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DFTS ON IRREGULAR GRIDS: THE ANTERPOLATED DFT

VAN EM DEN HENSON *

Abstract. In many instances the discrete Fourier transform (DFT) is desired for a data set

that occurs on an irregular grid. Commonly the data are interpolated to a regular grid, and a fast

Fourier transform f F FT) is then applied. A drawback to this approach is that typically the data have

unknown smoothness properties, so that the error in the interpolation is unknown.

An alternative method is presented, based upon multilevel integration techniques introduced by

A. Brandt. In this approach, the kernel, e
- "*', is interpolated to the irregular grid, rather than

interpolating the data to the regular grid. This may be accomplished by pre-multiplying the data by

the adjoint of the interpolation matrix (a process dubbed anterpolation), producing a new regular-

grid function, and then applying a standard FFT to the new function. Since the kernel is C'°° the

operation may be carried out to any preselected accuracy.

A simple optimization problem can be solved to select the problem parameters in an efficient way.

If the requirements of accuracy are not strict, or if a small bandwidth is of interest, the method can

be used in place of an FFT even when the data are regularly spaced.

1. The formal DFT and the ADFT. The DFT is defined as an operation

that maps a Iength-iV complex-valued sequence {

r

u . X] -r.v-i } to another length-

.V complex-valued sequence {}o.}\ '".v-i} by the rule

,v-i

(i) i k = Y, V~ ,J
~A/ '

V
- for fc = o,i v-i.

As defined in (1). the DFT is performed on data that are presumed to be given

on a regular grid, with constant spacing between the data points. Furthermore, the

transform values {io-^i J'.v-i} are also presumed to lie on a regular grid in the

frequency domain. In many applications, however, the data for a problem are not

spaced regularly. It is of some interest, then, to determine how a discrete Fourier

transform may be computed for such a data set. To perform this computation, we

develop and implement in one dimension an algorithm based on multilevel integration

techniques outlined by Achi Brandt ([2]. [1]). The method presented here can also be

developed for higher-dimensional problems. One application of this technique [G] is in

the reconstruction of images from projections (inverting the Radon transform).

To begin, it is necessary to decide what is meant by a Discrete Fourier Transform

for irregularly spaced data. Therefore, the concept of a formal DFT is introduced,

which is defined as follows:

Consider any set of N ordered points in the interval [O.A'). satisfying

< Jo < Ji • • • < J.v-i < -V

and suppose a vector- valued function (grid function) u(Xj) is specified. The formal

DFT is defined as the M = M\ + M 2 + 1 quantities

(2) u(w,) = ]T u{xj)e-^x>
, w, - — , -Af, < / < M2 .

j=o
A

where / is an integer, and M\ and M2 are positive integers specifying the range of

frequencies of interest. The formal DFT may be thought of as an approximation to a

Department of Mathematics, Naval Postgraduate School, Monterey, California 93943
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selection (
—Mi < / < A/2) of the Fourier coefficients of u(x). In this view, u(x) should

be regarded as an A'-periodic function known only at the grid points x
;

.

It is desired that this sum be calculated to a prescribed accuracy, say f||u||i, where

||u||i is the discrete L\ norm ||u||i = A -1
J2j^ l

u ( zj)l- Note that any grid spacing

is allowed for the x
}

(in particular, the spacing needn't be constant), that there is no

relationship between the integers Afi,A/2, and N, and that there is no requirement

that these integers have any special value, (such as being powers of 2). Calculating the

sum in (2) directly would have a computational cost of O(MN) operations. Instead

of forming this sum directly, though, an approximation to it will be computed, using

an FFT to accelerate the computation.

The procedure begins with the definition of an auxiliary grid, fi;y , covering the

range of values [0,A'). Let A. be an integer, whose value will be determined shortly,

and let the grid spacing h be defined by h = X/N+. Then the auxiliary grid consists

of the points yT - (r — l)/i, for r = 1,2, ... A',.

