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Inverse problems for orthogonal matrices, Toda flows, and signal

processing

L. Faybusovich

Department of Mathematics, University of Notre Dame

G.S. Ammar
Department of Math. Sciences, Northern Illinois University

W.B. Gragg

Department of Mathematics, Naval Postgraduate School

Abstract

We consider Toda flows induced on the set of

orthogonal upper Hessenberg matrices. The

explicit formulas for the evolution of Schur pa-

rameters are given.

1 Introduction

Any symmetric nonnegative definite Toeplitz

matrix Tn+i of order n + 1 can be modeled

as an autocorrelation matrix of a stationary

signal [12]

v

xm = ]Pcr/cos(mw/ + 0/) + ym ,

/=i

where 0/ are arbitrary phase shifts and ym is a

zero mean white noise process whose variance

equals the smallest eigenvalue Anij n of Tn+\.
Assume that the eigenvalue \„un is simple, and

let (r)o, • • •, T)n ) be a corresponding eigenvector.

Then [12] the polynomial

V>n(A)=7/ + ...+ 7/n A
n

has n distinct roots Ai, • • • , An on the unit cir-

cle, and the frequencies of xm are given by

{exp(±iu;/}|'_
1
= {Aj}^=1 , where i denotes the

imaginary unit. One can construct [2] an or-

thogonal Hessenberg matrix with character-

istic polynomial proportional to %j)n . Moreover,

the amplitudes q/ can be recovered from the

first components of the normalized eigenvec-

tors of O. One can then use any of several al-

gorithms designed for unitary and orthogonal

Hessenberg eigenproblems [9, 6, 1, 10, 4]

to calculate the frequencies and amplitudes.

In the present paper we investigate another

aspect of orthogonal Hessenberg matrices.

Namely, we consider Toda flows on these ma-

trices (referred to as Schur flows in [3]) and

obtain explicit formulas for the evolution of

the so-called Schur parameters under the Toda

flow. Since Schur parameters determine or-

thogonal Hessenberg matrices uniquely, we ac-

tually obtain an explicit description of the evo-

lution of a given orthogonal Hessenberg matrix

under the Toda flow.

2 Inverse problem for orthog-

onal Hessenberg matrices

Let M be the set of positive Borel measures

on C which have the following properties. For

any /x £ M the support of /x, which we denote

by AM , consists of exactly n points which lie

on the unit circle U and is such that: i) if

A G A^, then the complex conjugate A is also

in AM and /x{A} = //{A}; it) //{A} > for any A

in AM ; Hi) n(C) = 1; iv) — 1 AM . We further

introduce a class OH+ of orthogonal matrices



O =|| Oij ||
such that otJ

= if i — j > 1
,

o,+i,, > for all i and det = 1. Finally, given

a vector r = (r ,
• • •, Tn-\)

T G i?
n introduce a

corresponding Toeplitz matrix T(t) =|| Uj ||,

where /tJ = T)»-j|-

Theorem 2.1 Given a positive definite sym-

metric Toeplitz matrix T(r) with To = 1 there

exist exactly one measure \i G M and exactly

one G 0H+ such that

L A»'d/i(A) = n =< ei,0*ci >, (2.1)

t = 0, • • • , n — 1. Fere ci, • • • , en is f/ie canoni-

cal basis in Rn and < , > is the standard scalar

product. Conversely, for any y. G M and any

G 0//+ the matrices T(t), T(t') are Posi-

tive definite Toeplitz matrices. Here

r
t
= I AV/x(A),r;=<e 1 ,0«e 1 >,
Jc

i = 0, • • -,n — 1.

Remark 2.2 Theorem 2.1 is more or less

known to the experts (see e.g. [8], [11]). We
nevertheless give an independent proof to clar-

ify relationships between introduced objects.

Remark 2.3 There is nothing mysterious

about the number —1 which we have excluded

from the support of each measure in M . This

simplifies notations a little bit.

We need the following elementary lemma.

