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AMPHIB

Abstract

A general purpose three-dimensional code (AMPHIB) that solves electronic cooling

problems is documented. In its present structure, the code is set up for computations in

liquid immersion cooling of an m by n array of chips embedded in a substrate in a three-
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forced, mixed and natural convection for a wide range of boundary conditions. The
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problems are also included.





TABLE OF CONTENTS

Page

NOMENCLATURE FOR REPORT 4

INTRODUCTION 6

OUTLINE OF ALGORITHM 15

EXAMPLES 21

INPUTS AND SUBROUTINES 33

APPENDICES

A 45

B 49

C 59

REFERENCES Ill





Nomenclature for the Report

AP , AN , A s , Aw , AE , AF , AB Coefficients of the finite difference equation

m^
g Acceleration due to gravity,—
C Scaling factor in the convection-diffusion equation

G Non-dimensional mass flux at the boundaries of a

cell

H Height of the cavity, m

i x subscript

j y subscript

k z subscript

Nu Nusselt number

P Non-dimensional pressure

Pr Prandd number
W

q Volumetric heat generation,—
Ra Product of Rayleigh and Prandtl number

S Source term in difference equation

t Non-dimensional time

T Non-dimensional temperature

Tc Cold wall temperature, °C

TH Hot wall temperature, °C

AT Temperature difference, Th - Tc, °C

U Non-dimensional x-direction velocity

V Non-dimensional y-direction velocity

W Non-dimensional z-direction velocity

x Non-dimensional horizontal spatial coordinate

y Non-dimensional vertical spatial coordinate

z Non-dimensional spatial coordinate in the direction

of depth

Greek Symbols

a Thermal diffusivity,
m2

s
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K

Ax, Ay,Az

v

Coefficient of volume expansion, 77-

Generic non-dimensional field variable

W
Thermal Conductivity, —

^

Non-dimensional mesh or cell size

Dynamic viscosity,
—

kg
Density, -g

Superscripts

n

Estimated quantity

Correction to estimated quantity

Present time level

Subscripts

c

p,n,s,e,w,f,b,

ee,ww,ss,nn,

bb,ff

P, N, S, E, W,F,B,

EE,WW,SS,NN,

BB,FF

Refers to the chip

Designation of control volume boundaries

Node designation of basic grid





INTRODUCTION

1 . 1 General Remarks

Over the years, computational fluid dynamics has emerged as a powerful tool to

solve engineering and scientific problems related to fluid flow. This ranges from the

familiar such as solving for flow past a supersonic airplane; flow in an internal combustion

engine; flow in an oil reservoir; atmospheric flows and flow in turbo-machines to the

esoteric such as geophysical and astrophysical fluid dynamics.

The increase in computing power which roughly doubles every two years has

contributed immensely to the feasibility of solving realistic engineering problems. More

stunning advances in computing resources are expected in the near future. For instance,

massively parallel architecture promises to create a prototypical teraflop machine (which is

capable of 10 12 floating point operations per second) by 1995 (Deng et. al, 1992). This can

well be appreciated considering the fact that three-dimensional unsteady problems of

moderate complexity can be simulated rather effectively using an RS/6000 workstation

which is capable of a 16 megaflops(K)6) performance for a CFD code.

CFD has gradually evolved to become a cost-effective alternative to experimentation

with respect to engineering design in many cases. For instance in the aerospace industry,

the lead time in design and development of aircrafts has been considerably reduced

(Fletcher, 1988), thanks to CFD replacing time-consuming and costly testing procedures in

many of the steps. This cost-effectiveness is expected to improve relentlessly, as

computing costs decrease.

Nevertheless, CFD must be used in the design process with utmost care. In the first

place, CFD can never claim to replace experiments; at least not yet. Experiments form a

critical component of the overall process. It is imperative that the CFD code be validated by

experiments for the particular case. There are several reasons for that. The validity of the

boundary conditions, the refinement of the grid or the validity of certain simplifying

assumptions can only be checked and confirmed by experiments. There might even be bugs

which need to be fixed. For computer codes which include turbulence modelling it is

sometimes required to check whether the emperically determined constants are valid for the

given case.





The thermal management of electronic components (otherwise known as electronic

cooling) can also benefit from these advances in computing power. The design process has

in the past relied heavily on empirical testing. Convective heat transfer modelling was

expensive due to the complex mathematical equations involved. The heat transfer

coefficients were determined from experiments and were then used in simpler conduction

calculations to determine the maximum chip temperature and other quantities of interest to

an engineer.

With advances in Computational Fluid Dynamics and computing power, the

convection and conduction problems can be solved simultaneously in a coupled manner.

Computational fluid flow and heat transfer is increasingly being used as part of this design

process. A number of general-purpose commercial code available (such as PHOENICS,

FLUENT, FIDAP etc) can be used to solve applications in electronic cooling. There are

several drawbacks though. The codes are too general (and very expensive!). A

considerable amount of effort must be expended in order to tailor them to the specific

application. More important, the source code is almost never available. The option of

modifying the code does not arise.

The present code AMPHIB attempts to redress these disadvantages. It is a general-

purpose code that is exclusively designed to solve problems in electronic cooling.

AMPHIB is also fully validated by experiments. It can therefore be used directly in such

applications with minimal modifications if at all. To the best of our knowledge, this is the

first software package that specifically solves these class of problems. Since the source

code is readily available, the code can be modified to solve problems of much greater

complexity such as those involving turbulence modelling, mass transfer etc.

1 . 2 Purpose of the Code

The primary purpose of the code is as a design tool for applications in electronic

cooling. As noted earlier, experiments form an integral part of this procedure. The

usefulness of the code is best illustrated with examples.

Consider a hypothetical configuration shown in figure 1.1. A power dissipating

chip is protruding from a vertical substrate. It is being cooled by a dielectric fluid in direct

contact with the chip surface. The dielectric fluid is hermetically sealed in an enclosure

which contains the chip and substrate. Heat exchangers at the top and the bottom wall

extract heat from the liquid. This configuration is what is commonly known as cooling by

liquid immersion.





To check design, experiments may have been carried out to monitor the chip

temperature for a case that is considered optimum. The chip symmetrically placed at the

center of the substrate would seem to be a reasonably optimal design. Chip temperatures

are recorded for different power levels in the chip. However, some nagging doubts still

remain. Is this really the optimal configuration? What if the chip was placed in an eccentric

position? Would the chip temperature be reduced? Also, would it matter if the substrate was

a different material of higher conductivity e.g, ceramic instead of plexiglas. What would be

the effect of increasing the spacing between the substrate and the vertical wall opposite to

it?

These are legitimate questions. Unfortunately it is very time consuming to respond

to these questions experimentally. This is where CFD codes such as AMPHIB fit in. As a

first step, the code is used to validate the experiments. The chip temperatures predicted by

the program must be made to match those that were experimentally determined within an

acceptable bound.

Appropriate models of the boundary conditions must be introduced in the program.

To have a well defined problem the geometrical and physical parameters of the setup must

be included in the code. This includes the complete dimensions of the enclosure, the

dimensions of the chip, the thermo-physical properties of the chip, substrate and fluid. The

power dissipated by the chip and the temperature of the heat sinks ( the top and bottom

wall) and the location of the chip must also be known.

The present code (AMPHIB) can handle the problem so described without

modifications. If the code predicts reasonably well, it is quite straightforward to change

the parameters to predict chip temperatures for a different geometry or different materials.

The exact details of the code and implementation are given in a different chapter.

Consider another configuration of a greater complexity shown in figure 1.2. A

three by three array of chip protrusions is shown. Experiments were performed with a

certain spacing. All the chip dimensions are the same. The chip is so configured that the

largest dimension is aligned to the vertical. Experiments were performed for a certain

spacing between the substrate and the opposite wall. Unfortunately, due to constraints in

the instrumentation, experimentation was possible only for spacings that were larger than

the design constraint. Spacing between chips and wall are typically very small since the

chip density in real applications are quite high.

The numerical code can be very usefully applied to such a situation. Firstly, the

code validates the experimental results for the large spacing. Later, numerical computations

are done for the smaller design spacing. It is also possible to check computationally

whether a slightly different alignment of chips is a good idea. For instance, if the largest
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dimension of the identical chips was aligned to the horizontal rather than the vertical

direction. This is a rather trivial thing to do computationally but a rather cumbersome thing

to do experimentally. In the latter case, a whole new experimental setup has to be

constructed. The optimal approach is to judiciously combine numerics with experimentation

in the design process. The configuration shown in figure 1.2 can be handled by AMPHIB

with no changes. In fact, the program can handle an n x m array of chips on a substrate

where n and m are whole numbers. Theoretically, there are no limits on the number of

chips in the computations. Nevertheless, a 5 by 5 chip array would itself require 107 bytes

of memory for reasonably accurate results in three-dimensional computations. Thus, there

are practical limits on the total number that can be handled by the code.

There are other related configurations which can be tackled by the program with

minor modifications. One case, which is important from the engineering point of view is

shown in figure 1.3. The array of chips shown is cooled by a fluid that is circulated by a

pump. This is a mixed convection problem. An important question is should the fluid

circulate from the top to the bottom or the other way round. The answer may not be simple.

It could depend on the power dissipation rate, the properties as well as the geometry of the

configuration. The code can be used. The modifications in the code that are necessary to

solve such a problem are discussed in a later chapter.

A more general configuration is shown in figure 1.4. The whole chip assembly and

the enclosure is at angle with the vertical and fluid is circulated through it. This problem can

be solved with surprisingly little changes with AMPHIB.

1 . 3 Overview of the Report

In chapter two, the algorithm of the code is presented. The description is brief.

Interested readers can look into the references provided in that chapter for additional details.

A good readable account of the control volume method applied to heat transfer and fluid

flow problems is given in Patankar (1980). Readers interested in the code purely as a user

are advised to go to chapter four directly which describes the inputs and subroutines of

AMPHIB.

Chapter three describes three example problems that were looked into. One of the

example deals with convection and conduction in an enclosure with a three by three array of

chips embedded in a substrate. Another example is convection in an enclosure with no

substrate or chip. Both these examples are compared with experiments. That is precisely

why they were chosen. These two examples underscore the essential correctness and

accuracy of the code. The third example is not related to any experiments. It is a





benchmark. It is useful to have one, especially when changes are made in the code. One

can always fall back on this case for debugging and checking purposes.

Chapter four provides a detailed and complete account of the inputs to the program

(all of them initialized in BLOCK DATA) and the subroutines. Appendix A details the

implementation of the boundary conditions. This chapter is important for someone who

intends to modify the code and thus extend the scope of AMPHIB. The present version of

the code has a fixed type of boundary condition. There are no options or flags in the code

which would enable one to chose an arbitrary set of boundary conditions for each wall.

Appendix A has easy to follow instructions on how to change the code in order to

accommodate a more general set of boundary conditions.

Appendix B provides explicit algebraic expressions for the difference equations and

numerical boundary conditions that are implemented in the code. Appendix C gives a listing

for AMPHIB.
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Heat Exchanger

Heat exchanger

Fluid-filled

enclosure

Figure 1.1

In this configuration, a single chip embedded in a substrate is

being cooled by a dielectric fluid. The fluid is hermetically sealed in

a chamber. The heated fluid is cooled by heat exchangers at the top

and bottom walls. The first step is to mathematically model the

physical problem. For example, the top and bottom wall can be

modelled as isothermal heat sinks. The computer code can then be used

to calculate the chip temperatures for different geometrical parameters

and transport properties.

1 1





Heat Exchanger

Substrate

Chip Locations

Dielectric Fluid

filled enclosure

Heat Exchanger

Figure 1.2

This is a chip- substrate configuration of a slightly greater

complexity. There are nine chips in a three by three array

that is being cooled by a dielectric fluid in an enclosure.

This problem can be solved by AMPHIB without changes

provided that the chip locations are along a rectangular grid.
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Fluid inlet

Fluid Outlet

Figure 1.3

This is a configuration similar to figure 1.2, except

that cooling is now aided by fluid that is being circulated

by a pump. This problem can be solved by AMPHIB
only after modifications are being made in the code which is

described at length in a later chapter.
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Fluid inlet

Substrate

Chip

ssssssssssssssgssssgss

}

t
Fluid Outlet

Figure 1.4

The direction

of the gravity

vector

This is a chip- substrate configuration that is being

cooled in a mixed-convection mode. However, as in

many real-life situations, the whole assembly is at

an angle with the vertical. Nevertheless, this problem

can be solved by AMPHD3 with minimal changes in the

program.
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OUTLINE OF ALGORITHM

2. 1 The Scope of the Program

The program is a general purpose finite difference FORTRAN-77 code designed to

solve unsteady and steady three-dimensional heat transfer and fluid flow problems in

rectangular cartesian coordinates. The code is designed to effectively handle conjugate heat

transfer situations, i.e., when conduction and convection is solved simultaneously.

However, pure convection or conduction problems can also be solved.

The program uses the control volume method (Patankar, 1980) to discretize the

governing Navier-Stokes, continuity and the energy equations in the primitive variable

formulation. The SIMPLEX algorithm (Van Doormal and Raithby, 1985) is used to

determine the five field variables (the three velocity components, temperature and

pressure). It is essentially a more implicit version of SIMPLE (Patankar, 1980). Due to the

more implicit nature of the algorithm, larger time steps can be used without encountering

numerical instability. This leads to considerable saving of computer resources for steady

state computations since a smaller number of time steps would be required. The

computational work per time step would be increased somewhat, but is more than

compensated by the decrease in the total number of time steps required to reach a converged

solution.

The algorithm is for three-dimensional and unsteady heat transfer and fluid flow

problems that marches in time. Time stepping is performed by a first order Backward-Euler

scheme. The algorithm is therefore implicit in time. The grids are staggered, and the

QUICK scheme is used for interpolating the convective terms (Leonard, 1983). Staggered

grid means that grid points for the velocities (the so called vector grid) are different from

those of pressure and temperature grid points (the scalar grid). More will be said of it later.

Generally speaking, the staggered grid leads to more accurate results since the need to

interpolate reduces somewhat. It is now an accepted norm for all CFD calculations with

finite differences with the primitive variable formulation.

QUICK (quadratic interpolation for convective kinetics) is a third order polynomial

interpolation scheme for the convective terms. It is almost as stable as the first order

15





upwind scheme and vastly more accurate. It does have the twin advantages of being robust

as well as accurate compared to the more conventional techniques such as upwinding or

central differencing which are the mainstay of most if not all commercially available codes

to solve convection problems. It is a well known fact (Patankar, 1988) that although

QUICK is very accurate it is not as robust as the upwind scheme. There are times when the

QUICK scheme might not converge due to insufficient number of grid points in regions of

high velocities. The code therefore has the option of using the upwind scheme when such a

situation arises. In particular, the code uses a scheme which is a weighted average of

QUICK and upwind. Depending on the case one can have a range of schemes ranging from

pure upwind to pure QUICK.

Except for the viscosity, the fluid is assumed to have constant transport properties

and is incompressible except for density changes to account for buoyancy. Viscous

dissipation and pressure work are neglected. These assumptions are justified for most

applications. The harmonic mean formulation for the interfacial diffusivities is used to

effectively handle sharp discontinuities in property values in the computational domain that

arise in conjugate problems (Patankar, 1980). Such is the case in electronic cooling

problems since the thermo-physical properties vary drastically between the fluid and the

solid regions. A substrate and package are examples of solid regions where properties

might differ sharply.