Suppose that the value of some function g(yT ) on the regular grid ftjy is to be

interpolated to the gridpoints Xj by Lagrangian interpolation. We will identify the

interpolation by specifying the degree of the polynomial to be used. Thus, p-degree

Lagrangian interpolation is computed using a polynomial of degree p or less. For each

Xj, the p + 1 nearest neighbors on the grid fl
1

^- must be located. Let these points be

designated yK
( J<o). y^(jj)-, ,yK (j,p )- These points should be chosen modulo X, so that

a point near the limits of the interval [0, A') may have neighbors near the other end

of the interval. (This is justified because, as will be seen shortly, the function to be

interpolated for the formal DFT is A'-periodic.) For each Xj, the p + 1 Lagrangian

interpolation weights are computed by

(3) wB(xi)= [ ;
: •

m =o {**&*) ~ y*u,m)>

and the interpolation of the function g to the gridpoints Xj is given

v

g(xj) % ^wn (xj )y(yK(iin) ) .

n=0

Letting g be the vector of function values g{>jk) and g be the vector of interpolated

values g(xj), the interpolation may be written in matrix form

9 = [iy]g

where 1* is the N x A, interpolation matrix mapping a function on H^ to the

gridpoints {xj}. The entries of this matrix are

lJT] _ J
wn(xj) if n(j,n) = m

1 » ]jm ~
\ else .

We are now ready to compute an approximation to equation (2). The strategy

will be to interpolate, for each u/, values of the kernel e~ XuJ[I
) from the auxiliary grid

ftyv^. That is, equation (2) is approximated by

N-\

(4) u(w/)» Yl u
(
xj) e("l,Xj)

j=o

2



where

p

e(uhXj)= Trwn(Xj )e-
iwtv<>rt

.

n=

Let the column vector of exponential values e~ ,UJ,Vk be designated c/, and the vector

of interpolated kernel values e(u>i,Xj) be denoted t\ Then this interpolation can be

written

e, = [l
x
y
]e, .

Notice, however, that c/ is to be used as the l
tfl row of the matrix giving the kernel

of the summation in (1). To compute t\ as a row vector, the adjoint of the matrix

equation equation is needed, namely

(ei)
T =

(2J?/)
T = («i)

T
[2J]

T
•

Lot us define the Af-vector u = u(w/), the N-vector u = u{t ,). and t ho matrices giving

the kernels of equations (2) and (4) as W and U'. respectively. Let the M x .V. matrix

whose Z''
1 row consists of e

_lLj
' y" for the A', points on fly be designated IF (it is useful

to observe that this matrix consists of M consecutive rows of the standard 1) FT kernel

for a uniform grid with A', points). Then the formal DFT is approximated

u — \\ u

as Wu
= mmTu .

This notation can be simplified slightly by denoting the vector created by multiplying

f7 by [IlY' . as u. Since the matrix [I^]
T

is the adjoint of the Lagrangian interpolation

matrix, the process of computing u — [2*] u has been dubbed (interpolation. Then

the approximation to the formal DFT is

( 5

)

u % W u .

which we call the Anterpolated Discrete Fourier Transform (A DFT).

The A DFT. as a matrix multiplication, requires 0(MXm ) operations. In general,

A'» will exceed A
r

, so as a matrix- vector multiplication, the ADFT has no advantage

over (2). If, however, A
r

, is selected appropriately, the approximation can be computed

quite rapidly. Let M, = max {Mi, A/2}. Then if N» is selected such that A'. > 2A/»,

and at the same time JV„ is a number for which an FFT module exists, then the fast

Fourier transform can be applied to compute the DFT summation

FFT {u} =ir 'fiTe-*"W for /=-— +1,-— + 2,...— .

A.
rt- 2 2 2

Recalling that h — A'/ A*,, it may be seen that the DFT summation therefore yields

( l/A'.)u((27r/)/A' ). Multiplying by A
T

, thus yields a set of values that includes, as a

subset, all the desired values of u(u>i).