Lemma 2.4 Let v\, • • •, vn-\ be an orthonor-

mal system of vectors in Rn
. There exists ex-

actly one orthogonal matrix such that Oe{ =
t?,-,» = 1, • • • , n — 1 and detO = 1.

We can now outline a proof of Theorem 2.1.

Proof: Denote by Pn the vector space of real

polynomials of degree less or equal n — 1. Set

< A\AJ >= / A-^A). (2.2)
Jc

We prove that (2.2) defines a positive definite

scalar product on Pn . Observe that

f\ iXjdfi= I' \ {-jdn= fyXj
dfi.

Indeed, f\Wdp = £ AeA/i A«A^{A} =

^A€A>j A'-J /z{A}, since A = A" 1
for A G U.

Further, since n{X} = fi{X} we have

£ y-^{\}= £ v-v{A} = /vAi^.
AGAM A6AM

Let q = a + . . . + an_i A
n_1 G Pn - We have

< Q,Q >= ^2 ai aj / A'A-'rf/x = /
| q |

2
dfj, > 0.

m=o J J

Further, / | q |

2
d\i — if and only if q(\) =

for any A G AM . Since degg < n = car^A^),

this is possible only if q = 0. Consider the

polynomial £(A) = Ut€A„( X ~ = bo + • • • +
6n_iA

n_1 + An . Since all roots of £ lie on

the unit circle we clearly have An£(l/A) =

6o£(A),6o = il- Further, all coefficients of

£ are real because A^ = A^. Consider the

linear operator : Pn —» Pn defined as fol-

lows: OA' = A,+1 ,i = 0,---,n- 2, OA"" 1 =
— bo — b\X — .

.

. —

6

n_iA
n_1

. We now prove that

is orthogonal relative to the scalar product

<, > . We should prove that

<OA\AJ >=<Xi

i O~
1Xj >

for any i,j = 0,---,n - 1. The only non-

trivial case is i = n — l,j = 0. We have

< OAn-\l >= -b - 6in - ...- frn-iTn-i,

where r, = fc A*d/z(A). Let
_1

1 = c + . . . +
Cn-iA"

-1
. Then < A^O^l >= c Tn_i +

Ci7"n_2+ . • .+cn_i. Thus, it is sufficient to prove

that c, = -6n_i_,, i = 0, • • • , n - 1. We clearly

have 1 = coOl + .-. + Cn^OA"" 1 = c A + ...+

cn_ 2 A
n- 1 +cn_ 1 (-6 -6iA-...-6n_iA

n- 1 )or

1 = -Cn-l&o, c - Cn-l&l = 0, C\ — Cn_i&2 =
0, • • • , cn_2 - cn_i&n_i = 0. This yields 61 =

-co/60, h = -C1/&0, •••, 6n_i = -c„_ 2 /6 .

We now use the relation An£(l/A) = 6 £(A). It

follows that 6n _, = 6 6,, i = 0,---,n. Thus

bn-i/bo = -c,_ 1 /6 , i = 1, ••*,!». These

are exactly the required conditions. Thus

we have constructed an orthogonal operator

O such that fc A'd/x =< 1,0'1 >, i =

0,---,n - 1. Observe that the characteristic



polynomial of O coincides with £. Thus the

spectrum of is A^. In particular, detO =

1 (here we use the assumption that —1 £
A^). Let po = l, --, ,Pn-i be an orthonor-

mal basis in Pn obtained by the orthonor-

malization of the basis 1, A,- • •, An_1 . It is

clear that the matrix O of the operator O
is upper Hessenberg in this basis. Moreover,

the entries 6;+ i it
are all nonzero (otherwise,

span(po, • • -,pi_i) = span(l,- • •, A1-1 ) is an

invariant subspace of O which is not true).

Without loss of generality one can suppose

that o.+i,, > for all i. Otherwise one can

take diag((i ,
• • • , t^Odiag^ ,

• • • , en ).

