NAVAL POSTGRADUATE SCHOOL Monterey, California

> EXPONENTIAL REPRESENTATION AND CONSISTENCY CHECKING FOR M-LAYER by Hung-Mou Lee and Yin Yuan Han

> March 1992

Approved for public release; distribution is unlimited.
Prepared for: Naval Command, Control and Ocean Surveillance Center RDT\&E Division, Code 543
San Diego, California 92152-5100

Naval Postgraduate School
 Monterey, California 93943-5000

Rear Admiral R. W. West, Jr
Superintendent
Harrison Shull Provost

This report was sponsored and funded by the Naval Command, Control and Ocean Surveillance Center, RDT\&E Division.

UNCLASSIFIEI)
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL MONTEREY CA 93943-510

1a REPORT SECURITY CLASSIFICATION UNCLASSIFIED		16 RESTRICTIVE MARKINGS			
2a SECURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release; distribution is unlininted			
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE					
4. PERFORMING ORGANIZATION REPORT NUMBER(S) NPSEC-92-005		5 MONITORING ORGANIZATION REPORT NUMMBER(S;			
6a. NAME OF PERFORMING ORGANIZATION Naval Postgraduate School	6b OFFICE SYMBOL (If applicable) EC	7a NAME OF MO Naval Cuinm Center, RIDT\&	ORING OR Contro)ivision	$10 \mathrm{~N}$ cean	:iscace
6c. ADDRESS (City, State, and ZIP Code) Monterey, CA 93943-5000		7b ADDRESS (City, State, and ZIP Code) San I)iegu, CA 92152.5000			
8a NAME OF FUNDING/SPONSORING ORGANIZATION NRaD	Bb OFFICE SYMBOL (If applicable) Code 543	9 PROCUREMEN N660019	$\begin{aligned} & \text { TRUMEN } \\ & 00313 \end{aligned}$	ICATIO	$A B E R$
8c ADDRESS (City, State, and ZIP Code)San Diego, CA 92152		10 SOURCE OF FUNDING NUMBERS			
		Prabiram tlement No	Project NO	last ta	和:
11 TITLE (Include Security Classification) EXPONENTIAL REPRESENTATION ANI)CONSISTENCY CHECKING FOKM LAYEK					

12 PERSONAL AUTHOR(S) HUNG•MOU I.EF. AND YIN YUAN HAN

13a TYPE OF REPORT Technical Report	13b TIME COVERED from	14 DATE OF REPORT (year, month, day) $1992, ~ M a r c h ~$	To PAGE COUNT

16 SUPPLEMENTARY NOTATION
 Government.

17 COSATICODES

FIELD	GROUP	SUBGROUP

18 SUBJECT TERMS (continue on reverse if necessary and identify by block number) Tropospheric Propagation

19 ABSTRACT (continue on reverse if necessary and identify by block number)
M-layer, the tropospheric propagation effect prediction program by NRaD (formerly NOSC), is revised fur grealer accuracy, speed and stability. This is achieved through converting the extended complex number representation into the representation by complex exponent, improving the accuracy in Airy function computation, introducing a new mode locating algorithm and implementing a consistency checking procedure for determining the proper method to evaluate the height gain function. The revision has been documented and the new program suurce code has been delievered to NRaI). It is recommended that the mode search protocol, not just the mode locating algorithon introduced in this revision, be completely revised. Unlike the current approach of blanketing the whole possible region until exhaustion, modes should be searched according to their range attenuation rates one by ont along a well defined path. This should result in a faster and even more stable program. The program size can also be reduced.

Abstract

M-Layer, the tropospheric propagation effect prediction program by NRaD (formerly NOSC), is revised for greater accuracy, speed and stability. This is achieved through converting the extended complex number representation into the representation by the complex exponent, improving the accuracy in Airy function computation, introducing a new mode locating algorithm and implementing a consistency checking procedure for determining the proper method to evaluate the height gain function. The revision has been documented and the new program source code has been delivered to NRaD . It is recommended that the mode search protocol, not just the mode locating algorithm introduced in this revision, be completely revised Unlike the current approach of blanketing the whole possible region until exhaustion, modes should be searched according to their range attenuation rates one by one along a well defined path. This should result in a faster and even more stable program. The program size can also be reduced.

TABLE OF CONTENTS

I. INTRODUCTION 1
A. M-LAYER 2
B. EXTENDED COMPLEX NUMBER REPRESENTATION 5
C. CONSISTENCY CHECKING 7
II. PROGRAM REVISIONS 9
A. ADDITION SUBROUTINE 13
B. AIRY FUNCTION EVALUATION 14

1. XCDAIT 14
2. XCDAIG 14
C. MODE LOCATING 15
3. FNDMOD 17
4. FZEROX 17
5. FINDFX 18
6. ROOTS 19
D. EVALUATING A_{i} AND B_{i} 20
III. CONCLUSION AND RECOMMENDATION 31
A. Performance 31
B. Recommendation 37
APPENDIX A: SUBROUTINE XCADD 38
APPENDIX B: SUBROUTINE FZEROX 41
APPENDIX C: SUBROUTINE ROOTS 52
APPENDIX D: SUBROUTINE ABCOEF 56
LIST OF REFERENCES 65
INITIAL DISTRIBUTION LIST 66

I. INTRODUCTION

M-Layer is a FORTRAN program for computing the propagation factor of an electromagnetic (EM) wave in a stratified atmosphere. It is desirable to extend the capability of this program to include a layer of random medium representing the airocean interface where the thickness of this layer cannot be ignored, where the EM propagation and scattering are so strongly coupled that clutter and propagation effects within this layer cannot be dealt with separately, and where the grazing angle of the EM wave incident into this layer is so small that the curvature of the earth cannot be neglected. To achieve this goal, there are many basic theoretical problems which have to be answered. First of all, the effect of the earth curvature in this program is taken care of through the classical earth-flattening approximation [Ref. 1], but the result [Ref. 2] does not agree with the more recent diffraction theory of Fock [Ref. 3] near the surface of the earth. Then there is the question about the better method to model the atmospheric refractive index profile, either piecewise linear or quadratic, to be resolved by a new earth-flattening approximation under development at NPS. The new approximation will also determine the functions to be used for the representation of the EM fields in each layer through uniform asymptotic theories. Within some proper region, these new functions are expected to reduce to the Airy functions utilized by M-Layer. The evolutionary nature of this effort prompted this review to improve the inner workings of the M-Layer program.

In particular, the subroutines to search for the modes and those for evaluating the Airy functions will remain as an important part of a program investigating questions about EM wave propagation by solving the related boundary value problem.

It can never be overemphasized that a boundary value problem which includes a layer of random medium or some range dependent inhomogeneity, set up according to the Maxwell equations, will include backscattering in its solution. This is in sharp contrast to those numerical procedures based on the parabolic approximation to the wave equation for which the backscattering is completely ignored.

In what follows, the M-Layer program and the reasons for replacing the extended complex numbers with their complex exponent representations are discussed, together with some other problems encountered and resolved during this investigation.

A. M-LAYER

In M-Layer, the index of refraction of the atmosphere is assumed to be height dependent and is approximated with a continuous piecewise linear profile. The classical earth-flattening approximation is utilized to allow the use of the cylindrical coordinate system while retaining the effect of the curvature of the earth. This is done simply by substituting the index of refraction with the modified index of refraction, which also has a piecewise linear profile [Ref. 1].

The source of the EM radiation is assumed to be either a vertical electric dipole or a vertical "magnetic dipole', with the latter providing an approximation to
the radiation of a horizontal electric dipole. The dipole is located along the positive z -axis of the cylindrical coordinate system while the origin is sitting on the ground. The $x-y$ plane is the "flattened" earth surface. After carrying out the Hankel transform along the radial direction, the resulting spectrum of the Hertzian dipole field within each layer of a linear segment of the modified refractive index profile is reduced to a linear combination of the Airy functions. Specifically, the layers are numbered to increase with height, with the first layer being the one right above the ground. The spectrum of the Hertzian dipole field is proportional to the product of the values, at the transmitter height and at the receiver height respectively, of the height-gain function. At a height within the i-th layer, the height-gain function is given by [Ref. 4]:

$$
\begin{equation*}
f_{i}(\rho, z)=B_{i}(\rho)\left[A_{i}(\rho) k_{1}\left(q_{i}\right)+k_{2}\left(q_{i}\right)\right] \tag{1}
\end{equation*}
$$

where ρ is the radial component of the propagation vector and is also the spectral variable of the Hankel transform; hence it is the same throughout all layers. It is a complex variable whose imaginary part represents the radial attenuation rate of the spectral component of the Hertzian dipole field. Under the classical earth-flattening approximation, the spectrum of the Hertzian dipole field contains a discrete portion and a branch cut. The discrete spectrum gives rise to the creeping wave modes diffracted by the earth surface and the dielectric waveguide modes supported by the layered atmosphere. The contribution from the branch cut is usually negligible, especially for the field in the shadow of the earth. The M-Layer program locates the
discrete spectrum for modes having a radial attenuation rate below a predetermined value. Contributions from these modes determine the propagation factor of the wave.

The variable q_{i} in the i-th layer is a dimensionless linear function of height z with the free space wavenumber k, the modified index of refraction m_{i} at the lower boundary $z=z_{i}$, the slope of the modified index of refraction $\alpha_{i} / 2$ and ρ as parameters:

$$
\begin{equation*}
q_{i}=\sqrt[3]{\left(\frac{k}{\alpha_{i}}\right)^{2}}\left(m_{i}^{2}+\alpha_{i}\left(z-z_{i}\right)-\frac{\rho^{2}}{k^{2}}\right) \tag{2}
\end{equation*}
$$

The height dependence of the field is given in terms of the functions $k_{1}\left(q_{i}\right)$ and $k_{2}\left(q_{i}\right)$, which are proportional to the Airy functions $\operatorname{Ai}\left(-q_{i} e^{j 2 \pi / 3}\right)$ and $\operatorname{Ai}\left(-q_{i}\right)$ respectively. Of these two functions, at a height so large that q_{i} is large and positive, $k_{1}\left(q_{i}\right)$ represents a downward going wave and $e^{j 4 \pi / 3} k_{1}\left(q_{i}\right)+k_{2}\left(q_{i}\right)$ represents an upward going wave. The coefficients A_{i} and B_{i} are determined by the conditions on the continuity of the Hertzian dipole field and its derivative across layer boundaries and by the normalization condition that the integral of the square of the height-gain function over all height equals unity.

To fulfill the radiation condition, the highest layer is given the same refractive index as the free space above it and only the outgoing wave is allowed within this layer. Below the "flattened" earth surface, the field is assumed to be a plane wave propagating downward. Hence only the normalization factors are required in the highest layer and in the ground. By assigning B_{i} to unity in the highest layer, all the
coefficients A_{i} and B_{i} can be determined, according to the boundary conditions, to within a multiplicative factor for B_{i}. This multiplicative factor is then deduced from the normalization condition. This procedure can also be carried out from the ground level up. That these coefficients can be computed either from the highest level down or from the lowest level up is a result of the fact that ρ belongs to the discrete spectrum of the Hertzian dipole field. Consequently, agreement between these two ways of evaluating the A_{i} and B_{i} coefficients confirms that a mode has been located accurately.

B. EXTENDED COMPLEX NUMBER REPRESENTATION

The discrete spectrum of the Hertzian dipole field corresponds to the zeroes of the modal function which is a determinant whose elements consist of $k_{1}\left(q_{i}\right)$ and $k_{2}\left(q_{i}\right)$ at the layer boundaries. Numerically, the magnitude of this modal function causes overflow and underflow problems as $k_{1}\left(q_{i}\right)$ or $k_{2}\left(q_{i}\right)$ becomes exponentially large or small for complex q_{i} values. In the M-Layer program, to overcome this problem, a complex number is written as a scaled number, which is complex, multiplied by a scaling factor which is an integer power of e, the base of natural logarithm. This integer is chosen so that the greater of the absolute values of the real part and the imaginary part of the scaled number lies within $e^{ \pm 1}$. A complex number written in this form is called an extended complex number. Multiplication of two extended complex numbers requires summing the two integer exponents in addition to carrying out the regular complex multiplication of the scaled numbers. Addition
of two such numbers is achieved through the use of an addition subroutine: the larger scaling factor is factored out of both addends before they are combined. The scaling factor is adjusted after each addition and after a sequence of multiplications to make sure that the resulting scaled number is still within the desired range. Addition is troublesome when the two numbers to be added nearly cancel each other. Under this circumstance, the scaling factors of the two numbers are identical and both the real parts and the imaginary parts of the scaled numbers are almost equal with opposite signs. It is clear that the real part and the imaginary part of the sum lose their accuracies to different degrees; hence the phase angle may incur substantial error. To remedy this situation, interpolation procedures have to be devised.

