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ABSTRACT

M-Layer, the tropospheric propagation effect prediction program by NRaD (formerly

NOSC), is revised for greater accuracy, speed and stability. This is achieved through

converting the extended complex number representation into the representation by the

complex exponent, improving the accuracy in Airy function computation, introducing a

new mode locating algorithm and implementing a consistency checking procedure for

determining the proper method to evaluate the height gain function. The revision has

been documented and the new program source code has been delivered to NRaD. It is

recommended that the mode search protocol, not just the mode locating algorithm

introduced in this revision, be completely revised Unlike the current approach of

blanketing the whole possible region until exhaustion, modes should be searched

according to their range attenuation rates one by one along a well defined path. This

should result in a faster and even more stable program. The program size can also be

reduced.
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I. INTRODUCTION

M-Layer is a FORTRAN program for computing the propagation factor of an

electromagnetic (EM) wave in a stratified atmosphere. It is desirable to extend the

capability of this program to include a layer of random medium representing the air-

ocean interface where the thickness of this layer cannot be ignored, where the EM

propagation and scattering are so strongly coupled that clutter and propagation

effects within this layer cannot be dealt with separately, and where the grazing angle

of the EM wave incident into this layer is so small that the curvature of the earth

cannot be neglected. To achieve this goal, there are many basic theoretical problems

which have to be answered. First of all, the effect of the earth curvature in this

program is taken care of through the classical earth-flattening approximation [Ref.

l],but the result [Ref. 2] does not agree with the more recent diffraction theory of

Fock [Ref. 3] near the surface of the earth. Then there is the question about the

better method to model the atmospheric refractive index profile, either piecewise

linear or quadratic, to be resolved by a new earth-flattening approximation under

development at NPS. The new approximation will also determine the functions to be

used for the representation of the EM fields in each layer through uniform

asymptotic theories. Within some proper region, these new functions are expected to

reduce to the Airy functions utilized by M-Layer. The evolutionary nature of this

effort prompted this review to improve the inner workings of the M-Layer program.



In particular, the subroutines to search for the modes and those for evaluating the

Airy functions will remain as an important part of a program investigating questions

about EM wave propagation by solving the related boundary value problem.

It can never be overemphasized that a boundary value problem which includes

a layer of random medium or some range dependent inhomogeneity, set up according

to the Maxwell equations, will include backscattering in its solution. This is in sharp

contrast to those numerical procedures based on the parabolic approximation to the

wave equation for which the backscattering is completely ignored.

In what follows, the M-Layer program and the reasons for replacing the

extended complex numbers with their complex exponent representations are

discussed, together with some other problems encountered and resolved during this

investigation.

A. M-LAYER

In M-Layer, the index of refraction of the atmosphere is assumed to be height

dependent and is approximated with a continuous piecewise linear profile. The

classical earth-flattening approximation is utilized to allow the use of the cylindrical

coordinate system while retaining the effect of the curvature of the earth. This is

done simply by substituting the index of refraction with the modified index of

refraction, which also has a piecewise linear profile [Ref. 1].

The source of the EM radiation is assumed to be either a vertical electric

dipole or a vertical "magnetic dipole', with the latter providing an approximation to



the radiation of a horizontal electric dipole. The dipole is located along the positive

z-axis of the cylindrical coordinate system while the origin is sitting on the ground.

The x-y plane is the "flattened" earth surface. After carrying out the Hankel

transform along the radial direction, the resulting spectrum of the Hertzian dipole

field within each layer of a linear segment of the modified refractive index profile is

reduced to a linear combination of the Airy functions. Specifically, the layers are

numbered to increase with height, with the first layer being the one right above the

ground. The spectrum of the Hertzian dipole field is proportional to the product of

the values, at the transmitter height and at the receiver height respectively, of the

height-gain function. At a height within the i-th layer, the height-gain function is

given by [Ref. 4]:

f/Lp&BtpMUpykjfqj+kJiqfl ,
(1)

where p is the radial component of the propagation vector and is also the spectral

variable of the Hankel transform; hence it is the same throughout all layers. It is a

complex variable whose imaginary part represents the radial attenuation rate of the

spectral component of the Hertzian dipole field. Under the classical earth-flattening

approximation, the spectrum of the Hertzian dipole field contains a discrete portion

and a branch cut. The discrete spectrum gives rise to the creeping wave modes

diffracted by the earth surface and the dielectric waveguide modes supported by the

layered atmosphere. The contribution from the branch cut is usually negligible,

especially for the field in the shadow of the earth. The M-Layer program locates the



discrete spectrum for modes having a radial attenuation rate below a predetermined

value. Contributions from these modes determine the propagation factor of the wave.

The variable qt
in the i-th layer is a dimensionless linear function of height z

with the free space wavenumber k, the modified index of refraction m
i
at the lower

boundary z = z,-, the slope of the modified index of refraction a/2 and p as

parameters:

3

K J
a.

The height dependence of the field is given in terms of the functions ki(qt
) and

k2{ql
), which are proportional to the Airy functions Ai(—q

i
e,

~ 1[

) and Ai(-q^)

respectively. Of these two functions, at a height so large that qi
is large and positive,

&i(<7,-)
represents a downward going wave and e^

4ir
k

] (qj
)+k2(qi

) represents an

upward going wave. The coefficients A
i
and B

t
are determined by the conditions on

the continuity of the Hertzian dipole field and its derivative across layer boundaries

and by the normalization condition that the integral of the square of the height-gain

function over all height equals unity.

To fulfill the radiation condition, the highest layer is given the same refractive

index as the free space above it and only the outgoing wave is allowed within this

layer. Below the "flattened" earth surface, the field is assumed to be a plane wave

propagating downward. Hence only the normalization factors are required in the

highest layer and in the ground. By assigning B
{
to unity in the highest layer, all the



coefficients A
x
and B

t
can be determined, according to the boundary conditions, to

within a multiplicative factor for B
(

. This multiplicative factor is then deduced from

the normalization condition. This procedure can also be carried out from the ground

level up. That these coefficients can be computed either from the highest level down

or from the lowest level up is a result of the fact that p belongs to the discrete

spectrum of the Hertzian dipole field. Consequently, agreement between these two

ways of evaluating the A
(
and B

t
coefficients confirms that a mode has been located

accurately.

B. EXTENDED COMPLEX NUMBER REPRESENTATION

The discrete spectrum of the Hertzian dipole field corresponds to the zeroes

of the modal function which is a determinant whose elements consist of k^q^) and

k2 ((]i)
at the layer boundaries. Numerically, the magnitude of this modal function

causes overflow and underflow problems as k^q^ or k1 {q l
) becomes exponentially

large or small for complex g. values. In the M-Layer program, to overcome this

problem, a complex number is written as a scaled number, which is complex,

multiplied by a scaling factor which is an integer power of e, the base of natural

logarithm. This integer is chosen so that the greater of the absolute values of the real

part and the imaginary part of the scaled number lies within e± .A complex number

written in this form is called an extended complex number. Multiplication of two

extended complex numbers requires summing the two integer exponents in addition

to carrying out the regular complex multiplication of the scaled numbers. Addition



of two such numbers is achieved through the use of an addition subroutine: the larger

scaling factor is factored out of both addends before they are combined. The scaling

factor is adjusted after each addition and after a sequence of multiplications to make

sure that the resulting scaled number is still within the desired range. Addition is

troublesome when the two numbers to be added nearly cancel each other. Under this

circumstance, the scaling factors of the two numbers are identical and both the real

parts and the imaginary parts of the scaled numbers are almost equal with opposite

signs. It is clear that the real part and the imaginary part of the sum lose their

accuracies to different degrees; hence the phase angle may incur substantial error.

To remedy this situation, interpolation procedures have to be devised.

As two complex numbers come close to cancel each other, they must be out of

phase by almost 180 degrees. By factoring out the square root of their product

instead of the scale factor, the resulting addends become reciprocal to each other,

both lying within an identical small angle to, and on the same side of, the imaginary

axis. They are close to the unit circle, but one is on the inside and the other is on the

outside. Taking out further a phase factor of x/2 after writing the addends in their

exponential forms, the exponents become small numbers for which Taylor series

expansion of the exponential function converges rapidly and can be used for

interpolating the sum to achieve higher accuracy. Note that after the extra phase

factor of 7i72 is removed from the addends, it is actually the difference of the

resulting two reciprocals which is computed. This procedure effectively picks the

direction on the complex plane along which the addends are almost opposing each



other to carry out their cancellation. The resulting sum has a phase angle nearly

perpendicular to this chosen direction.

It is evident that the representation of a complex number by its complex

exponent of base e provides better phase accuracy for addition. A one-to-one

correspondence can be achieved by restricting the imaginary part of this exponent to

within -x and t. This will be called the exponential representation or the complex

exponent representation henceforth. It is convenient for multiplication: adding the

complex exponents of the two factors will suffice. Conversion of the M-Layer

program from the extended complex number to the complex exponent representation

has been carried out.

C. CONSISTENCY CHECKING

As better precision is achieved, problems with the mode search procedure and

the evaluation of the A
i
and B

t
coefficients become severe. They are thoroughly

investigated and resolved. For mode search, although the division of the region of

interest into "contour rectangles" and further into square "meshes" and the search

pattern to move around the sides of a "contour rectangle" to find and follow "phase

lines" into it are kept, the basic assumption of Shellman and Morfitt [Ref. 5] that

both the real and the imaginary parts of the modal function are linear along every

edge of a mesh square is completely abandoned. For the evaluation of the A
(
and B

t

coefficients, the "test for evanescence" conditions have been removed. A consistency

condition to determine whether to evaluate the coefficients from the ground level up



or from the top level down has been fomulated and incorporated into the program.

This accomplishment leads to the relaxation of mode locating accuracy requirement

which, combined with the improved precision of the revised program, makes the first

order Newton-Raphson iteration unnecessary. The specific changes in the program

and the resulting gains in speed, accuracy and execution stability are discussed in the

following chapters. Recommendation to completely revise the mode search protocol

to do without the "contour rectangles" is also provided.



II. PROGRAM REVISIONS

M-Layer is structured into three parts: setup, mode search and propagation

factor evaluation. The main input is the modified refractive index values at specified

heights so that a piecewise linear profile can be constructed. If the mode locations

for the particular profile are available from a previous run of the program, they can

also be included in the input and the mode search procedures will be bypassed. The

various ranges and transmitter and receiver heights for which propagation factors are

desired are also specified. The subroutine WVGSTDIN is called to input the

information from an ASCII data file. The program then computes the constants to

be used for mode search and propagation factor evaluation. The mode search is

performed with the subroutine FNDMOD. The MODSUM subroutine is then

invoked to first compute the A
t
and B

t
coefficients as explained in the Introduction,

then compute the propagation factor and the propagation loss. The complete

program structure is given in Figures 1 and 2. There are several other subroutines

which are not included in these and other figures, such as DHORIZ for computing

the horizon distance between a transmitter and a receiver for reference purpose;

CHKMOD, a maintenance routine for removing zero from reported mode locations

by older versions of the program; or A02H20, a routine to compute the atmospheric

absorption coefficient due to oxygen and water vapor. They will not be discussed as
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they do not contribute directly to the main purpose of this program of locating the

modes and computing the propagation factor.

The program structure has been altered as shown in Figures 3 and 4. Since the

A
i
and B

i
coefficients have to be evaluated only once, they are now obtained through

a call to the subroutine ABCOEF directly from the main program right after the

modes are located. Several subroutines are dropped in this revision for various

reasons: The subroutines NORME and NORMRE are eliminated because they are

no longer needed due to the change in complex number representation; The

subroutines NOMSHX, FDFDTX and DXDETR are not used because the modes

are now located with adequate precision without further iteration; The subroutine

ADDX is not listed separately because it is called only once and has been reduced

to only a few lines which are placed where the subroutine is called in the original

program. On the other hand, changes in the mode search algorithm require the

addition of two new subroutines: SURFO is a modified and simpler version of SURF;

ROOTS replaces QUAD. Due to the change in complex number representation, all

subroutines listed below FNDMOD and MODSUM have been revised, including

their input/output lists. But except for SURFO and ROOTS, the utilities of these

subroutines are the same as those of the original ones. Descriptions of these

subroutines can be found in the report by Yeoh [Ref. 4].