Computing the ADFT, then, consists of two phases:

1 - u is computed from u by anterpolation: u = [2y]
T
u.

2. u is computed from u by a Fast Fourier Transform.

3



2. Operation count for the ADFT. The cost of computing the ADFT con-

sists of the cost of computing the interpolation weights, the cost of computing the

vector u — [I*

}

T
u. and the cost of the FFT on N* points.

Computing the (p + 1)N interpolation weights, wn(xj), by the formula in (3) is

the cost of the computing the numerator, since the regular spacing on fi^ means

that the denominators of wn (xj) are independent of j. To compute the numerators,
p

the product T (xj — xK /jiTn \)
is computed for each Zj, requiring 2p + 1 operations.

m-0
Then the n tk interpolation weight can be obtained by dividing by the product of

p

(xm - xK(jtTn ))
with the precomputed denominator

J
(xK (nj\

— x K ^j^m\), requiring 2

m =
m ^n

operations for each of the p + 1 weights associated with the point Xj. The calculation

of the weights thus requires 0(N{p+ 1)) operations. It is important, however, to note

that the calculation of the weights is dependent only on the relationships between the

gridpoints {y/,.} and {xj}, and is independent of the data set, u(xj). This means that

if a known set of gridpoints {x_,} and a standard auxiliary grid Sly are to be used

repeatedly, the interpolation weights wn (zj) may be precomputed and stored, and

needn't be included in the cost of the algorithm. This will be assumed to be the case.

The matrix [J5] is A", x .V and the data vector il is .V x 1. so the computation of

u = [Iy}
T
u would be 0(\ N.) if performed as a matrix-vector multiplication. There

is, however, a much more efficient method. The index table k(j.ti) can be stored

along with the interpolation weights. For each Xj and for each /;. the value of k(j, n)

is the index of the n
th interpolation neighbor that is used to interpolate from Sl v<

to the gridpoint Xj. The periodic nature of the kernel being interpolated means that

the interpolation is always to a gridpoint x^ in the center of the set of p interpolation

points (as is well known. [5], the Lagrangian interpolation is better behaved when this

is the case). If p is odd, then x, alwavs lies between y , p -i , and u , „+\ ., while if p

is even, then
>JK (j_t) is the closest gridpoint on f] v< to Xj.

Computing the vector u is then very easy, and may be done in 2N(p+ 1 j operations,

according to the algorithm:

1. Initialize u(yT ) - for all y T G ft
h
v> . (1 < r < .V.)

2. For j = 0,1,...,N- 1

For n = 0, 1, .. . ,p

Set u(yK
(j>n))

— u(yK (j,n)) + ™n{Xj)u(xj).

Having computed the values of it, consider now the cost of the FFT portion of

the ADFT. This is simply the cost of an A'.-point FFT. In the next section criteria

for choosing Nm will be determined. For now the only requirement is that an FFT can

be computed on a vector of length A7

.. As such, N. must have factors for which FFT
modules are available. For the purpose of an operation count, however, it is easiest

to assume that A, is a power of 2. Indeed, we shall see that we have great flexibility

in our selection of Ar

», and since powers of 2 or 4 produce the most efficient FFTs,
this is a good assumption. In this case, the cost of the FFT portion of the ADFT is

0(A. log
2 A,).



The costs of the ADFT can now be computed. In terms of data storage it requires

four arrays. One is the A-point vector containing the input data. u. In addition, an

A.-point complex vector is required for the input and output of the FFT . Assuming

that the weights are precomputed and stored, two auxiliary arrays are necessary, an

A X (p + 1) real (or double precision) array holding the interpolation weights w n (ij),

and the A X (p+ 1) integer array of indices, k(j,ti).