As two complex numbers come close to cancel each other, they must be out of phase by almost 180 degrees. By factoring out the square root of their product instead of the scale factor, the resulting addends become reciprocal to each other, both lying within an identical small angle to, and on the same side of, the imaginary axis. They are close to the unit circle, but one is on the inside and the other is on the outside. Taking out further a phase factor of $\pi / 2$ after writing the addends in their exponential forms, the exponents become small numbers for which Taylor series expansion of the exponential function converges rapidly and can be used for interpolating the sum to achieve higher accuracy. Note that after the extra phase factor of $\pi / 2$ is removed from the addends, it is actually the difference of the resulting two reciprocals which is computed. This procedure effectively picks the direction on the complex plane along which the addends are almost opposing each
other to carry out their cancellation. The resulting sum has a phase angle nearly perpendicular to this chosen direction.

It is evident that the representation of a complex number by its complex exponent of base e provides better phase accuracy for addition. A one-to-one correspondence can be achieved by restricting the imaginary part of this exponent to within $-\pi$ and π. This will be called the exponential representation or the complex exponent representation henceforth. It is convenient for multiplication: adding the complex exponents of the two factors will suffice. Conversion of the M-Layer program from the extended complex number to the complex exponent representation has been carried out.

C. CONSISTENCY CHECKING

As better precision is achieved, problems with the mode search procedure and the evaluation of the A_{i} and B_{i} coefficients become severe. They are thoroughly investigated and resolved. For mode search, although the division of the region of interest into "contour rectangles" and further into square "meshes" and the search pattern to move around the sides of a "contour rectangle" to find and follow "phase lines" into it are kept, the basic assumption of Shellman and Morfitt [Ref. 5] that both the real and the imaginary parts of the modal function are linear along every edge of a mesh square is completely abandoned. For the evaluation of the A_{i} and B_{i} coefficients, the "test for evanescence" conditions have been removed. A consistency condition to determine whether to evaluate the coefficients from the ground level up
or from the top level down has been fomulated and incorporated into the program. This accomplishment leads to the relaxation of mode locating accuracy requirement which, combined with the improved precision of the revised program, makes the first order Newton-Raphson iteration unnecessary. The specific changes in the program and the resulting gains in speed, accuracy and execution stability are discussed in the following chapters. Recommendation to completely revise the mode search protocol to do without the "contour rectangles" is also provided.

II. PROGRAM REVISIONS

M-Layer is structured into three parts: setup, mode search and propagation factor evaluation. The main input is the modified refractive index values at specified heights so that a piecewise linear profile can be constructed. If the mode locations for the particular profile are available from a previous run of the program, they can also be included in the input and the mode search procedures will be bypassed. The various ranges and transmitter and receiver heights for which propagation factors are desired are also specified. The subroutine WVGSTDIN is called to input the information from an ASCII data file. The program then computes the constants to be used for mode search and propagation factor evaluation. The mode search is performed with the subroutine FNDMOD. The MODSUM subroutine is then invoked to first compute the A_{i} and B_{i} coefficients as explained in the Introduction, then compute the propagation factor and the propagation loss. The complete program structure is given in Figures 1 and 2. There are several other subroutines which are not included in these and other figures, such as DHORIZ for computing the horizon distance between a transmitter and a receiver for reference purpose; CHKMOD, a maintenance routine for removing zero from reported mode locations by older versions of the program; or AO 2 H 2 O , a routine to compute the atmospheric absorption coefficient due to oxygen and water vapor. They will not be discussed as

Figure 1 Original M-layer subroutines structure

Figure 2 Original M-layer subroutines structure (continued)
they do not contribute directly to the main purpose of this program of locating the modes and computing the propagation factor.

The program structure has been altered as shown in Figures 3 and 4. Since the A_{i} and B_{i} coefficients have to be evaluated only once, they are now obtained through a call to the subroutine ABCOEF directly from the main program right after the modes are located. Several subroutines are dropped in this revision for various reasons: The subroutines NORME and NORMRE are eliminated because they are no longer needed due to the change in complex number representation; The subroutines NOMSHX, FDFDTX and DXDETR are not used because the modes are now located with adequate precision without further iteration; The subroutine ADDX is not listed separately because it is called only once and has been reduced to only a few lines which are placed where the subroutine is called in the original program. On the other hand, changes in the mode search algorithm require the addition of two new subroutines: SURF0 is a modified and simpler version of SURF; ROOTS replaces QUAD. Due to the change in complex number representation, all subroutines listed below FNDMOD and MODSUM have been revised, including their input/output lists. But except for SURF0 and ROOTS, the utilities of these subroutines are the same as those of the original ones. Descriptions of these subroutines can be found in the report by Yeoh [Ref. 4].

The most significant changes have been made in XCADD, XCDAIT and XCDAIG for adopting the complex exponent representation and improving computation speed and accuracy; in FZEROX, FINDFX, ROOTS and SURF0 for

Figure 3 New M-layer subroutines structure

Figure 4 New M-layer subroutines structure (continued)
stabilizing and simplifying the mode search algorithm; and in ABCOEF for implementing the criteria to determine the reliable manner for evaluating the A_{i} and B_{i} coefficients. These changes are discussed in the sections below. The source code listings of the completely new subroutines XCADD and ROOTS and the significantly revised subroutines FZEROX and ABCOEF, which are compiled with Microsoft FORTRAN version 5.00, are attached as Appendices A through D. Validation of the revised program has been carried out at 9.6 GHz for all the 21 profiles listed in Yeoh [Ref. 4].

A. ADDITION SUBROUTINE

XCADD is the subroutine implementing the addition of complex numbers under the representation by their exponents. Given the double precision complex numbers z_{1} and z_{2} as the exponents of the addends, this subroutine returns the exponent of the sum. Since a double precision number has an accuracy of 53 bits, if the real parts of z_{1} and z_{2} differ by more than 53 bits, the exponent of their sum will simply be the one of the greater real part. When cancellation becomes serious, the square root of the addends is factored out first. Then the four-term Taylor series expansions of the resulting reciprocals are summed up. Since the leading term of the sum of the Taylor series is a good estimate of the sum of the reciprocals and the relative error of the four-term Taylor series sum is proportional to the fourth order of this leading term, the threshold for invoking this interpolation procedure is set at the highest possible value of 2^{-14} allowed under double precision. Experimenting
with this procedure shows that this interpolation improves accuracy as long as the threshold is set at a number between 2^{-24} and 2^{-14}.

B. AIRY FUNCTION EVALUATION

Similar to the original program, the evaluation of the Airy function adopted the algorithm prescribed by Schulten, et. al. [Ref. 6]. In the new program, changes are made to follow the advice of Schulten, et. al. concerning the region within which Taylor series expansion, instead of the faster Gaussian quadrature, has to be used to achieve double precision accuracy. Other changes in implementing the algorithm are described below.

1. XCDAIT

Due to the similarity in their Taylor series coefficients, the Airy function and its derivative are evaluated within a single loop. The relative accuracy of the derivative of the Airy function is set at the double precision limit of 2^{-54}.

2. XCDAIG

Six term Gaussion quadrature is used for evaluating the Airy function and its derivative outside the circle of radius 4.97 centered at $(0.90,2.80)$ on the complex plane. The use of four-term quadrature outside a radius of 15 from the origin suggested by Schulten, et. al. is not adopted. The six-term quadrature in this range retains a higher accuracy while overall speed improvement by using both the fourterm and the six-term quadrature appears to be minimal.

C. MODE LOCATING

As explained in the Introduction, the modes are located at the zeroes of the modal function. These zeroes are located on the upper complex q_{11} plane. Here q_{11} is the value of q_{1} on the earth surface, which, according to Eq.(2) of Chapter 1 , is a linear function of ρ^{2}. For a horizontally propagating mode, ρ / k is close to unity. The maximum range attenuation rate specified for the desired modes, which corresponds to a limit on the imaginary part of ρ, determines approximately the upper bound for the imaginary part of the q_{11} complex plane to be searched for modes. The Shellman and Morffit mode search procedure first divides the search region horizontally into "contour rectangles" each of which spans 160 meshes along the real q_{11} direction. A mesh is a square whose size is an adjustable parameter of the order 10^{-4} at 9.6 GHz for most of the cases considered herein. This parameter is determined by the frequency and the slope of the modified index of reflection in the lowest layer of the profile. The search commences at the top left corner of the "contour rectangle" whose left edge has a real coordinate value close to the difference of the real parts of the q_{11} values with the minimum modified index of refraction and the index near the surface substituted into Eq.(2) of Chapter 1. After the search over the initial rectangle is completed, the program moves to search the next rectangle until a specified maximum number of modes are found or a specified number of "contour rectangles" have been searched.

The search for zeroes makes use of the fact that a real function changes sign when it crosses a simple zero. Since a zero of a complex valued function $F(q)$ is
where both its real part and imaginary part vanish, a necessary condition for a point q_{m} to be a zero is that it is on the intersection of two curves defined by $\operatorname{Im}\{\mathrm{F}(\mathrm{q})\}=0$ and $\operatorname{Re}\{\mathrm{F}(\mathrm{q})\}=0$. The program searches around a "contour rectangle" for a sign change in $\operatorname{Im}\{\mathrm{F}(\mathrm{q})\}$ across an edge of a mesh bordering the side of the "contour rectangle" to determine that a line of $\operatorname{Im}\{\mathrm{F}(\mathrm{q})\}=0$ has been encountered. The search then follows this line into the meshes within the "contour rectangle', checking each mesh to see if a curve $\operatorname{Re}\{\mathrm{F}(\mathrm{q})\}=0$ enters the mesh under investigation. All these steps make use only of the assumption that the zeroes of the modal function are simple. Once both the curve $\operatorname{Im}\{\mathrm{F}(\mathrm{q})\}=0$ and the curve $\operatorname{Re}\{\mathrm{F}(\mathrm{q})\}=0$ are determined to be present within a mesh, the location of their possible interception is estimated. An algorithm for this estimate is required.

Shellman and Morffit [Ref. 5] introduced a further assumption that the functions $\operatorname{Re}\{\mathrm{F}(\mathrm{q})\}$ and $\operatorname{Im}\{\mathrm{F}(\mathrm{q})\}$ are both linear along the edges of a mesh. Based on this assumption, they try to estimate the locations where the curve $\operatorname{Im}\{\mathrm{F}(\mathrm{q})\}=0$ enters and leaves a mesh square and the location of q_{m} if a curve $\operatorname{Re}\{\mathrm{F}(\mathrm{q})\}=0$ also enters the same mesh. It is obvious that information about the locations where the curves enter and leave the mesh square is not essential. Furthermore, in the 18 m duct height case, the scheme causes the search path to loop around four contiguous meshes until the search is broken up by the limit on the number of meshes to be investigated. Replacing their technique requires major changes in the subroutines involved. A new subroutine ROOTS is provided to estimate the location of the
intersection of the curves $\operatorname{Im}\{\mathrm{F}(\mathrm{q})\}=0$ and $\operatorname{Re}\{\mathrm{F}(\mathrm{q})\}=0$. These changes eliminate the looping problem.

Another problem is encountered in the 40 m duct height case when a large number of zeroes are found in the lower half complex q_{11} plane. These zeroes appear to belong to the reflection coefficient on the wrong sheet of the branch cut and are not waveguide modes. This happens because the search region has been extended below the real q_{11} axis to avoid the singularity in SURF. The problem with this singularity should have been solved within SURF, especially because it occurs only when the derivative of the subroutine output variable gamma with respect to q_{11} is computed. Since this derivative is not needed during mode search, the extension of the search region to the negative q_{11} plane is unnecessary. A simplified routine, SURF0, is introduced which is exactly the same as SURF except that it does not evaluate the derivative of gamma. By using this subroutine instead of SURF, the search path in the revised program does not avoid the real and the imaginary axes.

1. FNDMOD

The search region is limited to the upper half q_{11} plane. All the modes found are ordered according to their range attenuation rates before those numbered beyond the maximum modes allowed are abandoned.