The most significant changes have been made in XCADD, XCDAIT and

XCDAIG for adopting the complex exponent representation and improving

computation speed and accuracy; in FZEROX, FINDFX, ROOTS and SURFO for

11
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stabilizing and simplifying the mode search algorithm; and in ABCOEF for

implementing the criteria to determine the reliable manner for evaluating the A
i
and

B
i
coefficients. These changes are discussed in the sections below. The source code

listings of the completely new subroutines XCADD and ROOTS and the significantly

revised subroutines FZEROX and ABCOEF, which are compiled with Microsoft

FORTRAN version 5. 00, are attached as Appendices A through D. Validation of the

revised program has been carried out at 9.6 GHz for all the 21 profiles listed in

Yeoh [Ref. 4].

A. ADDITION SUBROUTINE

XCADD is the subroutine implementing the addition of complex numbers

under the representation by their exponents. Given the double precision complex

numbers z
x
and z2 as the exponents of the addends, this subroutine returns the

exponent of the sum. Since a double precision number has an accuracy of 53 bits, if

the real parts of Zj and z
2
differ by more than 53 bits, the exponent of their sum will

simply be the one of the greater real part. When cancellation becomes serious, the

square root of the addends is factored out first. Then the four-term Taylor series

expansions of the resulting reciprocals are summed up. Since the leading term of the

sum of the Taylor series is a good estimate of the sum of the reciprocals and the

relative error of the four-term Taylor series sum is proportional to the fourth order

of this leading term, the threshold for invoking this interpolation procedure is set at

the highest possible value of 2
-14

allowed under double precision. Experimenting

13



with this procedure shows that this interpolation improves accuracy as long as the

threshold is set at a number between 2
-24

and 2
-14

.

B. AIRY FUNCTION EVALUATION

Similar to the original program, the evaluation of the Airy function adopted the

algorithm prescribed by Schulten, et. al. [Ref. 6]. In the new program, changes are

made to follow the advice of Schulten, et. al. concerning the region within which

Taylor series expansion, instead of the faster Gaussian quadrature, has to be used to

achieve double precision accuracy. Other changes in implementing the algorithm are

described below.

1. XCDAIT

Due to the similarity in their Taylor series coefficients, the Airy function

and its derivative are evaluated within a single loop. The relative accuracy of the

derivative of the Airy function is set at the double precision limit of 2
-54

.

2. XCDAIG

Six term Gaussion quadrature is used for evaluating the Airy function and

its derivative outside the circle of radius 4.97 centered at (0.90, 2.80) on the complex

plane. The use of four-term quadrature outside a radius of 15 from the origin

suggested by Schulten, et. al. is not adopted. The six-term quadrature in this range

retains a higher accuracy while overall speed improvement by using both the four-

term and the six-term quadrature appears to be minimal.

14



C. MODE LOCATING

As explained in the Introduction, the modes are located at the zeroes of the

modal function. These zeroes are located on the upper complex qn plane. Here qn

is the value of qj on the earth surface, which, according to Eq.(2) of Chapter 1, is a

linear function of p . For a horizontally propagating mode, p/k is close to unity. The

maximum range attenuation rate specified for the desired modes, which corresponds

to a limit on the imaginary part of p, determines approximately the upper bound for

the imaginary part of the qn complex plane to be searched for modes. The Shellman

and Morffit mode search procedure first divides the search region horizontally into

"contour rectangles" each of which spans 160 meshes along the real qn direction. A

mesh is a square whose size is an adjustable parameter of the order 10
_4

at 9.6 GHz

for most of the cases considered herein. This parameter is determined by the

frequency and the slope of the modified index of reflection in the lowest layer of the

profile. The search commences at the top left corner of the "contour rectangle" whose

left edge has a real coordinate value close to the difference of the real parts of the

qn values with the minimum modified index of refraction and the index near the

surface substituted into Eq.(2) of Chapter 1. After the search over the initial

rectangle is completed, the program moves to search the next rectangle until a

specified maximum number of modes are found or a specified number of "contour

rectangles" have been searched.

The search for zeroes makes use of the fact that a real function changes sign

when it crosses a simple zero. Since a zero of a complex valued function F(q) is

15



where both its real part and imaginary part vanish, a necessary condition for a point

qm to be a zero is that it is on the intersection of two curves defined by Im{F(q)}=0

and Re{F(q)}=0. The program searches around a "contour rectangle" for a sign

change in Im{F(q)} across an edge of a mesh bordering the side of the "contour

rectangle" to determine that a line of Im{F(q)}=0 has been encountered. The search

then follows this line into the meshes within the "contour rectangle', checking each

mesh to see if a curve Re{F(q)}=0 enters the mesh under investigation. All these

steps make use only of the assumption that the zeroes of the modal function are

simple. Once both the curve Im{F(q)}=0 and the curve Re{F(q)}=0 are determined

to be present within a mesh, the location of their possible interception is estimated.

An algorithm for this estimate is required.

Shellman and Morffit [Ref. 5] introduced a further assumption that the

functions Re{F(q)} and Im{F(q)} are both linear along the edges of a mesh. Based

on this assumption, they try to estimate the locations where the curve Im{F(q)}=0

enters and leaves a mesh square and the location of qm if a curve Re{F(q)}=0 also

enters the same mesh. It is obvious that information about the locations where the

curves enter and leave the mesh square is not essential. Furthermore, in the 18 m

duct height case, the scheme causes the search path to loop around four contiguous

meshes until the search is broken up by the limit on the number of meshes to be

investigated. Replacing their technique requires major changes in the subroutines

involved. A new subroutine ROOTS is provided to estimate the location of the

16



intersection of the curves Im{F(q)}=0 and Re{F(q)}=0. These changes eliminate

the looping problem.

Another problem is encountered in the 40 m duct height case when a large

number of zeroes are found in the lower half complex qn plane. These zeroes

appear to belong to the reflection coefficient on the wrong sheet of the branch cut

and are not waveguide modes. This happens because the search region has been

extended below the real qn axis to avoid the singularity in SURF. The problem with

this singularity should have been solved within SURF, especially because it occurs

only when the derivative of the subroutine output variable gamma with respect to qn

is computed. Since this derivative is not needed during mode search, the extension

of the search region to the negative qn plane is unnecessary. A simplified routine,

SURFO, is introduced which is exactly the same as SURF except that it does not

evaluate the derivative of gamma. By using this subroutine instead of SURF, the

search path in the revised program does not avoid the real and the imaginary axes.

1. FNDMOD

The search region is limited to the upper half qn plane. All the modes

found are ordered according to their range attenuation rates before those numbered

beyond the maximum modes allowed are abandoned.

2. FZEROX

Since the curve Im{F(q)}=0 enters into a mesh square through an edge,

the values of Im{F(q)} must change sign over the end points of either one or all

17



three other edges. When there is only one other edge across which Im{F(q)} changes

sign at its end points, it is the edge across which the curve Im{F(q)}=0 exits the

mesh square. Ambiguity arises when all edges indicate a change of sign at their end

points. When this occurs, a "right turn rule" is adopted which assumes that the curve

exits the edge to the right of the one along which it enters the mesh square. Such a

rule avoids the retracing of the search path when the mesh square is revisited as

entering this same mesh square from the left side of an edge after exiting from its

right side requires a crossing of the Im{F(q)}=0 curve, which is prohibited under the

simple zero assumption. On the other hand, the actual curve may have turned left

and then returns to this mesh square, i.e., foliowing a "left turn rule." Under such a

scenario, this wrong choice would have left a segment of the curve not searched. This

difficulty has not been observed during testing. In fact the ambiguous situation

seldom occurs. Note also that, as remarked above, two lines of Im{F(q)}=0 do not

cross each other unless a higher order zero is present. Hence only a right turn rule

or a left turn rule for the curve to exit the mesh is allowed. Exiting the opposite edge

demands a pair of crossing Im{F(q)}=0 curves within the mesh square. This violates

the assumption that all zeroes are simple. Also note that, the possibility of vanishing

Re{F(q)} or Im{F(q)} values at the corners of a mesh square is eliminated through

a small adjustment in FINDFX.

3. FINDFX

Both the vertical shift away from the real qu axis and the horizontal

offset away from the imaginary axis are unnecessary and have been removed from

18



this routine. Furthermore, as a result of converting to the complex exponent

representation, the sine and cosine of the argument of the modal function are

examined for sign changes in FZEROX. This is implemented in FINDFX by

including the cosine and sine values of the argument of the modal function in the

output list. To avoid the indeterminate case when either the real or the imaginary

part of the modal function becomes zero at any corner of a mesh square, the

argument for computing the cosine and sine values is increased by 2
-53 when this

occurs. This is equivalent to a consistent small distortion of the particular corner of

the mesh square. This will not cause any error in locating the zero because FINDFX

still returns separately the unmodified exponent of the value of the modal function.

4. ROOTS

Assuming that the modal function is analytic within the mesh, this

subroutine utilizes the values of the modal function at the four corners of the mesh

square to determine the Taylor series expansion coefficients of the modal function

to the third order. The roots of this cubic polynomial are then located using Cardan's

solution by radicals. If the higher order coefficients fall below machine resolution for

a root within the mesh square, these coefficients are regarded as zero and the order

of the polynomial is reduced and can be solved more expediently. If the function is

determined to be constant over the mesh square, the center of the square is taken

as the root location.
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D. EVALUATING^, AND B
i

As discussed in the Introduction, the A
t
and B

(
coefficients can be evaluated

either from the top level down or from the lowest level up. These two procedures are

simply called "integration down" and "integration up" respectively in the original

documentation [Ref. 4]. The location of a mode has been called an eigenvalue. That

the results of integration down and integration up agree is a manifestation that the

eigenvalue is located accurately.

The subroutine ABCOEF evaluates the coefficients A
{
and B

i
for each mode.

If the range attenuation rate for a mode is greater than 0.1 dB/km, the coefficients

are evaluated from the lowest layer up. Otherwise, it is evaluated from the top layer

down. It is obvious that such a rule must be implemented because the results of

integration up and integration down do not agree for many modes. Efforts are made

to determine the cause of this discrepancy and to devise a means to resolve it.

Investigation reveals that inadequate precision in the location of the modes is

one source of the problem. Since the B
i
coefficients depend on the A

i
coefficients

while the A
(
coefficients are obtained directly, only the A

t
coefficients need to be

examined. The A
t
coefficients of the six modes of lowest range attenuation rates for

all 21 profiles except the one without evaporation duct are computed using

eigenvalues of different accuracy controlled by the first order Newton-Raphson

iteration method. Table 1 shows the A
t
coefficient computed with the new program.