2.2 Algorithmic Details

The code uses the Control Volume Method to solve five coupled non-linear partial

differential equations (governing equations). All the equations can be cast in the form of a

three-dimensional convection-diffusion equation of the following type:

The different governing equations can be recovered by setting different values for the

canonical variable and the constant C as well as the source term S which are tabulated

below.

Equation (()
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ap
x-momentum U Pr "

^x

dP
y-momentum V Pr - ^ + T Pr Ra

3P
z-momentum W Pr -

^z

Energy T 1

Continuity 1

The governing equations are a result of a very specific set of non-dimensionalization of the

dependent and independent variables. The x, y and z coordinates are non-dimensionalized

a
by H, the enclosure height. The velocities are scaled by

pj
, the time is non-dimensionalized

by— , the pressure difference by ^p-; and the temperature difference by ^. q is the

volumetric rate of heat generation per chip, a is the thermal diffusivity of the fluid, p is the

fluid density and the the conductivity of the chip is kc. For a different set of scales the

governing equations will be of the same form as equation (1) but with different values of C

and S.

A grid is imposed in the physical domain and the governing equations are

discretized on the grid. For the control volume method, the governing equations are first

integrated around a volume about the grid point known as the control volume. The problem

is now reduced to that of calculating the values of the dependent variables at the grid

locations. The generic convection-diffusion equation (equation 1) is reduced to an algebraic

equation of the following form:

A
p<t>p

= A^ +Aw^ + An<j>n + A s(|>s
+ AE<|>E + Ab<j>b

+ Ap<j)F + S (2.2)

The scalar variables (pressure and temperature) are in the non-staggered grid. The grid

consists of the grid points and control volume surrounding it. In figure 2. 1 the shaded

region indicates the non-staggered grid. The grid points are indicated by the circular dots.

The subscripts refer to the location with respect to the grid point as shown in the same

figure.

1. The grid point in question is referred to by the subscript P.

2. The grid point to the right of P is subscripted by E (east). Similarly the grid point to the

right of E is the EE grid point as indicated in figure 2.2.

3. The grid point to the left of P is the W (west) point.
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4. The grid point above P is N (north).

5. The grid point below P is S (south).

6. The B and F grid points are not shown in the figure. The B (back) grid point is located

above the paper immediately above P. This is consistent with a right-handed cartesian

system. Similarly, the F (front) grid point is located under the plane of the paper.

7. The grid points WW, NN, SS, BB and FF are similarly defined.

The grids are chosen such that the walls of the enclosure coincide with the control

volume faces of the non-staggered grid. The staggered grids are for the vector variables

(the three velocities u, v and w). The staggered grids are shifted by half a control volume

towards their respective negative directions. In figure 2.1 the grid point for the u-velocity

(velocity in the x-direction) are shown as triangular dots. The control volume surrounding

the u-velocity grid is highlighted by bold dashed lines.

The u-velocity grid points are thus located at the east and west faces of the non-

staggered control volume. The staggered grid points for the v-velocity are portrayed as

square dots. The staggered v-velocity control volume is enclosed by bold dashed lines just

as the other one. The v-velocity grid points coincide with the north and south face of the

scalar grid as shown in the figure.

The coupled fluid flow and heat transfer problem is solved using the SIMPLEX

algorithm. Details are given in Van Doormal and Raithby (1985). Briefly, equations are

solved for the temperature, the three velocities, the pressure correction and the coupling

constants for the three momentum equations. The flow chart is shown in figure 2.2. The

temperature, the velocities, the coupling constants, and the pressure corrections. The most

updated field variables are used at each stage, e.g., for solving the v-velocity the updated u-

velocity and temperature are used and so on.
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Figure 2.1

The staggered grid,which is one of the cornerstones of the control volume method

is shown. The non-staggered control volume is bounded by plain lines. The dotted

lines pass through the grid points. The non-staggered grid point which is

the location of the temperature and pressure is represented by circular dots. The

u-velocity grid points are represented by triangular dots. Similarly, the v-velocity

grid points are represented by square dots. The grid in the third direction is

analogous.
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START

I
t =

Specify initial field of the

temperature, velocities

and pressure

1
t = t + dt

I

No

Assemble the energy

equation and solve for

temperature (T)

I

No

Assemble x-mom equation

Solve U (x-velocity)

Solve DU (x-mom coupling
rnrKtant^1SL

Assemble pressure correction

eqn and solve. Correct

pressure, velocities and

calculate residual mass.

Assemble y-mom equation

Solve V (y-velocity)

Solve DV (y-mom coupling

constant)

I
Assemble z-mom equation

Solve W (z-velocity)

Solve DW (z-mom coupling

constant)

Figure 2.2

The coupled heat transfer and fluid flow problem is solved by an iterative algorithm

known as SIMPLEX. Iterations are necessary, since the problem is non-linear. The

algebraic equations are linearized at every iteration step, and are approximate. Each

iteration provides an improvement on this approximation. After many iterations, a

converged and accurate solution of the non-linear problem is obtained. In contrast,

if only conduction is solved for, no iterations are needed since the equations of

conduction are linear.
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EXAMPLES

3.1 General Remarks

Some specific examples are discussed in this chapter. This serves as a validation for

the code for the given applications, namely cooling of a three by three array of chips

mounted on a substrate as well as convection without chip or substrate.

3.2 Convection in the absence of Substrate and Chip

The boundary conditions are the following:

1. Top wall cooled and bottom wall heated. THOT = 0.5, TCOOL = - 0.5.

2. All side walls insulated.

The parameters as initialized in BLOCK DATA are the following:

DATA NIP2, NIP1, NI,NIM 1/37,36,35,34/

DATA NJP2,NJP1 ,NJ,NJM 1/33,32,3 1 ,30/

DATA NKP2,NKPl,NK,NKMl/27,26,25,24/

DATA NNMAX,NMAX,IMAX,ITMAX,KRUN,NPRINT/29952,5000, 10,5, 1,100/

DATA SMALL,EPS,SORMAX/l .0E20, 1 .OE-8,2.0/

DATA ISUB,ICHIP,JCHIP,KCHIP,NCHP,ICHOICE/2,2,2,2,0,0/

DATA XBR,YBR,ZBR/0.40,0. 13,0.30/

DATA H,WTH,BTH/12.3,14.6,25.0/

DATA HCHIP,WCHIP,BCHIP,BSUB/24.0,8.0,6.0,19.5/

DATA ALC,ALS,THOT,TCOOL,TAVG/2823.0,3.5,0.5,- 0.5,19./

DATA RHS,RHC/1.20,0.262/

DATA QQQ,DTIME,RA ,PR,XPER,ROLL/1.5,1.0E-5,1.0E7,130.,2.0,2.0/

DATA IUNFRM/0/

DATA QUICK/1.0/

DATA NJCHIP,NKCHIP/3,3/

DATA YCHIP,ZCHIP/38.0,76.0,114.0,50.8,101.6,152.4/
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Note that the number of prescribed parameters are in excess of what is required. For

example, when NCHP is set to the chip parameters such as ISUB, HCHIP etc are not

required and can be set quite arbitrarily.

In figure 3.2, the numerical results are compared with experiments. Both the

numerical and experimental results are for a natural convection problem with no substrate

or chip in a three-dimensional rectangular enclosure. The heated bottom wall provides the

driving force for the flow. Figure 3.1 provides a schematic diagram of the enclosure

geometry. Figure 3.2 shows the velocity field across a vertical mid-section as shown in

figure 3.1. The results from four different cases are compared with the experiments due to

Arroyo and Saviron (1992).

The velocity vectors on the right side are the experiments and on the left are the

numerical computations. Each pair corresponds to a particular Rayleigh number. The

BLOCK DATA has been initialized for a Rayleigh number of 44,744. The Rayleigh

numbers for the five cases starting from the top are the following: 6319.0, 11101.0,

22884.0, 44744.0 and 66604.0. For high Rayleigh number computations, it is generally

sound practice to begin at a lower Rayleigh number and work ones way upwards. In other

words, use a lower Rayleigh number as an initial condition to start a higher Rayleigh

number calculation. Also, note that frequent restarts are necessary even for a particular

Rayleigh number since steady-state may not be achieved in a single run.

Figure 3.3 compares the computations (on the left) with the same set of experiments

for the first three cases ( i.e., 6319.0, 11101.0 and 22884.0). What is now compared are

the same set of velocities. However, the data is displayed in terms of pathlines. Since,

pathlines can be observed by very standard flow visualization techniques, it is a very useful

thing to compare. The degree of match between the two is striking. Also note that the code

does not need to be modified. It must be emphasized, that such a good comparison between

experiments and numerics are very rare. It is not often that such a comparison is even

attempted for three-dimensional flows. Thus, the results do demonstrate the essential

correctness of the code.

3.2 Convection with Substrate and Chip

The boundary conditions are the following:

1. The top and bottom wall are isothermal heat sinks. This case is the mathematical

modelling of the case shown in figure 1.2. THOT = 0.0, TCOOL = 0.0.

2. All side walls insulated.

The parameters as initialized in BLOCK DATA are the following:
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DATA NIP2, NIP1, NI,NIM1/21,20,19, 18/

DATA NJP2,NJPl,NJ,NJMl/39,38,37,36/

DATA NKP2,NKPl,NK,NKMl/66,65,64,63/

DATA NNMAX,NMAX,IMAX,ITMAX,KRUN,NPRINT/49400,4000, 10,5, 1 , 100/

DATASMALL,EPS,SORMAX/1.0E20,1.0E-8,2.0/

DATA ISUB,ICfflP,JCHIP,KCHIP,NCHP,ICHOICE/4,4,4,3,l,l/

DATA XBR,YBR,ZBR/0.75, 1.00, 1.00/

DATA H,WTH,BTH/152.,203.2,49.5/

DATA HCHIP,WCHIP,BCHIP,BSUB/24.0,8.0,6.0,19.5/

DATAALC,ALS,THOT,TCOOL,TAVG/3338.0,2.0,0.0,0.0,19.0/

DATAQQQ,DTIME,PR,RA,XPER,ROLL/1.5,2.0E-8,200.0,1.0E9,0.0,0.0/

DATA IUNFRM/0/

DATA QUICK/1.0/

DATA NJCHIP,NKCHIP/3,3/

DATA YCHIP,ZCHIP/38.0,76.0,114.0,50.8,101.6,152.4/

This corresponds to a case with a three-by-three array of chips that are configured

uniformly and symmetrically on one of the vertical sidewalls that includes the substrate as

well. The run is for a fairly fine grid (20x38x65). The fluid is the Fluorinert liquid FC71.

The viscosity is assumed to be a strong function of temperature. The power dissipation per

chip is 1.5W. The flow field for this set of computations is highly three-dimensional and

unsteady.

The dimensions of chips and enclosure are shown in figure 3.4. Figure 3.5 shows

some of the preliminary data that have been obtained from such a study. For a FC75 fluid it

can be seen in figure 3.5(a) that the heat lost to the substrate by conduction from the chip

decreases with an increase in the Rayleigh number. This is not surprising, since high

Rayleigh number flows will be more convection dominated. For higher Rayleigh numbers

an increasing proportion of the heat is transferred directly to the fluid. The substrate is

made of plexiglas. Things would of course be different if the substrate was a good

conductor such as ceramic.

Figure 3.5(b) shows the chip temperatures for the same fluid and same geometry as

a function of the Rayleigh number. It is interesting to note that a straight line is obtained in

the log-log scale. It is therefore quite likely that a simple correlation can be deduced which

can later be applied for design purposes.
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Figure 3.6 compares the experimentally obtained pathlines due to Joshi et al. (1990)

with the computations using AMPHIB for the case initialized in BLOCK DATA. The

power level is 1.5 Watts per chip and the fluid is FC71. The viscosity varies by more than

a factor of 10. This is because the viscosity is a strong function of the temperature for the

given fluid. One observes a relatively stagnant flow near the bottom and vertical plumes

along the chips. A coarser grid would not suffice for this problem, since the thin boundary

layer along the chips and the walls need to be resolved. The results, do indicate that

AMPHIB could be usefully employed as a design tool. However, powerful computational

resources are required. A number cruncher of the class of a RS/6000 workstation is a must

for realistic three-dimensional calculations such as these.

3.4 Convection without Chip or Substrate: Benchmark Study

This example is set up as a benchmark. The boundary conditions are the following:

1. Top wall cooled and bottom wall heated. THOT = 0.5, TCOOL = - 0.5.

2. All side walls insulated.

The parameters as initialized in BLOCK DATA are the following:

DATA NIP2, NIP1, NLNIMl/13,12,11,10/

DATA NJP2,NJP1,NJ,NJM1/13,12,11,10/

DATA NKP2,NKP1,NK,NKM1/13,12,11,10/

DATANNMAX,NMAX,IMAX,ITMAX,KRUN,NPRINT/1728,500,10,5,0,100/

DATA SMALL,EPS,SORMAX/l .0E20, 1 .0E-8,2.0/

DATA ISUB,ICHIP,JCHIP,KCHIP,NCHP,ICHOICE/2,2,2,2,0,0/

DATA XBR,YBR,ZBR/0.75,1.00,1.00/

DATA H,WTH,BTH/100.,100.,100./

DATA HCHIP,WCHIP,BCHIP,BSUB/24.0,8.0,6.0,19.5/

DATAALC,ALS,THOT,TCOOL,TAVG/3338.0,2.0,0.5,-0.5,25.0/

DATA QQQ,DTIME,PR,RA,XPER,ROLL/1.5,2.0E-3,2.5,2.5E4,0.0,0.0/

DATA IUNFRM/1/

DATA QUICK/1.0/

DATA NJCHIP,NKCHIP/3,3/

DATA YCHIP,ZCHIP/38.0,76.0,1 14.0,50.8,101.6,152.4/

After 500 time steps, at the end of the computations, the heat and mass balance statistics

looked like the following:
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NT= 500 TIME= 1.0000

ITER= 1 SOURCE= 0.001057 SORSUM = 0.000000

NUC = 2.117941 NUH=2. 117934

QCHIP = 0.00000 QALL= - 0.000007

QUNS = - 0.001424 QCRT = 0.000002

QUNS is relative degree of unsteadiness in the temperature. For steady-state to be reached,

QUNS should be about 10 6 of NUC.

This doesn't correspond to any experimentally observed case. It is nevertheless a useful

benchmark. This case doesn't take much computer time. It runs for about 221 seconds in

the CONVEX C240, 90.2 seconds in the AMDAHL 5990/500, and about 66.2 seconds in

the CRAY X-MP/216. If large scale modifications have been made in the style and content

of the code it will be useful to run the benchmark and check to see if the numbers are

unchanged in the output and as such ensures that the changes have been free of errors. It

must be emphasized that the numbers after modifications must be unchanged. It is our

experience that relatively serious bugs cause minor changes in the output.

Note that the inputs ROLL and XPER will not be described in the next chapter.

They are basically not relevant to computations in liquid cooling. XPER must be set to 0.

and ROLL can be set arbitrarily.
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Top wall cooled isothermally
Gravity Vector

Velocity vector for

subsequent plots are

in this section.

All side walls insulated including

this one.

