Define A= ({x,y,S},E) such that

<r
A
(S) = {(x,y),(y,x)}

and finally define the final assignment a as

xa = {y}

ya = {x}

It is interesting to note that there is no deterministic root-to-frontier TiX-

automaton that accepts the set above. Suppose automaton A accepts a(x, y)

and cr(y,x) and that <r(a) = (01,02) f°r some states a, 01, and a 2 of A. If a

is A's final assignment function, then

xa = ai, ya = a2? y = a \i XOc — a 2

Since A is deterministic, a\ = a 2 . So we have 0(a) = (ai,a\) where xa =
ya = a\. Therefore on cr(ar,ar) and a(y,y), A enters the leaves in state a 1

such that a x £ xa, and a 1 £ ya. Thus A accepts a(x,x) and a(y,y) as well.

Given that regular EX-grammars define exactly the forests recognized by

NDR EX-automata, one could formulate RF-INT in terms of the latter rep-

resentation of regular forests. But we choose regular EX-grammars instead

since they are better suited for manipulation.

Regular forests are effectively closed under intersection.

Theorem 2.1 If G\ and G2 are regular T,X-grammars, for a given E and

X , then T(G\) fl T(G2) is a forest generated by a regular Y>X -grammar.

Proof. Suppose G\ = (iVi, E, X, Pi, 5i) and G2 = (N2 , E, X, P2 , S2) are regu-

lar EX-grammars. Let EX-grammar G = (N\ x N2 , E, X, P, [Si, S2 }) where

[A,B]-> a([yi,Z1],...,[yn,Zn])€P, for n>0

if and only if

A->a(y1} ...,yn)ePi,
B-^a(Z1 ,...,Zn)eP2)

and a 6 E, or [A, 5] - a E P if and only if a £ X. Then T(G) =
TiG^HTiG^. D

The theorem implies that the family of regular forests is properly con-

tained within the context-free languages since the latter is not closed under

intersection.

We now state and prove the main result.

Theorem 2.2 RF-INT is PSPACE-hard.

Proof. The proof uses a result of [Koz77]. For every deterministic Turing ma-

chine M of polynomial space complexity, we give a log-space transducer that

on input x, outputs a sequence of regular EX-grammars whose intersection

is nonempty iff M accepts x.

Let M be a single tape DTM of polynomial space complexity p(n) > n

and assume that M always makes at least three odd number of moves, has a

unique accepting state, qacc , and erases its tape before accepting, positioning

its tape head at the left end of the tape. Let x = a x . . . an be a string over

M's input alphabet and suppose M has states Q and tape symbols T such

that Q, T, and set {nil,#,##} are pairwise disjoint. If

A = Tu{[qx] \ q eQ k x er}

then ranked alphabet E = Eo U Ei U E 2 U E3 where Eo = {nil}, Ei = A,

E 2 = {##} and E3 = {#}. Suppose ID& derives regular forest

Zi (Z2 (• • • Zp(n)
(nil) • • •)

for all Zk £ A, 1 < k < p(n), and ID\
1 2

derives regular forest

Z1 (• • • Zi.j (X, (X2 (X3 (Zi (• • • Zp(n) _ 3 (nil) • •)

for all Xi , X2,X3 , Zk £ A, 1 < A; < p(n) — 3.

A computation of M consists of a sequence of instantaneous descriptions

IDq h ID\ h • • • h ID2m+\, each containing the contents of M's tape padded

with blanks (B's) to length p(n). If according to a move of M, symbols

y^2 y$ in positions i, i + 1, and z + 2 respectively of an /Z) can follow from

symbols X\X2X$ in the same positions of another ID, we write

ID
\x,x2x3) ^^ ID

[YiY2Y3)

We give two regular EX-grammars F°dd and Ff
ven such that F°dd ensures

that even ID's follow from odd ones, and F*ven that odd ones follow from

even ones. Let F°dd be a regular EA'-grammar with empty frontier alphabet,

start symbol S and productions

s -> #{idajd[ZiZ2Z3\f}ZiZ2Z3]
)

for all Zk £ A, 1 < k < 3,

p[XiX 2X3) ^
m/ tt-AYiY2 Yt,] Tp[ZiZ2 Z3]

p[ZiZ2 Z3]^

for all Xk,Yk,Zk € A, 1 < A: < 3, such that W [XlX2X3]
\-M ID

[YlY2Y3]
, and

Fp^ 2^3
] ^ ##(ID 1* Y2Y3\IDA)

for all AT*, V
fc € A, 1 < k < 3, such that ID [

*lX2X3]
hM /£>[

yir2y31
.

Let Ff
ven be a regular EX-grammar with empty frontier alphabet, start

symbol S and productions

S - #{ID[XlX2X3
\ IdY

iY2Yz\S)

s -* ##(id[XiX2X3\id[YiY2Y3]

)

for all X
fc,n € A, 1 < A; < 3, such that W[XlX2X3]

\-M ID
[YlY2Y3]

.

Finally, suppose initID derives the unary tree

[q a l](a 2 {- an(Bn+1 (- • Bp{n) (nil) • • •)

where B^ is a blank and q is the start state of M, and finallD derives

[qaccB](B2 (- • Bp{n) (nil) .)