They are arranged from the top layer down. In the i-th layer, the A
(
coefficient

computed by integration downward depends only on A
i + J

in the layer above while
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TABLE 1. IMPROVING A
(
ACCURACYWITH EIGENVALUE (18 M DUCT)

mode 4 q- eigenvalue:
eigenvalue difference:

.1 888574325 176803D+00
.00D+00 .OOD+00 -.49D-13 -

.1080678744810598D-
.66D-15 .12D-11 -

01

.12D-10 .15D-06 . 600-07

layer
layer

# A i /down
# Ai/up

A i /down
Ai/up

Ai

Ai

/down
/up

A i /down
A i /up

A

A

i/down
i/up

18

18

.0261

.0261

.6719

.6719
.0261

.0261

.6719

.6719
.0261

.0261
.6719
.6719

.0261

.0261
.6719
.6719

.0261

.0261

.6719

.6719

17

17

-.0625
-.0625

.6368

.6368

-.0625
-.0625

.6368

.6368

-.0625
-.0625

.6368

.6368
-.0625
-.0625

.6368

.6368

-.0625
-.0625

.6368

.6368

16

16

.0139

.0139
.7440
.7440

.0139

.0139
.7440
.7440

.0139

.0139
.7440
.7440

.0139

.0139
.7440
.7440

.0139

.0139
.7440
.7440

15

15

.1216

.1216
.6353
.6353

.1216

.1216
.6353
.6353

.1216

.1216
.6353
.6353

.1216

.1216
.6353
.6353

.1216

.1216
.6353
.6353

14

14

.0166

.0166
.5471

.5471

.0166

.0166
.5471

.5471

.0166

.0166
.5471

.5471

.0166

.0166
.5471

.5471

.0166

.0166
.5471
.5471

13

13

-.1565
-.1565

.5310

.5310

-.1565
-.1565

.5310

.5310

-.1565
-.1565

.5310

.5310

-.1565
-.1565

.5310

.5310

-.1565
-.1565

.5310

.5310

12

12

-.3842
-.3842

.5659

.5659
-.3842
-.3842

.5659

.5659

-.3842
-.3842

.5659

.5659
-.3842
-.3842

.5659

.5659
-.3843
-.3842

.5659

.5659

11

11

-2.2002 -

-2.2002 -

.8081

.8081

-2.2002
-2.2002

-.8081
-.8081

-2.2002
-2.2002

-.8081
-.8081

-2.2002
-2.2002

-.8081
-.8081

-2.1909
-2.2002

-.8068
-.8081

10

10

-5.4648
-5.4648

.2423

.2423

-5.4648
-5.4648

.2423

.2423

-5.4648
-5.4648

.2423

.2423
-5.4654
-5.4648

.2423

.2423
-4.1810
-5.4647

-.2161

.2423

9

9

-3.6974 -

-3.6978 -

.6979

.6978

-3.6974
-3.6978

-.6979
-.6978

-3.6974
-3.6978

-.6980
-.6978

-3.6783
-3.6978

-.7012
-.6978

-6.4611
-3.6977

-.2121

-.6978

8

8

.3459 -

.3459 -

.7982

.7983
.3459
.3459

-.7982
- . 7983

.3460

.3459
-.7982
-.7983

.3482

.3459
-.7926
-.7983

-1.9078
.3459

-.9148
-.7983

7

7

.4098

.4097
.8794
.8793

.4098

.4097
.8794

.8793
.4098
.4097

.8794

.8793
.4136
.4097

.8836

.8793

-1.0899
.4097

.5364

.8793

6

6

.3480

.3479
.8161

.8160
.3480
.3479

.8161

.8160
.3480
.3479

.8161

.8160
.3526
.3479

.8205

.8160
-.5879
.3479

.4005

.8160

5

5

.2923

.2922
.8304

.8303

.2923

.2922
.8304
.8303

.2923

.2922

.8304

.8303
.2972
.2922

.8358

.8303

-.3490
.2922

.3749

.8303

4 .2359
.2358

.8619

.8618
.2359
.2358

.8619

.8618
.2360
.2358

.8619

.8618
.2408
.2358

.8690

.8618
-.2058
.2358

.3731

.8618

3

3

.1831

.1831

.8910

.8908
.1831

.1831

.8910

.8908
.1832

.1831

.8910

.8908
.1878
.1831

.9003

.8908

-.1250

.1831

.3753

.8908

2

2

.1300

.1300
.9149
.9146

.1300

.1300
.9149
.9146

.1301

.1300
.9149
.9146

.1342

.1300
.9275
.9146

-.0734

.1300
.3750
.9146

1

1

.0586

.0586
.9335
.9331

.0586

.0586
.9335

.9331

.0588

.0586
.9335

.9331

.0618

.0586
.9545

.9331

-.0318

.0586
.3670
.9331
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that computed by integration upward depends only on A
t_j

in the layer below. Hence

in each layer, the coefficient obtained by integration downward is listed above that

obtained by integration upward. There are five sets of A
t
values listed, with the

magnitudes given in powers of 10 and the phase given as a multiple of -k. They are

obtained from eigenvalues of decreasing accuracy, the one used to compute the left

most column being the most accurate. The first set is computed using an eigenvalue

having a relative accuracy of 2
-40

; The second set uses an eigenvalue with a relative

accuracy of 2
-36

; The relative accuracy of the eigenvalue for the third set is 2
-36

;

For the fourth set, the first order Newton-Raphson iteration of the mode location is

set at an absolute accuracy of 0.03 of the mesh size, same as that specified in the

original program; The eigenvalue for the right most set is the mode location

estimated by ROOTS without modification by the Newton-Raphson iteration. It is

clear that, for this mode, the difference between these two methods of computing the

coefficients becomes negligible as the accuracy in mode location increases. For

example, in the 8-th layer, the magnitude of A
i
computed by integrating downward

changes from -1.9078 to 0.3482 to 0.3460 to 0.3459, which agrees with the result

computed by integrating upward. The phase follows the same trend to an agreement

within O.OOlx. Table 2 shows a similar set of output, but the coefficients fail to agree

even when the relative accuracy is increased to 2

~

40
. Note that the actual difference

in both the real part and the imaginary part of the two most accurate eigenvalues is

about 2
-48

. Double precision accuracy appears to be insufficient for the coefficients

computed with these two methods to agree for all modes. Some interesting features
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TABLE2. IMPROVING A
i
ACCURACYWITH EIGENVALUE (36 M DUCT)

mode 3 q-ei

eigenvalue diff
genvalue
jrence:

: .3148000164781392D+00
.38D-14 .360-14 .38D-14

.1479622940572007D-
.36D-14 -.160-09 -

02

.22D-09 -.53D-07 . 280-07

layer
layer

# Ai/do
n Ai/up

«n A i /down
Ai/up

Ai

Ai

/down
/up

Ai

Ai

/down
/up

A

A

i/down
i/up

27
27

-.0009
.2353

.6663

.7582

-.0009
.2353

.6663

.7582

-.0009
.2353

.6663

.7582
-.0009
.2353

.6663

.7582
-.0009
.2353

.6663

.7582

26

26

.0007
-.0111

.6678

.3659
.0007

-.0111
.6678

.3659
.0007

-.0111
.6678
.3659

.0007
-.0111

.6678

.3659
.0007

-.0111
.6678
.3659

25
25

.0022
-1.8851

.6657

.3913
.0022

-1.8851
.6657
.3913

.0022
-1.8851

.6657

.3913
.0022

-1.8851
.6657
.3913

.0022
-1.8852

.6657

.3913

24

24

.0001

-7.4914
.6809
.6081

.0001
-7.4914

.6809

.6081

.0001

-7.4914
.6809
.6081

.0001
-7.4914

.6809

.6081

.0001

-7.4914
.6809
.6081

23
23

-2.9495
-14.5340

.5951

.7973

-2.9495
-14.5340

.5951

.7973
-2.9495
-14.5340

.5951

.7973

-2.9495
-14.5340

.5951

.7973
-2.9495
-14.5340

.5951

.7973

22

22

-12.1956
-23.5827 -

.9278

.9407
-12.1956
-23.5827

.9278
-.9406

-12.1956
-23.5827

.9278
-.9406

-12.1956
-23.5827

.9278
-.9406

-12.1956
-23.5827

.9278
-.9406

21

21

-35.2395 -

-44.4517 -

.2502

.8199
-35.2395
-45.8691

-.2502
.8599

-35.2395
-45.8691

-.2502

.8599
-35.2395
-47.4590

-.2502
-.1252

-35.2396
-47.4594

-.2501
-.1251

20

20

131.3304 -

129.0146 -

.9570

.2961

-131.3304
-127.6070

-.9570

.0248

-131.3304
-127.6070

-.9570

.0248
-131.3304
-122.9124

-.9570
-.9081

-131.3307
-120.9305

-.9569
.8279

19

19

-25.6088 -

-25.6090 -

.9230

.9228
-25.6088
-25.6184

-.9230
-.9241

-25.6088
-25.6184

-.9230
-.9241

-25.6088
-22.5644

-.9230
-.8054

-25.6088
-20.2166

-.9230
.7391

18

18

-13.6970
-13.6970

.6510

.6510

-13.6970
-13.6970

.6510

.6510

-13.6970
-13.6970

.6510

.6510

-13.6970
-13.0618

.6510

.7675

-13.6970
-10.8148

.6510

.3440

17
17

-7.0384
-7.0384

.4145

.4145

-7.0384
-7.0384

.4145

.4145
-7.0384
-7.0384

.4145

.4145

-7.0384
-7.0308

.4145

.4179
-7.0384
-6.3129

.4145

.1800

16

16

-3.3146
-3.3146

.2991

.2991

-3.3146
-3.3146

.2991

.2991

-3.3146
-3.3146

.2991

.2991

-3.3146
-3.3146

.2991

.2991

-3.3146
-3.3116

.2991

.2970

15

15

-2.3132
-2.3132

.2632

.2632

-2.3132
-2.3132

.2632

.2632

-2.3132
-2.3132

.2632

.2632

-2.3132
-2.3132

.2632

.2632

-2.3132
-2.3127

.2632

.2629

14

14

-1.5669
-1.5669

.2415

.2415

-1.5669
-1.5669

.2415

.2415

-1.5669
-1.5669

.2415

.2415

-1.5669
-1.5669

.2415

.2415

-1.5669
-1.5668

.2415

.2415

13

13

-1.0838
-1.0838

.2352

.2352

-1.0838
-1.0838

.2352

.2352

-1.0838
-1.0838

.2352

.2352

-1.0838
-1.0838

.2352

.2352

-1.0838
-1.0838

.2352

.2352

12

12

-.6983
-.6983

.2432

.2432

-.6983
-.6983

.2432

.2432

-.6983
-.6983

.2432

.2432

-.6983
-.6983

.2432

.2432

-.6983
-.6983

.2432

.2432

11

11

-.3754
-.3754

.2712

.2712

-.3754
-.3754

.2712

.2712

-.3754
-.3754

.2712

.2712
-.3754
-.3754

.2712

.2712
-.3754
-.3754

.2712

.2712

10

10

-.0102
-.0102

.3619

.3619
-.0102
-.0102

.3619

.3619

-.0102
-.0102

.3619

.3619

-.0102
-.0102

.3619

.3619

-.0102
-.0102

.3619

.3619
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can be observed in both tables, which are present in all 120 sets of values computed.

When disagreement is present in one set of A
t
coefficients such as those in either

Table 1 or Table 2, the change toward smaller differences with improving eigenvalue

accuracy occurs mainly in one way of computation, but not both. For example, in

Table l,the values of integration downward improve with better eigenvalue accuracy,

while those computed by integrating upward change little. In Table 2, the results of

integration downward are the ones that are holding steady as the accuracy in

eigenvalue improves. Furthermore, when disagreement occurs, the layer in which the

A
i

coefficient has the smallest magnitude, i.e., the one having the most negative

power of 10, divides the table into two parts. The results of two different ways of

computation agree in the layers above this one if they disagree in those below it, and

vise versa. No explanation will be attempted. Instead, practical rules are drawn up

to take advantage of these facts. In Table 1 , the process of integration upward goes

through the troublesome 10-th layer and produces results which agree with the results

of downward integration before the downward process goes through the 10-th layer.

On the other hand, the downward integration is tripped up going across the 10-th

layer and produces results which fail to agree with the results from upward

integration. It is clear that the results from upward integration are the correct ones.