If the operations of multiplication and addition are counted equally, and if the

weights and indices are pre-stored, the operation count is C\S. log
2 A", complex oper-

ations for the FFT portion of the algorithm, where C\ depends on the choice of FFT
algorithm. The computation of u entails 2\(p + 1 ) operations that are real or complex

according to whether u is real or complex. Counting both phases of the algorithm,

the operation count of the ADFT is

CiN. log
2 A. + 2N(p+l) .

This should be compared with the operation count of the formal DFT, which is

0(M A). The computation of the ADFT is more efficient provided M is larger than

2(p+ 1) + (
A'„ log 2 A. )/.Y. a condition that will generally occur in practice.

3. Error analysis for the Anterpolated DFT. One of the attractive fea-

tures of the ADFT is that the interpolation is performed on the kernel, which has

known smoothness properties, rather than the data set. which generally has unknown

smoothness properties. Since interpolation error depends on the smoothness of the

interpolated function, the error committed by using the ADFT is relatively easy to

analyse.

Consider the error in /j-degree Lagrangian polynomial interpolation, when the

interpolation is from a set of p + 1 gridpoints that are equally spaced. Let these

gridpoints be designated so.£i s;>- A function /(x), whose values are known at

these gridpoints. is to be interpolated to the point x £ [sO-s>]- Let x = £o + th, where

h is the gridspacing, and / £ [O.p). The approximation to /(£o + th) ' s the value of

the Lagrangian interpolation polynomial P
p (£o + th),

PP (z) = f>i(*)/(fc) where w,-(x) = f[ \* " ^ \

m^ I

Defining 7r
p
(r) = t(t - 1 ){t - 2) . . . (/ -p), and ( £ [^o<^p ], the error in the interpolation

is bounded by

(6) |/(6 + th) - P
P ($o + th)\ <

|Tp(/

;

ll

^
+

1

l

'
9p+l

(P+ 1):

where Q p+\ = max^^ ]|/^
P+1)

(C)I- See [8], pages 264-270, for a derivation of this

error term.

It is useful to bound this error more precisely. To do this, we examine the behavior

of the factorial polynomial n
p {t). This polynomial has been well-studied, and many

results can be found in various numerical analysis texts, ([5], [S], [9], [11]). These

results, however, are developed for the case that x can be anywhere in [£o,fp ]. In the

present case the interpolation is always to the center subinterval. Thus for p odd,

t £ [^,^1, while for p even, either t £ [§,§+ 1] or t € [f
- l,f].
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To shorten the discussion, assume that p is odd. This is the most common case,

where p = 1 gives linear interpolation and p = 3 give cubic interpolation. Similar

results can be obtained for p even. Consider the following lemma, the proof of which

may be found in [6].

Lemma 1. If p is a positive odd integer, then

te[iHi,£±i] (p + 1)!

max <
1

2p+i

This result can be used to find an error bound for the ADFT. In this case the

functions being interpolated are

.V Y V
e~ l^ x

for /= -— + 1,-— + 2,...— .

2 2 2

From this set of functions, the only ones whose values are of interest are those for

/ between —Mi and A^. Recalling the definition M. — max {M\ . A/2}, the largest

absolute value among the frequencies of interest is u,',\/ = (2irMm)/X . Therefore

max
r 6[yK (j.o)-yKO, pj ]

rp+l I9
l^A/

iP+1

Insprting this and the bound from Lemma 1 into equation (6) gives

, /iw\f \ p+1

(7) |e-<^- e U.*,)| <

which is then used to obtain

\u-Wu\ = IEjL'o
1

u(xj)e
v-i .. _ IW|Ij

Ejlo
1

"Uj m~/. -01

= (/i^A/ /2)f+
1
.V||u||

1 .