2. FZEROX

Since the curve $\operatorname{Im}\{\mathrm{F}(\mathrm{q})\}=0$ enters into a mesh square through an edge, the values of $\operatorname{Im}\{\mathrm{F}(\mathrm{q})\}$ must change sign over the end points of either one or all
three other edges. When there is only one other edge across which $\operatorname{Im}\{F(q)\}$ changes sign at its end points, it is the edge across which the curve $\operatorname{Im}\{\mathrm{F}(\mathrm{q})\}=0$ exits the mesh square. Ambiguity arises when all edges indicate a change of sign at their end points. When this occurs, a "right turn rule" is adopted which assumes that the curve exits the edge to the right of the one along which it enters the mesh square. Such a rule avoids the retracing of the search path when the mesh square is revisited as entering this same mesh square from the left side of an edge after exiting from its right side requires a crossing of the $\operatorname{Im}\{\mathrm{F}(\mathrm{q})\}=0$ curve, which is prohibited under the simple zero assumption. On the other hand, the actual curve may have turned left and then returns to this mesh square, i.e., following a "left turn rule." Under such a scenario, this wrong choice would have left a segment of the curve not searched. This difficulty has not been observed during testing. In fact the ambiguous situation seldom occurs. Note also that, as remarked above, two lines of $\operatorname{Im}\{\mathrm{F}(\mathrm{q})\}=0$ do not cross each other unless a higher order zero is present. Hence only a right turn rule or a left turn rule for the curve to exit the mesh is allowed. Exiting the opposite edge demands a pair of crossing $\operatorname{Im}\{\mathrm{F}(\mathrm{q})\}=0$ curves within the mesh square. This violates the assumption that all zeroes are simple. Also note that, the possibility of vanishing $\operatorname{Re}\{\mathrm{F}(\mathrm{q})\}$ or $\operatorname{Im}\{\mathrm{F}(\mathrm{q})\}$ values at the corners of a mesh square is eliminated through a small adjustment in FINDFX.

3. FINDFX

Both the vertical shift away from the real q_{11} axis and the horizontal offset away from the imaginary axis are unnecessary and have been removed from
this routine. Furthermore, as a result of converting to the complex exponent representation, the sine and cosine of the argument of the modal function are examined for sign changes in FZEROX. This is implemented in FINDFX by including the cosine and sine values of the argument of the modal function in the output list. To avoid the indeterminate case when either the real or the imaginary part of the modal function becomes zero at any corner of a mesh square, the argument for computing the cosine and sine values is increased by 2^{-53} when this occurs. This is equivalent to a consistent small distortion of the particular corner of the mesh square. This will not cause any error in locating the zero because FINDFX still returns separately the unmodified exponent of the value of the modal function.

4. ROOTS

Assuming that the modal function is analytic within the mesh, this subroutine utilizes the values of the modal function at the four corners of the mesh square to determine the Taylor series expansion coefficients of the modal function to the third order. The roots of this cubic polynomial are then located using Cardan's solution by radicals. If the higher order coefficients fall below machine resolution for a root within the mesh square, these coefficients are regarded as zero and the order of the polynomial is reduced and can be solved more expediently. If the function is determined to be constant over the mesh square, the center of the square is taken as the root location.

D. EVALUATING A_{i} AND B_{i}

As discussed in the Introduction, the A_{i} and B_{i} coefficients can be evaluated either from the top level down or from the lowest level up. These two procedures are simply called "integration down" and "integration up" respectively in the original documentation [Ref. 4]. The location of a mode has been called an eigenvalue. That the results of integration down and integration up agree is a manifestation that the eigenvalue is located accurately.

The subroutine ABCOEF evaluates the coefficients A_{i} and B_{i} for each mode. If the range attenuation rate for a mode is greater than $0.1 \mathrm{~dB} / \mathrm{km}$, the coefficients are evaluated from the lowest layer up. Otherwise, it is evaluated from the top layer down. It is obvious that such a rule must be implemented because the results of integration up and integration down do not agree for many modes. Efforts are made to determine the cause of this discrepancy and to devise a means to resolve it.

Investigation reveals that inadequate precision in the location of the modes is one source of the problem. Since the B_{i} coefficients depend on the A_{i} coefficients while the A_{i} coefficients are obtained directly, only the A_{i} coefficients need to be examined. The A_{i} coefficients of the six modes of lowest range attenuation rates for all 21 profiles except the one without evaporation duct are computed using eigenvalues of different accuracy controlled by the first order Newton-Raphson iteration method. Table 1 shows the A_{i} coefficient computed with the new program. They are arranged from the top layer down. In the i-th layer, the A_{i} coefficient computed by integration downward depends only on A_{i+1} in the layer above while

TABLE 1. IMPROVING A_{i} ACCURACYWITH EIGENVALUE (18 M DUCT)

that computed by integration upward depends only on A_{i-1} in the layer below. Hence in each layer, the coefficient obtained by integration downward is listed above that obtained by integration upward. There are five sets of A_{i} values listed, with the magnitudes given in powers of 10 and the phase given as a multiple of π. They are obtained from eigenvalues of decreasing accuracy, the one used to compute the left most column being the most accurate. The first set is computed using an eigenvalue having a relative accuracy of 2^{-40}; The second set uses an eigenvalue with a relative accuracy of 2^{-36}; The relative accuracy of the eigenvalue for the third set is 2^{-36}; For the fourth set, the first order Newton-Raphson iteration of the mode location is set at an absolute accuracy of 0.03 of the mesh size, same as that specified in the original program; The eigenvalue for the right most set is the mode location estimated by ROOTS without modification by the Newton-Raphson iteration. It is clear that, for this mode, the difference between these two methods of computing the coefficients becomes negligible as the accuracy in mode location increases. For example, in the 8 -th layer, the magnitude of A_{i} computed by integrating downward changes from -1.9078 to 0.3482 to 0.3460 to 0.3459 , which agrees with the result computed by integrating upward. The phase follows the same trend to an agreement within 0.001π. Table 2 shows a similar set of output, but the coefficients fail to agree even when the relative accuracy is increased to 2^{-40}. Note that the actual difference in both the real part and the imaginary part of the two most accurate eigenvalues is about 2^{-48}. Double precision accuracy appears to be insufficient for the coefficients computed with these two methods to agree for all modes. Some interesting features

TABLE 2. IMPROVING A_{i} ACCURACYWITH EIGENVALUE (36 M DUCT)

mode 3 q-eigenvalue eigenvalue difference:			$\begin{array}{rrr}.31480001647813920+00 \\ 380-14 & 360-14 & 380-14\end{array}$. $14796229405720070-02$$.360-14$$-.160-09$			53D-07	.280-07
layer layer	$\begin{array}{ll} \text { \# Ai/down } \\ \# & A i / u p \end{array}$		Ai/down Ai/up		Ai/down Ai/up		Ai/down Ai/up		Ai/down Ai/up	
27	-. 0009	. 6663	-. 0009	. 6663	-. 0009	. 6663	-. 0009	. 6663	-. 0009	. 6663
27	. 2353	. 7582	. 2353	. 7582	. 2353	. 7582	. 2353	. 7582	. 2353	. 7582
26	. 0007	. 6678	. 0007	. 6678	. 0007	. 6678	. 0007	. 6678	. 0007	. 6678
26	-. 0111	. 3659	-. 0111	. 3659	-. 0111	. 3659	-. 0111	. 3659	-. 0111	. 3659
25	. 0022	. 6657	. 0022	. 6657	. 0022	. 6657	. 0022	. 6657	. 0022	. 6657
25	-1.8851	. 3913	-1.8851	. 3913	-1.8851	. 3913	-1.8851	. 3913	-1.8852	. 3913
24	. 0001	. 6809	. 0001	. 6809	. 0001	. 6809	. 0001	. 6809	. 0001	. 6809
24	-7.4914	. 6081	-7.4914	. 6081	-7.4914	. 6081	-7.4914	. 6081	-7.4914	. 6081
23	-2.9495	. 5951	-2.9495	. 5951	-2.9495	. 5951	-2.9495	. 5951	-2.9495	. 5951
23	-14.5340	. 7973	-14.5340	. 7973	-14.5340	. 7973	-14.5340	. 7973	-14.5340	. 7973
22	-12.1956	. 9278	-12.1956	. 9278	-12.1956	. 9278	-12.1956	. 9278	-12.1956	. 9278
22	-23.5827	-. 9407	-23.5827	-. 9406	-23.5827	-. 9406	-23.5827	-. 9406	-23.5827	. 9406
21	-35.2395	-. 2502	-35.2395	-. 2502	-35.2395	-. 2502	-35.2395	-. 2502	-35.2396	-. 2501
21	-44.4517	-. 8199	-45.8691	. 8599	-45.8691	. 8599	-47.4590	-. 1252	-47.4594	-. 1251
20	-131.3304	-. 9570	-131.3304	-. 9570	-131.3304	$\cdot .9570$	-131.3304	-. 9570	-131.3307	-. 9569
20	-129.0146	-. 2961	-127.6070	. 0248	- 127.6070	. 0248	-122.9124	-. 9081	-120.9305	. 8279
19	-25.6088	-. 9230	-25.6088	-. 9230	-25.6088	-. 9230	-25.6088	-. 9230	-25.6088	-. 9230
19	-25.6090	-. 9228	-25.6184	-. 9241	-25.6184	-. 9241	-22.5644	-. 8054	-20.2166	. 7391
18	-13.6970	. 6510	-13.6970	. 6510	-13.6970	. 6510	- 13.6970	. 6510	-13.6970	. 6510
18	-13.6970	. 6510	-13.6970	. 6510	-13.6970	. 6510	-13.0618	. 7675	-10.8148	. 3440
17	-7.0384	. 4145	-7.0384	. 4145	-7.0384	. 4145	-7.0384	. 4145	-7.0384	. 4145
17	-7.0384	. 4145	-7.0384	. 4145	-7.0384	. 4145	-7.0308	. 4179	-6.3129	. 1800
16	-3.3146	. 2991	-3.3146	. 2991	-3.3146	. 2991	-3.3146	. 2991	-3.3146	. 299
16	-3.3146	. 2991	-3.3146	. 2991	-3.3146	. 2991	-3.3146	. 2991	-3.3116	. 2970
15	-2.3132	. 2632	-2.3132	. 2632	-2.3132	. 2632	-2.3132	. 2632	-2.3132	. 2632
15	-2.3132	. 2632	-2.3132	. 2632	-2.3132	. 2632	-2.3132	. 2632	-2.3127	. 2629
14	-1.5669	. 2415	-1.5669	. 2415	-1.5669	. 2415	-1.5669	. 2415	-1.5669	. 2415
14	-1.5669	. 2415	-1.5669	. 2415	-1.5669	. 2415	-1.5669	. 2415	-1.5668	. 2415
13	-1.0838	. 2352	-1.0838	. 2352	-1.0838	. 2352	-1.0838	. 2352	-1.0838	. 2352
13	-1.0838	. 2352	-1.0838	. 2352	-1.0838	. 2352	-1.0838	. 2352	-1.0838	. 2352
12	-. 6983	. 2432	-. 6983	. 2432	-. 6983	. 2432	-. 6983	. 2432	-. 6983	. 2432
12	-. 6983	. 2432	-. 6983	. 2432	-. 6983	. 2432	-. 6983	. 2432	-. 6983	. 2432
11	-. 3754	. 2712	-. 3754	. 2712	-. 3754	. 2712	-. 3754	. 2712	-. 3754	. 2712
11	-. 3754	. 2712	-. 3754	. 2712	-. 3754	. 2712	-. 3754	. 2712	-. 3754	. 2712
10	-. 0102	. 3619	-. 0102	. 3619	-. 0102	. 3619	-. 0102	. 3619	-. 0102	. 3619
10	-. 0102	. 3619	-. 0102	. 3619	-. 0102	. 3619	-. 0102	. 3619	-. 0102	. 3619

can be observed in both tables, which are present in all 120 sets of values computed. When disagreement is present in one set of A_{i} coefficients such as those in either Table 1 or Table 2, the change toward smaller differences with improving eigenvalue accuracy occurs mainly in one way of computation, but not both. For example, in Table 1, the values of integration downward improve with better eigenvalue accuracy, while those computed by integrating upward change little. In Table 2, the results of integration downward are the ones that are holding steady as the accuracy in eigenvalue improves. Furthermore, when disagreement occurs, the layer in which the A_{i} coefficient has the smallest magnitude, i.e., the one having the most negative power of 10 , divides the table into two parts. The results of two different ways of computation agree in the layers above this one if they disagree in those below it, and vise versa. No explanation will be attempted. Instead, practical rules are drawn up to take advantage of these facts. In Table 1, the process of integration upward goes through the troublesome 10 -th layer and produces results which agree with the results of downward integration before the downward process goes through the 10 -th layer. On the other hand, the downward integration is tripped up going across the 10 -th layer and produces results which fail to agree with the results from upward integration. It is clear that the results from upward integration are the correct ones. This conclusion is further supported by the fact that improving the accuracy of the eigenvalue does not change significantly the results of upward integration. Similar argument leads to the conclusion that in Table 2, the results of downward integration are the correct values.