This conclusion is further supported by the fact that improving the accuracy of the

eigenvalue does not change significantly the results of upward integration. Similar

argument leads to the conclusion that in Table 2, the results of downward integration

are the correct values.
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It can be concluded from the above observations that one of the methods of

computing the A
i
coefficients converges to the correct value much faster then the

other. It is also found that this method of faster convergence is always able to arrive

at the correct values for A
i
for all the cases under investigation.

Table 3 lists the statistics of the method of integration which yields the correct

A
i
coefficients for each of the 120 modes investigated. The differences in magnitudes

and phases in the lowest layer and in the layer below the highest are also listed.

Since for most of the cases when disagreement in A
i
values occurs, the correct

integration is upward, this is used as the default. To decide that downward

integration should be utilized, the following steps are taken: The first A
t
value of

downward integration is computed and compared to the value from upward

integration. If the magnitudes in dB disagree by less than 0.02 dB, their phases will

be checked. If the phases differ by less than 10
—

3

7r, the agreement is deemed

acceptable and the A
{
and B

i
coefficients computed from the lowest layer up are

used. Otherwise, the coefficients are re-evaluated again from the highest layer down.

Once the correct method of evaluating the A
i
and B

i
coefficients is used, the

accuracy of the mode location becomes less critical. For all the cases investigated,

the A
i

coefficients obtained from mode locations estimated with or without the

Newton-Raphson first order iteration differ only by 0.06 dB in magnitude and

0.00137rin phase at most. In fact, few cases show differences more than 0.002 dB and

0.000 It. The Newton-Raphson iteration is not needed. Hence the subroutines

NOMSHX, FDFDTX and DXDETR are removed.
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TABLE 3. STATISTICS FOR EVALUATINGA, COEFFICIENT
i

Duct

height

Mode# Evaluating Method

A |4| (dB) bargain

i

i

Layer Layer

up down bottom top-1 bottom top-1

02

1 X

2 X

3 X

4 X 0.172 0.093

5 X

6 X 8362 13234

04

1 X

2 X

3 X 0.008 0.0002

4 X 1.030 1.8717

5 X 7.814 12948

6 X 0.002 0.0001

06

1 X

2 X 0.002 0.0004

3 X 0.522 0.0158

4 X

5 X 13278 0.4377

6 X 0.002 0.0001

08

1 X

2 X 0.002

3 X 0.002 0.0001 0.0001

4 X 0.016 0.0026

5 X 4.066 0.6355

6 x 3.978 0.6186
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TABLE 3. CONTINUED 1.

Duct

height

Mode # Evaluating Method

AW (dB) Aarg(A
t
)/ ti

Layer Layer

up down bottom top-l bottom top-l

10

1 X

2 X 0.0002

3 X 0.0001

4 X 0.04 0.0008

5 X 0.206 0.0402 0.0001

6 X 0.002 0.0001

12

1 X

2 X 0.006 0.0003

3 X 0.004

4 X 1.808 0.5661

5 X 1.732 0.5429

6 X 1.472 0.0414

14

1 X

2 X 0.002 0.0001

3 X 0.178 0.0052

4 X 0.024 0.0005

5 X 0.004 0.0001

6 X 0.85 0.4711

16

1 X

2 X 0.006 0.0002

3 X 0.004

4 X 0.006 0.0001

5 X 0.002 0.0001

fi * 0.004 0.0077
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TABLE 3. CONTINUED 2.

Duct

height

Mode # Evaluating Method

A |4| (dB) AargiAJ/iz

Layer Layer

up down bottom top-1 bottom top-1

18

1 X 0.008 0.0001

2 X 0.002 0.0001

3 X 0.0001

4 X

5 X 0.016 0.0003

6 X 0.002

20

1 X 0.078 0.0164

2 X

3 X 0.002 0.0001

4 X 0.0008

5 X 0.16 0.0195

6 X 0.002 0.0001

22

1 X 8.708 0239

2 X

3 X 0.004

4 X 0.016

5 X 0.002 0.0001

6 X 031 0.0117

24

1 X

2 X 0.868 02842

3 X 0.006 0.0009

4 X 0.002 0.0001

5 X 0.026 0.0009

6 X 0.008 0.0001
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TABLE 3. CONTINUED 3.

Duct

height

Mode # Evaluating Method

AW m AargiAJ/n

Layer Layer

up down bottom top-l bottom top-l

26

1 X 0.002 0.002 0.0001 0.0001

2 X 4308 0.121

3 X 0.006

4 X 0.002 0.0001

5 X 0.0001

6 X 0.034 0.0039

28

1 X 0.028 0.0014

2 X 4.806 0.0728

3 X

4 X

5 X 0.008 0.002 0.0002

6 X 0.004 0.0019

30

1 X 1.562 0.0165

2 X

3 X 0.718 02455

4 X

5 X 0.004

6 X 0.724 0.0522

32

1 X 3.194 0.1648

2 X 0.002

3 X 13.12 0.1026

4 X 0.002

5 X 0382 0.0099

6 X 0.002 0.0001

29



TABLE 3. CONTINUED 4.

Duct

height

Mode# Evaluating Method

A 141 (dB) AargiAJ/n

Layer Layer

1

up down bottom top-l bottom top-l

34

1 X 0.002 0.002

2 X 13.456 0.0311

3 X 1.014 02347

4 X

5 X 0.03 0.0006

6 X 0.014 0.0006

36

1 X 0.0001 0.0014

2 X 1.686 02224

3 X 4.724 0.0919

4 X

5 X 0.006 0.0001

6 X 0.02 0.0001

38

1 X 0.996 0.0115

2 X 4.974 0.0152

3 X

4 X 5.052 0.0417

5 X 0.0001

6 X 0.002

40

1 X 0.002 0.002

2 X 3.85 0.1226

3 X 3.568 0.1555

4 X 3.448 0.1678

5 X 0.0001

6 x
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III. CONCLUSION AND RECOMMENDATION

A. Performance

This revision of M-Layer converts the extended complex number representation

of an exponentially large or small number into the direct representation by its

complex exponent. The accuracy of the computation has been improved in two ways:

First, an interpolation algorithm has been devised when severe cancellation of the

addends is detected. Secondly, accuracy for the evaluation of the Airy function has

been improved, not just by summing the Taylor series to double precision resolution

and by adopting six-term Gaussian quadrature, but also by expanding the region

within which the more expedient Gaussian quadrature is excluded in favor of the

more accurate but time-consuming Taylor series summation. The improvement in

accuracy is most easily seen from Table 1.

As discussed in the Introduction, evaluating the A
i
and B

(
coefficients either

from the lowest layer up (integration up) or from the top layer down (integration

down) must result in the same values. This property provides a consistency check for

the accuracy of the computation. For the six modes of lowest range attenuation rates

of the 20 profiles of different duct heights, Table 1 lists the maximum difference for

each mode which shows a discrepancy between these two methods of evaluating the

A
{
coefficients. For each profile, the maximum value in magnitude difference in dB

among all the layers is listed if it is greater than 2. If the phases of the coefficients
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TABLE 1. MAXIMUM DIFFERENCE IN A
t
COEFFICIENT BETWEEN

INTEGRATION UP AND DOWN

Duct

height

(m)

Mode
Difference in A

t
coefficient

Magnitude difference in

(dB)

Phase difference over

0.1 x

original revised original revised

02

4 5.22 Yes

6 61.16 Yes

04

4 22.46 2.3

5 106.9 Yes

06 3 8.62 Yes

5 32.36

08

5 77.84 Yes

6 44.9 Yes

10 5 Yes

12

4 69.38 Yes

5 46.32 Yes

6 7.46 Yes

14 6 30.6 Yes

22 1 8.64 Yes

24 2 80.48 Yes

26 2 110.68 Yes

28 2 150.9 67.68 Yes Yes

30 3 173.28 143.42 Yes Yes

32

1 11.38 Yes

3 525.04 188.04 Yes Yes
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TABLE 1. CONTINUED

Duct

height

(m)

Mode
#

Difference in A
i
coefficient

Magnitude difference in

(dB)

Phase difference over

0.1 x

original revised original revised

34

2 37.98 Yes

3 715.7 209.94 Yes Yes

36

2 112.74 Yes

3 957.92 231.68 Yes Yes

38

2 107.44 52.26 Yes Yes

4 1249 255.8 Yes Yes

40

3 167 112.72 Yes Yes

4 823.56 258.18 Yes Yes

Magnitude difference within 2dB are not listed.

deviate more than 0.1 Tin any layer, that particular mode is also singled out. The

location of the mode of the revised program is within a relative accuracy of 2
-40

achieved through first order Newton-Raphson iteration. Even though discrepancies

still exist when the duct is 28 meters or higher, it is clear that the revised program

computes more accurately than the original one.

For the cases where the two methods of evaluating the A
t
and 5

;
coefficients

disagree, it has been observed that one of the methods always leads to A
t
values

which are little changed when the accuracy in mode location is varied, while the

other method produces A
i
values which shift toward the results of the other method

as the accuracy of mode location improves. Based on this observation, a consistency
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check is implemented into the program to identify the method which converges

better. For the 120 cases investigated, when this method of faster convergence is

used, the A
t
coefficients obtained from mode locations estimated with or without the

Newton-Raphson first order iteration differ only by 0.06 dB in magnitude and

0.0013irin phase at most. In fact, few cases show differences more than 0.002 dB and

0.000l7r.This allowed the Newton-Raphson iteration to be removed in this revision.

Table 2 compares the performance between the original and the revised

programs. The time spent to find the modes has been reduced by an average of

22.58%. The revised program can always produce the modes found by the original

program. Moreover, the mode search is stable for the new program: the time it

requires to search for the modes is about the same for similar profiles. The sudden

jumps in mode search time for the 24 m and the 40 m cases, which indicate troubles

during the search, no longer happen.

With the proper method of evaluating the A
{
and B

i
coefficients determined by

the consistency check, the output of the revised program differs from the original

program in some cases. The most serious deviation has been observed for the 38 m

duct height case as shown in Tables 3 and 4. For example, at a range of 36.5 km with

the transmitter at a height of 25 m and the receiver at 10 m, the coherent path loss

is 175.93 dB from the original program, and is 167.90 dB from the revised program.
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TABLE 2. OVERALLMODE SEARCH PERFORMANCE COMPARISON

DUCT
HEIGHT
(meters)

ORIGINAL PROGRAM REVISED PROGRAM
Time

ImprovementTime Modes Time Modes

00 0:00:37 3 0:00:35 3 5.40%

02 0:32:14 9 0:31:55 9 0.98%

04 1:14:12 25 1:05:04 25 12.31%

06 2:10:18 53 1:56:50 53 10.33%

08 0:35:58 39 0:29:25 39 18.21%

10 0:53:24 59 0:48:32 61 9.11%

12 1:09:40 86 1:01:44 89 11.39%

14 1:20:42 94 1:11:13 97 11.75%

16 1:54:35 95 1:18:07 97 31.82%

18 1:45:09 100 1:27:15 104 17.02%

20 1:46:19 103 1:34:20 105 11.27%

22 1:52:54 105 1:35:18 106 15.59%

24 3:42:59 106 1:46:47 107 52.11%

26 2:07:42 106 1:43:55 108 18.62%

28 2:00:05 107 1:44:59 109 12.57%

30 1:59:59 107 1:46:19 108 11.39%

32 1:55:29 108 1:42:58 110 10.84%

34 2:29:57 109 2:15:58 111 9.32%

36 2:31:40 109 2:17:20 112 9.45%

38 2:38:44 110 2:18:09 111 12.97%

40 5:41:17 95 2:39:39 111 53.22%

Total 40:23:54 31:16:22 22.58%
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TABLE 3. ORIGINAL PROGRAM OUTPUT: 38 M DUCT
frequency = 9600.0000 mhz

range zt zr coherent incoherent coherent incoherent horizon
(km) (m) (m) mode sum mode sum path loss path loss (km)

(db) (db) (db) (db)