Finally, substituting /? = X/iV» and wm = (2ttM*)/X establishes the desired error

bound. The error in the ,4 DFT approximation to the formal DFT is bounded, for

-M
x
< I < M2 . by

(8) l^r)
P

ljv|H|1,

where w/ = 2tt//A\ and the ADFT (5) is computed using an FFT of length Ar

,

Since the bound holds for all desired values of W/, it then follows that

(9) l«-[^]|L<(^)
P+1

^IHIi ,



where II • II is defined as the maximum absolute value in the vector. It is also worth
II II oc

noting that an error bound for any desired frequency can be obtained by replacing

cj,v/ with ui in the derivation, leading to

10] uU;)-[\Vu}(^)\< (j^j N\\u\U

This is especially useful information for those occasions when only the low frequency

components are of interest, or when the accuracy required of the approximation is

greater for the low frequencies than for the high frequencies.

4. Selection of p and .V.. The error bound just derived is useful in that it

provides a way to select the operational parameters X. and p. Recall that the goal

is to calculate an approximation to u to some prescribed accuracy, |u - Wu\ < (\\u\\.

In practice we will want to make the error small, so it will be assumed that e <C 1.

Comparison with (8) gives the requirement

A/.t\'' +i e
<

.
.V. }

- X

which may be written as

(11) .V. > .\L-
.V\5±r

i

For a given formal DFT, the values of A/„. .V. and < are considered to be part of

the problem specification. To ensure that the specified accuracy is obtained, it is only

necessary to select integers jV» and p so that (11) is satisfied. Naturally, there may be

many combinations of parameter values that achieve this goal. The parameters should

therefore be selected to fullfill some other desirable property as well. Specifically, they

should be selected also to minimize the computational effort of the algorithm.

To see how this may be accomplished, recall that the work involved in comput-

ing the ADFT with .V, points on the auxiliary grid ftjy and p-degree Lagrangian

interpolation is

0(Nm \og2 Nm ) + 0{N{p+ 1)) .

The value of the constant on the 0(N(p+ 1)) term depends on whether the weights

and indices are pre-stored, or calculated "on the fly". For the analysis that follows,

we assume the weights and indices are pre-stored. in which case the constant is 2.

The constant on the first term depends on several factors. FFTs generally have

a complexity of {X/q)\og{X/q) for some number q > 1. If the data have certain

symmetries, then a specialized FFT may be used for faster computation ([3], [7], [10]).

The variety of available FFT algorithms pursuades us to leave the constant on the

first term as an unspecified parameter, C\.

The total work in computing the ADFT can therefore be written as a function of

the two parameters X, and p. For a fixed problem size (X and A/,), and a prescribed

error tolerance c, the work in computing the ADFT to the required accuracy is

(12) \V(X.,p) = C 1 X.\og 2 X. + 2X(p+\) ,

7



and we seek an optimal parameters minimizing W(Nm ,p) over all combinations (N+,p)

satisfying (11), if such a choice exists.

Limiting cases may be determined by examining nearest neighbor interpolation

(p = 0), as well as extremely high degrees of interpolation (p —> oo). Substituting the

limiting values of p into (11), and noting that equality will suffice to ensure that the

required accuracy is attained, we obtain bounds for the selection of N*, namely

A/.tt < N. < —
for all values of p > 0.

The existence and uniqueness of optimal solutions are fairly easy to establish.

W(N*,p) is continuous with respect to each of its variables, and both of the first

partial derivatives are everywhere positive. This observation leads to

Lemma 2. Let S be the set {(N*,p) : X. > A/.7r(A70 1/(?>fl)
}. and let OS be

that portion of the boundary of S given by <(X.,p) : X. = Mt,ir(N/e)
1'^ 1

^ >. Then

if(*o,yo) G S, there exists a point (£.?/) G OS such that JF(£.7/) < W(xo,yo).
i

Proof: Since (x .y ) G S, the point (£,y ) G OS. where £ = Mm ir (Ey° +\
Furthermore, f < x u . Then since the partial derivative of the work function with

respect to Nm is everywhere positive. H"(£.yo) < U'(x ,yo)-

The utility of Lemma 2 is that the optimization problem can be rewritten as a

problem in a single variable. Since for every point in S there is some point along OS
that requires less work, it is only necessary to seek a minimum from the points of OS

.