It can be concluded from the above observations that one of the methods of computing the A_{i} coefficients converges to the correct value much faster then the other. It is also found that this method of faster convergence is always able to arrive at the correct values for A_{i} for all the cases under investigation.

Table 3 lists the statistics of the method of integration which yields the correct A_{i} coefficients for each of the 120 modes investigated. The differences in magnitudes and phases in the lowest layer and in the layer below the highest are also listed. Since for most of the cases when disagreement in A_{i} values occurs, the correct integration is upward, this is used as the default. To decide that downward integration should be utilized, the following steps are taken: The first A_{i} value of downward integration is computed and compared to the value from upward integration. If the magnitudes in dB disagree by less than 0.02 dB , their phases will be checked. If the phases differ by less than $10^{-3} \pi$, the agreement is deemed acceptable and the A_{i} and B_{i} coefficients computed from the lowest layer up are used. Otherwise, the coefficients are re-evaluated again from the highest layer down.

Once the correct method of evaluating the A_{i} and B_{i} coefficients is used, the accuracy of the mode location becomes less critical. For all the cases investigated, the A_{i} coefficients obtained from mode locations estimated with or without the Newton-Raphson first order iteration differ only by 0.06 dB in magnitude and 0.0013π in phase at most. In fact, few cases show differences more than 0.002 dB and 0.0001π. The Newton-Raphson iteration is not needed. Hence the subroutines NOMSHX, FDFDTX and DXDETR are removed.

TABLE 3. STATISTICS FOR EVALUATING A_{i} COEFFICIENT

Duct height	Mode \#	Evaluating Method		$\Delta\left\|A_{i}\right\| \quad(d B)$		$\Delta \arg \left(A_{i}\right) / \pi$	
				Layer		Layer	
		up	down	bottom	top-1	bottom	top-1
02	1	x					
	2	x					
	3	x					
	1	x		0.172		0.093	
	5	x					
	z	x		8.362		1.3234	
04	1	x					
	2	x					
	3	x		0.008		0.0002	
	1	x		1.030		1.8717	
	5	x		7.814		1.2948	
	6	x		0.002		0.0001	
06	1	x					
	2	x		0.002		0.0004	
	3	x		0.522		0.0158	
	4	x					
	5	x		13.278		0.4377	
	6	x		0.002		0.0001	
08	1	x					
	2	x		0.002			
	3	x		0.002		0.0001	0.0001
	4	x		0.016		0.0026	
	5	x		4.066		0.6355	
	6	\times		3.978		0.6186	

TABLE 3. CONTINUED 1.

TABLE 3. CONTINUED 2.

Duct height	Mode \#	Evaluating Method		$\Delta \mid A_{i}$	(dB)	$\Delta \arg \left(A_{i}\right) / \pi$	
				Layer		Layer	
		up	down	bottom	top-1	bottom	top-1
18	1		x		0.008		0.0001
	2	6		0.002		0.0001	
	3	x				0.0001	
	4	x					
	5	x		0.016		0.0003	
	6	6		0.002			
20	1		x		0.078		0.0164
	2	4					
	3	x		0.002		0.0001	
	4	6				0.0008	
	5	x		0.16		0.0195	
	6	4		0.002		0.0001	
22	4		x		0.008		0.239
	2	6					
	4	x		0.004			
	3	6		0.016			
	5	x		0.002		0.0001	
	6	x		0.31		0.0117	
24	1	x					
	2		x		0.868		0.2842
	3	x		0.006		0.0009	
	4	x		0.002		0.0001	
	5	x		0.026		0.0009	
	6	X		0.008		0.0001	

TABLE 3. CONTINUED 3.

TABLE 3. CONTINUED 4.

Duct height	Mode \#	Evaluating Method		$\Delta\left\|A_{i}\right\| \quad(d B)$		$\Delta \arg \left(A_{i}\right) / \pi$	
				Layer		Layer	
		up	down	bottom	top-1	bottom	top-1
34	1	x		0.002	0.002		
	2		x		13.456		0.0311
	3		x		1.014		0.2347
	4	x					
	5	x		0.03		0.0006	
	6	x		0.014		0.0006	
36	1		x			0.0001	0.0014
	2		x		1.686		0.2224
	3		x		4.724		0.0919
	4	x					
	5	x		0.006		0.0001	
	6	x		0.02		0.0001	
38	1		x		0.996		0.0115
	2		x		4.974		0.0152
	3	x					
	4		x		5.052		0.0417
	5	x				0.0001	
	6	x		0.002			
40	1	x		0.002	0.002		
	2		x		3.85		0.1226
	3		x		3.568		0.1555
	4		x		3.448		0.1678
	5	x				0.0001	
	6	x					

III. CONCLUSION AND RECOMMENDATION

A. Performance

This revision of M-Layer converts the extended complex number representation of an exponentially large or small number into the direct representation by its complex exponent. The accuracy of the computation has been improved in two ways: First, an interpolation algorithm has been devised when severe cancellation of the addends is detected. Secondly, accuracy for the evaluation of the Airy function has been improved, not just by summing the Taylor series to double precision resolution and by adopting six-term Gaussian quadrature, but also by expanding the region within which the more expedient Gaussian quadrature is excluded in favor of the more accurate but time-consuming Taylor series summation. The improvement in accuracy is most easily seen from Table 1.

As discussed in the Introduction, evaluating the A_{i} and B_{i} coefficients either from the lowest layer up (integration up) or from the top layer down (integration down) must result in the same values. This property provides a consistency check for the accuracy of the computation. For the six modes of lowest range attenuation rates of the 20 profiles of different duct heights, Table 1 lists the maximum difference for each mode which shows a discrepancy between these two methods of evaluating the A_{i} coefficients. For each profile, the maximum value in magnitude difference in dB among all the layers is listed if it is greater than 2 . If the phases of the coefficients

TABLE 1. MAXIMUM DIFFERENCE IN A_{i} COEFFICIENT BETWEEN INTEGRATION UP AND DOWN

Duct height (m)	Mode \#	Difference in A_{i} coefficient			
		Magnitude difference in (dB)		Phase difference over 0.1π	
		original	revised	original	revised
02	3	5.22		Yes	
	6	61.16		Yes	
04	2	22.46	2.3		
	5	106.9		Yes	
06	3	8.62		Yes	
	5	32.36			
04	5	77.84		Yes	
	6	44.9		Yes	
10	5			Yes	
12	3	69.38		Yes	
	5	46.32		Yes	
	6	7.46		Yes	
14	6	30.6		Yes	
22	1	8.64		Yes	
14	2	80.48		Yes	
14	2	110.68		Yes	
28	2	10 ¢̂. 9	67.68	Yes	Yes
30	3	173.28	143.42	Yes	Ycs
32	1	11.38		Yes	
	3	525.04	188.04	Yes	Yes

TABLE 1. CONTINUED

Duct height (m)	Mode \#	Difference in A_{i} coefficient			
		Magnitude difference in (dB)		Phase difference over0.1π	
		original	revised	original	revised
33	2	37.98		Yes	
	3	715.7	209.94	Yes	Yes
36	2	112.74		Yes	
	3	957.92	231.68	Yes	Yes
38	2	107.44	52.26	Yes	Yes
	4	1249	255.8	Yes	Yes
40	3	167	112.72	Yes	Yes
	4	823.56	258.18	Yes	Yes
	Magnitude difference within 2 dB are not listed.				

deviate more than 0.1π in any layer, that particular mode is also singled out. The location of the mode of the revised program is within a relative accuracy of 2^{-40} achieved through first order Newton-Raphson iteration. Even though discrepancies still exist when the duct is 28 meters or higher, it is clear that the revised program computes more accurately than the original one.

For the cases where the two methods of evaluating the A_{i} and B_{i} coefficients disagree, it has been observed that one of the methods always leads to A_{i} values which are little changed when the accuracy in mode location is varied, while the other method produces A_{i} values which shift toward the results of the other method as the accuracy of mode location improves. Based on this observation, a consistency
check is implemented into the program to identify the method which converges better. For the 120 cases investigated, when this method of faster convergence is used, the A_{i} coefficients obtained from mode locations estimated with or without the Newton-Raphson first order iteration differ only by 0.06 dB in magnitude and 0.0013π in phase at most. In fact, few cases show differences more than 0.002 dB and 0.0001π. This allowed the Newton-Raphson iteration to be removed in this revision.

Table 2 compares the performance between the original and the revised programs. The time spent to find the modes has been reduced by an average of 22.58%. The revised program can always produce the modes found by the original program. Moreover, the mode search is stable for the new program: the time it requires to search for the modes is about the same for similar profiles. The sudden jumps in mode search time for the 24 m and the 40 m cases, which indicate troubles during the search, no longer happen.

With the proper method of evaluating the A_{i} and B_{i} coefficients determined by the consistency check, the output of the revised program differs from the original program in some cases. The most serious deviation has been observed for the 38 m duct height case as shown in Tables 3 and 4. For example, at a range of 36.5 km with the transmitter at a height of 25 m and the receiver at 10 m , the coherent path loss is 175.93 dB from the original program, and is 167.90 dB from the revised program.

TABLE 2. OVERALLMODE SEARCH PERFORMANCE COMPARISON

DUCT (mEIGHT (meters)	ORIGINAL PROGRAM		REVISED PROGRAM		Time Improvement	
	Time	Modes	Time	Modes		
00	$0: 00: 37$	3	$0: 00: 35$	3	5.40%	
02	$0: 32: 14$	9	$0: 31: 55$	9	0.98%	
04	$1: 14: 12$	25	$1: 05: 04$	25	12.31%	
08	$2: 10: 18$	53	$1: 56: 50$	53	10.33%	
08	$0: 35: 58$	39	$0: 29: 25$	39	18.21%	
16	$0: 53: 24$	59	$0: 48: 32$	61	9.11%	
12	$1: 09: 40$	86	$1: 01: 44$	89	11.39%	
14	$1: 20: 42$	94	$1: 11: 13$	97	11.75%	
16	$1: 54: 35$	95	$1: 18: 07$	97	31.82%	
16	$1: 45: 09$	103	$1: 27: 15$	104	17.02%	
20	$1: 46: 19$	103	$1: 34: 20$	105	11.27%	
28	$1: 52: 54$	108	$1: 35: 18$	108	15.59%	
24	$3: 42: 59$	106	$1: 46: 47$	107	52.11%	
26	$2: 07: 42$	106	$1: 43: 55$	108	18.62%	
28	$2: 00: 05$	107	$1: 44: 59$	109	12.57%	
30	$1: 59: 59$	107	$1: 46: 19$	108	11.39%	
22	$1: 55: 29$	108	$1: 42: 58$	110	10.84%	
34	$2: 29: 57$	109	$2: 15: 58$	111	9.32%	
36	$2: 31: 40$	109	$2: 17: 20$	112	9.45%	
38	$2: 38: 44$	110	$2: 18: 09$	111	12.97%	
36	$5: 41: 17$	95	$2: 39: 39$	111	53.22%	
Total\|		$40: 23: 54$		$31: 16: 22$		22.58%

TABLE 3. ORIGINAL PROGRAM OUTPUT: 38 M DUCT

frequency =		9600.0000 mhz		incoherent mode sum (db)	coherent path loss (db)	incoherent path loss (db)	horizon (km)
range (km)	(zt)	$\begin{array}{r} 2 r \\ (m) \end{array}$	coherent mode sum (db)				
27.3	25.0	4.0	-15.30	-15.62	156.10	156.43	28.9
27.3	25.0	6.0	. 62	-2.35	140.18	143.16	30.7
27.3	25.0	8.0	-1.11	-4.21	141.92	145.01	32.3
27.3	25.0	10.0	-27.26	-12.66	168.06	153.46	33.6
36.5	25.0	4.0	-16.94	-16.62	160.28	159.96	28.9
36.5	25.0	6.0	-. 73	-2.05	144.07	145.39	30.7
36.5	25.0	8.0	-2.21	-3.72	145.55	147.06	32.3
36.5	25.0	10.0	-32.59	-14.29	175.93	157.64	33.6
45.8	25.0	4.0	-19.89	-16.96	165.20	162.26	28.9
45.8	25.0	6.0	-2.81	-1.89	148.11	147.19	30.7
45.8	25.0	8.0	-4.11	-3.43	149.41	148.74	32.3
45.8	25.0	10.0	-28.57	-15.22	173.88	160.52	33.6