Suppose we are given a positive definite

Toeplitz matrix T(t) and an orthogonal ma-

trix O £ OH+ such that r, =< ei,0'ei >,i:

=

0, • • -,n — 1. Then

T(t) = VT V, (2.3)

where V is the upper triangular matrix

[ci,Oci, • •• ,On-1 ei] with positive entries on

the main diagonal. But (2.3) is the Cholesky

decomposition of T(t). Hence it is uniquely

defined by T(t). In other words, the vectors

Oe\, • • • ,O n~ 1
e\ are uniquely defined by T(r).

Since these vectors form a basis, the vectors

Oci, • • -,Oen_i are uniquely defined by our

Toeplitz matrix. Thus by Lemma 2.4 the ma-

trix is uniquely defined by T(t). Given a

positive definite Toeplitz matrix T(t) we can

endow Pn with a scalar product <,> and the

shift operator defined on span(l, A, •• • , An-2
)

as we did before. Then using Lemma 2.4 we

can extend this operator to the orthogonal op-

erator 0, defined on Pn such that detO = 1.

Then the matrix of O in the basis obtained by

orthonormalization of the basis l,A,---,An_1

belongs to OH+ and r, =< ei,O l

ei >,z =

0, •••,»»— 1. Consider now the rational func-

tion

f(z) =< l,(zl- 0)- l l>.

As is easily seen

/(*) = £

where all T{ > 0. We then can define the mea-

sure /x 6 M by the conditions /x{A,} = r, and

equal to zero otherwise. We immediately see

that equations (2.1) are satisfied. It remains to

prove that the measure fi is defined uniquely

by conditions (2.1). Let /xjt € M,k = 1,2 be

such that

/ AM//]
Jc

= I A'<f/z 2 ,

Jc

i = 0,---,n - 1. Then we can construct

Ok,k = 1,2 such that conditions (2.1) are

satisfied. But then 0\ = 02- In particular,

A^i = A^
2 , i.e., p,\ = p.2 because we have

for /x{A} the following system of Vandermonde

equations:

A6AM

i- 0, •••,!»- 1.

Let T(t) be a positive definite nxn Toeplitz

matrix and <,> be the corresponding scalar

product on Pn . Let

Fj(A) = 6,-A' + . .
. , 4 >0,* = 0,---,n-l,

be the basis obtained by the orthonormaliza-

tion procedure from the basis 1, A, •• • , An_1 .

Since pi

is orthogonal to span(l, A, •• •, A'
-1

), we have:

Ap,(A) is orthogonal to span(A, • • •, A'). Fur-

ther, r = \p t (\)/6i -p,+1 /£t+1 e Pi+1 . Let

V?i € Pi+i be such that < q, pi >= q(0) for

any q G P,+i. Since p, is orthogonal to Pt
and

both t and <f{ are orthogonal to AP,, we obtain

Xp
t
(X)/S

t
= pl+1 (A)/<5,+1 + 7t Y>„ (2.4)

for some real 7,, i = 0, • • • , n - 2. An easy cal-

culation shows that <p{ = £t A*p,(l/A). Hence

2t4
1 = St/6{+1 + 7?« (2.5)

<=?*-*«'

In other words, if we know 70, ••-,7n-2 5
we

can find Si ,
• • • , 6n-i • Then using (2.4), one can

determine pi, • • -,pn-i and consequently using



again (2.4) the corresponding upper Hessen-

berg orthogonal matrix 0. We have by (2.4)

< Apt
(A),p,(A) >= 7Ap,(0),t = 0,--,n-2.

Evaluating (2.4) at 0, we obtain pt+i(0) =

-7,£?£,+i, * = 0, ••,n- 2. Thus o,+i,t+i =<
Ap,A,pt

(A) >= -7t7t-i*?_i^? > * = l,--,n-2.

Further, o^i = -7oPo(°) = -70. Let us set

<7t = o,+i, t = Si-i/h, Vi = 7,_ 1 £?_ 1 ,

i = 1, • -,n — 1. We obviously have

i = l,---,n- 1, f = 1. Further, on>n =

±\/l -
<?n-i- The sign is defined by the condi-

tion detO = 1. The quantities i/,-, a, are called

Schur parameters and auxiliary Schur param-

eters, respectively. As we saw above the Schur

parameters i/,-, i = 1, • ••
, n — 1, determine

uniquely.