27.3 25.0 4.0 -15.30 -15.62 156.10 156.43 28.9
27.3 25.0 6.0 .62 -2.35 140.18 143.16 30.7
27.3 25.0 8.0 -1.11 -4.21 141.92 145.01 32.3
27.3 25.0 10.0 -27.26 -12.66 168.06 153.46 33.6
36.5 25.0 4.0 -16.94 -16.62 160.28 159.96 28.9
36.5 25.0 6.0 -.73 -2.05 144.07 145.39 30.7
36.5 25.0 8.0 -2.21 -3.72 145.55 147.06 32.3
36.5 25.0 10.0 -32.59 -14.29 175.93 157.64 33.6
45.8 25.0 4.0 -19.89 -16.96 165.20 162.26 28.9
45.8 25.0 6.0 -2.81 -1.89 148.11 147.19 30.7
45.8 25.0 8.0 -4.11 -3.43 149.41 148.74 32.3
45.8 25.0 10.0 -28.57 -15.22 173.88 160.52 33.6

TABLE 4. REVISED PROGRAM OUTPUT: 38 M DUCT
frequency = 9600.0000 mhz

range zt zr coherent incoherent coherent incoherent horizon
(km) (m) (m) mode sum mode sum path loss path loss (km)

(db) (db) (db) (db)

27.3 25.0 4.0 -14.38 -15.66 155.18 156.47 28.9
27.3 25.0 6.0 .42 -2.37 140.39 143.18 30.7
27.3 25.0 8.0 -1.52 -4.21 142.33 145.02 32.3
27.3 25.0 10.0 -21.20 -12.51 162.01 153.31 33.6
36.5 25.0 4.0 -17.32 -16.60 160.66 159.94 28.9
36.5 25.0 6.0 -.48 -2.08 143.82 145.42 30.7
36.5 25.0 8.0 -1.62 -3.73 144.96 147.07 32.3
36.5 25.0 10.0 -24.56 -14.04 167.90 157.38 33.6
45.8 25.0 4.0 -20.26 -16.93 165.57 162.23 28.9
45.8 25.0 6.0 -3.14 -1.93 148.44 147.23 30.7
45.8 25.0 8.0 -4.62 -3.46 149.92 148.76 32.3
45.8 25.0 10.0 -25.40 -14.90 170.71 160.21 33.6
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B. Recommendation

The mode search protocol of this program needs to be revised. Since the search

is limited by the maximum range attenuation rate accepted, it is logical to begin with

locating the mode of the lowest or the highest attenuation, then proceed to look for

the next one in the order of increasing or decreasing attenuation rate. Furthermore,

under the assumption of analyticity over the search region, there should be only one

connected "phase line" of vanishing real part of the modal function on which all the

modes are located. The partition of the search region into rectangles as has been

done in this program tends to cut the "phase line" into segments before the program

starts to search for the end points of these segments and then follow the segments

in different directions. It is clear that a better way is to search for one end of the

"phase line" along a line of a constant attenuation rate in the search region, either

at the maximum accepted or the minimum possible attenuation, then follow this

"phase line" all the way to the other end. This technique works even if the "phase

line" branches off into several directions at a Stokes' point.
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APPENDIX A: SUBROUTINE XCADD

This Appendix lists the addition subroutine XCADD which returns the complex

exponent of the sum when the complex exponents of the addends are given. This is

a complete re-write of the original subroutine of the same name.
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1 subroutine xcadd(zx,z1x,z2x)

2 c

3 c Given z1x and z2x, this subroutine adds the two complex numbers

4 c z1=exp(z1x) and z2=exp(z2x) for z=exp(zx) and returns zx.

5 c

6 c inputs...

7 c z1x=complex exponent of the complex number z1

8 c z2x=complex exponent of the complex number z2

9 c

10 c outputs...

11 c zx=complex exponent of the complex number z

12 c

13 c subroutines called...

14 c

15 g**********

16 implicit real*8 (a-h,o-z)

17 complex* 16 zx,z1x,z2x
<
zt1x,zt2x,clogzh,dsum,czero,cerrx,cone,chpi

18 parameter(pi=3.141592653589793238462643d0,twopi=2.d0*pi,

19 + hpi=0.5d0*pi,zero=0.d0,c16=1.d0/6.d0,

20 + bit14=1.d0/16384.d0,bit24=bit14/1024.d0,ctol=bit14,

21 + dpi=2259.d0/4294967296.d0/4294967296.d0,hdpi=dpi/2.d0,

22 + e2m54=-3.742994775023704819d1,e2p27=-0.5d0*e2m54,

23 + chpi=(0.d0,1.57079632679489661923132d0),cone=(1.d0,0.d0),

24 + czero=(0.d0,0.d0),cerrx=(-3.742994775023704819d1,0.d0))

25 c cerrx=e2m54=-54*log(2)=exponent below machine accuracy

26 dimension ztmp(2),stmp(2)

27 equivalence (ztmp,clogzh),(stmp,dsum)

28 c*****

29 c Replace the input variables with a local variable so that

30 c equations in the form of y=x+y will not lead to confusion.

31 c

32 zt1x=z1x

33 zt2x=z2x

34 c

35 clogzh=0.5d0*(zt1x-zt2x)

36 dxh=ztmp(1)

37 if(dxh .It. zero) then

38 zx=zt2x

39 dxh=-dxh

40 else

41 zx=zt1x

42 end if

44 c machine accuracy = 2**(-53)

45 c 2**(27)=e**e2p27

46 c

47 if (dxh .ge. e2p27) then
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48 return

49 else

50 zx=0.5d0*(zt1x+zt2x)

51 dsum=cdexp(clogzh)

52 dsum=1 .dO/dsum+dsum

53 if (cdabs(dsum) .gt. ctol) then

54 zx=cdlog(dsum)+zx

55 else

56 c Cancellation is serious. Imlclogzh] is close to pi/2 or -pi/2.

57 yi=dnint(ztmp(2)/twopi)*2.d0

58 ztmp(2)=ztmp(2)-pi*yi

59 dyi=dpi*yi

60 if (ztmp(2) .It. zero) then

61 clogzh=-clogzh

62 dyi=-dyi

63 end if

64 ztmp(2)=(ztmp(2)-hpi )-hdpi-dyi

65 dsum=2.d0*clogzh*(cone+c16*clogzh*clogzh)

66 if (dsum .eq. czero) then

67 c Note that a complete cancellation of two nonzero numbers of

68 c order one is considered to be as accurate as what is allowed

69 c by the machine and the algorithm.

70 zx=cerrx+chpi+zx

71 else

72 dsum=cd log (dsum)

73 if (stmp(1) .It. e2m54) stmp(1)=e2m54

74 zx=dsum+chpi+zx

75 end if

76 end if

77 return

78 end if

79 c

80 end
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APPENDIX B: SUBROUTINE FZEROX

This Appendix includes the listing of the subroutine FZEROX which identifies

the meshes which may contain modes within a contour rectangle. The Shellman-

Morffit mode locating algorithm has been completely replaced.
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1 subroutine fzerox(tleft,tright,tbot, ttop.tmshO, zeros, ni ,nf)

3 c fzerox is a routine for finding the zeroes of a complex function, f,

4 c which lie within a specified rectangular region of the

5 c complex q11 plane, assuming that the function has only

6 c simple zeroes over this rectangle.

7 c

8 c parameters specifying the search rectangle:

9 c tleft - value of the real part of q11 at the left edge.

10 c tright- value of the real part of q11 at the right edge.

11 c tbot - value of the imaginary part of q11 at the bottom edge.

12 c (this is set to 0.)

13 c ttop - value of the imaginary part of q11 at the top edge.

14 c tmesh - set equal to about half the average spacing between

15 c zeroes within the rectangle. A smaller value may be used

16 c as a safety measure, but too small a value will result

17 c in excessively long run time.

18 c zeros - output list of (complex) values of q11 at which

19 c zeroes are found.

20 c nf-ni - the number of zeroes found

21 c

22 c subroutines calledd--

23 c findfx

24 c roots

25 c nomshx

27 implicit double precision (a-h,o-z)

28 complex*16 f 10, f 01 ,f 11 , fxnew, fxold,fx00,fx10,fx01 ,fx1
1

,

29 + czero, one, ci , sol .zeros

30 parameter(czero=(0.d0,0.d0),one=(1 .d0,0.d0),ci=(0.d0,1 .d0))

31 Sinclude: 'mlaparm. inc 1

***** Begin listing of: mlaparm. inc

1 c

2 c include file to define the

3 c maximum # of layers (mxlayr)

4 c maximum # of modes (mxmode)

5 c

6 parameter (mxlayr=35 )

7 parameter (mxmode=127)

***** End listing of: mlaparm. inc

32 dimension kedge1(100),kedge2(100),kedge3(100),kedge4(100),

33 c + loc12r(mxmode), loc12i (mxmode), loc23r(mxmode), loc23i (mxmode),

34 c + I oc34r( mxmode), loc34i (mxmode), I oc41r (mxmode), loc41i (mxmode),

35 + sol(3),theta(2),zeros(2*mxmode+1)

36 c

37 c

38 common /tmccom/tmesh
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39 c*****

40 c maxnsq - maximum number of mesh squares allowed on any one

41 c phase line

42 c maxnt - maximum number of times fzerox will reduce tmesh

43 c

44 maxnsq=3*maxO(int((ttop-tbot)/tmshO),int((tright-tleft)/tmshO))

45 maxnt=2

££ c*****

47 tmesh = tmshO

48 ntime =

49 go to 7

50 c

51 5 tmesh=tmesh/2.0d0

52 ntime = ntime+1

53 if(ntime .gt. maxnt) go to 97

54 c

55 7 continue

56

57 c*****

58 c calculate coordinates of rectangle edges in tmesh units

59 c

60 jit = idnint(tleft/tmesh-0.5d0)

61 jrt = idnint(tright/tmesh+0.5d0)

62 jtop = idnint(ttop/tmesh+1.5d0)

63 jbot =

64 c

65 c initialize parameters for starting search at upper left

66 c corner of search rectangle

67 c

68 ki = jtop

69 kr = jit

70 kedge = 1

71 call f indfx(kr,ki ,fxnew,xnew,ynew)

72 nre1=0

73 nre2=0

74 nre3=0

75 nre4=0

76 knot 12=0

77 knot23=0

78 knot34=0

79 knot41=0

80 nf=ni

81 ni1=ni+1

82 go to 15

83 c*****

84 10 continue

85 if(nrzl .It. 2) go to 15
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86 c write(16,2000) nrzl

87 go to 5

88 15 nrzl=0

89 nrsqu =

90 20 fxold=fxnew

91 xold=xnew

92 yold=ynew

93 go to (21,26,31,36),kedge

94 £*****

95 c search along left edge of rectangle for changes in the

96 c sign of imag(f)

97 c

98 21 continue

99 if (ki .eq. jbot) then

100 kedge=2

101 go to 26

102 end if

103 ki = ki-1

104 call f indfx(kr, ki , fxnew,xnew,ynew)

105 if (yold*ynew .gt. O.dO) go to 20

106 if (nrel .eq.0) go to 23

107 c

108 c check if crossing point has been previously found

109 c

110 do 22 k=1,nre1

111 if(ki.eq.kedgeKk)) go to 20

112 22 continue

113 c

114 c follow phase line through rectangular region

115 c

116 23 fx01=fxold

117 fx01r=xold

118 fx01i=yold

119 fx00=fxnew

120 fx00r=xnew

121 fx00i=ynew

122 li = ki

123 Ir = jit

124 go to 43

125 £*****

126 c search along bottom edge of rectangle for changes in tl

127 c sign of imag(f)

128 c

129 26 continue

130 if (kr.eq. jrt) then

131 kedge=3

132 go to 31
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133 end if

134 kr = kr+1

135 cal I f indfx(kr,ki , fxnew,xnew,ynew)