TABLE 4. REVISED PROGRAM OUTPUT: 38 M DUCT

frequency =		9600.0000 mhz					
range (km)	$\begin{array}{r} \mathrm{zt} \\ (\mathrm{~m}) \end{array}$	$\begin{gathered} 2 r \\ (m) \end{gathered}$	coherent mode sum (db)	incoherent mode sum (db)	coherent path loss (db)	incoherent path loss (db)	horizon (km)
27.3	25.0	4.0	-14.38	-15.66	155.18	156.47	28.9
27.3	25.0	6.0	. 42	-2.37	140.39	143.18	30.7
27.3	25.0	8.0	-1.52	-4.21	142.33	145.02	32.3
27.3	25.0	10.0	-21.20	-12.51	162.01	153.31	33.6
36.5	25.0	4.0	-17.32	-16.60	160.66	159.94	28.9
36.5	25.0	6.0	-. 48	-2.08	143.82	145.42	30.7
36.5	25.0	8.0	-1.62	-3.73	144.96	147.07	32.3
36.5	25.0	10.0	-24.56	-14.04	167.90	157.38	33.6
45.8	25.0	4.0	-20.26	-16.93	165.57	162.23	28.9
45.8	25.0	6.0	-3.14	-1.93	148.44	147.23	30.7
45.8	25.0	8.0	-4.62	-3.46	149.92	148.76	32.3
45.8	25.0	10.0	-25.40	-14.90	170.71	160.21	33.6

B. Recommendation

The mode search protocol of this program needs to be revised. Since the search is limited by the maximum range attenuation rate accepted, it is logical to begin with locating the mode of the lowest or the highest attenuation, then proceed to look for the next one in the order of increasing or decreasing attenuation rate. Furthermore, under the assumption of analyticity over the search region, there should be only one connected "phase line" of vanishing real part of the modal function on which all the modes are located. The partition of the search region into rectangles as has been done in this program tends to cut the "phase line" into segments before the program starts to search for the end points of these segments and then follow the segments in different directions. It is clear that a better way is to search for one end of the "phase line" along a line of a constant attenuation rate in the search region, either at the maximum accepted or the minimum possible attenuation, then follow this "phase line" all the way to the other end. This technique works even if the "phase line" branches off into several directions at a Stokes' point.

APPENDIX A: SUBROUTINE XCADD

This Appendix lists the addition subroutine XCADD which returns the complex exponent of the sum when the complex exponents of the addends are given. This is a complete re-write of the original subroutine of the same name.
c outputs...
c \quad zx=complex exponent of the complex number z
c
c subroutines called...
c
c**********
implicit real*8 (a-h,o-z)
complex*16 zx,z1x,z2x,zt1x,zt2x, clogzh, dsum,czero, cerrx, cone, chpi
parameter (pi=3.141592653589793238462643d0,twopi=2.d0*pi,
$+h p i=0.5 d 0 * p i, z e r o=0 . d 0, c 16=1 . d 0 / 6 . d 0$,
+ bit14=1.d0/16384.d0,bit24=bit14/1024.d0,ctol=bit14,
$+\quad d p i=2259 . d 0 / 4294967296 . d 0 / 4294967296 . d 0, h d p i=d p i / 2 . d 0$,
$+\quad e 2 m 54=-3.742994775023704819 \mathrm{~d} 1, \mathrm{e} 2 \mathrm{p} 27=-0.5 \mathrm{~d} 0$ *e2m54,
$+\quad$ chpi=(0.d0,1.57079632679489661923132d0), cone=(1.d0,0.d0),
$+\quad$ czero=(0.d0,0.d0),cerrx=(-3.742994775023704819d1,0.d0))
c
cerrx $=$ e $2 m 54=-54^{*} \log (2)=$ exponent below machine accuracy
dimension ztmp(2), stmp(2)
equivalence (ztmp,clogzh),(stmp,dsum)
c*****
c Replace the input variables with a local variable so that
c equations in the form of $y=x+y$ will not lead to confusion.
c
$2 \operatorname{t1x}=21 x$
$z+2 x=z 2 x$
c
$c \log z h=0.5 d 0 *(z t 1 x-z t 2 x)$
$d x h=z \operatorname{tmp}(1)$
if(dxh.lt. zero) then
$z x=z t 2 x$
$d x h=-d x h$
else
$z x=2 t 1 x$
end if
c********
c machine accuracy $=2^{\star \star}(-53)$
2**(27) $=\mathrm{e}^{\star *} \mathrm{e} 2 \mathrm{p} 27$
c
if (dxh .ge. e2p27) then
return
else $z x=0.5 d 0 *(z t 1 x+2 t 2 x)$
dsum=cdexp $(c \log z h)$
dsum=1.d0/dsum+dsum
if (cdabs(dsum) .gt. ctol) then
$z x=c d \log (d s u m)+2 x$
else
Cancellation is serious. Im[clogzh] is close to pi/2 or -pi/2.
$y i=\operatorname{dnint}(z \operatorname{tmp}(2) / t w o p i) * 2 . d 0$
$z \operatorname{tmp}(2)=z \operatorname{tmp}(2)-p i^{*} y i$
dyi=dpi*yi
if (ztmp(2).lt. zero) then
$c \log z h=-c \log z h$
$d y i=-d y i$
end if
$z \operatorname{tmp}(2)=(z \operatorname{tmp}(2)-h p i)-h d p i-d y i$
$d s u m=2 . d 0 * c \log z h^{*}\left(\right.$ cone $\left.+c 16^{*} c \log 2 h^{*} c \log z h\right)$
if (dsum .eq. czero) then
Note that a complete cancellation of two nonzero numbers of order one is considered to be as accurate as what is allowed by the machine and the algorithm.
$z x=$ cerrx+chpi $+z x$
else
dsum=cdlog(dsum)
if ($\operatorname{stmp}(1) .1 t . e 2 m 54) \operatorname{stmp}(1)=e 2 m 54$
$z \mathrm{x}=\mathrm{dsum}+$ chpi $i+z \mathrm{x}$
end if
end if
return
end if
end

APPENDIX B: SUBROUTINE FZEROX

This Appendix includes the listing of the subroutine FZEROX which identifies the meshes which may contain modes within a contour rectangle. The ShellmanMorffit mode locating algorithm has been completely replaced.

```
        subroutine fzerox(tleft,tright, tbot,ttop, tmsho,zeros,ni,nf)
C*****
c fzerox is a routine for finding the zeroes of a complex function, f,
c which lie within a specified rectangular region of the
c complex q11 plane, assuming that the function has only
c simple zeroes over this rectangle.
c
parameters specifying the search rectangle:
    tleft - value of the real part of q11 at the left edge.
    tright- value of the real part of q11 at the right edge.
    tbot - value of the imaginary part of q11 at the bottom edge.
                    (this is set to 0.)
        ttop - value of the imaginary part of q11 at the top edge.
        tmesh - set equal to about half the average spacing between
                    zeroes within the rectangle. A smaller value may be used
                    as a safety measure, but too small a value will result
                    in excessively long run time.
        zeros - output list of (complex) values of q11 at which
                    zeroes are found.
        nf-ni - the number of zeroes found
    subroutines calledd--
            findfx
c roots
c nomshx
c*****
    implicit double precision (a-h, o-z)
    complex*16 f10,f01,f11, fxnew, fxold, fx00, fx10, fx01,fx11,
        + czero,one,ci,sol,zeros
    parameter(czero=(0.d0,0.d0),one=(1.d0,0.d0),ci=(0.d0,1.d0))
$include: 'mlaparm.inc'
***** Begin listing of: mlaparm.inc
C
c include file to define the
                                    maximum # of layers (mxlayr)
c maximum # of modes (mxmode)
c
            parameter (mxlayr=35 )
            parameter (mxmode=127)
***** End listing of: mlaparm.inc
            dimension kedge1(100),kedge2(100),kedge3(100),kedge4(100),
c + loc12r(mxmode),loc12i(mxmode),loc23r(mxmode), loc23i(mxmode),
c + loc34r(mxmode),loc34i(mxmode),loc41r(mxmode),loc41i(mxmode),
        + sol(3),theta(2),zeros(2*mxmode+1)
C
C
            common / tmccom/tmesh
```

```
c Write(16,2000) nrzl
```

c Write(16,2000) nrzl
87 go to 5
87 go to 5
15 nrzl=0
15 nrzl=0
89 nrsqu = 0
89 nrsqu = 0
20 fxold=fxnew
20 fxold=fxnew
xold=xnew
xold=xnew
yold=ynew
yold=ynew
go to (21,26,31,36),kedge
go to (21,26,31,36),kedge
c*****
c*****
c search along left edge of rectangle for changes in the
c search along left edge of rectangle for changes in the
c sign of imag(f)
c sign of imag(f)
C
C
21 continue
21 continue
if(ki.eq.jbot) then
if(ki.eq.jbot) then
kedge=2
kedge=2
go to 26
go to 26
end if
end if
ki=ki-1
ki=ki-1
call findfx(kr,ki,fxnew,xnew,ynew)
call findfx(kr,ki,fxnew,xnew,ynew)
if (yold*ynew .gt. 0.d0) go to 20
if (yold*ynew .gt. 0.d0) go to 20
if(nre1.eq.0) go to 23
if(nre1.eq.0) go to 23
c
c
c check if crossing point has been previously found
c check if crossing point has been previously found
c
c
do 22k=1,nre1
do 22k=1,nre1
if(ki.eq.kedge1(k)) go to 20
if(ki.eq.kedge1(k)) go to 20
22 continue
22 continue
C
C
c follow phase line through rectangular region
c follow phase line through rectangular region
c
c
23 fx01=fxold
23 fx01=fxold
fx01r=xold
fx01r=xold
fx01i=yold
fx01i=yold
fx00=fxnew
fx00=fxnew
fx00r=xnew
fx00r=xnew
fx00i=ynew
fx00i=ynew
ti=ki
ti=ki
lr=jlt
lr=jlt
go to 43
go to 43
c search along bottom edge of rectangle for changes in the
c search along bottom edge of rectangle for changes in the
c sign of imag(f)
c sign of imag(f)
c
c
26 continue
26 continue
if(kr.eq.jrt) then
if(kr.eq.jrt) then
kedge=3
kedge=3
go to 31

```
            go to 31
```

133
134
157 c search along right edge of rectangle for sign changes in imag(f).
158
160 if(ki.eq.jtop) then
161 kedge=4
162 go to 36
$164 \quad k i=k i+1$
165 call findfx(kr,ki,fxnew, xnew,ynew)
166 if (yold*ynew.gt. 0.d0) go to 20
167 if(nre3.eq.0) go to 33
168 c
169 c check if crossing point has been previously found
170 c
171 do $32 k=1, n r e 3$
172 if(ki.eq.kedge3(k)) go to 20
17332 continue
174 c
175 c follow phase line through rectangular region
176 c
17733 f $\times 10=$ fxold
$178 \mathrm{f} \times 10 \mathrm{r}=$ xold
179 fx10i=yold

```
    fx11=fxnew
    fx11r=xnew
    fx11i=ynew
    li=ki-1
    Ir = jrt-1
    go to 53
c search along top edge of rectangle for sign changes in imag(f).
C
36 continue
    if(kr.eq.jlt) go to 80
    kr = kr-1
    call findfx(kr,ki,fxnew, xnew,ynew)
    if (yold*ynew .gt. 0.d0) go to 20
    if(nre4.eq.0) go to 38
C
c check if crossing point has been previously found
c
    do 37 k=1,nre4
    if(kr.eq.kedge4(k)) go to 20
37 continue
C
c follow phase line through rectangular region
C
f8 fx11=fxold
    fx11r=xold
    fx11i=yold
    fx01=fxnew
    fx01r=xnew
    fx01i=ynew
    li= jtop-1
    lr = kr
    go to 58
C*****
c enter mesh square from left side or exit rectangle at right edge.
41 lr=lr+1
    if (lr .le. jrt-1) go to 42
    nre3=nre3+1
    kedge3(nre3)=li+1
    go to }1
42 f\times01=f\times11
    fx01r=fx11r
    fx01i=fx11i
    fx00= f x 10
    f\times00r=f\times10r
    fx00i=f\times10i
```

```
4 3
    continue
228 call findfx(lr+1,ti+1,fx11,fx11r,fx11i)
229 call findfx(lr+1,li,fx10,fx10r,f\times10i)
230 c*******
2 3 1 ~ c ~ D e t e r m i n e ~ t h e ~ e d g e ~ o f ~ e x i t ~ o f ~ i m ( f ) = 0 ~ f r o m ~ c u r r e n t ~ m e s h . ~
232 edgeit=f\times01i*fx11i
233 edgeib=f\times00i*f*10i
234 if (edgeib .gt. 0.d0) then
235 c Im(f)=0 goes through the 01 to 10 line.
236 if (edgeit .gt. O.dO) then
237 c Im(f)=0 goes through the 10 to 11 edge (edge 1).
238 lout=1
239 else
240 c Im(f)=0 goes through the 01 to 11 edge (edge 2)
241 lout=2
242
24
244 c
245 lout=4
246 if (edgeit .lt. O.d0) then
247 c Im(f)=0 also runs through 01 to 11 and 10 to 11 edges.
2 4 8 ~ c ~ S t o r e ~ c r o s s i n g ~ l o c a t i o n ~ a n d ~ i n / o u t ~ i n f o r m a t i o n .
249 knot34=knot34+1
250 c loc34r(knot34)=lr
251 c loc34i(knot34)=li
252 end if
253 end if
254 c*******
255 go to 60
256 c*****
257 c enter mesh square from bottom side or exit rectangle at top edge.
258 46 li=li+1
259 if (li .le. jtop-1) go to 47
260 nre4=nre4+1
261 kedge4(nre4)=lr
262 go to }1
263 47 fx00=fx01
264 fx00r=fx01r
265 fx00i=fx01i
266 fx 10=f\times11
267 fx10r=f\times11r
268 fx10i=fx11i
26948 continue
270 call findfx(lr,li+1,f\times01,fx01r,fx01i)
271 call findfx(lr+1,li+1,fx11,fx11r,fx11i)
272 c*******
273 c Determine the edge of exit of im(f)=0 from current mesh.
```