Then let Fena< be a regular grammar with start symbol S and productions

S->#(initIDJDA,Face)

Face —* #(/I?A, ID&, Facc)

Facc -+##(IDA ,finalID)

Then we have

p(n)-2

t=l

iff i/ = #(/£>„, IDlt #(• • • #(//?2m-2, ID2m-u##(ID2m ,
ID2m+1) •) and from

IDik-\ follows 7i?2fc according to the transition rules of M for 1 < A: < m.

Likewise,

p(n)-2

uE f| T(F,et;en

)

t=i

iff u = #(/D ,/Z)1,#(...#(/D2m.2 , /Z)2m_l5 ##(/Z>2m ,/£>2m+1).-.) and from

7Z)2 /t
follows ID 2k+i according to the rules of M for < A: < ra. Then

p(n)-2

T(Fend)n f| r(^d)nr(Fr)
»=i

is nonempty iff M accepts x. D

As is the case for emptiness of intersection of a sequence of DFA's, the

source for the hardness of RF-INT lies not in deciding emptiness but rather

in computing the intersection of regular forests.

Corollary 2.3 Given regular Y,X-grammars C?i, . .
.

, Gm , constructing a reg-

ular EX-grammar G such that T(G) = f)T=i T{Gk) is PSPACE-hard.

Proof. The emptiness of T(G) for a regular EX-grammar G is decidable

in time 0{\ G
|

2
) in the usual way. From the proof of Theorem 2.2 then

every problem in PSPACE is P-time Turing reducible to the problem of

constructing the intersection of a sequence of regular EX-grammars.

A simple algorithm for constructing G is based on the usual construction

of forming the cartesian product of reachable states as is suggested in the

proof of Theorem 2.1 [AiM91]. It has worst-case time complexity exponential

in m. Unfortunately this naive construction is likely the best we can do. It

should be pointed out that for a fixed m, constructing G from G?i,.. .
, Gm

can be done in polynomial time.

Deciding whether some number of DFA's accept a common string can be

done in nondeterministic linear space, but this does not appear to be true

for RF-INT, which can be decided in deterministic exponential time. This

suggests that a tighter lower bound exists for RF-INT.

References

[AM91] Aiken, A. and Murphy, B.: Static Type Inference in a Dynami-

cally Typed Language, Proc. 18th ACM Symposium on Principles

of Programming Languages, pp. 279-290, 1991.

[AiM91] Aiken, A. and Murphy, B.: Implementing Regular Tree Expres-

sions, Proc. 5th Conf. on Functional Programming Languages and

Computer Architecture, LNCS 523, Springer-Verlag, pp. 427-447,

1991.

[GeS84] Gecseg, F. and Steinby M.: Tree Automata, Akademiai Kiado, Bu-

dapest Hungary, 1984.

[HeJ90] Heintze N. and Jaffar J.: A Finite Presentation Theorem for Ap-

proximating Logic Programs, Proc. 17th ACM Symposium on Prin-

ciples of Programming Languages, pp. 197-209, 1990.

[Kae88] Kaes, S.: Parametric Overloading in Polymorphic Programming

Languages, Proc. 2nd European Symposium on Programming,

LNCS 300, Springer-Verlag, pp. 131-144, 1988.

[Koz77] Kozen, D.: Lower Bounds for Natural Proof Systems, Proc. 18th

Annual Symposium on Foundations of Computer Science, IEEE
Computer Society, Long Beach, CA pp. 254-266, 1977.

[Mis84] Mishra, P.: Toward a Theory of Types in PROLOG, Proc. 1st IEEE
Symposium on Logic Programming, pp. 289-298, 1984.

8

[MiR85] Mishra, P. and Reddy, U.: Declaration-free Type Checking, Proc.

12th ACM Symposium on Principles of Programming Languages,

pp. 7-21, 1985.

[Tho90] Thomas,W.: Automata on Infinite Trees, Handbook of Theoretical

Computer Science, Volume B, Formal Methods and Semantics, J.

vanLeeuwen, Ed. pp. 165-184, 1990.

[Vol93] Volpano, D.: Haskell-style Overloading is NP-hard, submitted for

publication, 1993. <^ /£££ ^J '/ Q^f ^J(mS^ ff^Kc^

Distribution List

Defense Technical Information Center

Cameron Station

Alexandria, VA 22314 2

Library, Code 52

Naval Postgraduate School

Monterey, CA 93943 2

Director of Research Administration

Code 08

Naval Postgraduate School

Monterey, CA 93943 1

Dr. Neil C. Rowe, Code CSRp
Naval Postgraduate School

Computer Science Department

Monterey, CA 93943-51 18 1

Prof. Robert B. McGhee, Code CSMz
Naval Postgraduate School

Computer Science Department

Monterey, CA 93943-5 118 1

Dr. Ralph Wachter

Software Program

Office of Naval Research

800 N. Quincy St.

Arlington VA 22217-5000 2

Dr. Dennis Volpano, Code CSVo
Naval Postgraduate School

Computer Science Dept.

Monterey, CA 93943-5 118 20

DUDLEY KNOX LIBRARY

3 2768 00330442 9