This can be done by parameterizing X. and p as functions of a single variable.

Then on OS we find that

(14) .V. = M.nb and ;;+l=log
fc

f—
J

Since < p < oo, the value of b is restricted to the interval (1, jV/e]. Substituting

these expressions into (12), the work equation may be rewritten as a function of b

alone

(15) \V(b) = Cu\L7ib\og2(Mm 7ib) + 2X\og
b
(±)

,

and the problem is to minimize (15) subject to the constraint 1 < b < {X/e). Once b

is determined, the necessary values of A', and p can be obtained from (14). We may
now establish

THEOREM 1. There exists a unique value b that minimizes (15) subject to 1 <
6 leq(X/e). Therefore the work function

W(N„p) = d Ar

. log2 X. + 2X(p + 1

)

has a unique minimum, subject to the constraints

Xm > A/.7T I —
J

Ofl(f 0<p<oo

8



Proof: W{b) is continuous and difTerentiable with respect to b on (l,JV/c], Dif-

ferentiating equation (15) yields

{U>) \\"(b) = K
1
\n(K 2b)-

6( In 6)2 '

where

In 2 \ e

For W'(6) = 0, then. 6 must satisfy 6(ln 6)
2
ln( A'26) = K$/K\. Now W is also contin-

uous and differentiate on (1, 7V/c], and differentiating yields

w«(h\
K] r f lnb + 2

\

Since 6 > 1 we see that \\'"(b) > for all b £ (l,.V/(], so any critical point in the

interval must correspond to a local minimum.

It is apparent that U''(6) — -oc as b — 1. Examination of the endpoint b — N/e

reveals that since K\ > ~, I\ 2 > e, and f<l. we have that \V'\ N/e) > 0. Further,

\\'"(b) > implies thai W'{b) has exactly one sign change in the interval {\,.\/(].

The point b at which this occurs is therefore a global minimum for Wib). and the

value lt'( \..p). where

.V. = A/.7T&0 and p = log, ( — )
- 1'»'>0

,

is the unique global mini mum for W on OS.

The values of .V. and p obtained in this manner are real numbers. There is only a

limited number of integers for which efficient FFTs exist, and Lagrangian interpolation

requires p to be an integer. Further, this entire discussion has been predicated on the

assumption that p is an odd integer, although a similar analysis can be made for p

even. Once the theoretical values of N, and p are determined, they must be modified

to allow computation. There is some flexibility in this, but certainly selecting N» to

be the first integer larger than M.irb for which an FFT exists, and choosing p to be

the smallest odd integer greater than

N
€

log, (
- -

)
- 1

will suffice.

In order to find the optimal values of p and X. it is necessary to find the value of

b satisfying

(IT) b(\nb)
2 ln(K 2 b) = ^- .

While an analytic solution of this equation cannot be found, Newton's iteration may
be used. Table 1 displays optimal parameters Nm and p for several combinations of

N, A/,, and c.



A A/. ( A. P A' AL e A, P

32 8 .1 48.7 7.7 128 32 .1 193 9.9

32 32 .1 142.6 15.5 128 64 .1 325.7 13.8

32 64 .1 257.6 22.2 128 128 .1 570.7 19.4

32 8 .01 52.9 9.8 128 32 .01 206.7 12.1

32 32 .01 150.1 19.1 128 64 .01 344.1 16.6

32 64 .01 267.8 27.1 128 128 .01 595.6 23.1

Table 1. Optimal parameters Nm and p computed for various problems.