317 edgeit $=f \times 01 i * f \times 11 i$
318 edgeib=fx00i*fx10i
319 if (edgeit .gt. $0 . d 0$) then
320 c
edgeil $=f \times 00 i * f \times 01 i$
edgeir=f×10i*fx11i
if (edgeir .gt. O.d0) then
c $\quad \operatorname{Im}(f)=0$ goes through the 00 to 11 line.
if (edgeil .gt. O.dO) then
c $\quad \operatorname{Im}(f)=0$ goes through the 01 to 11 edge (edge 2)
lout=2
else
c $\quad \operatorname{Im}(f)=0$ goes through the 00 to 01 edge (edge 3).
lout=3
end if
else
$\operatorname{Im}(f)=0$ goes through the 10 to 11 edge (edge 1)
lout=1
if (edgeil .lt. $0 . d 0$) then
$\operatorname{Im}(f)=0$ also runs through 00 to 01 and 01 to 11 edges.
c Store crossing location and in/out information.
knot41=knot41+1
c $\quad \operatorname{loc} 41 r(k n o t 41)=1 r$
c loc41i(knot41)=1i
end if
end if
c*******
go to 60
$c^{\star * * * *}$
c enter mesh square from right side or exit rectangle at left edge.
$51 \quad \mid r=1 r-1$
if (lr .ge. jlt) go to 52
nrel=nre1+1
kedgel(nre1)=1i
go to 10
$52 \mathrm{f} \times 11=\mathrm{fx} \times 1$
$\mathrm{f} \times 11 \mathrm{r}=\mathrm{f} \times 01 \mathrm{r}$
$\mathrm{f} \times 11 \mathrm{i}=\mathrm{fx} \times 1 \mathrm{i}$
$f \times 10=f \times 00$
$\mathrm{f} \times 10 \mathrm{r}=\mathrm{fx} \times 0 \mathrm{o}$
$\mathrm{f} \times 10 \mathrm{i}=\mathrm{fx} \times 0 \mathrm{i}$
53 continue
call findfx(lr,li+1,fx01,fx01r,fx01i)
call findfx(lr,li,fx00,fx00r,fx00i)
c*******
c $\quad \operatorname{Im}(f)=0$ goes through the 01 to 10 line.

321
322
323
324
325
326
327
328
342 c enter mesh square from top side or exit rectangle at bottom edge.
$343 \quad 56 \quad l i=l i-1$
344 if (li .ge. jbot) go to 57
345 nre2=nre2+1
$346 \quad \operatorname{kedge} 2(n r e 2)=(r+1$

347
348

349

350

351

if (edgeib .gt. $0 . d 0$) then
c $\quad \operatorname{lm}(f)=0$ goes through the 00 to 01 edge (edge 3).
lout=3
else
c $\quad \operatorname{lm}(f)=0$ goes through the 00 to 10 edge (edge 4)
lout=4
end if
else
c $\quad \operatorname{lm}(f)=0$ goes through the 01 to 11 edge (edge 2)
lout=2
if (edgeib.(t. 0.d0) then
$\operatorname{lm}(f)=0$ also runs through 00 to 10 and 00 to 01 edges.
c Store crossing location and in/out information.
knot12=knot12+1
c $\quad \operatorname{loc} 12 r(k n o t 12)=1 r$
c loc12i(knot12)=li
end if
end if
$c^{* * * * * * *}$
go to 60
$c^{\star \star \star \star \star}$
go to 10
$57 \quad f \times 01=f \times 00$
$\mathrm{fx01r}=\mathrm{fx} \times 0 \mathrm{r}$
$f \times 01 i=f \times 00 i$
$\mathrm{f} \times 11=\mathrm{f} \times 10$
$\mathrm{f} \times 11 \mathrm{r}=\mathrm{f} \times 10 \mathrm{r}$
$\mathrm{fx} \times 1 \mathrm{i}=\mathrm{fx} 10 \mathrm{i}$
58 continue
call findfx(1r, $1 \mathrm{i}, \mathrm{f} \times 00, f \times 00 \mathrm{r}, \mathrm{f} \times 00 \mathrm{i})$
call findfx(lr+1,li,fx10,fx10r,fx10i)
c Determine the edge of exit of $i m(f)=0$ from current mesh.
edgeil $=\mathrm{fx} 00 \mathrm{i}$ * $\mathrm{fx} \times 1 \mathrm{i}$
edgeir=f×10i*f×11i
if (edgeil .gt. O.d0) then
$\operatorname{lm}(f)=0$ goes through the 00 to 11 line.
if (edgeir .gt. $0 . d 0$) then
$\operatorname{Im}(f)=0$ goes through the 00 to 10 edge (edge 4)
lout=4
else
$\operatorname{lm}(f)=0$ goes through the 10 to 11 edge (edge 1).

```
369
370
371 c
372 lout=3
373 if (edgeir .lt. 0.d0) then
374 c Im(f)=0 also runs through 00 to 10 and 10 to 11 edges.
3 7 5 ~ c ~ S t o r e ~ c r o s s i n g ~ l o c a t i o n ~ a n d ~ i n / o u t ~ i n f o r m a t i o n .
376 knot23=knot23+1
377 c loc23r(knot23)=1r
378 c loc23i(knot23)=li
379
380
381 c
382 c*******
38360 continue
384 nrsqu=nrsqu+1
385 if(nrsqu .gt. maxnsq) go to 95
386 c******
387 c Test for there being at least one re(f)=0 line entering and
3 8 8 ~ c ~ l e a v i n g ~ t h e ~ m e s h ~ s q u a r e .
389 c
390 if ((fx00r*fx10r .gt. 0.d0) .and. (fx01r*fx11r .gt. 0.d0)
391 + .and. (fx00r*fx01r .gt. 0.d0)) go to (41,46,51,56) lout
392 c
3 9 3 ~ c ~ C o m p u t a t e ~ t h e ~ v a l u e s ~ o f ~ t h e ~ m o d a l ~ f u n c t i o n ~ a t ~ t h e ~ c o r n e r s ~ o f ~ a ~
3 9 4 ~ c ~ a ~ m e s h ~ s q u a r e ~ t o ~ d e t e r m i n e ~ i t s ~ T a y l o r ~ s e r i e s ~ t o ~ t h e ~ 3 r d ~ o r d e r ~
395 c for estimating its root locations.
396 c
397 c f00=one
398 f10=cdexp(fx10-f\times00)-one
399 f01=cdexp(fx01-fx00)-one
400 f11=cdexp(fx11-fx00)-one
401 c
402c**************************************************************************
4 0 3 ~ c ~ w r i t e ~ ( 1 6 , 3 0 0 1 ) ~ n i , n f , l r , l i , k n o t 1 2 , k n o t 2 3 , k n o t 3 4 , k n o t 4 1
404 c 3001 format(/' ni, nf, lr, li and knot12, 23, 34 and 43 before ROOTS
405 c + :'/, 2i6,2x,2i6,2x,4i6)
406 c
407 c************ estimate locations of zeroes by radicals
408 c
409 call roots(f10,f01,f11,sol,nrsol)
410 c
411 do 63n=1,nrsol
412 ureal = dreal(sol(n))
413 uimag = dimag(sol(n))
414 if (ureal .lt. 0.d0 .or. ureal .gt. 1.0d0) go to 63
```

```
                if (uimag .lt. 0.d0 .or. uimag .gt. 1.0dO) go to 63
62 theta(1)=(lr+ureal )*tmesh
        theta(2)=(li+uimag)*tmesh
        nf=nf+1
        zeros(nf)=dcmplx(theta(1), theta(2))
        nrzl=nrzl+1
    63 continue
    c**********************************************************************
    c write (16,3002) ni,nf,nrsol
    c 3002 format(/' out of ROOTS at 63, ni, nf and # of roots 1,3i4)
    4 2 6 ~ c ~ c o n t i n u e ~ f o l l o w i n g ~ t h e ~ p h a s e ~ l i n e
    427 go to (41,46,51,56) lout
    428 c******
    4 3 0 8 0 ~ c o n t i n u e
    4 3 2 ~ r e t u r n ~
    4 3 3 ~ c * * * * * ~
    4 3 4 9 5 ~ c o n t i n u e
    435 write(16,9500)
    436 write(16,4001)lr,li,ni,nf,tmesh
    437 write(* ,9500)
    4 3 8 4 0 0 1 ~ f o r m a t ( ' g o ~ t o ~ 5 ~ f r o m ~ 9 5 ~ a t ~ l r , ~ l i = 1 , i 6 , ' , ' , i 6 , ' ~ n i , ~ n f ~ = ' , i 6 ,
    439 +',',i6,', mesh size =',d14.6)
    440 go to 5
450 return
        end
```

 422
 425
 429 cc
 431 c
 441
 442
 443
 444
 445
 451 c

APPENDIX C: SUBROUTINE ROOTS

This Appendix contains the listing of the subroutine ROOTS. This subroutine replaces the portion of the subroutine FZEROX where the coefficients of a quadratic equation are determined, and the subroutine QUAD for locating the zeroes of a quadratic polynomial. In the revised subroutine FZEROX, the roots of a cubic polynomial has to be found. This subroutine determines these zeroes by radicals.
subroutine roots (f1,f2,f3,sol,nrsol)