136 if (yold*ynew .gt. O.dO) go to 20

137 if (nre2.eq.O) go to 28

138 c

139 c check if crossing point has been previously found

HO c

141 do 27 k=1,nre2

142 if(kr.eq.kedge2(k)) go to 20

143 27 continue

144 c

145 c follow phase line through rectangular region

146 c

147 28 fx00=fxold

148 fx00r=xold

149 fx00i=yold

150 fx10=fxnew

151 fx10r=xnew

152 fx10i=ynew

153 li = jbot

154 lr = kr-1

155 go to 48

156 £*****

157 c search along right edge of rectangle for sign changes in imag(f)

158 c

159 31 continue

160 if (ki .eq. jtop) then

161 kedge=4

162 go to 36

163 end if

164 ki = ki + 1

165 call f indfx(kr,ki ,fxnew,xnew,ynew)

166 if (yold*ynew .gt. O.dO) go to 20

167 if (nre3.eq.O) go to 33

168 c

169 c check if crossing point has been previously found

170 c

171 do 32 k=1 ,nre3

172 if (ki .eq.kedge3(k)) go to 20

173 32 continue

174 c

175 c follow phase line through rectangular region

176 c

177 33 fx10=fxold

178 fx10r=xold

179 fx10i=yold
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180 fx11=fxnew

181 fx11r=xnew

182 fx11i=ynew

183 li = ki-1

184 lr = jrt-1

185 go to 53

186 £*****

187 C search along top edge of rectangle for sign changes in imag(f ).

188 c

189 36 continue

190 if(kr.eq.jlt) go to 80

191 kr = kr-1

192 call f indfx(kr,ki ,fxnew,xnew,ynew)

193 if (yold*ynew .gt. O.dO) go to 20

194 if(nre4.eq.0) go to 38

195 c

196 c check if crossing point has been previously found

197 c

198 do 37 k=1 ,nre4

199 if(kr.eq.kedge4(k)) go to 20

200 37 continue

201 c

202 c follow phase line through rectangular region

203 c

204 38 fx11=fxold

205 fx11r=xold

206 fx11i=yold

207 fx01=fxnew

208 fx01r=xnew

209 fx01i=ynew

210 li = jtop-1

211 lr = kr

212 go to 58

213 ,*****

214 c enter mesh square from left side or exit rectangle at right edge

215

216 41 lr=lr+1

217 if (lr .le. jrt-1) go to U2

218 nre3=nre3+1

219 kedge3(nre3)=li+1

220 go to 10

221 42 fx01=fx11

222 fx01r=fx11r

223 fx01i=fx11i

224 fx00=fx10

225 fx00r=fx10r

226 fx00i=fx10i
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227 43 continue

228 call findfx(lr+1,li+1,fx11,fx11r,fx11i)

229 call findfx(lr+1,li,fx10,fx10r,fx10i)

230 c*******

231 c Determine the edge of exit of im(f)=0 from current mesh.

232 edgeit=fx01i*fx11i

233 edgeib=fx00i*fx10i

234 if (edgeib .gt. O.dO) then

235 c lm(f)=0 goes through the 01 to 10 line.

236 if (edgeit .gt. O.dO) then

237 c lm(f)=0 goes through the 10 to 11 edge (edge 1).

238 lout=1

239 else

240 c lm(f)=0 goes through the 01 to 11 edge (edge 2)

241 lout=2

242 end if

243 else

244 c lm(f)=0 goes through the 00 to 10 edge (edge 4)

245 lout=4

246 if (edgeit .It. O.dO) then

247 c lm(f)=0 also runs through 01 to 11 and 10 to 11 edges.

248 c Store crossing location and in/out information.

249 knot34=knot34+1

250 c loc34r(knot34)=lr

251 c loc34i(knot34)=li

252 end if

253 end if

254 r*******

255 go to 60

256 c*****

257 c enter mesh square from bottom side or exit rectangle at top edge.

258 46 li=li+1

259 if (li .le. jtop-1) go to 47

260 nre4=nre4+1

261 kedge4(nre4)=lr

262 go to 10

263 47 fx00=fx01

264 fx00r=fx01r

265 fx00i=fx01i

266 fx10=fx11

267 fx10r=fx11r

268 fx10i=fx11i

269 48 continue

270 call findfx(lr,li+1,fx01,fx01r,fx01i)

271 call findfx(lr*1,ti+1,fx11,fx11r,fx11i)

273 c Determine the edge of exit of im(f)=0 from current mesh.
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274 edgei l=f xOOi *f xOI

i

275 edgei r=fx10i*fx11i

276 if (edgei r .gt. O.dO) then

277 c lm(f)=0 goes through the 00 to 11 line.

278 if (edgei I .gt. O.dO) then

279 c lm(f)=0 goes through the 01 to 11 edge (edge 2)

280 lout=2

281 else

282 c lm(f)=0 goes through the 00 to 01 edge (edge 3).

283 I out =3

284 end if

285 else

286 c lm(f)=0 goes through the 10 to 11 edge (edge 1)

287 lout=1

288 if (edgei I .It. O.dO) then

289 c lm(f)=0 also runs through 00 to 01 and 01 to 11 edges.

290 c Store crossing location and in/out information.

291 knot41=knot41+1

292 c Ioc41r(knot41)=lr

293 c loc41i(knot41)=li

294 end if

295 end if

296 q*******

297 go to 60

298 r*****

299 c enter mesh square from right side or exit rectangle at left edge.

300

301 51 lr=lr-1

302 if (Ir .ge. jit) go to 52

303 nre1=nre1+1

304 kedge1(nre1)=li

305 go to 10

306 52 fx11=fx01

307 fx11r=fx01r

308 fx11i=fx01i

309 fx10=fx00

310 fx10r=fx00r

311 fx10i=fx00i

312 53 continue

313 call findfx(lr,li+1,fx01,fx01r,fx01i)

314 call findfx(lr,li,fx00,fx00r,fx00i)

315 £*******

316 c Determine the edge of exit of im(f)=0 from current mesh.

317 edgeit=fx01i*fx11i

318 edgeib=fx00i*fx10i

319 if (edgeit .gt. O.dO) then

320 c lm(f)=0 goes through the 01 to 10 line.
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321 if (edgeib .gt. O.dO) then

322 c lm(f)=0 goes through the 00 to 01 edge (edge 3)

323 lout=3

324 else

325 c lm(f)=0 goes through the 00 to 10 edge (edge 4)

326 lout=4

327 end if

328 else

329 c lm(f)=0 goes through the 01 to 11 edge (edge 2)

330 lout=2

331 if (edgeib .It. O.dO) then

332 c lm(f)=0 also runs through 00 to 10 and 00 to 01 edges.

333 c Store crossing location and in/out information.

334 knot12=knot12+1

335 c loc12r(knot12)=lr

336 c loc12i(knot12)=li

337 end if

338 end i f

339 £*******

340 go to 60

341 £*****

342 c enter mesh square from top side or exit rectangle at IDot torn edge

343 56 li=li-1

344 if (li .ge. jbot) go to 57

345

346

nre2=nre2+1

kedge2(nre2)=lr+1

347 go to 10

348 57 fx01=fx00

349 fx01r=fx00r

350 fx01i=fx00i

351 fx11=fx10

352 fx11r=fx10r

353 fx11i=fx10i

354 58 continue

355 call findfx(lr,li,fx00,fx00r,fx00i)

356 call findfx(lr+1,li,fx10,fx10r,fx10i)

357 £*******

358 C Determine the edge of exit of im(f)=0 from current mesh.

359 edgeil=fx00i*fx01i

360 edgeir=fx10i*fx11

i

361 if (edgeil .gt. O.dO) then

362 c lm(f)=0 goes through the 00 to 11 line.

363 if (edgeir .gt. O.dO) then

364 c lm(f)=0 goes through the 00 to 10 edge (edge 4)

365 I out =4

366 else

367 c lm(f)=0 goes through the 10 to 11 edge (edge 1)
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368 lout=1

369 end if

370 else

371 c lm(f)=0 goes through the 00 to 01 edge (edge 3)

372 I out =3

373 if (edgeir .It. O.dO) then

374 c lm(f)=0 also runs through 00 to 10 and 10 to 11 edges.

375 c Store crossing location and in/out information.

376 knot23=knot23+1

377 c loc23r(knot23)=lr

378 c loc23i(knot23)=li

379 end if

380 end if

381 c

2g2 £*******

383 60 continue

384 nrsqu=nrsqu+1

385 if(nrsqu .gt. maxnsq) go to 95

386 c******

387 c Test for there being at least one re(f)=0 line entering and

388 c leaving the mesh square.

389 c

390 if ((fx00r*fx10r .gt. O.dO) .and. (fx01r*fx11r .gt. O.dO)

391 + .and. (fx00r*fx01r .gt. O.dO)) go to (41,46,51,56) lout

392 c

393 c Computate the values of the modal function at the corners of a

394 c a mesh square to determine its Taylor series to the 3rd order

395 c for estimating its root locations.

396 c

397 c f00=one

398 f10=cdexp(fx10-fx00)-one

399 f01=cdexp(fx01-fx00)-one

400 f11=cdexp(fx11-fx00)-one

401 c

402 c**************************************************************** ******

403 c write (16,3001) ni.nf.lr, li ,knot12,knot23,knot34,knot41

404 c 3001 format(/' ni, nf, lr, li and knot12, 23, 34 and 43 before ROOTS

405 c + :'/, 2i6,2x,2i6,2x,4i6)

406 c

407 c*********** estimate locations of zeroes by radicals *****************

408 c

409 call roots(f10,f01,f11,sol,nrsol)

410 c

411 do 63 n=1,nrsol

412 ureal = dreal(sol(n))

413 uimag = dimag(sol(n))

414 if (ureal .It. O.dO .or. ureal .gt. 1.0d0) go to 63
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415 if (uimag .It. O.dO .or. uimag .gt. 1.0d0) go to 63

416 62 theta(1)=(lr+ureal)*tmesh

417 theta(2)=(li+uimag)*tmesh

418 nf = nf+1

419 zeros(nf)=dcmplx(theta(1),theta(2))

420 nrzl=nrzl+1

421 63 continue

1^22 c*******************************************************************

423 c write (16,3002) ni.nf.nrsol

424 c 3002 format(/' out of ROOTS at 63, ni , nf and # of roots ',3i4)

^25 p*************************** ****************************************

426 c continue following the phase line

427 go to (41,46,51,56) lout

428 c******

429 cc

430 80 continue

431 c

432 return

433 c*****

434 95 continue

435 write(16,9500)

436 write( 16,4001) I r, I
i
,ni ,nf ,tmesh

437 write(* ,9500)

438 4001 formatCgo to 5 from 95 at lr, li =' , i6,
'

,

'
, i6, ' ni, nf =',i6,

439 + V,i6,', mesh size =',d14.6)

440 go to 5

441 c*****

442 97 continue

443 write( 16,9700)

444 write( 16,4002) I r, I
i
,ni ,nf ,tmesh

445 write(* ,9700)

446 4002 formatCgo to 5 from 97 at lr, li =' , i6, '

,

'
, i6, ni, nf =',i6,

447 , ,'.i6/ 1

, mesh size =' ,d14. 6, /'zeroes found are kept.')

448 c nf=ni

449 c

450 return

451 c

452 c**** format statements

453 9500 format(/5x, 'too many squares on same phase line -- ',

454 $ 'reduce tmesh and start over 1

)

455 9700 format(/5x, 'tmesh has been reduced but problems remain in',

456 $ ' executing fzerox')

457 c

458 end
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APPENDIX C: SUBROUTINE ROOTS

This Appendix contains the listing of the subroutine ROOTS. This subroutine

replaces the portion of the subroutine FZEROX where the coefficients of a quadratic

equation are determined, and the subroutine QUAD for locating the zeroes of a

quadratic polynomial. In the revised subroutine FZEROX, the roots of a cubic

polynomial has to be found. This subroutine determines these zeroes by radicals.
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1 subroutine roots 1 ,f2,f3,sol,nrsol)

2 £**********************************************************************

3 c This subroutine finds the roots of a third order polynomial by

4 c radicals when the values of this polynomial at 2=0, z=1, z=i and

5 c z=1+i are given as f 0=1 , f1+f0, f 2+f and f3+f0 respectively.

