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Abstract

The justification for the use of the Langmuir isotherm, basically

an equilibrium relation, to relate the subsurface concentration C(t)

at time t to the adsorbed surface concentration T(t) depends,in many
adsorption kinetics models, on the presence of two very different time

scales. Though this was implicit in the recent derivation in [1], it was

not specifically pointed out. The second 'long' time scale is partic-

ularly important because it governs the time evolution of C(t), the

subsurface concentration, and helps to determine when the Langmuir

isotherm approximation is valid. Here the Langmuir isotherm is de-

rived mathematically from the adsorption kinetics equations governing

the surface concentration, the subsurface concentration and the bulk

phase adjacent to the surface.

The dependence of r°°, the equilibrium concentration of a surface-active

component at an interface, and C°° , the corresponding bulk phase concen-

tration, are often related by the Langmuir isotherm (Langmuir [2]):

* International Classification for Physics numbers 5100, 5110



i + 7c°°
K)

In (1) f represents the saturated surface concentration while 7 is a constant.

Frequently the assumption is made that at any time t the adsorbed surface

concentration T(t) and the 'subsurface' concentration C(t) (ie., the concen-

tration in a thin layer of bulk phase adjacent to the surface) are related by

the equation

r(1) = j££W_. (2)

see the references given in [1]. Equation (2) is often used as a boundary

condition to determine the surface concentration from the subsurface con-

centration at time t. Some of the the inadequacies of making the intuitive

assumption in (2) and the desirability of replacing it with a more fundamen-

tal description of the Langmuir isotherm have been discussed in [1]. We also

note that in many time dependent problems it is important to establish how

initial values of the surface and subsurface concentrations evolve over time to

eventually satisfy (2). This time evolution can greatly affect surface tension.

For example ( see [3], p. 62 ), at the surface of ordinary tap water the surface

tension immediately after formation of the surface is close to the value for

pure water, but usually rapidly falls to something like half this value due to

adsorbed contaminants.

The key to the validity of (2) lies in the presence of two very different

time scales: £p , the characteristic time defined by the rate constants for

adsorption and desorption of subsurface surfactant into the surface, and i s ,

the characteristic time defined by the rate constants for passage of subsurface

surfactant into and out of the bulk phase. The letters p and s stand for pre-

steady state and steady state respectively. When tp <C t s the relaxation in

surface concentration for a given change in subsurface concentration is very

rapid. The time scale t s is particularly important because it controls the

time evolution of C(t), something which could not be determined from the

derivation given in [1]. The purpose of this letter is to extend the model given

in [1] to take into account the passage of subsurface surfactant between the

subsurface layer and the bulk phase, thereby deriving the Langmuir isotherm

and conditions for its validity from an adsorption kinetics point of view.



As in [1], let J+ be the rate at which subsurface surfactant is adsorbed

and J~ be the rate at which adsorbed surfactant is desorbed. Assuming no

evaporation, we have
d
-T = J+ -J-.
dt

We assume, as in [1], that

J+ = k1C(t)(l-^A,J- = k2T(t)

where hi and k2 are rate constants. Consequently

±r(t) = k1c(t)(i-^-)-k2nt). (3)

Let K + be the rate at which bulk phase surfactant passes into the subsurface,

and K~ the rate at which subsurface surfactant passes back into the bulk

phase. Then

^C(t) = J~- J+ + K+-K-.
dt

We will assume that if C°° is the equilibrium bulk phase concentration, then

K+ - I<- = k3(C°° - C(t))

for some rate constant fc3 .Therefore

jC{t) = -(kMt) (i - ^r) - WW) + hie™ -cm (4)

It is equation (4), governing the time evolution of C(t), which was not present

in [1]. As initial conditions to (3) and (4) we assume

r(0) = f

C(0) = C°°. (5)

In many cases T may be zero, but it need not be.

To understand more fully (3), (4) and (5) we shall now nondimensionalize

them by letting

T{t) = C°°T
m
(t*)

C(t) = C°°C*(t*) (6)

<%'



where starred quantities are dimensionless. We have chosen 1/&3, the char-

acteristic time for passage of subsurface surfactant into and out of the bulk

phase, to nondimensionalize t. Thus t = t at* where t 3 = l/k3 . As in [1], we
shall let p = ki/k2 and for purposes of discussion here we shall assume that

p is an order one quantity. The other cases discussed in [1] can be easily

adapted to this one.

By our assumption on p, l/k2 is a characteristic time for adsorption and

desorption into the surface, and we therefore let tp
= l/k2 . Defining

tp £3

t s k2

we shall assume that

e < 1.

Physically this corresponds to assuming that the characteristic time scale

t
p
over which changes between the surface and subsurface concentrations

occur is much shorter than the time scale t s over which changes between the

subsurface and bulk phase concentrations occur.