Bottom wall isothermally heated

Figure 3.1

This is an illustration of a problem with a simple geometry but complicated physics, i.e,

Rayleigh-Benard Convection. The driving force is basically the hot bottom wall. The

top wall is the heat sink. This is a very well researched and well documented area in

literature. That is why one of the example problem compares the computations of

AMPHIB with some well established experimental results. The point of comparison

is the velocity field at the mid-section indicated by the shaded area. The velocity field

in the enclosure is completely three-dimensional.
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Figure 3.2

The computed and experimental velocity fields are compared. The computed velocity

fields are on the left. The experimental ones due to Arroyo and Saviron (1992) are on

the right. The box is 25mm wide, 14.6mm broad and 12.3 mm high. The fluid is

silicone oil (Pr = 130). From top to bottom, the Rayleigh numbers are respectively

6319.0, 1 1 101.0, 22884.0, 44744.0 and 66604.0. Direct comparison between

experiments and simulations for three-dimensional flows are extremely rare. This is,

to the best of our knowledge, the first of its kind.

«
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Figure 3.3

The computed and experimental velocities are compared for the same section as in

figure 3.2. What is however being compared are the pathlines. There is a distinct

advantage in comparing pathlines, since they can be observed in experiments directly.

On the other hand, velocity vectors have to be deduced from time-lapse photographs in

experiments and are more difficult to do. The experiments are on the right, and the

simulations are on the left. The Rayleigh numbers starting from the top are

6319.0,1 1 101.0 and 22884.0. The degree of agreement between the two is striking.
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Figure 3.4

The exact dimensions of the example with chip and substrate are shown. This is the

problem that was shown in figure 1.2. The dimensions are specified in terms of the

parameters that are initialized in BLOCK DATA of AMPHIB. The dimensions in

terms of millimeters are the following: H = 152., WTH = 203.2, BTH = 49.5,

HCHIP = 24.0, BCHIP = 6.0, WCHIP = 8.0, BSUB = 19.5, YCHIP(l) = 38.0,

YCHIP(2) = 76.0, YCHIP(3) = 1 14.0, ZCHIP(l) = 50.8, ZCHIP(2) = 101.6 and

ZCHIP(3) = 152.4.
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Figure 3.5

The figure at the top plots the percentage heat loss to the substrate as a function of the Rayleigh number.

The Rayleigh number is directly proportional to the heat dissipated from the chip. Thus, the plot shows

that as the wattage of the chip is increased, more heat as a percentage is lost to the fluid directly. The

figure at the bottom compares the average chip temperature as a function of the Rayleigh number. The

linear relationship between the two in the log-log scale is interesting. The computations carried out

with AMPHIB was for the geometry shown in figure 3.4 for an FC75 fluid (Pr = 30).
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Figure 3.6

The figure at the top represents flow visualization results for an FC71 fluid with a
power dissipation level of 1.5W per chip. The viscosity varies dramatically over an
order of magnitude. The enclosure geometry is the one shown in figure 3.4. The
results are for a section parallel to the substrate at a distance of 0.5 mm from the chip
surfaces. The experiments are due to Joshi et. al (1991). The computed pathlines for
the same set of parameters are shown at the bottom figure. The computations are for
a fairly fine grid size of 65x38x20 and incorporates the sharp changes in temperature
dependent viscosity. The observed minor differences in the flow pattern are because
the flow is unsteady and the exact time instant has not been matched. One observes a
relatively stagnant flow near the bottom, vertical plumes along the chips and
recirculating zones between the plumes for both the experiments and computations.
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Figure 3.7

The same case as seen in figure 3.6. The flow visualization results are on the left,

the computational results are on the right. The results seem to agree even in some
of the finer details. There is a recirculating zone in the upper left corner. There is

also a weak eddy between the bottom and the middle chip. Flow is noticably

stronger in the upper regions. The section in question is along a vertical plane

perpendicular to the substrate at the midplane.
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INPUTS AND SUBROUTINES

4. 1 Inputs to the Program

All the input variables are initialized in BLOCK DATA. The inputs to the problem

are described in the order of their appearance in the code.

NIP1:

NIP2:

NI:

NIM1:

NJP1:

NJP2:

NJ:

NJM1:

NKP1

The number of control volumes spanning the x-direction for the non-

staggered grid. The number of control volumes in the computational domain

will be two less since one control volume on each end is used to impose

boundary conditions.

It is set to NIP 1 + 1.

It is settoNIPl - 1.

It is set to NIP1 - 2. It is exactly equal to the number of control volumes in

the computational domain. The number of control volumes in a realistic

simulation depends strongly on the Rayleigh number. The higher the

Rayleigh number the greater the number of grid points required. A useful

rule of the thumb is that the average resolution for natural convection

problems should at least 0.1 (non-dimensional) in the horizontal directions

(x and z) and at least 0.05 in the vertical direction. Typically for a 0.3:1:1.3

geometry NIM1 is set to 10. Thus, NI, NIP1 and NIP2 are respectively 11,

12 and 13.

The number of control volumes spanning the y-direction for the non-

staggered grid. The number of control volumes in the computational domain

will be two less since one control volume on each end is used to impose

boundary conditions. NJP1 is set to 22 according to our prescription.

It is set to NJP1 + 1.

It is settoNJPl - 1.

It is set to NJP1 - 2.

The number of control volumes spanning the z-direction for the non-

staggered grid. The number of control volumes in the computational domain
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will be two less since one control volume on each end is used to impose

boundary conditions. It is set to 32 for the geometry discussed.

NKP2: It is set to NKP1 + 1.

NK: It is set to NKP1 - 1.

NKM1: It is set to NKP1 - 2.

NNMAX: Total number of variables when the matrix is assembled. NNMAX is the

product of NIP1, NJP1 and NKP1 and must be initialized accordingly.

NMAX: Prescribed number of time steps per run. There is no convergence criterion

to decide whether steady state is reached, since the algorithm is essentially

integrating forward in time. NMAX is basically the only control on the

length of a run. An NMAX of 1000 is typical. In practice a complete run is

never achieved by a single run and a number of restarts are required.

MAX: The maximum number of iterations in the iterative solver, i.e., even if the

residual error criterion is not met the number of iterations does not exceed

IMAX. IMAX has been set to 10.

ITMAX: Maximum number of iterations in the pressure loop. Again, if the mass flux

criterion is not met, the number of iterations cannot exceed ITMAX.

ITMAX is set to 5. If the number of iterations consistently exceed ITMAX,

it generally means that the time step DTIME must be reduced.

KRUN: A flag to determine if the job is a restart or a new run. If KRUN is set to

computations start from scratch. Otherwise, an input file containing the field

variables is read in to continue the computations if KRUN is set to 1.

NPRINT: The field variables are written to a file every NPRINT time steps. Also,

statistics for the overall mass and energy balance are also printed every

NPRINT time steps. This is a checkpointing feature to ensure that the

computations are not wasted if the program terminates abnormally.

It is typically set to 100.

SMALL: A variable which is set to an arbitrary high value to force the velocities in the

conduction regions to a value very close to zero. Typically SMALL is set to

1020 .

EPS: Minimum prescribed residual in the iterative solver. In the subroutine SIP

(the iterative solver) the prescribed square of the error norm is calculated

from EPS. i.e., II Ax - b II
2 < NxEPS 2

, where N is the number of

variables and the matrix equation is Ax = b. A value of 10 8 with all

variables in double precision is quite typical. The error norm is normalized
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SORMAX:

ISUB:

ICHIP:

JCHIP:

KCHIP:

NCHP:

ICHOICE:

XBR:

YBR:

with the norm of the variable unless the norm is small (less than 1(H) in

which case the error norm is absolute and not relative. This is automatically

taken care of in the linear solver.

The maximum permissible absolute sum of all mass-fluxes from ail control

volumes at each time step. This parameter controls the number of iterations

in the pressure loop. In other words, if the mass fluxes exceed SORMAX

the outer pressure loop is traversed again until the flux reduces to a level

below SORMAX. For a run where the final flow field is expected to be

steady, the value of SORMAX can be fixed quite arbitrarily since at

convergence the mass fluxes reduce to an arbitrarily small value. For

unsteady runs (e.g., oscillatory flow) the level must be chosen with care.

As the grid size is reduced, SORMAX is increased. SORMAX must not

exceed 2.0.

The number of control volumes spanning the substrate in the x-direction.

It should be at least 2.

The number of control volumes spanning each chip in the x-direction.

The number of control volumes spanning each chip in the y-direction.

The number of control volumes spanning each chip in the z-direction.

At the very least, ICHIP, JCHIP and KCHIP should be set to 2.

A flag when set to solves an enclosure problem without chips or

substrate. When NCHP is set to 1 the conjugate heat transfer problem is

solved which now includes conduction in the substrate and chip as well

as fluid convection.

It is a parameter which determines the fluid to be simulated. If ICHOICE is

set to 0, the fluid has a constant viscosity. If ICHOICE is set to 1, the fluid

is FC75 and if ICHOICE is set to 2, the fluid is FC7 1 . The user can

simulate any fluid provided the kinematic viscosity as a function of the

temperature is provided. The changes are to be made in the routines PROP

and CALT.

This parameter is required for generating the grid. It is the dimension of the

smallest control volume in mm next to the wall in the x-direction. The

smallest grid is always next to the wall in order to resolve the boundary

layer. Typically, it should be set at a value that is one percent of the

enclosure dimension in that direction which is BTH in this case.

The smallest grid size in the y-direction in mm. Again, one-hundredth

ofH is suggested. However, for a general case, sensitivity to these
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ZBR:

H:

WTH:

BTH:

HCHIP:

WCHIP:

BCHIP:

BSUB:

ALC:

ALS:

THOT:

TCOOL:

TAVG:

RHC:

RHS:

QQQ:

DTIME:

PR:

RA:

parameters should be tested.

The smallest grid size in the z-direction in mm. A similar prescription holds.

The height of the enclosure in mm. This is the y-direction.

The width of the enclosure in mm. This is the z-direction.

The length of the enclosure in mm. This is the x-direction.

The dimension of an individual chip in the y-direction in mm.

The dimension of an individual chip in the z-direction in mm.

The dimension of an individual chip in the x-direction in mm.

The thickness of the substrate in mm (x-direction).

Thermal conductivity ratio between chip and fluid.

Thermal conductivity ratio between substrate and fluid.

The non-dimensional temperature at the bottom wall.

The non-dimensional temperature at the top wall.

The reference temperature in °C. This is required to evaluate the viscosity as

a function of the temperature. In the case when the top and bottom

temperatures are equal, THOT and TCOOL is set to zero, the TAVG is

set equal to the temperature of the top and bottom walls.

The heat capacity (product of density and specific heat) ratio between chip

and fluid.

The heat capacity (product of density and specific heat) ratio between

substrate and fluid.

This is the heat dissipated per chip in Watts.

Non-dimensional time step. The explicit time step for an upwind scheme

is calculated by the routine TSTEP. Since the scheme used for the program

is QUICK, it is recommended that the time step is about a third of the time

step calculated.

Prandtl number of the fluid. This is a non-dimensional property of the fluid

defined as — , where v is the kinematic viscosity and a is the thermal

a

diffusivity.

The product of the Prandtl number and the Rayleigh number which is

eSqH5
^-*— , where g is the acceleration due to gravity; p is the coefficient of

a2Kc

volume expansion; L is the length scale (height of the enclosure in this

case); and Kc is the thermal conductivity of the chip; q is the volumetric rate

of heat generation for each chip. This must be specified only if the it is a
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pure enclosure problem (when NCHP = 0). Otherwise, the product of the

Rayleigh and Prandtl numbers are automatically calculated using QQQ.

IUNFRM: This parameter is used in the grid. When set to 0, a non-uniform grid is

generated. Otherwise, a uniform grid is created.

QUICK: It is a number between and 1 . If QUICK is set to 0. the upwind scheme

is used. If QUICK is set to 1. the quick scheme is used. Any number

between the two is a weighted average of the two schemes. It is

recommended that for initial runs especially for high Rayleigh numbers

(greater than 107) QUICK be set to 0. After a converged solution is

got QUICK should be set to 1. However, if there are convergence problems

QUICK should be set to zero again. A failure to converge to a steady state

(when experiments clearly indicate steady-state) implies that the number

of grid points are insufficient. Therefore, NI etc must be increased.

NJCHIP: The number of chips in the vertical y-direction.

NKCHIP: The number of chips in the vertical z-direction.

YCHIP: A one-dimensional array of length NJCHIP. These are the locations of the

chip centers in the y-direction.

ZCHIP: A one-dimensional array of length NKCHIP. These are the locations of the

chip centers in the z-direction.

The schematic of a typical geometry that is solved is shown in figure 1.1. The

substrate and the chip protrusions are shaded. In terms of the variables in the program, the

geometry is marked in figure 3.4 as an example for a 3 by 3 three array. In the most general

situation, the protrusions are located in a non-uniformly spaced NJCHIP by NKCHIP

array. All protrusions have the same dimensions, which is HCHIPx WCHIPx BCHIP.

4.2 Subroutines

PROGRAM AMPHIB:

This is the main program. It consists of five subroutine calls in sequence. The first

subroutine call is for the subroutine OPENF.
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SUBROUTINE OPENF

This subroutine opens the files that handle the output and input for the code. The files are

the following:

UNIT 8: This is the input data for the field variables (tod(i,j,k), uod(i,j,k),vod(i,j,k),

wod(i,j,k) and pod(ijjc)) i.e., the initial temperature, velocities and

pressure. The field variables are read in only if KRUN is set to 1.

UNIT 10: This is an output file of the u,v and w velocities at a specific location for

all the time steps. This was used to gauge the dynamical behavior of the

system i.e., whether it is steady-state, oscillatory etc.

UNIT 1 1 : This is output file for the field variables updated at specific instances

which is determined by NPRINT. This is a checkpointing procedure.

UNIT 12: This is the output file for the mean field variables over the entire run,

i.e., over NMAX time steps.

UNIT 13: This is the file where the grid for the given run is stored.

SUBROUTINE GRID:

This subroutine generates the three-dimensional grid for the problem. The

subroutine non-dimensionalizes the dimensions first in terms of the height of the cavity, h.

It is therefore sufficient to input the data in consistent units (say inches) rather than in

millimeters. The subroutine generates a non-uniform grid x of the following type

^ _ Tanh (HKr)
(4 1}

K.

This is known as the Robert's transformation (Robert, 1970). The grid distribution ensures

that the boundary layers are resolved near the wall. At the same time, the grid is spaced as

uniformly as possible away from the wall. There are two grid parameters (H and K) that

need to be determined. The variable r represents the uniform grid. Equation 4.1 thus maps

a uniform grid (r) to a non-uniform one (x).

The grid distribution generated for the NJCHIP by NKCHIP enclosure is a little

more complicated. The non-uniform hyperbolic tangent distribution of the grid is confined

to a region near the walls. Otherwise, the grid is made as uniform as possible, away from

the wall. The same thing applies to the y and z directions. As an example, consider a 3 by 3

array that was portrayed in figure 1.2. Two perpendicular sections of the non-staggered

control volumes for a 20x38x65 grid is shown in figure 4.1. The x-y plane is on the left
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and the z-y plane is shown on the right. The grid point is located at the centroid of the

control volume for the non-staggered grid.

SUBROUTINE GRID 1

This subroutine is called by GRID to calculate the grid parameters for the non-

uniform grid (H, K). The routine solves transcendental equations by the bisection and the

Newton-Raphson method. Note that the users could supply their own grids in which case

GRID and GRID1 are not required. The whole program can only handle grids that are

rectangular. The non-uniformity is restricted to their respective directions only.