c This subroutine finds the roots of a third order polynomial by
c radicals when the values of this polynomial at $z=0, z=1, z=i$ and
c $z=1+i$ are given as $f 0=1, f 1+f 0, f 2+f 0$ and $f 3+f 0$ respectively.
c Note that this algorithm takes cubic roots of two complex numbers
c (hence the name 'solution by radicals') and use their linear
c combinations as the roots of a third order polynomial.
c**
implicit real*8 (a-h, 0-z)
complex*16 f1,f2,f3,zero,one, ci, ep14, em14, ep23,em23,
$+\quad f a, f b, f c, f d, f a 1, f a 2, f a 3, f a 1 s, p, q, d e l t, z, z m, u, v$, sol
parameter (xbit52=52.d0*0.69314718055994531d0,thrd=1.d0/3.d0,
$+\quad$ bit50=1.d0/33554432.d0/33554432.d0,bit51=bit50/2.d0,
$+\quad$ bit52=bit51/2.d0,tol $=0.001 d 0$,
$+\quad z e r o=(0 . d 0,0 . d 0)$,one $=(1 . d 0,0 . d 0), c i=(0 . d 0,1 . d 0)$,
$+\quad e p 14=(0.5 d 0,0.5 d 0), e m 14=(0.5 d 0,-0.5 d 0)$,
$+\quad$ ep23 $=(-0.5 d 0,0.86602540378443864675 d 0)$,
$+\quad$ em23 $=(-0.5 d 0,-0.86602540378443864675 d 0))$
dimension sol(*)
fa=one
$\mathrm{fb}=\left(\mathrm{f} 2-\mathrm{ci} \mathrm{i}^{\star} \mathrm{f} 1+\mathrm{em} 14^{*} \mathrm{f} 3\right.$)
$\mathrm{fc}=\left((\mathrm{ep} 14+\right.$ one $) \star \mathrm{f} 1-(\text { em } 14+\text { one })^{\star} \mathrm{f} 2+\mathrm{c} \mathrm{i}^{\star} \mathrm{f} 3$)
$f d=\left(e m 14^{*}(f 2-f 1)-e p 14^{*} f 3\right)$
if (cdabs(fb).le. bit50) fb=zero
if (cdabs(fc).le. bit51) fc=zero
if (cdabs(fd) .le. bit52) fd=zero
if (fd .ne. zero) then
$f a 1=(-t h r d) * f c / f d$
$f a 2=f b / f d$
$f a 3=f a / f d$
fa1s=fa1*fa1
$p=t h r d^{\star} f a 2 \cdot f a 1 s$
$q=0.5 d 0 *\left(f a 3+f a 1^{*} f a 2\right)-f a 1 * f a 1 s$
if (p.eq. zero) then
if (q. eq. zero) then
nrsol=1
sol(1)=fa1
return
else
nrsol $=3$
$u=\left((-2 . d 0)^{*} q\right)^{* *}$ thrd
sol(1) $=u+f$ a
sol (2) $=$ ep $23^{*} u+f a 1$
sol(3) $=$ em23*u+fa1
return
end if

```
    else
        if (q. eq. zero) then
            nrsol=3
            sol(1)=fa1
            u=cdsqrt((-3.d0)*p)
            sol(2)=fa1+u
            sol(3)=fa1-u
            return
        else
            v=p/q
            z=p*v*v
            absz=cdabs(z)
            if (absz .lt. tol) then
                zm=-z
                fn=dint(1.d0-xbit52/dlog(absz))
                lastn=idint(fn)-1
                dnn=fn-0.5d0
                dnd=fn+1.0d0
                delt=one
                    do }100\textrm{nt=1,lastn
                    dnn=dnn-1.d0
                    dnd=dnd-1.d0
                    delt=(dnn/dnd)*delt*zm+one
            continue
            delt=(0.5d0*delt/q)**thrd
                    u=p*delt
                    v=-1.d0/delt
            else
                    delt=cdsqrt(one+z)-one
                    u=(q*delt)**thrd
                    v=-p/u
            end if
            nrsol=3
            sol(1)=u+v+fal
            sol(2)=ep23*u+em23*v+fa1
            sol(3)=em23*u+ep23*v+fa1
            return
        end if
        end if
else if (fc .ne. zero) then
    if (fb .eq. zero) then
        if (fa .eq. zero) then
            nrsol=1
            sol(1)=zero
            return
        else
            nrsol=2
```

```
            z=cdsqrt(-fa/fc)
            sol(1)=z
            sol(2)=-z
            return
            end if
        else
        fa1=0.5d0*fb/fc
        faz=fa/fc
        z=fa2/fa1/fa1
        absz=cdabs(z)
        if (absz .lt. tol) then
            fn=dint(1.d0-xbit52/dlog(absz))
            lastn=idint(fn)-1
            dnn=fn-0.5d0
            dnd=fn+1.0d0
            delt=one
            do 200 nt=1,lastn
                dnn=dnn-1.d0
                    dnd=dnd-1.d0
                    delt=(dnn/dnd)*delt*z+one
            continue
            delt=-0.5d0*delt/fal
            nrsol=2
            sol(1)=fa2*delt
            sol(2)=1.d0/delt
            return
        else
            delt=cdsqrt(one-z)
            nrsol=2
            sol(1)=-fal*(one-delt)
            sol(2)=-fa1*(one+delt)
            return
        end if
        end if
else if (fb .ne. zero) then
        nrsol=1
        sol(1)=-fa/fb
        return
else
        nrsol=1
        sol(1)=ep14
        return
end if
end
```


APPENDIX D: SUBROUTINE ABCOEF

This Appendix contains the listing of the subroutine ABCOEF. The consistency self-checking procedure has been implemented to determine the correct method to evaluate the A_{i} and B_{i} coefficients.
c height gain=exp(bcoef $x(l, m)) *(k 1 * \exp (a c o e f x(l, m))+k 2)$
c
c where $k 1$ and $k 2$ are two independent solutions to Stokes'
c equation. In the top layer (i.e. nzlayr) the height gain is:
c
c height gain=exp(bcoefx(l,m))*h2
c where h2 is a solution to the Stokes' equation associated
c with outgoing energy flow. Here $k 1$ and $k 2$ are proportional
c to the $k 1$ and $k 2$ used by Marcus and the h2 is proportional
c to a modified Hankle function of order $1 / 3$.
c inputs...
c zero-an eigenvalue in qi1 space
c outputs...
c acoefx-two dimensional array of complex exponents
c coefficients used to combine two linearly
c independent solutions of stokes' equation
c bcoefx-two dimensional array of complex exponents
c coefficients used for normalizing the height gains
c note: acoefx and bcoefx are passed by the
c common block /pap2/
32 c
c xcdai
c xcadd
35
36
37 c
38
39
40 c
$c^{\star \star \star *}$
42
subroutine abcoef(zero,m)
$c^{\star \star \star \star *}$
$c \quad$ For each mode m, this suboutine calculates $A-B$ coefficients in
c all layers for combining two linearly independent solutions of
Stokes' equation to form the height gain function:
c common block areas...
c com1
c com2
c pap1
c pap2
implicit real*8(a-h,0-z)
complex*16 acoefx,bcoefx,cqij,h2xq1,dh2xq1,h2xq2,dh2xq2,k1xq1,
\$ dk1xq1,k1xq2,dk1xq2,k2xq1,dk2xq1,k2xq2,dk2xq2,h2dk1x,
\$ dh2k $1 x, h 2 d k 2 x$, dh2k $2 x$, numax, denax, numbx, denbx, int $1 x$, int $2 x$,
\$ hyx, dhyx,k1dhyx, dk1hyx, dk2hyx, k2dhyx, gamma, dgamdq, i,

```
    $ koa123,rtsumx,zero,q1,q2,sumx,surfno,dqij,dqi jdz,sqng,
    $ dnumbx,dhux,dhlx,e13x,cneg,cldqzl,cldqzm,cigama,koawav,t thd,
    + tacoef,dacoef
    parameter(downi=1.d-3,downr=1.d-3/0.4342944819032518dO,
    + pi=3.141592653589793238462643d0,
    + i=(0.0d0,1.0d0),tthd=(2.d0/3.d0)*i,
    + cneg=(0.0d0,3.141592653589793238462643d0),e13x=cneg/3.d0)
c*****
c mxlayr=maximum number of layers allowed
c mxmode=maximum number of modes allowed
c
c use include file for parameters of
c use include file for parameters of
c mxlayr max # layers
c mxmode max # modes
c
$include: 'mlaparm.inc'
    ***** Begin listing of: mlaparm.inc
c
c include file to define the
c maximum # of layers (mxlayr)
maximum # of modes (mxmode)
c
            parameter (mxlayr=35 )
            parameter (mxmode=127)
    ***** End listing of: mlaparm.inc
    c
c
c*****
c acoefx-two dimensional complex array used for combining two
c independent solutions to stokes' equation
c bcoefx-two dimensional complex array used for normalizing height
c gain
c cqij-two dimensional array containing coefficients for evaluating
c qij in terms of qil
c dqij-array containing coefficients for evaluating qij in terms of
c qi1
c dqijdz-array containing derivatives of qi(z) in the different
c layers
c zi-array containing input hesights for the modified refractivity
            dimension acoefx(mxlayr,mxmode),
            $ bcoefx(mxlayr,mxmode),
            $ dqij(mxlayr),cqij(mxlayr,2),dqijdz(mxlayr),zi(mxlayr+1)
c*****
```

97
c

```
c check for single layer
```

c check for single layer
c set a complex variable koawav=-i*koa123/(waveno*waveno) to
c set a complex variable koawav=-i*koa123/(waveno*waveno) to
c avoid repeating computations
common /coml/freq,waveno,sqng
common /com2/cqij,dqij,dqijdz,nzlayr
common /pap1/nrmode,koa123,surfno,zi
common /pap2/acoefx,bcoefx
koawav=-i*koa123/(waveno*waveno)
if(nzlayr .eq. 1)then
q1=cqij(1,1)+zero*dqij(1)
call surf(q1,gamma,dgamdq)
call xedai(-q1,k2xq1,dk2xq1,k1xq1,dk1\timesq1,h2xq1,dh2xq1)
dh2xq1=dh2xq1+e13x
int1x=cdlog(koawav*dgamdq-q1/dqijdz(1))+2.0d0*h2xq1
int2x=2.0d0*dh2xq1-cdlog(-dqi jdz(1))
call xcadd(sumx,int1x,int 2x)
rtsumx=0.5d0*sumx
bcoefx(1,m)=-rtsumx
return
end if
cldqzl=cdlog(-dqijdz(1))
c if l equals one then initialize cumulants and caculate a's and
c b's in bottom layer using ground boundary conditions.
q1=cqij(1,1)+zero*dqij(1)
call xcdai(-q1,k2xq1,dk2\timesq1,k1\timesq1,dk1\timesq1,h2\timesq1,dh2\timesq1)
dk2\timesq1=dk2\timesq1+cneg
dk1xq1=dk1xq1-e13x
call surf(q1,gamma,dgamdq)
cigama=cdlog(i*gamma)
call xcadd(numax,cldqzl-cneg+dk2xq1,cigama+cneg+k2xq1)
call xcadd(denax,cigama+k1xq1,cldqzl+dk1xq1)
acoefx(1,m)=numax-denax
call xcadd(denbx,k2xq1, acoefx(1,m)+k1\timesq1)
bcoefx(1,m)=-denbx
c calculate contributions to normalizing integrals.
call xcadd(hyx,k2xq1,acoefx(1,m)+k1xq1)

```
\(c^{\star * * * *}\)
    c
    \(h y x=b \operatorname{coef} x(1, m)+h y x\)
    call xcadd(dhyx, dk \(2 x q 1\), acoef \(x(1, m)+d k 1 \times q 1)\)
    dhyx=bcoef \(x(1, m)+d h y x\)
    int \(1 x=c d \log\) (koawav*dgamdq-q1/dqijdz(1))+2.0d0*hyx
    int \(2 x=2.0 d 0^{\star} d h y x-c l d q z l\)
    call xcadd(sumx, int \(1 x\), int \(2 x\) )
    do \(9010 \quad l=2, n z\) layr- 1
    \(\operatorname{lm} 1=1-1\)
    \(c l d q z l=c d \log (-d q i j d z(l))\)
    \(c l d q z m=c d \log (d q i j d z(\operatorname{lm} 1))\)
    \(q 1=c q i j(l, 1)+z e r o^{*} d q i j(l)\)
    call xcdai(-q1,k2xq1,dk2xq1,k1xq1,dk1xq1,h2xq1, dh2xq1)
    \(d k 2 \times q 1=d k 2 \times q 1+c n e g\)
    \(d k 1 \times q 1=d k 1 \times q 1-e 13 x\)
    \(q 2=c q i j(\operatorname{lm} 1,2)+z e r o * d q i j(\operatorname{lm} 1)\)
    call xcdai( \(\left.-q^{2}, k 2 \times q^{2}, d k 2 \times q^{2}, k 1 \times q^{2}, d k 1 \times q^{2}, h 2 \times q^{2}, d h 2 \times q^{2}\right)\)
    \(d k 2 x q^{2}=d k 2 x q^{2}+c n e g\)
    \(d k 1 \times q 2=d k 1 x q 2-e 13 x\)
    call xcadd(hyx,k2xq2, acoefx(lm1,m)+k1xq2)
    call xcadd(dhyx, dk2xq2, acoefx(lm1,m)+dk1xq2)
    \(k 1 d h y x=k 1 x q 1+d h y x\)
    \(d k 1 h y x=d k 1 x q 1+h y x\)
    \(d k 2 h y x=d k 2 x q 1+h y x\)
    \(k 2 d h y x=k 2 x q^{1+d h y x}\)
    call xcadd(denax, cldqzm+k1dhyx, cldqzl+dk1hyx)
    call xcadd(numax, cldqzl-cneg+dk2hyx, cldqzm+cneg+k2dhyx)
    acoef \(x(1, m)=n u m a x-\) denax
    call \(x\) cadd (denbx, \(k 2 x q 1\), acoef \(x(1, m)+k 1 x q 1)\)
    numbx \(=\) bcoefx ( \(\operatorname{lm} 1, m)+h y x\)
    dnumbx \(=\) bcoef \(x(\operatorname{lm} 1, m)+\) dhyx
    bcoef \(x(l, m)=n u m b x-\) denb \(x\)
    calculate contribution to normalizing integrals.
    int 1x=cdlog(-q1/dqijdz(1)+q2/dqijdz(lm1))+2.0d0*numbx
    call xcadd(sumx, sumx, int \(1 x\) )
    call xcadd(dhux, dk2xq1, acoef \(x(l, m)+d k 1 \times q 1)\)
    dhux=bcoefx (l,m)+dhux
    int \(1 x=2.0 d 0^{*}\) dnumbx-cldqzm
    int \(2 x=2\). 0d0* dhux-cldqzl
    call xcadd (sumx, sumx, int \(1 x\) )
    call xcadd (sumx, sumx, int \(2 x\) )
    9010 continue
    if l equals nzlayer, calculate a's and b's using outgoing
    c calculate \(q\) and associated quantities at bottom of layer \(l\)
        223
```