6 c Note that this algorithm takes cubic roots of two complex numbers

7 c (hence the name 'solution by radicals') and use their linear

8 c combinations as the roots of a third order polynomial.

O £**********************************************************************

10 implicit real*8 (a-h, o-z)

11 complex*16 f 1 , f 2, f3, zero, one, ci , ep14,em14,ep23,em23,

12 + fa,fb,fc,fd,fa1,fa2,fa3,fa1s,p,q,delt,z,zm,u,v,sol

13 parameter (xbi t52=52.d0*0.69314718055994531d0, thrd=1 .d0/3.d0,

14 + bit50=1.d0/33554432.d0/33554432.d0,bit51=bit50/2.d0,

15 + bit52=bit51/2.d0,tol=0.001d0,

16 + Zero=(0.d0,0.d0),one=(1.d0,0.d0),ci=(0.d0,1.d0),

17 + ep14=(0.5d0,0.5d0),em14=(0.5d0,-0.5d0),

18 + ep23=(-0.5d0,0.86602540378443864675d0),

19 + em23=(-0.5d0,-0.86602540378443864675d0))

20 dimension sol(*)

21 fa=one

22 fb=(f2-ci*f1+em14*f3)

23 fc=((ep14+one)*f1-(em14+one)*f2+ci*f3)

24 fd=(em14*(f2-f1)-ep14*f3)

25 if (cdabs(fb) .le. bit50) fb=zero

26 if (cdabs(fc) .le. bit51) fc=zero

27 if (cdabs(fd) .le. bit52) fd=zero

28 if (fd .ne. zero) then

29 fa1=(-thrd)*fc/fd

30 fa2=fb/fd

31 fa3=fa/fd

32 fa1s=fa1*fa1

33 p=thrd*fa2-fa1s

34 q=0.5d0*(fa3+fa1*fa2)-fa1*fa1s

35 if (p .eq. zero) then

36 if (q. eq. zero) then

37 nrsol=1

38 sol(1)=fa1

39 return

40 else

41 nrsol=3

42 u=((-2.d0)*q)**thrd

43 sol(1)=u+fa1

44 sol(2)=ep23*u+fa1

45 sol(3)=em23*u+fa1

46 return

47 end if
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48 else

49 if (q. eq. zero) then

50 nrsol=3

51 sol(1)=fa1

52 u=cdsqrt((-3.d0)*p)

53 sol(2)=fa1+u

54 sol(3)=fa1-u

55 return

56 else

57 v=p/q

58 2=p*V*V

59 absz=cdabs(z)

60 if (absz .It. tol) then

61 zm=-z

62 fn=dint(1.d0-xbit52/dlog(absz))

63 lastn=idint(fn)-1

64 dnn=fn-0.5d0

65 dnd=fn+1.0d0

66 delt=one

67 do 100 nt=1,lastn

68 dnn=dnn-1 .d0

69 dnd=dnd-1.d0

70 delt=(dnn/dnd)*delt*znt+one

71 100 continue

72 delt=(0.5d0*delt/q)**thrd

73 u=p*delt

74 v=-1.d0/delt

75 else

76 delt=cdsqrt(one+z)-one

77 u=(q*delt)**thrd

78 v=-p/u

79 end if

80 nrsol=3

81 sol(1)=u+v+fa1

82 sol(2)=ep23*u+em23*v+fa1

83 sol (3)=em23*u+ep23*v+f a1

84 return

85 end if

86 end if

87 else if (fc .ne. zero) then

88 if (fb .eq. zero) then

89 if (fa .eq. zero) then

90 nrsol=1

91 sol(1)=zero

92 return

93 else

94 nrsol=2
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95 z=cdsqrt(-fa/fc)

96 sol(1)=z

97 sol(2)=-z

98 return

99 end if

100 else

101 fa1=0.5d0*fb/fc

102 fa2=fa/fc

103 Z=fa2/fa1/fa1

104 absz=cdabs(z)

105 if (absz .It. tol) then

106 fn=dint(1.d0-xbit52/dlog(absz))

107 lastn=idint(fn)-1

108 dnn=fn-0.5d0

109 dnd=fn+1.0d0

110 delt=one

111 do 200 nt=1,lastn

112 dnn=dnn-1 .dO

113 dnd=dnd-1.d0

114 del t=(dnn/dnd)*del t*z+one

115 200 continue

116 delt=-0.5d0*delt/fa1

117 nrsol=2

118 sol(1)=fa2*delt

119 sol(2)=1.d0/delt

120 return

121 else

122 delt=cdsqrt(one-z)

123 nrsol=2

124 sol(1)=-fa1*(one-delt)

125 sol(2)=-fa1*(one+delt)

126 return

127 end if

.5 end if

129 else if (fb .ne. zero) then

130 nrsol=1

131 sol(1)=-fa/fb

132 return

133 else

134 nrsol=1

135 sol(1)=ep14

136 return

137 end if

138 end
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APPENDIX D: SUBROUTINE ABCOEF

This Appendix contains the listing of the subroutine ABCOEF. The consistency

self-checking procedure has been implemented to determine the correct method to

evaluate the A
t
and B

i
coefficients.
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1 subroutine abcoef (zero.m)

3 c For each mode m, this suboutine calculates A-B coefficients in

4 c all layers for combining two linearly independent solutions of

5 c Stokes' equation to form the height gain function:

6 c

7 c height gain=exp(bcoefx( l,m))*(k1*exp(acoefx(
I
,m))+k2)

8 c

9 c where k1 and k2 are two independent solutions to Stokes'

10 c equation. In the top layer (i.e. nzlayr) the height gain is:

11 c

12 c height gain=exp(bcoefx( l,m))*h2

13

14 c where h2 is a solution to the Stokes' equation associated

15 c with outgoing energy flow. Here k1 and k2 are proportional

16 c to the k1 and k2 used by Marcus and the h2 is proportional

17 c to a modified Hankie function of order 1/3.

18

19 c inputs...

20 c zero-an eigenvalue in q11 space

21

22 c outputs

23 c acoefx-two dimensional array of complex exponents

24 c coefficients used to combine two linearly

25 c independent solutions of stokes' equation

26 c bcoefx-two dimensional array of complex exponents

27 c coefficients used for normalizing the height gains

28

29 c note: acoefx and bcoefx are passed by the

30 c common block /pap2/

31

32 c subroutines called

33 c xcdai

34 c xcadd

35

36 c common block areas...

37 c coml

38 c com2

39 c papl

40 c pap2

42

43 implicit real*8(a-h,o-z)

44 complex*16 acoefx, bcoefx.cqi j,h2xq1 ,dh2xq1,h2xq2,dh2xq2,k1xq1

,

45 t dk1xq1,k1xq2,dk1xq2,k2xq1,dk2xq1,k2xq2,dk2xq2,h2dk1x,

46 $ dh2k1x,h2dk2x,dh2k2x,numax,denax,numbx,denbx (
intlx, int2x,

47 $ hyx, dhyx,k1dhyx,dk1hyx,dk2hyx,k2dhyx, gamma, dgamdq,
i

,
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48

49

50

51

52

53

54

55

56 c

57 c

58 c

59

60 c

61 c

62 c

63 c

64 c

65 c

$ koa123,rtsumx,zero,q1,q2,sumx,surfno,dqi
j ,dqi jdz.sqng,

$ dnumbx,dhux,dhlx,e13x,cneg,cldqzl,cldqzm,cigama,koawav, tthd,

+ tacoef ,dacoef

parameter(downi=1 .d-3,downr=1 .d-3/0.4342944819032518d0,

+ pi=3.141592653589793238462643d0,

+ i=(0.0d0,1.0d0),tthd=(2.d0/3.d0)*i,

+ cneg=(0.0d0,3.141592653589793238462643d0),e13x=cneg/3.d0)

*****

mxlayr=maximum number of layers allowed

mxmode=max i mum number of modes allowed

use include file for parameters of

use include file for parameters of

mxlayr max # layers

mxmode max # modes

66 Sinclude: 'mlaparm. inc'

***** Begin listing of: mlaparm. inc

1 c

2 c include file to define the

3 c maximum # of layers (mxlayr)

4 c maximum # of modes (mxmode)

5 c

6 parameter (mxlayr=35 )

7 parameter (mxmode=127)

***** £ nc| listing of: mlaparm. inc

67 c

68 c

£0 £*****

70 c acoefx-two dimensional complex array used for combining two

71 c independent solutions to stokes' equation

72 c bcoefx-two dimensional complex array used for normalizing height

73 c gain

74 c cqij-two dimensional array containing coefficients for evaluating

75 c qij in terms of q11

76 c dqij-array containing coefficients for evaluating qij in terms of

77 c q1

1

78 c dqijdz-array containing derivatives of qi(z) in the different

79 c layers

80 c zi-array containing input hesights for the modified refractivity

81

82 dimension acoefx(mxlayr, mxmode),

83 $ bcoefx(mxlayr, mxmode),

84 $ dqi j(mxlayr),cqi j(mxlayr,2),dqi jdz(mxlayr),zi(mxlayr+1 )

Q5 £*****
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86

87 common /com1/f req.waveno.sqng

88 common /com2/cqi j , dqi j.dqi jdz.nzlayr

89 common /pap1/nrmode,koa123,surfno,zi

90 common /pap2/acoefx,bcoefx

91

92 c*****

93 c check for single layer

94 c

95 c set a complex variable koawav=- i*koa123/(waveno*waveno) to

96 c avoid repeating computations

97

98 koawav=- i*koa123/(waveno*waveno)

99

100 if(nzlayr .eq. Dthen

101 q1=cqi j(1 ,1)+zero*dqi j(1)

102 call surf (q1 ,
gamma, dgamdq)

103 call Xcdai(-q1,k2xq1,dk2xq1,k1xq1,dk1xq1,h2xq1,dh2xq1)

104 dh2xq1=dh2xq1+e13x

105 int1x=cdlog(koawav*dgamdq-q1/dqi Jdz(1))+2.0d0*h2xq1

106 int2x=2.0d0*dh2xq1-cdlog(-dqijdz(1))

107 call xcadd(sumx, intlx, int2x)

108 rtsumx=0.5d0*sumx

109 bcoefxd ,m) = -rtsumx

110 return

111 end if

112

113 cldqzl=cdlog(-dqi jdz(D)

114

115 c if I equals one then initialize cumulants and caculate a's and

116 c b's in bottom layer using ground boundary conditions.

117

118 q1=cqi j(1 , 1 )+zero*dqi j(1)

119 call Xcdai(-q1,k2xq1,dk2xq1,k1xq1,dk1xq1,h2xq1,dh2xq1)

120 dk2xq1=dk2xq1+cneg

121 dk1xq1=dk1xq1-e13x

122 call surf (q1 , gamma, dgamdq)

123 cigama=cdlog( i*gamma)

124 call xcadd(numax,cldqzl-cneg+dk2xq1 ,cigama+cneg+k2xq1

)

125 call xcadd(denax,cigama+k1xq1 ,cldqzl+dk1xq1

)

126 acoefx(1,m)=numax-denax

127 call xcadd(denbx,k2xq1,acoefx(1,m)+k1xq1)

128 bcoefx(1,m)=-denbx

129

130 c calculate contributions to normalizing integrals.