SUBROUTINE PROP

In this routine the conductivity ratios and the heat capacity ratios are assigned for

the chip, substrate and fluid. The heat capacity is the product of the specific heat and

density. The parameter ICHOICE determines the fluid chosen. In the present program, the

choice is limited to FC71 and FC75. Using the properties, the product of the Rayleigh and

Prandtl numbers (sometimes referred to as the Boussinesq number) is calculated using

QQQ, the heat dissipated per chip. The user will need to modify this subroutine accordingly

for a different set of fluids.

SUBROUTINE INITIO

In this subroutine all variables are initialized. If the computations are started from

scratch, the field variables are all initialized to zero. For a restart job (KRUN = 1), the field

variables are read in from UNIT 8. If KRUN is set to 0, and NCHP set to zero as well, a

problem of pure natural convection is solved.

SUBROUTINE PLOOP

This subroutine incorporates the essence of the SIMPLEX algorithm. It also

includes an error control routine (Liu, 1979). It calls the following subroutines:

SUBROUTINE CALT

This subroutine calculates the coefficients of the algebraic equation for solving the

finite-difference equation for temperature which is of the following form:

ApT
p
= AETE + AWTW + ANTN + ASTS + AETE + ABTB

+ AFTF + S (4.2)
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The explicit expressions for the coefficients (i.e., Ap etc) as well as the derivation of the

equations from scratch are given in appendix B for the interested reader.

The coefficients must be modified for accommodating the boundary conditions.

This is also accomplished in the subroutine. The computational details are available in

appendix B.

The interfacial thermal conductivities are calculated in this routine. It uses the

harmonic mean formulation as suggested by Patankar (1980). Essentially the conductivities

are calculated in the following manner:

Axi + Ax i+1 r4
~

Ke = Ki Ki+1 (-
)

(4.3)

AXiK i+ i
+ Ax i+1 Kj

Ke is the thermal conductivity of the east face. In this manner, sharp changes in

conductivities can be handled accurately. The formulation is necessary since properties vary

dramatically in a conjugate heat transfer problem such as this. For instance, in a problem

with aluminum protrusions, plexiglas substrate and FC75 liquid the conductivity ratio

between aluminum and FC75 is almost 2800. For the heat capacity ratios, the interfacial

heat capacities are calculated by linear interpolation.

SUBROUTINE CALU

The finite difference analog of the x-momentum equation is assembled in this

subroutine. The equations are linearized and the unknown to be solved is the U-velocity at

every grid point. The equation is of the following form:

ApUp
= AEUE + AWUW + ANUN + ASUS + AEUE + ABUB

+ AFUF + S (4.4)

The boundary conditions are also incorporated by suitable modifications of the coefficients.

All details are provided for in appendix B. The equation for solving the coupling constants

(to be discussed later) of the U-velocity for each grid point is also calculated. The coupling

constants will be used later in the equation for the pressure correction.

Similarly, the subroutines CALV and CALW are used to assemble the equations

and apply boundary conditions for the V and W velocities respectively. The equation for

solving the coupling constants are also assembled in these two subroutines.

In all the velocity routines, the interfacial kinematic viscosity for the fluid region is

calculated by a harmonic mean formulation.
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SUBROUTINE CALP

The pressure correction equation is derived from the continuity equation and

enforces mass balance by correcting the pressure and velocities. The fundamental

relationships are the following:

U*e = U'-due (P'E -P'p) (4 - 5)

V*n = V'-dvn (P'N -P'p) (4 -6 >

W* f =W - dwf (P'F - P'p) (4 -7 )

The starred quantities are corrected velocities that satisfy the continuity equations. The

primed quantities for pressure are the pressure correction. The coupling constants due, dvn ,

and dwf were determined respectively in CALU, CALV and CALW. A pressure correction

equation similar in form to equation (6) is set up in CALP.

SUBROUTINE NU

This subroutine calculates the average Nusselt numbers at the cold and hot walls

and the generation of internal energy. It does an overall heat balance. The mass balance and

the heat balance statistics are printed in this subroutine. NU is called by PLOOP every

NPRINT time steps.

SUBROUTINE SIP

This subroutine is called by CALU, CALV and CALW twice every time step for

solving the generic linear equations that have been assembled (equation 2.2). The first call

is to solve the velocity equations and the second call is made to solve for the coupling

constants as dictated by the SIMPLEX algorithm. SIP is called by CALT and CALP once

to solve the temperature and pressure correction equations respectively. SIP is an iterative

solver. It is controlled by two parameters EPS and IMAX. EPS determines the relative

error norm. EPS is generally set to 10 8 for double precision calculations. Double precision

calculations are recommended and are in fact the default (using the IMPLICIT statement in

every subroutine).

IMAX is the maximum number of iterations allowed in the iterative solver. IMAX

is typically set to a value of 10. The subroutine calls the subroutines RES and XL. RES

calculates the error vector i.e., Ax - b. XL performs the forward and back substitution for
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the incomplete LU decomposition which is an integral part of the solver. The solver is

known as Strongly Implicit Procedure and is credited to Stone (1968). The reader can

substitute any solver in its place. SIP was found to be the most cost-effective for natural

convection problems that were studied. Note that iterative solvers are generally more

efficient than direct solvers for three-dimensional problems since the matrices that are

assembled are generally speaking ill-conditioned. The condition number (ratio of the largest

to the smallest eigen value of the matrix) increases for finer grids. If the smallest eigen

value of the matrix is exacdy zero, then the matrix is singular.

The input (arguments) to the subroutine are 1ST, JST, KST, ISPJSP and KSP and

the variable to be solved (the field variable). 1ST, JST and KST are the starting indices of

the computational domain for the x, y and z direction. ISP, JSP and KSP are the last

indices for the respective directions.

SUBROUTINE TSTEP

This subroutine calculates the maximum allowable time step for the difference

equations of the temperature and the velocities if the scheme were explicit. This

information, i.e., the minimum time step is printed every NPRINT time steps. This routine

is called by PLOOP. This provides a useful guideline for the time step that is specified by

the variable DTIME. The explicit time step is calculated using the CFL criteria and for an

upwind interpolation scheme. The criteria for the QUICK scheme will be more stringent. It

is therefore recommended that the time step be assigned a value that is between a third or

half the computed time step. In this way, numerically induced oscillations can be avoided.

SUBROUTINE CHIPTEMP

This subroutine calculates the average temperature rise of the chips. The temperature is

calculated by volume average of temperatures of the control volumes that are contained in

the chip. The average temperatures are then suitably scaled to give the temperature rise in

degree Celsius. The relevant information is then printed. The subroutine is called by

PLOOP every NPRINT time steps.
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Figure 4.1

The figure on the left and right are two perpendicular views of the grid

generated for a fine mesh (20x38x65). The control volume sections of

the non-staggered grid points are what is shown. The grid generated

corresponds to a 3x3 array shown in figure 3.4. Some of the results

produced for the above grid are shown in figures 3.6 and 3.7.
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Figure 4.2

This is a schematic flow chart of the subroutines in the code AMPHIB.
The main program has five subroutine calls; OPENF, GRID,PROP,
INITIO and PLOOP. The subroutine PLOOP is blown up to reveal

more details.
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APPENDIX A

5.1 Boundary Conditions

5.1.1 The Defaults

The temperature boundary conditions have been set up in the program as follows:

Top wall: Isothermal (perpendicular to y axis)

Bottom wall: Isothermal (perpendicular to y axis)

Left wall: Adiabatic (perpendicular to x axis)

Right wall: Adiabatic (perpendicular to x axis)

Back wall: Adiabatic (perpendicular to z axis)

Front wall: Adiabatic (perpendicular to z axis)

The velocity boundary conditions are all non-slip.

The temperature boundary conditions are imposed in the subroutine CALT. The

scope of the program can be expanded by imposing different combinations of boundary

conditions. The three commonly used boundary conditions are: (1) Adiabatic (2)

Isothermal, (3) Convective or mixed and (4) specified heat flux. Each of these will now be

described in detail. The velocity boundary conditions imposed in the program are all non-

slip.

5.1.2 Adiabatic Boundary Conditions

This corresponds to the condition of having the heat flux set to zero at the wall. For

example, V- (at the left wall) = 0. The numerical boundary condition corresponding to

this for the control volume next to the left wall (i = 2) is Tw = TP . Substituting this

condition in the algebraic equation (equation 2.2), the coefficients must be modified in the

following manner:

Ap = Ap - Aw and Aw = 0.

For the control volume that is one away from the wall (i = 3), the numerical boundary

condition is Tww = Tw- This corresponds to S = Ty/Aww in the program.
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5.1.3 Tsothermal Boundary Conditions

This corresponds to the condition where the temperature at the wall is specified. For

example, T(at the bottom wall) = THOT . The numerical boundary condition corresponding

to this for the control volume next to the bottom wall (j = 2) is Ts + Tp = 2 THOT.

Substituting this condition in the algebraic equation (equation 2.2), the coefficients must be

modified in the following manner:

AP = AP + As , S = 2 THOT As and As = 0.

For the control volume that is one away from the wall (j = 3), the numerical boundary

condition is TSS = 2 THOT - Ts . This corresponds to S = (2 THOT - Ts ) AWw in the

program.

5.1.4 Convective Boundary Condition

This corresponds to the case when the temperature at the wall satisfies a boundary

condition of the type |£ + (HCON) T = 0, for example at the back wall. The numerical

boundary condition corresponding to this for the control volume next to the bottom wall

(k=2) is HCON (

Tp
i

Tfi
) +

Tp
" Tb = 0. Substituting this condition in the algebraic

2 Az

equation (equation 2.2), the coefficients must be modified in the following manner:

1 H
Az l

AP = AP - CONST AB , where CONST =— ^
Az 2

For the control volume that is one away from the wall (k = 3), the numerical boundary

condition is TBb = CONST TB . This corresponds to S = (CONST )TB ABb in the program.

5.1.4 Heat Flux Boundary Condition

This corresponds to the condition of having the heat flux specified at the wall. For

example, V- (at the left wall) = C. The numerical boundary condition corresponding to

this for the control volume next to the left wall (i = 2) is Tw = TP - Const, where Const =
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CAx. Substituting this condition in the algebraic equation (eqn 5), the coefficients must be

modified in the following manner:

Ap = Ap - Aw , S = - Aw Const and Aw = 0.

For the control volume that is one away from the wall (i = 3), the numerical boundary

condition is TWw = Tw - Const. This corresponds to S = (Tw - Const ) Aww in the

program. Note that the adiabatic condition is a special case, when C = 0.

5.2 Velocity Boundary Conditions

All velocities i.e., the U, V andW velocities are set to zero (non-slip condition) for

all six walls in the program. The most commonly used boundary conditions and their

implementation will now be described.

5.2.1 Non-Slip Conditions

The numerical implementation is complicated by the staggered nature of the grid.

Consider the left wall as an example. For the u-velocity the grid point coincides with the

left wall due to stagger). Hence, in equation 2.2 we simply set Aw = (since Uw = 0).

For the V andW velocities for the control volume next to the wall (i = 2 for V and W, and i

= 3 for U) we have VP = - Vw andWP = - Ww . Hence AP = AP + Aw and Aw = in each

of the cases.

For the control volume one away from the wall (i = 3 for V and W, and i = 4 for U)

we have Uww as identically zero. Hence Aww = for the U-velocity grid. For the V and W
velocities we have Vw = - Vww and Ww = - Www- Hence, S = - AwwVw and Aww = for

the V velocity equation and S = - AwW\v and Aww = for the W velocity equation.

5.2.2 Slip Wall Conditions

Again consider the left wall as an example. These boundary conditions are

employed to generally impose a symmetry. For instance, if the flow consists of two

symmetric vortices, a slip wall can be imposed on one of them and calculations can be

carried out for only half the computational domain. The slip wall is the numerical

implementation of zero shear stress at the wall. For the left wall it would mean that -^ =
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and
<W _ Q AlsQ u = q Tne numerical boundary conditions for the U velocity is the

dx

same as the non-slip conditions at the wall i.e. Aw = (i = 3) and AWw = (i = 4). The

boundary conditions for the V and W are identical to the adiabatic condition for the

temperature i.e., AP = AP - Aw and Aw = (i = 2) and S = TwAww and Aww = (i = 3).

5.2.3 Velocity Prescribed

This is a very important boundary condition. Using this one can solve problems in

mixed or forced convection as in figure 1.3. As an example, let the left wall have an inlet

with a U-velocity ofU (consistently non-dimensionalized). Also the V andW velocity are

zero. For that portion of the wall, the boundary conditions for the U velocity are S = UoAw

and Aw = (i = 3) and S = UoAww and Aww = (i = 4). The V and W velocities have the

usual non-slip boundary condition.

For the control volume next to the wall (i = 2 for V and W, and i = 3 for U), we

have VP = - Vw andWP = - Ww . Hence AP = AP + Aw and Aw = in each of the cases.

For the control volume one away from the wall (i = 3 for V and W), we have Vw = - Vww

andWw = - Www- Hence, S = - AwwVw and Aww = for both.

If there is an inlet there must be an outlet. For the outlet the velocities cannot be

prescribed. In fact, only approximate boundary conditions can be used. This is the so

called 'natural boundary condition'. For instance, if the outlet is at a portion of the east wall

we numerically implement^ = 0, -^ = and -^- = at the east wall. The numerical

implementation of these conditions have already been discussed and are quite

straightforward. Basically, this means that we are not sure what the boundary conditions

are but assume that they don't change much near the outlet. Overall mass balance is

automatically satisfied.
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APPENDIX B

6. 1 Difference Equations

In this section the finite difference equations are presented for the equations of the

velocities and temperatures. The details of the derivation are skipped. Only the final form of

the equations are stated. For additional details of the control volume method the reader is

referred to Patankar (1980).

6.1.1 Energy Equation and linear equation for Temperature

The QUICK scheme for estimating temperature fluxes at the east and west faces are

the following:

n ^ r {
Ax i+1T P + AxjTe

O e 1 e = <Je \ 2AXe
. JGgj - G e w AXjAXj-n TpAXee TEEAxe y ,

+ K 8
M AXgAXee

M Ax e + Ax ee Ax e + Ax ee

lG e l + Ge w AxjAx i+ i
TEAxw TwAxe

_ T) (61)
"

^ 8
M AxeAxw M Axw + Ax e Axe + Axw

n t r (
Axj.iTp + AxjTw

Uw lw - ^Jwl 2Axw
'

1GW I
- Gw w AxjAxj.i TEAxw TwAxe _ T+

^ 8 M AxeAxw
M Ax e + Axw Ax e + Ax w

PJ

IGW I + GW AxjAxj.i TwwAxw TpAx^
_ T ^ (6 2\

'
\ 8 M AxwwAxw M Axw + Axww Axw + Axww

The coefficients of the energy equation are the following:

GeAxj AyjAzk IG e l + G e AxjAx i+1

Ae =
' ~2Ax7

+
Axe

+ { 8
M Ax e(Axw + Ax e )

, IG e l -G e w AXjAxi+ i 1GW I - Gw AXjAXj.!
(63)+ < 8 )( AxeAxee

) + (_
8

} Ax e(Axw + Ax e )
^
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GwAxi AyjAzk ,
1GW I + Gw >. , AxjAxj.i

Aw= "2Ax7
+

Axw
( 8

M AxwAxww
;

. 1GW I
- Gw x

AxjAxj.!
r
IG e l + G e ,

AxjAxi+1 (64)+ C g ) Axw(Axw+ Axe) ^8 ' Axw(Axw + Ax e )

GnAyi AxjAzk IG n l + Gn A
yi
Ay

i+ i

An =
" ~2Ay7 ~Ay7~ ( 8

M Ay n(Ay s + Ayn )

IGn l - Gn AyjAy^
(

IG5 '- Gs
) A

%&V , (6.5)+
< 8

H AynAynn
; ^ 8

; Ayn(Ay s + Ayn )

GsAyi AxjAzk IG S I + G s
AyjAyj.u

A
*
=

"2Ay7
+

"^yT (
8

H AysAyss
;

IG,| - G s
A
yi
AyH

(

!Gnl_t^
)^^Ayi±L_^ (6.6)+ ( 8 } Ay s(Ay s+ Ayn )

+ ^ 8
; Ay s(Ay s + Ay n )

G fAzk AxjAyj IGfl + G f AzkAzk+ i

Af =
" "2Az7

+
Azf

K 8
] AzKAzb + Az f)

, IGfl - G f w AzkAzk+1 IGb l - Gb ,
AzkAzk.!