 nzm1=nzlayr-1
 q1=cqij(nzlayr,1)+zero*dqij(nzlayr)
 call xcdai(-q1,k2\timesq1,dk2\timesq1,k1\timesq1,dk1\timesq1,h2\timesq1,dh2\timesq1)
 dh2xq1=dh2xq1+e13x
 q2=cqi j(nzm1,2)+zero*dqij(nzm1)
 call xcdai(-q2,k2\timesq2,dk2xq2,k1\timesq2,dk1\timesq2,h2\timesq2,dh2\timesq2)
 dk2xq2=dk2\timesq2+cneg
 dk1xq2=dk1xq2-e13x
 call xcadd(hyx,k2xq2,acoefx(nzm1,m)+k1xq2)
 numbx=bcoefx(nzlayr-1,m)+hyx
 bcoefx(nzlayr,m)=numbx-h2xq1
    ```
        calculate contribution to cumulants.
        int \(1 x=c d \log (-q 1 / d q i j d z(n z l a y r)+q 2 / d q i j d z(n z m 1))+\)
        \$ 2.0d0*numbx
        call xcadd(sumx, sumx, int1x)
        call xcadd(dhyx, dk2xq2, acoefx(nzm1,m)+dk1×q2)
        dnumbx \(=\) bcoef \(x(n z m 1, m)+d h y x\)
        int 1x=2.0d0*dnumbx-cdlog(dqijdz(nzm1))
        call xcadd(sumx, sumx, int1x)
        dhux \(=\) bcoefx \((n z l a y r, m)+d h 2 x q 1\)
        int \(2 x=2.0 d 0 * d h u x-c d l o g(-d q i j d z(n z \operatorname{layr}))\)
        call xcadd(sumx, sumx, int \(2 x\) )
    c renormalize b's so that height gain integral equals unity.
        rtsumx \(=.5 d 0\) *sumx
        do 9000 ll=1,nzlayr
            bcoefx (ll,m)=bcoefx(ll,m)-rtsumx
        continue
    c***************************************************************
        l=nzlayr
        |m|=1-1
        cldqzm=cdlog(dqijdz(lm1))
        \(c l d q z l=c d \log (-d q i j d z(l))\)
        q1=cqij(l, 1)+zero*dqij(l)
        call \(\times\) cdai(-q1,k2×q1,dk2 \(\times q 1, k 1 \times q 1, d k 1 \times q 1, h 2 \times q 1, d h 2 \times q 1)\)
        \(\mathrm{dh} 2 \times \mathrm{q} 1=\mathrm{dh} 2 \times \mathrm{q} 1+\mathrm{e} 13 \mathrm{x}\)
        \(q 2=c q i j(\operatorname{lm} 1,2)+z e r o{ }^{*} d q i j(\operatorname{lm} 1)\)
        call xcdai( \(\left.-q_{2}, k 2 \times q 2, d k 2 \times q 2, k 1 \times q 2, d k 1 \times q 2, h 2 \times q 2, d h 2 \times q 2\right)\)
        \(d k 2 \times q 2=d k 2 \times q 2+c n e g\)
        \(d k 1 x q 2=d k 1 \times q 2-e 13 x\)
c Caculate acoefx(lm1,m),bcoefx(lm1,m)
c and curmulants using outgoing wave in nzlayr
c*****
        \(\mathrm{dh} 2 \mathrm{k} 1 \mathrm{x}=\mathrm{dh} 2 \mathrm{xq} 1+\mathrm{k} 1 \times \mathrm{xq} 2\)
        \(h 2 d k 1 x=h 2 x q 1+d k 1 x q 2\)
        \(h 2 d k 2 x=h 2 x q 1+d k 2 x q 2\)
        \(\mathrm{dh} 2 \mathrm{k} 2 \mathrm{x}=\mathrm{dh} 2 \mathrm{xq} \mathrm{q}^{1+\mathrm{k} 2 \mathrm{xq}} \mathrm{Z}^{2}\)
        call xcadd(denax, cldqzl-cneg+dh2k1x, cldqzm+cneg+h2dk1x)
        call xcadd(numax, cldqzm+h2dk2x,cldqzl+dh2k2x)
    c If in the nzlayr-1 layer the magnitudes of \(A\) coefficients from
    c integration up and down differ by less than 0.02 dB and their
    C phases differ by less than 0.001 pi, the \(A\) and \(B\) coefficients
    c obtained from integration up will be accepted.
        tacoef=numax-denax
        dacoef=tacoef-acoefx (lm1, m)
        difr=dabs(dreal(dacoef))
        if (difr .lt. downr) then
        difi=dimag(dacoef)/pi
        difi=dabs(difi-dnint(difi/2.d0)*2.d0)
        if (difi .lt. downi) return
            end if
            acoef \(x(\operatorname{lm} 1, m)=\) tacoef
            call xcadd(denbx,k2xq2, acoefx(lm1,m)+kixq2)
            bcoefx(lm1,m)=h2xq1-denbx
    c calculate contributions to cumulants
            sumx \(=\operatorname{cd} \log (-q 1 / d q i j d z(1)+q 2 / d q i j d z(\operatorname{lm} 1))+2.0 d 0 * h 2 x q 1\)
            call \(x\) cadd (dhlx,dk2xq2, acoefx(lm1,m) \(+d k 1 \times q 2)\)
            \(d h l x=b c o e f x(\operatorname{lm}), m)+d h l x\)
            int1x=2.0d0*dh2xq1-cldqzl
            call xcadd(int1x, sumx, int1x)
            int \(2 x=2.0 d 0 * d h l x-c l d q z m\)
            call \(x\) cadd(sumx, int \(1 x\), int \(2 x\) )
                do 9030 l=nzlayr-1,2,-1
                    \(1 \mathrm{~m} \mid=1-1\)
                    \(c l d q z l=c d \log (-d q i j d z(1))\)
                \(c l d q z m=c d l o g(d q i j d z(\operatorname{lm} 1))\)
                calculate \(q\) and associated quantities at bottom of layer l
    q1=cqij(l, 1)+zero*dqij(1)
        call xcdai(-q1,k2xq1,dk2xq1,k1×q1,dk1xq1,h2×q1,dh2xq1)
        \(d k 2 \times q 1=d k 2 \times q 1+\) cneg
        \(d k 1 \times q 1=d k 1 \times q 1-e 13 x\)
        \(q 2=c q i j(\operatorname{lm} 1,2)+z e r 0^{*} d q i j(\operatorname{lm} 1)\)
        call xcdai(-q2,k2×q2,dk2×q2,k1×q2,dk1×q2,h2×q2,dh2×q2)
        \(d k 2 \times q 2=d k 2 \times q 2+c n e g\)
        \(d k 1 \times q 2=d k 1 \times q 2-e 13 x\)
        \(\mathrm{dh} 2 \times \mathrm{q} 2=\mathrm{dh} 2 \times \mathrm{q} 2+\mathrm{e} 13 \mathrm{x}\)
    \(c^{\star * * * *}\)
    c Calculate acoefx(lm1,m),bcoefx(lm1,m) and cumulants
    c using continuity relations in terms of the linearly
    c independent functions \(k 1\) and \(k 2\)
        call xcadd(hyx,k2xq1, acoefx(l,m)+k1xq1)
        call xcadd(dhyx,dk2xq1,acoefx(l,m)+dk1xq1)
        \(k 1 d h y x=k 1 \times q 2+d h y x\)
        \(d k 1 h y x=d k 1 \times q 2+h y x\)
        \(d k 2 h y x=d k 2 x q 2+h y x\)
        \(k 2 d h y x=k 2 x q 2+d h y x\)
        call xcadd(denax, cldqzl-cneg+k1dhyx, cldqzm+eneg+dk1hyx)
        call xcadd(numax, cldqzm+dk2hyx, cldqzl+k2dhyx)
        acoef \(x(\operatorname{lm} 1, m)=\) numax-denax
        call \(x\) cadd (denbx, \(k 2 \times q 2\), acoef \(x(\operatorname{lm} 1, m)+k 1 \times q 2)\)
        numbx \(=b \operatorname{coef} x(l, m)+h y x\)
        dnumbx=bcoefx \((l, m)+d h y x\)
        bcoefx(Im1,m)=numbx-denbx
    c calculate contributions to cumulants.
    int1x=cdlog(-q1/dqijdz(l)+q2/dqijdz(lm1))+2.0d0*numbx
    call xcadd(sumx, sumx, int1x)
    call xcadd(dhlx, dk2xq2,acoefx(lm1,m)+dk1xq2)
    dhlx=bcoefx (lm1, m) \(+\mathrm{dh} \mid x\)
    int \(1 x=2.00^{*}\) dnumbx-cldaz 1
    int2x=2.0d0*dhlx-cldqzm
    call xcadd(sumx, sumx, int1x)
    call xcadd(sumx, sumx, int2x)

321
322
323
324
325 c if l equal to one calculate ground
326
327
328
```

9030
continue
c*****
c if l equal to one calculate ground
c contribution to cumulants and renormalize bcoefx's
l=1
q1=cqij(l,1)+zero*dqij(l)
call xcdai(-q1,k2xq1,dk2xq1,k1xq1,dk1xq1,h2xq1,dh2xq1)
dk2xq1=dk2xq1+cneg
dk1xq1=dk1xq1-e13x
call xcadd(hyx,k2xq1,acoefx(l,m)+k1xq1)
call xcadd(dhyx,dk2xq1,acoefx(l,m)+dk1xq1)
call surf(q1,gamma,dgamdq)
numbx=bcoefx(l,m)+hyx
dnumbx=bcoefx(l,m)+dhyx
int 1x=cdlog(koawav*dgamdq-q1/dqi jdz(l))+2.0d0*numbx
int2x=2.0d0*dnumbx-cdlog(-dqi jdz(1))
call xcadd(sumx,sumx,int1x)
call xcadd(sumx, sumx,int2x)
c renormalize b's so that height gain integrals equal unity.
rtsumx=.5d0*sumx
do 9020 ll=1,nzlayr-1
bcoefx(ll,m)=bcoefx(ll,m)-rtsumx
9020 continue
bcoefx(nzlayr,m)=-rtsumx
return
end

```

\section*{LIST OF REFERENCES}
1. D.E. Kerr, Propagation of Short Radio Waves, Peregrinus Ltd, London, United Kingdom, 1987.
2. S.W. Marcus (1982), "A model to calculate EM fields in tropospheric duct environments at frequencies through SHF," Radio Science 17(5), 1108-1124
3. V.I. Fock (1965), Electromagnetic Diffraction and Propagation Problems, \(414+\mathrm{ix}\) pp., Pergamon Press, New York
4. L.W. Yeoh (1990), "An analysis of M-layer: a multilayer tropospheric propagation program," Technical Report NPS-62-90-009, Naval Postgraduate School, Monterey, California 93943
5. D.G. Morfitt and C.H. Shellman, "MODESRCH, An improved computer program for obtaining ELF/VLF/LF mode constants in an earth-ionosphere waveguide, " Interim Report 77T, Naval Ocean Systems Center, San Diego, CA 92152, October 1976.
6. Z. Schulten and D.G.M. Anderson, "An algorithm for the evaluation of the complex Airy functions", Journal of Computational Physics, Vol. 31, No. 60-75, 1979.

\section*{INITIAL DISTRIBUTION LIST}
1. Naval Command, Control and Ocean Surveillance Center ..... 2
RDT\&E Divison
Code 543
San Diego, CA 92152-5000
2. Dean of Research, Code 08 ..... 1
Naval Postgraduate School
Monterey, CA. 93943-5100
3. Professor Kenneth L. Davidson, Code MR/Ds ..... 1
Department of Meteorology
Naval Postgraduate School
Monterey, CA. 93943-5100
4. Professor Hung-Mou Lee, Code EC/Lh ..... 5
Department of Electrical and Computer Engineering Naval Postgraduate School
Monterey, CA. 93943-5100
5. Han, Yin Yuan ..... 1
5Fl, No. 10, Lane 165, HSIN-LONG RD. SEC. 4, Taipei Taiwan, R.O.C.
6. Lean-Weng Yeoh ..... 1
Blk 26, \#02-30, Kim Yam Road
Far East Mansion
Singapore 0923
Republic of Singapore
\[
\pm
\]

DUDLEY KNOX LIBRARY

32768003300526```