Inserting (6) into (3), (4) and (5) and dropping the stars for convenience,

we find their dimensionless form to be

poo \

(7)
at \ i /

ej
t

c(t) = -
( Pc(t) (

i - vr(0 )
- r(t) ) + «(i - c(t)) (s)

C(t) (l •

r

r
r(*))

r(o) =

C(0) =

f

c°°
: 1. (9)

Note that all dependent and independent variables in (7), (8) and (9) are di-

mensionless 0(1) quantities. The system (7), (8),(9) is a singular perturbation

problem, characterized by the presence in (7) and (8) of a small parameter

multiplying the highest derivatives. We cannot let e —* and still hope to

satisfy the initial conditions in (9). The resolution of this problem is found

in the existence of a 'boundary layer' in time where T(t) and C(t) change

so rapidly that one cannot neglect the derivative terms in (7) and (8). This



region corresponds, as we shall see, to the rapid relaxation of the surface and

subsurface concentrations from their initial values. After this rapid relax-

ation, or pre-steady state period, the surface concentration T(t) is in steady

state with respect to the instantaneous value of the subsurface concentration

C(t). This yields the Langmuir isotherm given in (2).

Away from the region of rapid transition,ie.,in the steady state, we look

for the so-called 'outer' solutions in the form of asymptotic expansions in e:

Touter
{t) = r (0 + el\(*) + . .

.
, Couter

{t) = C (t) + eCi(t) + . . . . (10)

Substituting (10) into (7) and (8) then yields to 0(e°):

C°°/ ( \
pc (t) (1 - -pro

(0J
- r (<) = o,

or

m = , tarn
. (11)

r + Pc°°c (t)
y

'

This is, of course, the dimensionless Langmuir isotherm given in (2) with

7 = p/T . The 0( £°) surface concentration r (t) is in steady state with

the instantaneous value of the 0(f°) subsurface concentration Co(0-However

(11) yields no information about the time dependence of Co(t), and we cannot

possibly satisfy the initial conditions in (9).To discover the former, we add

(7) and (8) together and find, after cancelling a common factor of e, that to

0(e°) ,

jt

(To(t) + C (t)) = l-C (t).

This coupled with (11) then leads to the following single differential equation

for Colt):

Jo*) =
l

~f; (-I

1 +
(f + pC~C (*))'

Since C(t) is a concentration, we will always require Co(0) > 0. We
should not necessarily require Co(0) = 1, however. We are discussing the

outer solution, and rapid changes may already have taken place in T(t) and

C(t) making them differ from their initial values. We will shortly discover

how to choose Co (0) by 'matching' it with the rapidly varying or 'inner'



boundary layer solution. Co(t) = 1 is a solution to (12) and it is not hard

to see that when Co (0) > all solutions of (12) tend to one as t —» oo. For

example, if < Co(0) < 1, (12) implies that

±C„(t)
< -M < i

-i-CoW

so that

Co(0) < C (t) < 1 - e"*(l - Co(0)) (13)

for all t > 0. Using (12) and (13) we then find that

dt
Mw -

r2
p

1 +
(f + pC~Co (0))

and integrating this inequality gives

l-Co(0<(l-Co(0))e-
Alt

, (14)

where

Y 2
P

1 +
(f + PC<x>Co {0J)

Combining (13) and (14) together then gives

(1 - Co{0))e-< < 1 - Colt) < (1 - Co(0))e-
Al(

(15)

if < Co(0) < 1 . In the same way, if Co (0) > 1 we find that

(Co(0) - l)e-< < C (t) - 1 < (Co (0) - l)e"
A2t

(16)

where

^2 — s~:

—

i +
(f + ^c-)'



We note that (12) can be solved implicitly by separation of variables, but we
find that (15) and (16) supply more information. Equations (15) and (16)

imply that all solutions of (12) with Co(0) > tend to one as t —* oo, at a

rate controlled by the characteristic time t a = l/fa. In dimensional notation

recall that this means that the 0(e°) outer solution C°°Co(t) tends to C°°

as t — oo, and hence from (11) that the 0(e°) outer solution C°°r (t) ( in

dimensional notation ) tends to

f>c°°

T + pC™

as t —> oo. This is precisely the form of the Langmuir isotherm given in (1)

with 7 set equal to p/T.

What about the 'inner
1

or boundary layer solution in which —- and -r—
dt

m
dt

change rapidly? To see this rapid change we introduce a 'stretched' dimen-

sionless time t defined by t = -. Since — = £-7-, when derivatives with
e dt dt

respect to t are 0(1), derivatives with respect to t are O (-) and rapid

changes are occurring. Note that t = k2 td = td/tp where id denotes dimen-

sional time. Hence t measures dimensionless time at a rate characteristic of

the rapid processes of adsorption and desorption into the surface.