(6 ?)+ ( 8 )(
AzfAzff

} + ( 8
) Az f(Azb + Az f)

V °' /J

GbAzk AxjAy, IG b l + Gb , AzkAzk .!

Ab " 2Azb
+

Azb
K 8

; AzbAzbb

, IGbj - Gh , AzkAzk.i IGfl + Gf, AzkAzk+1 6 g)+ < 8
} Azb(Azb + Az f)

+ K 8
; Azb(Azb + Az f)

^' ;

_ AxjAyjAzk rr n-i , IG e l - G e x
AxjAxj+i TS=

At
lp

" ( 8 } Axee(Ax ee + Ax e )
lEE

IGW I + G w AxjAxj.!
' K

8
; Axww(Axww + Axw )

w
, IGn l

- Gn , AyiAy i+1
" ( 8 } Aynn(Aynn + Ayn )

1nn

, IG S I + G s AyjAyj.i y
" (

8
J Ay ss(Ay ss + Ay s )

lss

, IGfl - Gf . _AzkAzk±i__ T
'

^ 8 J Azff(Azff+ Az f)
lFF

IG b l + G b , AzkAzk4
• ( 8

} Azbb(Azbb + Azb )
1bb (6 -9)

AP
= AE + Aw + AN + As + AF + Ab

IG e l
- G e N

AXjAXj+i
* 8

; Ax ee(Axee + Ax e )

IGW I + Gw v AxjAxj.i
' { 8

; Axww(AxWw + Axw )

, IG n l
- Gn AyiAy i+1

v 8
; Aynn(Aynn + Ayn )

(
IG,I + G s AyiAyM

^ 8 > Ay ss(Ay ss + Ay s )

f
IGfl - G f AzkAzk+i

1 8 ; Az ff(Azff+ Az f)

. IG b l + G b v AzkAzk.i AxiAyiAzk
ffi im

" (
8 > Azbb(Azbb + Azb )

At
v

•

}
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The coefficient Ap
etc have their usual meaning.

6.1.2 x-Momentum Equation and Linear Equation for u

For the x-momentum equation, the velocities must be interpolated differendy due to

the staggered nature of the grid. The QUICK scheme results in the following for the east

and west faces of the control volume:

Up + u E x

Cj eU e = <Je ( o >2

C

16 M Axe
} v Axi+ i

Axi
2

W ~ } v Ax~ ' v
Axi Axi.i

. IG e l
- Ge v ,

Axj
2

u EE - Ue Ue- up x

+ ( Ta m Av _> v Ay: ,, a X;
)

IG e l + G e AXj
2

u E^_Up_ jlpJ^Uv^, v (611)
- v i6

M Ax M Ax: '

Up + UW v

Owuw = uw v 2 '

. IGW I -Gw x ,
Ax;,!

2
u E

- up up- uw x

+ ( " 16 M Axw
M Axi AxM ;

2

16~ ~ '
k Axww '

K Axm Axj.2
, IGW I + Gw x / Axj.i ,u P

- uw_ uw uWw v
(6 l2 \

The coefficients of the discretized x-momentum equations are the following:

Ge pAVjAZk
,

IG e l + G e ,
AXj

Ae= " T + ^ Ax~ (
16

} Ax,'W

IG e l
- Ge , Axj , IGW I - Gw x

Ax..!
2

IU e l - ue . ttXj .vjw'-^w x ^i-l
(6 13)+

^ 8 ; Ax i+ i

* 16
; AxwAXl

Gw r^AvjAzk IGW 1 + GW s Axj.i
Aw = X + * AxTT

+ (
8

} Ax,2

, IGW I
- Gw . Axj.i IG e l + G e , Ax;

2

f614
.

+ ( 16 } Axw * 16 ^AxwAxm l°- )

a GnAyi AxwAzk IGn l + Gn AyiAy i+ i

An= "iKyt ^^A^T ( "
8

)( Ay n(Ay s +Ay n )

IGn l
- Gn AyiAy i+1 IG S I

- G s
AyjAy^

(6 15)+ ( 8 )( AynAyt:
) + ( 8

} Ayn(Ay s + Ayn )
&A:»

a
GsAyi r AxwAzk IG S I + G s Ay^u

As =
2Ays

+ " 2Ay s

+ C 8
M AysAy

;

IG,I - G s AyjAyj.! IGn l + Gn Ay,Ay
i+1 6+ ( 8 } Ay s(Ay s+ Ayn )

+e
8

} Ay s(Ay s + Ay n )

{(3A0)

51





GfAzk _ AxwAyj IG f l + G f AzkAzk+i
=

" "^Az7
+

2Azf

+
^ 8

; Az f(Azb + Az f)

IGfl - G f NAzkAzk+i IGb l - Gb , AzkAzk.i

2Azf

T il
2Azf

IGfl - Gf AzkAzk+ i
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{0A *>

AxwAyjAzk n-i IG e l
- Ge Ax,
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IGW I +GW Axj.i
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" ( 8 > Aynn(Aynn + Ayn )
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, IGsl + G s AyjAyu
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Uss
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Uff

!G b l + G b , AzkAzk,!
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Ubb
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AP
= AE + Aw + AN + As + A F + Ab

(

IG e l
- G e AXj

2

* 16 ' AxeAxi+i

IGW I + GW AxM 2

* 16 Axww AxiV
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'G s l + G s
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1 8 } Az ff(Azff+ Az f)

. IG b l + G b v AzkAzk.! AxjAyjAzk (f
. 2m

( 8 ' Azbb(Azbb + Azb )

+
At

^ ZU)

6.1.3 v-Momentum Equation and Linear Equation for v

The coefficients of the y-momentum equations are the following:

Gn pAxjAzk IGn l + Gn Ayi
An " " 2

+
^^yT ( 16

; Ay s
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, IGnl - Gn Ay; IG.I - G s Ay,!
2

+ ( 8
} Ayj+ i

+ ( 16 >Ay sAyj
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6.1.4 z-Momentum Equation and linear equation for w

The coefficients of the z-momentum equations are the following:
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2

(629)+ ( 8 } Az^ ( 16 ^AzbAzk
V°- yj

Gb p AxjAy; IG b l + Gb , Az^
A

* = T + Pr
A^kT + (

8
} Azk .2

JGkJj^Gh .Azk .i ,IG n l + G n Azk
2

(6 30)+ ( 16 } Azb
+ ( 16 'AzbAzn

K°-™ }

GeAxj pAyjAzb , 'G e l + G e u Ax,Ax i+1
=

" ~2Ax7
+ Pl

Ax7~ C
8

M Ax e(Axe + Axw )

. IG,I - G e AxjAxi+ i
IGwl - Gw AxjAxj.i

(6 3l)+ < 8 )( AxeAxee
} + (

8
} Ax e(Ax e + Axw ) ^ U

GwAxj p AyjAzb IGW I + Gw , Ax.Ax^
Aw= "2Ax7

+ ^lAxw
+ ( 8 ^AxwAxwJ

JGw< - Gw AxjAxj,! IG e l + G e , AxjAxi+ i , ~
2)+

* 8 } Axw(Axe+ Axw) * 8
; Axw(Ax e +Axw )

{0 ' J }

GnAyi p r
AxjAzb IGn l + G n , AyiAyi+ i

An= " 2Ayn
+

^^Ay^T ( "
8 > Ay n(Ay s

+Ayn )

lG n l
- Gn Ay,Ayi+ i ,

, 'G s l - G s
AyjAy^

+ ( 8
}AynA7n7

+ ( 8
} Ay n(Ayn + Ay s )

^ j

a GsAy^ p AxjAzb IG.I + G s AyiAyM
As= 2Ays

+ ^ Ays

+ C 8
; AysAy ss

IG,I - G s AyjAyj.! IGJ + Gn A
yi
Ay

i+1 6 34+ i 8 > Ay s(Ay s + Ayn)
+e

8
) Ay s(Ay s + Ay n )

54



I



AxjAyjAzb n-i IGfl - G f Azk
2

S "
At

Wp ( 16
}Az fAzk+1

Wff

. IG b l + G b Azk.^
( ~T6 ^'AzbbAzk+i

Wbb

IGe l
- Ge v AxjAxj+i

< 8 ^ Ax ee(AXee+ Axe )

WeE

IGW I + GW AxjAxj.!
<> 8

; Axww(Axww + Axw )
w

JGnL^Gn. AyjAy i+1
( 8

} Aynn(Aynn+ Ayn )
Wnn

< 8 ' Ay ss(Ay ss+ Ay s )
Wss

(PP - PB )AxiA yj (6.35)

AP = AE + Aw + AN + As + A F + Ab

(

IGfl - G f Azk
2

' 16 ' AzfAzk+i

IGbL±Gb_ _AzM2_
' 16 AzffAzk-2

IG e l
- G e s AXjAXj+i

* 8 ' Ax ee(Axee + Ax e )

IGW I + Gw , AxjAxj.i
* 8 ' Axww(Axww + Axw )

, IGn l - Gn AyiAy i+1

' K 8
; Aynn(Aynn+ Ayn )

IG,1 + G s AyjAyj.! AxjAyjAzb
(6 36)

" (
8

} Ay ss(Ay ss+ Ay s )

+
At

^° J

6.1.5 The Pressure Correction Equation

The pressure correction equation is derived from the discretized continuity equation.

The continuity equation is the following:

du dv 3w n ,, o 7 n

5- + 3- +3- =0 (o.i/)
dx dy dz

Integrating around the control volume

( Ue - uw)A yjA zk + ( vn - vs)A XiAzk + ( w f
- wb)A x

t
A

yj

= (6.38)

A pressure correction relationships given before are the following:

ue
' =due (PP

'

- PE
")

;

uw ' =duw (Pw
'

- Pp) ;

vn =dvn (PP
'

- PN ')
;
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v s
' = dvs OV - PP ) ;

Wf' =dwf (Pp'- PF
')

;

wb
' = dwb (PB - PP

') (639)

The coupling constants are calculated using the SIMPLEX algorithm. Further details are

given in Van Doormal and Raithby (1985). also,

ue = ue* + ue
'

uw = uw* + uw
'

Vn = Vn*+ Vn

v s = vs
* + v s

'

Wf= Wf* + Wf'

wb = wb
« + Wb

1

<6 -40>

The starred quantities represent the velocities which satisfy the momentum equations but

not the continuity equation. The primed quantities are the velocity corrections which results

in velocities that satisfy the continuity equation. Hence, using equations 6.39 and 6.40 in

6.38 we obtain a pressure correction equation of the following type:

ApPp = AEPE + AWPW + ANPN + A SPS
' + AFPF + ABPB +S

Where,

AE = dUeAyjAzk ;

Aw = duwAyjAzk ;

AN = dvnAx;Azk ;

As
= dv sA xjA zk ;

AF = dwfA xjA yj ;

AB = dwbA xjA yj ;

AP
= AE + Aw + AN + A s + AF + AB

S = -ue*AyjAzk + uw*AyjAzk - vn*A x^ zk + v s
*Ax,Azk

- w f*A xjA yj + wb*A x;A yj (6.41)

After solving the equations for pressure correction, the velocities and pressures are

corrected.

6.2 Numerical Boundary Conditions

All the coefficients and the relations shown so far are valid for interior points. Near

the boundary some special treatment is necessary. For example, the central differencing
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used to estimate the diffusive fluxes cannot be used for the wall since there is no grid point

beyond the wall. There are basically two approaches open to us:

1

.

Use different interpolation and differencing scheme as we approach the wall. For

instance, a one sided three point differencing scheme could be used at the wall.

2. Use the same interpolation and differencing scheme but create additional fictitious

grid points or control volumes beyond the boundary and assign suitable values to the grid

points for the different variables. Both approaches are equivalent.

The second approach was used for this problem. The advantage being that it is a lot

simpler to implement since the same scheme is used with modifications. To that end,

additional control volumes were used outside the calculation domain to impose the

boundary condition. The one guideline we follow is that the boundary conditions imposed

should be second order or higher.

6.2.1 Velocity Boundary Conditions

The no slip boundary conditions are to be imposed at all walls. For the x-

momentum equation, the u-velocity grid is staggered in the x-direction the grid point

coincides with the wall for the east and west walls perpendicular to the x-direction as

shown in figure. In the other directions the control volume surfaces coincide with the walls

as shown in figure. For the staggered direction the computational grid extends up to the

point i as shown. Point i+1 is the wall, i+2 is the pseudo-point beyond the wall. Up to i-1

no special treatment is necessary. For the equation of point i a special value needs to be

assigned to i+2. Noting that the wall is a plane of anti-symmetry for a scheme of second

order accuracy we impose,

Ui+2 = "Ui

m+i is of course set equal to zero. Consequently, substituting the values in equation A-20

for the point i

,

AE
= 0, the source term S is affected also because uEE = -uP . Similarly, A P is suitably

modified. The west wall is similarly dealt with.

For the other walls only the control volume next to the wall needs to be dealt with

hence ui+i = -uj or,

Up = - uE

therefore, AP = AP + AE and AE =0

The v-velocity and the w-velocity boundary conditions are similarly dealt with. What must

be kept in mind is that the v-velocity grid is staggered in the y direction and that the w-

velocity grid is staggered in the z direction.
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In cases where symmetry was exploited uj+i = uj was used instead.

6.2.2 Temperature Boundary Conditions

There are two types of boundary conditions to be considered; adiabatic and

isothermal. The temperature grid is not staggered. The adiabatic boundary condition is

identical to the symmetry condition hence for the grid point next to the east wall

TP =TE

therefore, AP = AP - AE and AE = 0.

For the isothermal boundary condition the value of the temperature grid point outside the

domain was assigned by a linear extrapolation. Hence, we have the following;

TE = 2Twaii
- lp

The symmetry conditions are identical to the adiabatic conditions.

6.2.3 Pressure Correction Boundary Conditions

The velocity corrections at the wall must all be zero. This is because as a result of

the no-slip conditions the velocities at the wall are identically zero. Hence,

Pp=Pe'

Therefore, in the governing equations;

AP = AP - AE and AE =

Similar modifications will have to be made at the other walls.
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APPENDIX C

6. 1 General Remarks

The listing of the code is provided in this appendix. The code is written in a manner

that facilitates comprehension. The indentation of all DO loops and space between operands

all add to the clarity. There are plenty of comments inserted in the code. In fact, it is quite

possible to understand most of the code, without actually going through the documentation.