131

132 call xcadd(hyx,k2xq1 ,acoefx(1 ,m)+k1xq1)
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133 hyx=bcoefx(1,m)+hyx

134 call xcadd(dhyx,dk2xq1,acoefx(1,m)+dk1xq1)

135 dhyx=bcoefx(1 ,m)+dhyx

136 int1x=cdlog(koawav*dgamdq-q1/dqijdz(1))+2.0d0*hyx

137 int2x=2.0d0*dhyx-cldqzl

138 call xcadd(sumx, intlx, int2x)

139

140 do 9010 l=2,nzlayr-1

141 lm1=l-1

142 cldqzl=cdlog(-dqijdz(D)

143 cldqzm=cdlog(dqi jdz( ImD)

144 q1=cqi j(l,1)+zero*dqij(l)

145 call Xcdai(-q1,k2xq1,dk2xq1,k1xq1,dk1xq1,h2xq1,dh2xq1)

146 dk2xq1=dk2xq1+cneg

147 dk1xq1=dk1xq1-e13x

148 q2=cqi j ( lm1 , 2)+zero*dqi j ( lm1

)

149 call Xcdai(-q2,k2xq2,dk2xq2,k1xq2,dk1xq2,h2xq2,dh2xq2)

150 dk2xq2=dk2xq2+cneg

151 dk1xq2=dk1xq2-e13x

152 call xcadd(hyx,k2xq2,acoefx( lm1 ,m)+k1xq2)

153 call xcadd(dhyx,dk2xq2,acoefx( lm1 ,m)+dk1xq2)

154 k1dhyx=k1xq1+dhyx

155 dk1hyx=dk1xq1+hyx

156 dk2hyx=dk2xq1+hyx

157 k2dhyx=k2xq1+dhyx

158 call xcadd(denax,cldqzm+k1dhyx,cldqzl+dk1hyx)

159 call xcadd(numax,cldqzl-cneg+dk2hyx,cldqzm+cneg+k2dhyx)

160 acoefx( l,m)=numax-denax

161 call xcadd(denbx,k2xq1 ,acoefx(

I

,m)+k1xq1 )

162 numbx=bcoefx( lm1 ,m)+hyx

163 dnumbx=bcoefx( lm1 ,m)+dhyx

164 bcoefx( l,m)=numbx-denbx

165

166 c calculate contribution to normalizing integrals.

167

168 int1x=cdlog(-q1/dqi jdz(l)+q2/dqi jdz(lm1))+2.0d0*numbx

169 call xcaddCsumx.sumx, intlx)

170 call xcadd(dhux,dk2xq1 ,acoefx(
I ,m)+dk1xq1

)

171 dhux=bcoefx(l ,m)+dhux

172 int1x=2.0d0*dnunbx-cldqzm

173 int2x=2.0d0*dhux-cldqzl

174 call xcadd(sumx,sumx, intlx)

175 call xcadd(sumx,sumx, int2x)

176 9010 continue

177

178

179 c if I equals nzlayer, calculate a's and b's using outgoing
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180 c wave in top layer.

181

182 nzm1=nzlayr-1

183 q1=cqi j(nzlayr, 1 )+zero*dqi j(nzlayr)

184 call xcdai(-q1 ,k2xq1 ,dk2xq1 ,k1xq1 ,dk1xq1 ,h2xq1 ,dh2xq1)

185 dh2xq1=dh2xq1+e13x

186 q2=cqi j (nzml , 2)*zero*dqi j (nzml

)

187 call Xcdai(-q2,k2xq2,dk2xq2,k1xq2,dk1xq2,h2xq2,dh2xq2)

188 dk2xq2=dk2xq2+cneg

189 dk1xq2=dk1xq2-e13x

190 call xcadd(hyx,k2xq2,acoefx(nzm1 ,m)+k1xq2)

191 numbx=bcoefx(nzlayr-1 ,m)+hyx

192 bcoefx(nzlayr,m)=numbx-h2xq1

193

194 c calculate contribution to cumulants.

195

196 int1x=cdlog(-q1/dqi jdz(nzlayr)+q2/dqi jdz(nzm1 )) +

197 $ 2.0d0*numbx

198 call xcadd(sumx,sumx, intlx)

199 call xcadd(dhyx,dk2xq2,acoefx(nzm1 ,m)+dk1xq2)

200 dnumbx=bcoef x(nzm1 ,m)+dhyx

201 int1x=2.0d0*dnumbx-cdlog(dqi jdz(nzm1 ))

202 call xcadd(sumx,sumx, intlx)

203 dhux=bcoefx(nzlayr,m)+dh2xq1

204 int2x=2.0d0*dhux-cdlog(-dqi jdz(nzlayr))

205 call xcadd(sumx,sumx, int2x)

206

207 c renormalize b's so that height gain integral equals unity.

208

209 rtsumx=.5d0*sumx

210 do 9000 ll=1,nzlayr

211 bcoefx( 1 1
,m)=bcoefx(l l,m)-rtsumx

212 9000 continue

213

214 £***************************************************************

215

216

217 l=nzlayr

218 lm1=l-1

219 cldqzm=cdlog(dqi jdz(lmD)

220 cldqzl=cdlog(-dqijdz(D)

221

222 c calculate q and associated quantities at bottom of layer I

223

224 q1=cqi j(l,1)+zero*dqi j(l)

225 call Xcdai(-q1,k2xq1,dk2xq1,k1xq1,dk1xq1,h2xq1,dh2xq1)

226 dh2xq1=dh2xq1+e13x

61



227

228 q2=cqi j ( lm1 ,2)+zero*dqi j ( lm1

)

229 call Xcdai(-q2,k2xq2,dk2xq2,k1xq2,dk1xq2,h2xq2,dh2xq2)

230 dk2xq2=dk2xq2+cneg

231 dk1xq2=dk1xq2-e13x

232

233 c*****

234 c Caculate acoefx(lm1,m),bcoefx(lm1,m)

235 c and cumulants using outgoing wave in nzlayr

236 c*****

237 dh2k1x=dh2xq1+k1xq2

238 h2dk1x=h2xq1+dk1xq2

239 h2dk2x=h2xq1+dk2xq2

240 dh2k2x=dh2xq1+k2xq2

241

242 call xcadd(denax,cldqzl-cneg+dh2k1x,cldqzm+cneg+h2dk1x)

243 call xcadd(numax,cldqzm+h2dk2x,cldqzl+dh2k2x)

244

245 c If in the nzlayr-1 layer the magnitudes of A coefficients from

246 c integration up and down differ by less than 0.02 dB and their

247 c phases differ by less than 0.001pi, the A and B coefficients

248 c obtained from integration up will be accepted.

249

250 tacoef=numax-denax

251 dacoef=tacoef-acoefx( lm1 ,m)

252 difr=dabs(dreal(dacoef))

253 if (difr .It. downr) then

254 dif i=dimag(dacoef )/pi

255 difi=dabs(difi-dnint(difi/2.d0)*2.d0)

256 if (difi .It. downi ) return

257 end if

258

259 acoefx(lm1 ,m)=tacoef

260 call xcadd(denbx,k2xq2,acoefx( Im1,m)+k1xq2)

261 bcoefx(lm1 ,m)=h2xq1-denbx

262

263 c calculate contributions to cumulants

264

265 sumx=cdlog( -ql/dqi jdz( I )+q2/dqi jdz( lm1 ))+2.0d0*h2xq1

266 call xcadd(dhlx,dk2xq2,acoefx( Im1,m)+dk1xq2)

267 dhlx=bcoefx(lm1,m)+dhlx

268 int1x=2.0d0*dh2xq1-cldqzl

269 call xcadd(int1x,sumx, intlx)

270 int2x=2.0d0*dhlx-cldqzm

271 call xcadd(sumx, intlx, int2x)

272

273 do 9030 l=nzlayr-1 ,2,-1
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274 lm1=l-1

275 cldqzl=cdlog(-dqijdz(l))

276 cldqzm=cdlog(dqi jdz(lmD)

277

278 c calculate q and associated quantities at bottom of layer I

279

280 q1=cqi j( 1 , 1 )+zero*dqi j(l)

281 call Xcdai(-q1,k2xq1,dk2xq1,k1xq1,dk1xq1,h2xq1,dh2xq1)

282 dk2xq1=dk2xq1+cneg

283 dk1xq1=dk1xq1-e13x

284

285 q2=cqi j ( lm1 ,2)+zero*dqi j ( lm1

)

286 call Xcdai(-q2,k2xq2,dk2xq2,k1xq2,dk1xq2,h2xq2,dh2xq2)

287 dk2xq2=dk2xq2+cneg

288 dk1xq2=dk1xq2-e13x

289 dh2xq2=dh2xq2+e13x

290

291 q*****

292 c Calculate acoefx( lm1 ,m),bcoefx( lm1
# m) and cumulants

293 c using continuity relations in terms of the linearly

294 c independent functions k1 and k2

295

296 call xcadd(hyx,k2xq1,acoefx(l,m)+k1xq1

)

297 call xcadd(dhyx,dk2xq1 ,acoefx( I,m)+dk1xq1

)

298 k1dhyx=k1xq2+dhyx

299 dk1hyx=dk1xq2+hyx

300 dk2hyx=dk2xq2+hyx

301 k2dhyx=k2xq2+dhyx

302

303 call xcadd(denax,cldqzl-cneg+k1dhyx,cldqzm+cneg+dk1hyx)

304 call xcadd(numax,cldqzm+dk2hyx,cldqzl+k2dhyx)

305 acoefx( lm1 ,m)=numax-denax

306 call xcadd(denbx,k2xq2,acoefx(lm1,m)+k1xq2)

307 numbx=bcoefx( I ,m)+hyx

308 dnumbx=bcoefx(
I
,m)+dhyx

309 bcoefx( lm1 ,m)=numbx-denbx

310

311 c calculate contributions to cumulants.

312

313 int1x=cdlog(-q1/dqi jdz( I )+q2/dqi jdz( lm1 ))+2.0d0*numbx

314 call xcadd(sumx,sumx, intlx)

315 call xcadd(dhlx,dk2xq2,acoefx(lm1,m)+dk1xq2)

316 dhlx=bcoefx(lm1,m)+dhlx

317 int1x=2.0d0*dnumbx-cldqzl

318 int2x=2.0d0*dhlx-cldqzm

319 call xcadd(sumx,sumx, intlx)

320 call xcadd(sumx,sumx, int2x)
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321

322 9030 continue

323

324 c*****

325 c if I equal to one calculate ground

326 c contribution to cumulants and renormalize bcoefx's

327

328 1=1

329 q1=cqi j ( 1 , 1 )+zero*dqi j ( I

)

330 call Xcdai(-q1,k2xq1,dk2xq1,k1xq1,dk1xq1,h2xq1,dh2xq1)

331 dk2xq1=dk2xq1+cneg

332 dk1xq1=dk1xq1-e13x

333

334 call xcadd(hyx,k2xq1,acoefx(l,m)+k1xq1)

335 call xcadd(dhyx,dk2xq1,acoefx(l,m)+dk1xq1)

336 call surf (q1 .gamma, dgamdq)

337 numbx=bcoefx(
I
,m)+hyx

338 dnumbx=bcoefx( l,m)+dhyx

339 int1x=cdlog(koawav*dgamdq-q1/dqi jdz( I ))+2.0d0*numbx

340 int2x=2.0d0*dnumbx-cdlog(-dqi jdz(D)

341 call xcadd(sumx,sumx, intlx)

342 call xcadd(sumx,sumx, int2x)

343

344 c renormalize b's so that height gain integrals equal unity.

345

346 rtsumx=.5d0*sumx

347

348 do 9020 I l=1,nzlayr-1

349 bcoefx( I l,m)=bcoefx( ll,m)-rtsumx

350 9020 continue

351

352 bcoefx(nzlayr,m)=-rtsumx

353

354

355 return

356 end
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