Using t instead of t in (7) then gives

J / poo V

^r(f) = Pc(t) (1 - jrT(i)j - r(i) (17)

|c(f) = - (pC{i) (l - Y-T(i)) - m) + e(l - C(i)). (18)

T

d _ r, / „,^ (. C°°

T
These are the differential equations for the 'inner' or boundary layer solution

describing rapid changes in V and C. Again we look for solutions in the form

of asymptotic series in e:

rinner (i) = f (i) + eT!(*) + ...

Cinner
(t) = C {t) + eC1 (i) + ....



Substituting these into (17) and (18) and using the initial conditions in (9),

we find the 0(e°) 'inner' problem to be

^To(i) = PCo(i)[i- ir to(i))

jfoit) = - (pCo(t) (i - Y"foffl) - f (t))

Adding (19) to (20) and applying (21), we conclude that

f (f) + C (i) = B

where the constant B is defined by

f£=1 +
c--

(19)

(20)

(21)

(22)

(23)

Thus, on the boundary layer time scale t, the sum of the surface and sub-

surface concentrations is conserved. Using (22) to eliminate Co(t) from (19)

then gives

f (f) - A- (f (f) - f x
)
(f (f) - f2 ) (24)

where

Ti =
C
r i

(i + -) + 5 + \\c
r , 1, „\ ABY

(! + -) + £ -
C<

(25)

r, =
£(! + ;) + *-

N c
r
d + i)+BU 4Br

C c

Both Ti and T 2 are real and positive, and since

c C c C c



we find from (25) that

I\ >
c

(l + i) + B + £<1+ ;>
B

r 2 <
^ + ) +B -

c
"(i + i) B

(26)

It follows from (26) that

i >̂ B
(27)

To < B.

Note that f \ and T 2 are equilibrium solutions of (24). If r (0) ^ I\ and

ro (0) ^ r 2 , (24) may be solved using the initial condition

f„(0) = B - 1

from (21) and (23) to yield

fo(0 =
T x

- T2Z e
Qt

1 - Z eai
(28)

where a > is given by

and

C°°
( r

/ 1 ^ D\ 45r

__ r (o) - r, __ b-i-t,
° fo(0)-f2

"' B-l-t2

(29)

From (28) and (29), f (t) blows up in finite time if and only if < Z < 1,

or if and only if ?! < B — 1. By (27), however, this can never happen.

It follows from (28) and the above remarks that, whatever ro (0) is, all

solutions T (t) —> T 2 as t —» 00. Hence, from (22), Co(t) — B — f2 as t —* 00.

Note that as £ — 0, t —> 00 when t differs from by an 0(1) amount.



We shall now 'match' the inner and outer solutions together for both the

0(e°) surface and subsurface concentrations by requiring that the limit of

the inner solution, as t — oo, 'matches' or is equal to the limit of the outer

solution as t —* 0. This implies that

limro(0 = lim fo(£),limCo(0 = lim C {t)

or , using (11) and (28)

ro (0) = «

TpC°W— = f2 , Co (0) = B - f2 . (30)

From (27), Co(0) > 0, and we see that the matching conditions in (30)

determine initial conditions for the outer solutions T (t),Co(t).

The final step is to form the 'composite' or uniformly valid solution by

adding the 0(£°) inner and outer solutions together and subtracting the

common parts as given in (30). This yields

T(t) = r (*)+ f (t)-fa+ O(e),C(t) = C (t)+C {i)-(B-t2)+O(e). (31)

Recalling that i = ?, we can write (31) as

r(f) - r (t) + fo Q) -fa + 0(e), C(t) = C (t) + Co
(^)

-{B- f2 ) + O(e).

(32)

From (32) we see that the solutions for T(t) and C(t) each consist of an outer

solution plus a boundary layer 'correction'. Equation (32) gives the uniformly

valid composite solution to 0(5) for the dimensionless system given by (7),

(8) and (9).

Initially, by (21) and (30), ro (0) = f 2 and fo (0) = B - 1 = T/C°°. Then

as t increases To(t) rapidly approaches T2.This domain of rapid change is

the pre-steady state. After the pre-steady state the steady state begins. In

this regime T (t) « f2 and, to 0(e), T(t) = T (t), where the outer solution

T (t) is given by (11), with C (t) satisfying (12). By (15) and (16) the outer

(dimensionless) solution Co(t) tends to one for long times at a rate controlled

by < s .This means that T(t) tends ( in dimensional form) to the expression in

(1) with 7 = p/Y. We note that by using results in [4] we can prove that the

composite solution in (30) is a uniformly valid solution to O(e) of the system

10



given in (7), (8) and(9). The reader can find further information on solution

methods for problems of this type in [5] and [6].

To conclude, the validity of the derivation of the Langmuir isotherm given

here depends on the presence of two different time scales tp and ts , with

tp/t a =£<1, These time scales characterize the pre-steady and steady

state time scales respectively. It is after the relatively short pre-steady state

period that the 0(£°) surface concentration To(t) is in steady state with the

instantaneous value of Co(t), the 0(e°) surface concentration, yielding the

(dimensionless) Langmuir isotherm given in (11).

11
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