Note that all three-dimensional variables are subscripted (NIP1,NJP1,NKP1). A

higher number can also be dimensioned, but that is a waste of computer resources. It is

assumed that the user has access to some full-screen editors, therefore it is quite

straightforward to change indices for the arrays. That may be required when the grid sizes

are changed or if a different physical problem is being attempted. All one-dimensional

variables in the subroutine SIP must be dimensioned NNMAX which is a product of NIP1,

NJP1 and NKP1. In the specific example of the listing, NIP1 = 12, NJP1 = 16, NKP1 =

16 and NNMAX = 3072. This problem requires about 1.2 Mbytes of memory in a

RS/6000 workstation. The listing follows.
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PROGRAM AMPHIB
c

C
CALL OPENF

c
call grid

c
call prop

c
call initio

c
call ploop

c

c*****^***************************************************************
BLOCK DATA
implicit real*8 (a-h,o-z)
common/blayer /xbr ,

ybr , zbr
common/unf rm/ iunf rm
common/parm/ra ,

pr , sorsum , dtime , xper , roll , dt_inv , xt lme

common/tol/small , eps, sormax
common/dims/h,wth,bth,hchip,wchip,bchip,bsub
common/count/nt,nmax, imax, itmax, krun, nprint

common/chip/ ibgn, iend, jbgn(3) ,
jend(3) ,kbgn(3) ,kend(3) ,nchp,

& isub, ichip,jchip,kchip
common/ limits/ni , nipl , niml , nj , n j pi, njml , nk, nkpl, nkml

,

& nip2,njp2,nkp2, iter,nnmax
common/diff/alc,als,thot,tcool,tavg
common/scheme/quick, upwind
common/array/njchip, nkchip, ichoice
common/spaced/ychip(3) ,zchip(3)
COMMON/RHOCP/RHS , RHC
COMMON/ POWER/QQQ,QCOND

c
DATA NIP2,NIP1,NI,NIM1/13, 12,11,10/
DATA NJP2,NJP1,NJ,NJM1/17, 16, 15,14/
DATA NKP2 , NKP1 , NK , NKM1/ 17 ,16,15,14/
DATA NNMAX , NMAX , IMAX , ITMAX , KRUN , NPRINT/ 3072,4000,10,5,

& 1,100/

DATA SMALL , EPS , SORMAX/ 1 . 0e2 , 1 . OE-8 , 2
.

/

DATA ISUB,ICHIP,JCHIP,KCHIP,NCHP,ICHOICE/2,2,2,2,l,l/
DATA XBR,YBR,ZBR/1. 50, 1.00, 1.50/
DATA H,WTH,BTH/140. ,140.0, 100./
DATA HCHIP,WCHIP,BCHIP,BSUB/24. ,8. ,6. ,19.5/

DATA ALC,ALS,THOT,TCOOL,TAVG/3338. , 2 . , . , . , 19 . 0/

DATA RHC,RHS/1. 20, 0.262/
DATA QQQ , DTIME

,
pr , ra , XPER, ROLL/ 2 . 0e-03 , 2 . 0E-7 , 28 .

, 1 . 0e6 , . , . 0/

DATA IUNFRM/1/
DATA QUICK/ 1./
DATA NJCHIP,NKCHIP/3,3/
DATA YCHIP,ZCHIP/3 8.0,7 6.0,114.0,50.8,101.6,152.4/
END

c
*********************************************************************

SUBROUTINE CALT
C
C THIS SUBROUTINE ASSEMBLES THE DISCRETE ANALOG OF THE ENERGY

C EQUATION, APPLIES THE BOUNDARY CONDITION AND THEN SOLVES FOR

C THE TEMPERATURE.
C
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c

c
c

implicit real*8 (a-h,o-z)
common/ng/dxx(40) ,dyy(40) ,dzz(40) ,x(40) ,y(40) ,z(40)

,

& dxxs(40) ,dyys(40) ,dzzs(40)
common/parm/ra,pr,sorsum,dtime,xper,roll,dt_inv,xtime
common/ limits/ni , nipl , niml , nj , njpl , njml , nk, nkpl , nkml

,

& nip2 , njp2 , nkp2 , iter , nnmax
common/fv_init/tod(12,16,16) ,uod ( 12 , 16 , 16) , vod ( 12 , 16, 16)

,

& wod(12,16,16) ,pod(12,16,16)
common/fv_cur/t(12,16,16) ,u(12,16,16),v(12,16,16),

& w(12,16,16) ,p(12,16,16)
common/fv_int/tpd(12,16,16) , upd ( 12 , 16 , 16) , vpd ( 12 , 16 , 16)

,

& wpd(12, 16, 16) ,ppd(12, 16, 16)

common/coeff/ap(12, 16, 16) ,aw(12,16,16) ,ae(12,16,16)

,

& as (12, 16, 16) ,an(12,16,16) ,ab(12,16, 16)

,

& af (12,16,16) ,su(12, 16, 16)

COMMON /COEF2/AWW( 12, 16, 16) ,AEE(12,16, 16) , ASS (12, 16, 16)

,

& ANN(12,16,16) ,ABB(12,16,16) , AFF ( 12 , 16 , 16)

common/chip/ ibgn,iend, jbgn(3)
,
jend(3) ,kbgn(3) ,kend(3)

,

& isub, ichip, jchip,kchip
common/condu/alpha(12, 16, 16) ,rho(12
COMMON / POWER / QQQ ,

QCOND
COMMON/SCHEME/QUICK, UPWIND
common/dif f /ale, als, thot , tcool, tavg
common/array/njehip, nkchip, ichoice

CALCULATE COEFFICIENTS

do 80 k=2,nk
do 80 j=2,nj

do 80 1=2, ni

VOLDT = DXX(I) * DYY(J) * DZZ(K) / DTIME

& * RHO(I,J,K)

nchp,

16, 16) , visco(12, 16, 16)

c
c CALCULATE INTERFACIAL THERMAL DIFFUSIVITIES
c USING THE HARMONIC MEAN FORMULATION
c

CONDW - ALPHA (I, J, K) * ALPHA(I-1,J,K)
& * (DXX(I-l) + DXX(I)) / (DXX(I-l)

& * ALPHA(I,J,K) + DXX(I) * ALPHA ( 1-1 , J , K)

)

CONDE = ALPHA(I,J,K) * ALPHA(I+1,J,K)
& * (DXX(I+1) +DXX(I)) / (DXX(I+1)

& * ALPHA(I,J,K) + DXX(I) * ALPHA ( 1+1 , J , K)

)

CONDS = ALPHA(I,J,K) * ALPHA(I, J-1,K)

& * (DYY(J-l) + DYY(J)) / (DYY(J-l)

& * ALPHA(I,J,K) + DYY(J) * ALPHA ( I , J-l , K)

)

CONDN = ALPHA(I,J,K) * ALPHA(I,J+1,K)
& * (DYY(J+1) + DYY(J)) / (DYY(J+1)

& * ALPHA(I,J,K) + DYY(J) * ALPHA ( I , J+l , K)

)

CONDB = ALPHA(I,J,K) * ALPHA(I, J,K-1)
& * (DZZ(K-l) + DZZ(K)) / (DZZ(K-l)

& * ALPHA(I,J,K) + DZZ(K) * ALPHA ( I , J , K-l)

)

CONDF = ALPHA(I,J,K) * ALPHA(I,J,K+1)
& * (DZZ(K+1) + DZZ(K)) / (DZZ(K+1)
& * ALPHA(I,J,K) + DZZ(K) * ALPHA ( I , J , K+l)

)

c
CONDN1 = DZZ(K) * DXX(I) / DYYS(J+1) * CONDN
CONDS1 = DZZ(K) * DXX(I) / DYYS(J) * CONDS
CONDF1 = DXX(I) * DYY(J) / DZZS(K+1) * CONDF
CONDB1 = DXX(I) * DYY(J) / DZZS(K) * CONDB
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C0NDE1 = DYY(J) * DZZ(K) / DXXS(I+1) * CONUfc.

CONDW1 = DYY(J) * DZZ(K) / DXXS(I) * CONDW

GP = RHO(I,J,K)
GW = RHO(I-l,J,K)
GE = RHO(I+l,J,K)
GS = RHO(I,J-l,K)
GN = RHO(I,J+l,K)
GB = RHO(I,J,K-l)
GF = RHO(I,J,K+l)

RW = (GP * DXX(I-l) + GW * DXX(I))

& / (DXX(I-l) + DXX(I))
RE = (GP * DXX(I+1) + GE * DXX(I))

& / (DXX(I+1) + DXX(I)

)

RS = (GP * DYY(J-l) + GS * DYY(J))

& / (DYY(J-l) + DYY(J))
RN = (GP * DYY(J+1) + GN * DYY(J))

& / (DYY(J+1) + DYY(J)

)

RB = (GP * DZZ(K-l) + GB * DZZ(K))

& / (DZZ(K-l) + DZZ(K)

)

RF - (GP * DZZ(K+1) + GF * DZZ(K))

& / (DZZ(K+1) + DZZ(K)

)

CE = U(I+1,J,K) * DYY(J) * DZZ(K) * RE

CW = U(I,J,K) * DYY(J) * DZZ(K) * RW

CN = V(I,J+1,K) * DZZ(K) * DXX(I) * RN

CS = V(I,J,K) * DZZ(K) * DXX(I) * RS

CF = W(I,J,K+1) * DXX(I) * DYY(J) * RF

CB = W(I,J,K) * DXX(I) * DYY(J) * RB

AE(I,J,K) = CONDE1 + QUICK
& * (- 0.5 * CE * DXX(I) / DXXS(I+1)

& + 0.125 * (abs(ce) + ce) * dxx(i) * dxx(i+l)

& / (dxxs(i+l) * (dxxs(i) +dxxs(i+l)))
& + 0.125 * (abs(ce) - ce) * dxx(i) * dxx(i+l)

& / (dxxs(i+l) * dxxs(i+2))
& + 0.125 * (abs(cw) - cw) * dxx(i-l) * dxx(i)

& / (DXXS(I+1) * (DXXS(I) + DXXS(I+1))))

& + UPWIND *
( 0.5 * (ABS(CE) - CE)

)

AW(I,J,K) = CONDW1 + QUICK
& * (0.5 * CW * DXX(I) / DXXS(I)

& + 0.125 * (abs(cw) + cw) * dxx(i) * dxx(i-l)

& / (dxxs(i-l) * dxxs(i)

)

& + 0.125 * (abs(cw) - cw) * dxx(i-l) * dxx(i)

& / (dxxs(i) * (dxxs(i) + dxxs(i+l)))

& + 0.125 * (abs(ce) + ce) * dxx(i+l) * dxx(i)

& / (DXXS(I) * (DXXS(I) + DXXS(I+1))))
& + UPWIND *

( 0.5 * (ABS(CW) + CW)

)

AN(I,J,K) = CONDN1 + QUICK
& * (- 0.5 * CN * DYY(J) / DYYS(J+1)

& + 0.125 * (abs(cn) + en) * dyy(j) * dyy(j+l)

& / (dyys(j+l) * (dyys(j) + dyys(j+l)))

& + 0.125 * (abs(cn) - en) * dyy ( j ) * dyy(j+l)

& / (dyys(j+l) * dyys(j+2))
& + 0.125 * (abs(cs) - cs) * dyy(j-l) * dyy ( ]

)

& / (DYYS(J+1) * (DYYS(J) + DYYS(J+1))))

& + UPWIND *
( 0.5 * (ABS(CN) - CN)

)

AS(I,J,K) = CONDS1 + QUICK
& * (0.5 * CS * DYY(J) / DYYS(J)
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+ 0.125 * (abs(cs)

/ (dyys(j-l) * dyy
+ 0.125 * (abs(cs)

/ (dyys(j) * (dyys
+ 0.125 * (abs(cn)

/ (DYYS(J) * (DYYS
+ UPWIND * ( 0.5 *

AF(I,J,K) = CONDF1 + QUICK
* (- 0.5 * CF * DZ

0.125 * (abs(cf)
(dzzs(k+l) * (dz
0.125 * (abs(cf)
(dzzs(k+l) * dzz
0.125 * (abs(cb)

/ (DZZS(K+1) * (DZ
+ UPWIND * ( 0.5 *

AB(I,J,K) > CONDB1 + QUICK
(0.5 * CB * DZZ(
0.125 * (abs(cb)
(dzzs(k-l) * dzz
0.125 * (abs(cb)

/ (dzzs(k) * (dzzs
+ 0.125 * (abs(cf)

/ (DZZS(K) * (DZZS
+ UPWIND * ( 0.5 *

+

/

+

/

+

+

/

+

+ cs) * dyy(j) * dyyCj-l)
s(j))
- cs) * dyy(j-l) * dyy(j)

(j) + dyys(j+l) )

)

+ en) * dyy(j+l) * dyy ( j

)

(J) + DYYS(J+1) ) )

)

(ABS(CS) + CS)

)

Z(K) / DZZS(K+1)
+ cf) * dzz(k) * dzz(k+l)

zs(k) + dzzs(k+l) )

)

- cf) * dzz(k) * dzz(k+l)
s(k+2)

)

- cb) * dzz(k-l) * dzz(k)
ZS(K) + DZZS(K+1) ) )

)

(ABS(CF) - CF)

)

K) / DZZS(K)
+ cb) * dzz(k) * dzz(k-l)

s(k))
- cb) * dzz(k-l) * dzz(k)

(k) + dzzs(k+i) )

)

+ cf) * dzz(k+l) * dzz(k)
(K) + DZZS(K+1) ) )

)

(ABS(CB) + CB)

)

AEE(I, J,K)

C

C
c

/

AWW(I,J,K) =
*

/

ANN(I,J,K) =

ASS(I,J,K) =
*

/

AFF(I,J,K) =

/

ABB(I,J,K) =
*

/

&

&

&

&

&

&

&

&

&

&

i

&

&

- 0.125 * QUICK
(ABS(CE) - CE) * DXX(I)
(DXXS(I+2) * (DXXS(I+1)
- 0. 125 * QUICK
(ABS(CW) + CW) * DXX(I)
(DXXS(I-l) * (DXXS(I-l)
- 0.125 * QUICK
(ABS(CN) - CN) * DYY(J)
(DYYS(J+2) * (DYYS(J+1)
- 0.125 * QUICK
(ABS(CS) + CS) * DYY(J)
(DYYS(J-l) * (DYYS(J-l)
- 0.125 * QUICK
(ABS(CF)' - CF) * DZZ(K)
(DZZS(K+2) * (DZZS(K+1)
- 0. 125 * QUICK
(ABS(CB) + CB) * DZZ(K)
(DZZS(K-l) * (DZZS(K-l)

ap(i,j,k) = ae(i,j,k) + aw(i,j,k) +

& + AF(I,J,K) + AB(I,J,K) +

& + AEE(I,J,K) + ASS(I,J,K)
& + ABB(I,J,K) + AFF(I,J,K)
SU(I,J,K) = VOLDT * TOD (I, J, K)

80 continue

CALCULATION OF THE SOURCE TERM

DO 81 1=4, NI
DO 81 J=2 ,NJ

DO 81 K=2 NK
SU( I,

J

K)

CONTINUE

* DXX(I+1)
+ DXXS(I+2) )

)

* DXX(I-l)
+ DXXS(I) )

)

* DYY(J+1)
+ DYYS(J+2) )

)

* DYY(J-l)
+ DYYS(J) )

)

* DZZ(K+1)
+ DZZS(K+2) )

)

* DZZ(K-l)
+ DZZS(K) )

)

an(i,j,k) + as(i, j ,k)

AWW(I,J,K)
+ ANN(I,J,K)
+ VOLDT

= SU(I,J,K)
+ AWW(I,J,K) * TPD(I-2,J,K)
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DO 82 I=2,NI-2
DO 8 2 J=2,NJ

DO 82 K=2,NK
SU(I,J,K) = SU(I,J,K)

& + AEE(I,J,K) * TPD(I+2,J,K)

82 CONTINUE
C

DO 83 1=2, NI
DO 8 3 J=4,NJ

DO 83 K=2,NK
SU(I,J,K) = SU(I,J,K)

& + ASS(I,J,K) * TPD(I,J-2,K)

83 CONTINUE
C

DO 84 1=2, NI
DO 84 J=2,NJ-2

DO 84 K=2,NK
SU(I,J,K) = SU(I,J,K)

& + ANN(I,J,K) * TPD(I,J+2,K)

84 CONTINUE
C

DO 85 1=2, NI
DO 8 5 J=2,NJ

DO 85 K=4,NK
SU(I,J,K) - SU(I,J,K)

& + ABB(I,J,K) * TPD(I,J,K-2)
85 CONTINUE

C
DO 86 1=2, NI

DO 8 6 J=2,NJ
DO 86 K=2,NK-2

SU(I,J,K) = SU(I,J,K)
& + AFF(I,J,K) * TPD(I,J,K+2)

86 CONTINUE
C

if (nchp .ne. 0) then
C
C CHIP HEAT GENERATION
C

do 90 m=l,njchip
do 90 n=l,nkchip

do 90 i=ibgn,iend
do 90 j=jbgn(m)

,
jend(m)

do 90 k=kbgn(n) ,kend(n)
su(i,j,k) = ale * dxx(i) * dyy ( j

)

& * dzz (k) + su(i, j ,k)

90 continue
endif

C
C BOUNDARY CONDITIONS (TOP AND BOTTOM, ISOTHERMAL)
c

do 101 k=2,nk
do 101 i=2,ni

AP(I,2,K) = AP(I,2,K) + AS(I,2,K) - ASS(I,2,K)
su(i,2,k) = su(i,2,k) + 2. * as(i,2,k) * thot
as(i, 2 ,k) = 0.