5. An ADFT Example. To illustrate the AD FT, consider the problem of com-

puting the formal DFT of the function u(x) — [(w — x)/ir] 2
, sampled on an irregular

grid. The irregular grid consists of A = 128 points x
}
randomly spaced in the interval

(0,27r). Since the extent of the interval is 27T, the frequencies u>/ are just the integers

/, and the formal DFT is

is:

,V-1

a(0 = ]C u(
xj)e

j =

-ilx, -64 < / < 64

The sampled data are shown in the top of Figure 1. The real part of (18) is plotted

on the bottom of Figure 1. The ADFT was used to approximate the formal DFT.
with values of A'. = 128, 256. 512, and 1024. Figure 2 displays, for each choice

of A'„, the absolute value of the error \u(l) — [\Vu](l)\. plotted as a function of /.

Linear interpolation (p = 1) was used in each case. Note that increasing the value

of A', produces a noticeable decrease in the error, and that the error increases with

increasing wavenumber, as might be inferred from (10). Figure 3 displays the effect of

using different values of p for fixed A„. It may be seen that the error decreases rapidly

as p is increased. Equation (9) predicts that the error should decrease at least as fast

as ( -vr) decreases as p or A', are increased. Table 2 gives both the infinity and

Li norms of the error |u(/) - [U'u](/)| for several values of p and each of A', = 256

and N» = 512. For Ar

, = 256. the error bound decreases by 0.6169 each time p is

increased by 2. The experimental error is diminished by a factor of approximately

0.3 as p is increased from 1 to 3, and by a factor of approximately 0.4 with each

succeeding increase, better than the theory predicts. Similarly, for N* = 512, the

theoretical bound decreases by 0.15421 as p is increased by 2. while the experimental

decrease is approximately 0.11 for each increase, a slightly better result. Numerical

experiments on numerous other irregularly sampled functions, with various degrees

of smoothness, produced similar results. In these experiments the ADFT behaved

in a similar fashion as it did for the function discussed above. There is dramatic

improvement with increasing values of A'», and p. As might be expected, the error

diminished faster with smooth functions than discontinuous functions.

A. \Error\ \Error\\-2 A. \Error\ Error]
|
2

256

256

256

256

1.20663

0.357889

0.144478

0.061305

0.434861

0.116080

0.039136

0.014983

512

512

512

512

0.290501

0.029351

0.003360

0.000419

0.109943

0.008315

0.000817

9.66385e-05

Table 2. Errors of the ADFT for various values of N. and p.
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6. Some Open Questions about the ADFT. Like the continuous Fourier

transform, the DFT has several important properties, such as linearity, the convolu-

tion and correlation properties, the shifting property, the modulation property, and

Parseval's relation. To what extent these properties hold for the ADFT is an open

question. The linearity holds can be established immediately, by noting that both the

formal DFT and the ADFT can be written as matrix operations, so they are linear

operators. Certain symmetry properties are easy to establish. For example, applying

the ADFT to a real-valued vector will yield a conjugate symmetric result, that is

ii(uj) = u(— u>), because the vector [I*] u is real-valued, and because the ADFT is

computed by applying the FFT operator to this vector. The DFT, and therefore the

FFT, maps a real vector to a conjugate symmetric vector [4]. Applying the DFT to

data vectors with other symmetries (even, odd, quarter-wave, etc.) yields output vec-

tors with other types of symmetries [10]. It is natural to ask which of these symmetry

properties are inherited by the formal DFT or the ADFT. It seems reasonable to

postulate that if the irregular gridpoints are symmetrically disposed and the function

u(Xj) is symmetric then the symmetry property of the DFT might be inherited by

thp formal DFT and the ADFT.
An important question is: How is the formal DFT related to the continuous

Fourier transform? That is, to what extent . and with what prror. does the formal DFT
approximate the FT1 Answering this question may prove to be a lengthy process.

Many related questions will also arise For example, how does the sampling theorem

apply to an irregular grid? What frequencies can be represented accurately, and what

constitutes aliasing? Is there some analog to the Poisson summation theorem? Many
problems feature irregularly spaced data, so it may be assumed that these questions

are of some interest.
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Fig. 1. The function /(r) = [(x - x)/t] 2 sampled on in irregular grid, and its formal DFT. Only
the real part of the formal DFT is plotted.
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