On the other hand, if we know the entries

°i+i,i — ^7^»+i) t = 1 • •• ,n — 1 of the matrix

we can determine 7, by (2.5) up to a sign. In

other words, the entries o;+i )t
- (auxiliary Schur

parameters) determine almost uniquely.

3 Explicit formulas for the

evolution of auxiliary Schur

parameters under the Toda
flow

Let 0(t) =|| Oij(t)
||
be the solution to the

Toda flow

d = [o,*o),

such that O(0) is upper Hessenberg orthogonal

and irreducible. Here itO = O- - OZ and 0-
is strictly lower triangular part of 0. Then

0{i) possesses the same properties and O(t)

converges when t — 00 to a block diagonal

matrix. Each two by two block corresponds to

a pair of complex conjugate eigenvalues. The

blocks are arranged in the decreasing order of

real parts of eigenvalues [7, 5]. From the pre-

vious discussion we know that O(t) is almost

uniquely defined by its auxiliary Schur param-

eters <Ti(t) = Oi+i
t
i{i). We now describe ex-

plicitly how these parameters evolve under the

Toda flow.

Theorem 3.1

at(t) ~
A~(7)

a
' (0) '

t = 1, •••,!»- 1, A = 1. Here A,(J) is

the i—th principal minor of the matrix T(t) =

exp((O(0) + O(0)T)0.

Proof: We
know [7] that 0{t) = R(t)Q(Q)R(t)~l

, where

exp(O(0)0 = Q(t)R{t), Q(t) is orthogonal,

and R(t) is an upper triangular matrix with

positive entries on the main diagonal. We then

clearly have

ffi(t) =
r<

?^(*W (3.1)
rt,«v)

i = l,---,n- 1. Here R(t) =\\ r
tf (*) ||. The

operator A/ R(t) naturally acts on the i— th

exterior power A,' Rn by the following rule:

A* R{t){vi A . . . A Vi) = R(t)vi A . . . R(t)vi for

any v\, • • •, u, 6 Rn
- We have, further, the fol-

lowing relations:

r
2

u (t)=< R{t)eu R(t) ei > =

< exp(O(0)t)eu exp(O(0)t)ei > =

<eu T(t) ei >=Ai(t).

And more generally

r
2
n (t)...rUt) =

i

< e x A . . . A e„/\ Y{t){e x A ... A e,) >= A,(f.),

(3.2)

i = 1 , • • • , n. By (3.2) we easily obtain

r,-+i,,-+i(Q _ y
/
A,-+i(t)A,--i(Q

»m(<) A,-(<)

The result now follows by (3.1).



We have the following differential equations for References

<7, = CT,(o,+ lit+ i
- 0, it ),

i = l,--,n — 1. Recalling that o,,, = —vx
-\V{,

i = l,---,n, un = ±1, and v} + a} = 1, we

obtain V{V
X + b{Oi = or

<T, = OiUiil/i-i -i/j+i),

i = 1, • • • , n — 1. It is interesting to find how

moments r,-(<) =< ei,0(*)'ei > evolve under

the Toda flow. Consider the family of rational

functions

ft
(z)=<e 1 ,[zE-0(t)]-'e 1 >.

We clearly have

On the other hand,

ft(z) =< Q(t)eu [zE - 0(0)1-^(061 >=

< exp(O{0)t)eu [zE - O(Q)]- 1 fxp(O(0)Qe 1 >

< ezp(O(Q)t)ei,exp(O{0)t)ei >

^ hj{t)

t=0

Here

bi{t) =< exp(O(0)0ei,O(0) ,exp(O(0)0ei > .

Thus Ti(t) = T.i(t) = hi{t)/h (t),i > 0. We
clearly have

hi(t) = hi+1 (t) + fet_i(t).

Thus,

*i = T.+l + Tt-1 -2T.T!,

• = 0,1— .
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