SU(I,3,K) = SU(I,3,K) + ASS(I,3,K)
& * (2. * THOT - TPD(I,2,K))

SU(I,NJM1,K) = SU(I,NJM1,K) + ANN ( I , NJM1 , K)
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& * (2. * TCOOL - TPD(I,NJ,K))
AP(I,NJ,K) = AP(I,NJ,K) + AN(I,NJ,K) - ANN(I,NJ / K)

su(i,nj,k) = su(i,nj,k) + 2. * an(i,nj,k) * tcool

an(i, nj ,k) = 0.

101 continue
c
c ADIABATIC WALLS (LEFT AND RIGHT)

c
do 102 k=2,nk

do 102 j=2,nj
AP(2,J,K) = AP(2,J,K) - AW(2,J,K) - AWW(2,J,K)

aw(2,j,k) = 0.

SU(3,J,K) = SU(3,J,K) + AWW(3,J,K) * TPD(2,J,K)

AP(NI,J,K) = AP(NI,J,K) - AE(NI,J,K) - AEE(NI,J,K)

SU(NIM1,J,K) = SU(NIM1,J,K)
& + AEE(NIM1,J,K) * TPD(NI,J,K)

ae(ni, j,k) = 0.

102 continue
c
c ADIABATIC WALLS (BACK AND FRONT)

c
do 103 j=2,nj

do 103 i=2,ni
AP(I,J f

2) = AP(I,J,2) - AB(I,J,2) - ABB (I, J, 2)

ab(i,j,2) = 0.

SU(I,J,3) = SU(I,J,3) + ABB(I,J,3) * TPD(I,J,2)

AP(I,J,NK) = AP(I,J,NK) - AF(I,J,NK) - AFF(I,J,NK)

SU(I,J,NKM1) = SU(I,J,NKM1)
& + AFF(I,J,NKM1) * TPD(I,J,NK)

af(i,j,nk) = 0.

103 continue
c

C SOLVE DIFFERENCE EQUATION
C

call sip (2,2, 2,ni f
nj,nk,t)

c

C PRESCRIBE WALL TEMPERATURES CONSISTENT WITH THE

C BOUNDARY CONDITIONS
C (RIGHT AND LEFT WALL)

C
do 310 k=2,nk

do 310 j=2,nj
t(nipl, j,k) = t(ni, j ,k)

t(l,j,k) = t(2,j,k)
310 continue

c

c FRONT AND BACK WALL
c

do 320 j=2,nj
do 320 i=2,ni

t(i, j,nkpl) = t(i, j ,nk)

t(i,j,l) = t(i,j,2)
320 continue

c

c TOP AND BOTTOM WALL
c

do 330 k=2,nk
do 330 i=2,ni

t(i,l,k) = 2. * thot - t(i,2,k)
t(i,njpl,k) = 2. * tcool - t(i,nj,k)
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330 continue

c THE KINEMATIC VISCOSITY IS CALCULATED, WHICH IS A STRONG

c FUNCTION OF TEMPERATURE
c

do 350 i=2,ni
do 350 j=2,nj

do 350 k=2,nk
ttmp = tavg + qcond * t(i,j,k)
if (ichoice .eq. 0) then

gnu = pr
endif
if (ichoice .eq. 1) then

gnu = (1.4074 - 2.96e-2 * ttmp

& + 3.8018e-4 * ttmp**2

& - 2.731e-6 * ttmp**3

5 + 8.168e-9 * ttmp**4) * 29.088

endif
if (ichoice .eq. 2) then

gnu = (251.62 - 13.723 * tavg
6 + 3.056e-l * tavg**2

& - 3.1704e-3 * tavg**3
+ 1.2668e-5 * tavg**4) * 28.666

&

350 continue

endif
visco(i,j,k) = gnu

SUBROUTINE CALU
C
C THIS SUBROUTINE ASSEMBLES THE U-MOMENTUM EQUATION AND

C BOUNDARY CONDITION AND SOLVES FOR THE U-VELOCITY (X-DIRECTION)

C
implicit real*8 (a-h,o-z)
common/ng/dxx(40) ,dyy(40) ,dzz(40) ,x(40) ,y(40) ,z(40)

,

& dxxs(40) ,dyys(40) ,dzzs(40)
common/parm/ra ,

pr , sorsuro , dt ime , xper , roll , dt_inv , xtime

common/ limits/ni , nipl , niml , nj , njpl, njml , nk, nkpl, nkml,

& nip2,njp2,nkp2 , iter,nnmax
common/fv_init/tod(12,16,16) , uod ( 12 , 16 , 16) , vod ( 12 , 16 , 16)

,

& wod(12,16,16) ,pod(12,16,16)
common/fv_cur/t(12,16,16) ,u(12,16,16),v(12,16,16),

.

& w(12,16 f 16) ,p(12, 16,16)
common/fv_int/tpd(12,16,16) , upd ( 12 , 16 , 16) , vpd ( 12 , 16 , 16)

,

& wpd(12,16,16) ,ppd(12,16, 16)

common/mscn/smp(12, 16, 16) ,resorm(93)

,

& du(12,16, 16) ,dv(12, 16,16)

,

& dw(12, 16, 16) ,pp(12, 16, 16)

common/coeff/ap(12, 16, 16) ,aw(12,16,16) ,ae(12,16,16) ,

& as ( 12, 16, 16 ), an (12, 16,16) ,ab( 12, 16,16)

,

& af (12, 16, 16) ,su(12, 16, 16)

COMMON/COEF2/AWW(12, 16, 16) ,AEE(12, 16, 16) , ASS (12, 16, 16) ,

& ANN(12,16 # 16) ,ABB(12,16,16) , AFF ( 12 , 16 , 16)

common/condu/alpha(12,16,16) , rho( 12 , 16, 16) , visco ( 12 , 16 , 16)

common/chip/ ibgn, iend, jbgn(3)
,
jend(3) , kbgn ( 3 )

,kend(3) ,nchp,

& isub, ichip, jchip,kchip
common/scheme/quick, upwind
common/dif f /ale, a Is, thot , tcool , tavg
common/array/njehip, nkchip, ichoice
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V1SW =

vise =

viss =

& *

& *

visn =

& *

& *

visb =

& *

&
*

visf =

& *

& *

common/tol/small,eps,sormax
common/ if irst/nust , nvst , nwst , npst

c

c CALCULATE COEFFICIENTS
c

do 100 k=2,nk
do 100 j=2,nj

do 100 i=nust,ni
voldt = dxxs(i) * dyy(j) * dzz(k) / dtime

C
C CALCULATE INTERFACIAL KINEMATIC VISCOSITIES

C USING THE HARMONIC MEAN FORMULATION

C
visco(i-l, j ,k)

visco( i , j ,k)

visco(i,j,k) * visco (i,j-l,k)
(dyy(j-l) +dyy(j)) / (dyy(j-l)
visco(i,j,k) + dyy(j) * visco( l ,

j-1 , k)

)

visco(i, j,k) * visco(i, j+l,k)
(dyy(j+l) +dyy(j)) / (dyy(j+l)
visco(i,j,k) + dyy(j) * visco ( l ,

j+1 , k)

)

visco(i,j,k) * visco(i, j ,k-l)

(dzz(k-l) +dzz(k)) / (dzz(k-l)
visco(i,j,k) + dzz(k) * visco ( i , j , k-1)

)

visco(i, j ,k) * visco(i, j ,k+i)

(dzz(k+l) +dzz(k)) / (dzz(k+l)
visco(i,j,k) + dzz(k) * visco ( i , j , k+i)

)

dxys = dxxs(i) * dyy(j)
dyzs = dyy(j) * dzz(k)
dzxs = dzz(k) * dxxs(i)
zxoyn = dzxs / dyys(j+l)
zxoys = dzxs / dyys(j)
xyozf = dxys / dzzs(k+l)
xyozb = dxys / dzzs(k)
yzoxe = dyzs / dxx(i)
yzoxw = dyzs / dxx(i-l)

GN = V(I,J+1,K)
GNW = V(I-1,J+1,K)
GS = V(I,J,K)
GSW = V(I-1,J,K)

GE = U(I+1,J,K)
GP = U(I,J,K)
GW = U(I-1,J,K)

GF = W(I,J,K+1)
GFW = W(I-1,J,K+1)
GB = W(I,J,K)
GBW = W(I-1,J,K)

en = (gn * dxx(i-l) + gnw * dxx(i))

& / (dxx(i-l) + dxx(i)) * dzxs
cs = (gs * dxx(i-l) + gsw * dxx(i))

& / (dxx(i-l) + dxx(i)) * dzxs
ce = 0.5 * (ge + gp) * dyzs
cw = 0.5 * (gp + gw) * dyzs
cf = (gf * dxx(i-l) + gfw * dxx(i))

& / (dxx(i-l) + dxx(i)) * dxys
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cb = (gb * dxx(i-l) + gbw * dxx(i))

& / (dxx(i-l) + dxx(i)) * dxys

visel = yzoxe * vise
viswl = yzoxw * visw
visnl = zxoyn * visn
vissl = zxoys * viss
visfl = xyozf * visf
visbl = xyozb * visb

AE(I,J,K) = VISE1 + (- 0.5 * CE + 0.0625 * (ABS(CE) + CE)

& * dxx(i) / dxxs(i) + 0.125 * (abs(ce) - ce)

& * dxx(i) / dxx(i+l) + 0.0625 * (abs(cw) - cw)

& * DXX(I-1)**2 / (DXX(I) * DXXS(I))) * QUICK

& + UPWIND *
( 0.5 * (ABS(CE) - CE)

)

AW(I,J,K) = VISW1 + (0.5 * CW + 0.125 * (ABS(CW) + CW)

& * dxx(i-l) / dxx(i-2) + 0.0625 * (abs(cw) - cw)

& * dxx(i-l) / dxxs(i) + 0.0625 * (abs(ce) + ce)

& * DXX(I)**2 / (DXX(I-l) * DXXS(I))) * QUICK

& + UPWIND *
( 0.5 * (ABS(CW) + CW)

)

AN(I,J,K) = VISN1 + (- 0.5 * CN * DYY(J) / DYYS(J+1)

& + 0.125 * (abs(cn) + en) * dyy
( j ) * dyy(j+l)

& / (dyys(j+l) * (dyys(j) +dyys(j+l)))
& + 0.125 * (abs(cn) - en) * dyy ( j ) * dyy(j+l)

& / (dyys(j+l) * dyys(j+2)

)

& + 0.125 * (abs(cs) - cs) * dyy(j-l) * dyy(j)

& / (DYYS(J+1) * (DYYS(J) + DYYS(J+1)))) * QUICK

& + UPWIND *
( 0.5 * (ABS(CN) - CN)

)

AS(I,J,K) = VISS1 + (0.5 * CS * DYY(J) / DYYS(J)

& + 0.125 * (abs(cs) + cs) * dyy ( j ) * dyy(j-l)

& / (dyys(j-l) * dyys(j))
& + 0.125 * (abs(cs) - cs) * dyy(j-l) * dyy(})

& / (dyys(j) * (dyys(j) + dyys(j+l)))

& + 0.125 * (abs(cn) + en) * dyy(j+l) * dyy(j)

& / (DYYS(J) * (DYYS(J) + DYYS(J+1)))) * QUICK

& + UPWIND *
( 0.5 * (ABS(CS) + CS))

AF(I,J,K) = VISF1 + (- 0.5 * CF * DZZ(K) / DZZS(K+1)

& + 0.125 * (abs(cf) + cf) * dzz(k) * dzz(k+l)

& / (dzzs(k+l) * (dzzs(k) + dzzs(k+l)))

& + 0.125 * (abs(cf) - cf) * dzz(k) * dzz(k+l)

& / (dzzs(k+l) * dzzs(k+2))
& + 0.125 * (abs(cb) - cb) * dzz(k-l) * dzz(k)

& / (DZZS(K+1) * (DZZS(K) + DZZS(K+1)))) * QUICK

& + UPWIND *
( 0.5 * (ABS(CF) - CF)

)

AB(I,J,K) = VISB1 + (0.5 * CB * DZZ(K) / DZZS(K)

& + 0.125 * (abs(cb) + cb) * dzz(k) * dzz(k-l)

& / (dzzs(k-l) * dzzs(k) )

& + 0.125 * (abs(cb) - cb) * dzz(k-l) * dzz(k)

& / (dzzs(k) * (dzzs(k) + dzzs(k+l)))
& + 0.125 * (abs(cf) + cf) * dzz(k+l) * dzz(k)

& / (DZZS(K) * (DZZS(K) + DZZS(K+1)))) * QUICK

& + UPWIND * ( 0.5 * (ABS(CB) + CB))

AEE(I,J,K) = - 0.0625 * QUICK
& * (ABS(CE) - CE) * DXX(I)**2
& / (DXX(I+1) * DXXS(I+1)

)

AWW(I,J,K) = - 0.0625 * QUICK
& * (ABS(CW) + CW) * DXX(I-1)**2
& / (DXX(I-2) * DXXS(I-l) )

ANN(I,J,K) = - 0.125 * QUICK
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& * (ABS(CN) - CN) * DYY(J) * DYY(J+1)

& / (DYYS(J+2) * (DYYS(J+1) + DYYS(J+2)))

ASS (I, J., K) = - 0.125 * QUICK
& * (ABS(CS) + CS) * DYY(J) * DYY(J-l)

& / (DYYS(J-l) * (DYYS(J-l) + DYYS(J)))

AFF(I,J,K) = - 0.125 * QUICK
& * (ABS(CF) - CF) * DZZ(K) * DZZ(K+1)

& / (DZZS(K+2) * (DZZS(K+1) + DZZS(K+2)))

ABB(I,J,K) = - 0.125 * QUICK
& * (ABS(CB) + CB) * DZZ(K) * DZZ(K-l)

& / (DZZS(K-l) * (DZZS(K-l) + DZZS(K)))

AP(I,J,K) = AE(I,J,K) + AW(I,J,K) + AN(I,J,K) + AS(I,J,K)

& + AF(I,J,K) + AB(I,J,K) + AWW(I,J,K)

& + AEE(I,J,K) + ASS(I,J,K) + ANN (I, J, K)

& + ABB (I, J, K) + AFF(I,J,K) + VOLDT
SU(I,J,K) = VOLDT * UOD(I,J,K)

& + DYZS * (P(I-1,J,K) - P(I,J,K))

100 continue
C
C CALCULATION OF THE SOURCE TERM
C

DO 101 I=NUST+1,NI
DO 101 J=2,NJ

DO 101 K=2,NK
SU(I,J,K) = SU(I,J,K)

& + AWW(I,J,K) * UPD(I-2,J,K)

101 CONTINUE
C

c

c

DO 102 I=NUST,NI-1
DO 102 J=2,NJ

DO 102 K=2,NK
SU(I,J,K) = SU(I,J,K)

& + AEE(I,J,K) * UPD(I+2,J,K)

102 CONTINUE

DO 103 I=NUST,NI
DO 103 J=4,NJ

DO 103 K=2,NK
SU(I,J,K) = SU(I,J,K)

& + ASS(I,J,K) * UPD(I,J-2,K)

103 CONTINUE

DO 104 I=NUST,NI
DO 104 J=2,NJ-2

DO 104 K=2,NK
SU(I,J,K) = SU(I,J,K)

& + ANN(I,J,K) * UPD(I,J+2,K)
104 CONTINUE

DO 105 I=NUST,NI
DO 105 J=2,NJ

DO 105 K=4,NK
SU(I,J,K) = SU(I,J,K)

& + ABB(I,J,K) * UPD(I,J,K-2)
105 CONTINUE

C

C
DO 106 I=NUST,NI

DO 106 J=2,NJ
DO 106 K=2,NK-2
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SU(I,J,K) - SU(I,J,K)
& + AFF(I,J,K) * UPD(I,J,K+2)

106 CONTINUE

c BOUNDARY CONDITIONS (TOP AND BOTTOM)

c
DO 121 K=2,NK

DO 121 I=NUST,NI
AP(I,2,K) = AP(I,2,K) + AS(I,2,K) - ASS(I,2,K)

AS(I,2,K) = 0.

SU(I,3,K) = SU(I,3,K) - ASS(I,3,K) * UPD(I,2,K)

SU(I,NJM1,K) = SU(I,NJM1,K)
&

- ANN(I,NJM1,K) * UPD(I,NJ,K)
AP(I,NJ,K) = AP(I,NJ,K) + AN(I,NJ,K) - ANN(I,NJ,K)

AN(I,NJ,K) = 0.

121 CONTINUE
c

c LEFT AND RIGHT WALL
c

DO 122 K=2,NK
DO 122 J=2,NJ

AW(NUST,J,K) = 0.

SU(NUST,J,K) = SU(NUST,J,K)
& - AWW(NUST,J,K) * UPD(NUST,J,K)

SU(NI,J,K) = SU(NI,J,K)
& - AEE(NI,J,K) * UPD(NI,J,K)

AE(NI,J,K) = 0.

122 CONTINUE
c
C FRONT AND BACK WALL
c

DO 12 3 J=2,NJ
DO 123 I=NUST,NI

AP(I,J,2) = AP(I,J,2) + AB(I,J,2) - ABB (I, J, 2)

AB(I,J,2) = 0.

SU(I,J,3) = SU(I,J,3) - ABB (I, J, 3) * UPD(I,J,2)

SU(I,J,NKM1) = SU(I,J,NKM1)
&

- AFF(I,J,NKM1) * UPD(I,J,NK)

AP(I,J,NK) = AP(I,J,NK) + AF(I,J,NK) - AFF(I,J,NK)

AF(I,J,NK) = 0.

123 CONTINUE
c

IF (NCHP .NE. 0) THEN
c
c U-VELOCITY SET TO ZERO IN CHIP

c
DO 130 M=1,NJCHIP

DO 130 N=1,NKCHIP
DO 130 I=IBGN+1,IEND+1

DO 130 J=JBGN(M) , JEND(M)
DO 130 K=KBGN(N) ,KEND(N)

AP(I,J,K) = small
AW(I,J,K) = 0.

AE(I,J,K) = 0.

AS(I,J,K) = 0.

AN(I,J,K) = 0.

AB(I,J,K) = 0.

AF(I,J,K) = 0.

SU(I,J,K) = 0.

130 CONTINUE
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C CHIP BOUNDARY CONDITIONS (TOP AND BOTTOM)

c
DO 131 M=1,NJCHIP

DO 131 N=1,NKCHIP
DO 131 I=IBGN+1,IEND+1

DO 131 K=KBGN(N) ,KEND(N)
JJS = JEND(M)
JJS1 = JEND(M) + 1

JJS2 = JEND(M) + 2

JJN = JBGN(M)
JJN1 = JBGN(M) - 1

JJN2 = JBGN(M) - 2

AP(I,JJS1,K) = AP(I,JJS1,K)

& + AS(I,JJS1,K) - ASS(I,JJS1,K)
AS(I,JJS1,K) = 0.

SU(I,JJS2,K) = SU(I,JJS2,K)

&
- ASS(I,JJS2,K) * UPD(I,JJS,K)

&
- ASS(I,JJS2,K) * UPD(I,JJS1,K)

SU(I,JJN2,K) = SU(I,JJN2,K)

&
- ANN(I, JJN2,K) * UPD(I,JJN,K)

&
- ANN(I, JJN2,K) * UPD(I,JJN1,K)

AP(I,JJN1,K) = AP(I,JJN1,K)
& + AN(I,JJN1,K) - ANN(I, JJN1,K)

AN(I,JJN1,K) = 0.

131 CONTINUE
c
C FRONT AND BACK WALL
c

DO 132 M=1,NJCHIP
DO 132 N=1,NKCHIP

DO 132 I=IBGN+1,IEND+1
DO 132 J=JBGN(M) , JEND(M)

KKB = KEND(N)
KKB1 = KEND(N) + 1

KKB2 = KEND(N) + 2

KKF = KBGN(N)
KKF1 = KBGN(N) - 1

KKF2 = KBGN(N) - 2

AP(I,J,KKB1) = AP(I,J,KKB1)
& + AB(I,J,KKB1) - ABB(I, J,KKB1)

AB(I,J,KKB1) = 0.

SU(I,J,KKB2) = SU(I,J,KKB2)
& - ABB(I,J,KKB2) * UPD(I,J,KKB)

&
- ABB(I,J,KKB2) * UPD ( I , J , KKB1

)

SU(I,J,KKF2) = SU(I,J,KKF2)
& - AFF(I,J,KKF2) * UPD (I , J, KKF)

& - AFF(I,J,KKF2) * UPD ( I , J , KKF1)

AP(I,J,KKF1) = AP(I,J,KKF1)
& + AF(I

;
J,KKF1) - AFF(I,J,KKF1)

AF(I,J,KKF1) = 0.

132 CONTINUE
C
C RIGHT WALL
c

DO 133 M=1,NJCHIP
DO 133 N=1,NKCHIP

DO 133 J=JBGN(M) , JEND(M)
DO 133 K=KBGN(N) ,KEND(N)

112 = IEND + 2
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AW(II2,J,K) = 0.

SU(II2,J,K) = SU(II2,J,K)

&
- AWW(II2,J,K) * UPD(IEND,J,K)

&
- AWW(II2,J,K) * UPD(II2,J,K)

133 CONTINUE
ENDIF

SOLVE THE LINEARISED U MOMENTUM EQUATIONS

CALL SIP (NUST,2,2,NI,NJ ;
NK,U)

CALCULATE DU NEEDED FOR PRESSURE CORRECTION AND SOLVE

DO 200 K=2,NK
DO 200 J=2,NJ

DO 200 I=NUST,NI
SU(I,J,K) = DYY(J) * DZZ(K)

200 CONTINUE
c

CALL SIP (NUST,2,2,NI,NJ,NK,DU)
c

END
c * *********************************************************************

SUBROUTINE CALV
C
C THIS SUBROUTINE ASSEMBLES THE V-MOMENTUM EQUATION AND

C BOUNDARY CONDITION AND SOLVES FOR THE V-VELOCITY (Y DIRECTION)

C
implicit real*8 (a-h,o-z)
common/ng/dxx(40) ,dyy(40) ,dzz(40) ,x(40) ,y(40) ,z(40)

,

& dxxs(40) ,dyys(40) ,dzzs(40)
common/parm/ ra

,
pr , sorsum , dt ime , xper , rol 1 , dt_inv ,

xt ime

common/ limits/ni , nipl , niml , nj , n jpl , njml , nk, nkpl , nkml

,

& nip2,njp2,nkp2, iter,nnmax
common/fv_init/tod(12,16,16) , uod ( 12 , 16 , 16) ,vod(12, 16, 16)

,

& wod(12, 16, 16) ,pod(12, 16, 16)

common/fv_cur/t(12, 16,16),u(12,16,16),v(12,16,16),
& w(12,16,16) ,p(12,16,16)
common/fv_int/tpd(12,16,16) , upd ( 12 , 16 , 16) , vpd ( 12 , 16 , 16)

,

& wpd(12,16, 16) ,ppd(12, 16, 16)

common/mscn/smp(12, 16, 16) ,resorm(93)

,

& du(12, 16, 16) ,dv(12, 16,16) ,

& dw(12, 16, 16) ,pp(12, 16, 16)

common/coeff/ap(12, 16 , 16) , aw( 12 , 16, 16) , ae ( 12 , 16 , 16)

,

& as ( 12, 16, 16 ), an (12, 16,16) ,ab( 12, 16,16)

,

& af (12, 16, 16) ,su(12, 16, 16)

COMMON/COEF2/AWW(12, 16, 16) ,AEE(12, 16, 16) , ASS (12, 16, 16)

,

& ANN(12,16,16) f
ABB (12, 16, 16) , AFF ( 12 , 16 , 16)

common/condu/alpha(12,16,16) ,rho(12,16, 16) ,visco(12, 16, 16)

common/chip/ ibgn, iend, jbgn(3)
,
jend(3) ,kbgn(3) ,kend(3) ,nchp,

& isub, ichip, jchip, kchip
COMMON/SCHEME/QUICK, UPWIND
common/dif f /ale , a Is , thot , tcool , tavg
common/array/njehip, nkchip, ichoice
common /tol/ small , eps, sormax
common/ if irst/ nust , nvst , nwst , npst

c
c CALCULATE COEFFICIENTS
c

do 100 k=2,nk
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do 100 j=3,nj
do 100 i=nvst,ni

voldt = dxx(i) * dyys(j) * dzz(k) / dtime

C CALCULATE INTERFACIAL KINEMATIC VISCOSITIES

C USING THE HARMONIC MEAN FORMULATION

C . . .

visw = visco(i,j,k) * visco(i-l,],K)

& * (dxx(i-l) + dxx(i)) / (dxx(i-l)

& * visco(i,j,k) + dxx(i) * visco ( l-l
, j , k)

)

vise = visco(i,j,k) * visco( i+l, j ,k)

& * (dxx(i+l) + dxx(i)) / (dxx(i+l)

& * visco(i,j,k) + dxx(i) * visco( i+l, j , k)

)

viss = visco(i, j-l,k)
visn = visco(i,j,k)
visb = visco(i,j,k) * visco( i , j ,k-l)

& * (dzz(k-l) + dzz(k)) / (dzz(k-l)

& * visco(i,j ,k) + dzz(k) * visco( i , j , k-1)

)

visf = visco(i,j ,k) * visco( i , j , k+i)

& * (dzz(k+l) + dzz(k)) / (dzz(k+l)

& * visco(i,j,k) + dzz(k) * visco ( i , j , k+l)

)

c
dxys = dxx(i) * dyys(^)
dyzs = dyys(j) * dzz(k)
dzxs = dzz(k) * dxx(i)
zxoyn = dzxs / dyy(j)
zxoys = dzxs / dyy(j-l)
xyozf = dxys / dzzs(k+l)
xyozb = dxys / dzzs(k)
yzoxe = dyzs / dxxs(i+l)
yzoxw = dyzs / dxxs(i)

c
GN = V(I,J+1,K)
GP = V(I,J,K)
GS = V(I,J-1,K)
GE = U(I+1,J,K)
GSE = U(I+1,J-1,K)
GW = U(I,J,K)
GSW = U(I,J-1 ;

K)

GF = W(I,J,K+1)
GSF = W(I,J-1,K+1)
GB = W(I,J,K)
GSB = W(I,J-1,K)

c
en = 0.5 * (gn + gp) * dzxs
cs = 0.5 * (gp + gs) * dzxs
ce = (ge * dyy(j-l) + gse * dyy(j))

& / (dyy(j-l) + dyy(j)) * dyzs
cw = (gw * dyy(j-l) + gsw * dyy(j))

& / (dyy(j-l) + c3yy(j)) * dyzs
cf = (gf * dyy(j-l) + gsf * dyy(j))

& / (dyy(j-i) + dyy(j)) * dxys

cb = (gb * dyy(j-l) + gsb * dyy(j))

& / (dyy(j-l) + dyy(j)) * dxys

c
visel = yzoxe * vise
viswl = yzoxw * visw
visnl = zxoyn * visn
vissl = zxoys * viss
visfl = xyozf * visf
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v J.i3i_f J. — ajt '

AE(I J K) = VISE1 + (- 0.5 * CE * DXX(I) / DXXS(I+1)

& + 0.125 * (abs(ce) + ce) * dxx(i) * dxx(i+l)

& / (dxxs(i+l) * (dxxs(i) +dxxs(i+l)))
& + 0.125 * (abs(ce) - ce) * dxx(i) * dxx(i+l)

& / (dxxs(i+l) * dxxs(i+2))

& + 0.125 * (abs(cw) - cw) * dxx(i-l) * dxx(i)

& / (DXXS(I+1) * (DXXS(I) + DXXS(I+1)))) * QUICK

& + UPWIND *
( 0.5 * (ABS(CE) - CE)

)

AW (I J,K) = VISW1 + (0.5 * CW * DXX(I) / DXXS(I)

& + 0.125 * (abs(cw) + cw) * dxx(i) * dxx(i-l)

& / (dxxs(i-l) * dxxs(i))

& + 0.125 * (abs(cw) - cw) * dxx(i-l) * dxx(i)

& / (dxxs(i) * (dxxs(i) +dxxs(i+l)))
& + 0.125 * (abs(ce) + ce) * dxx(i+l) * dxx(i)

& / (DXXS(I) * (DXXS(I) + DXXS(I+1)))) * QUICK

& + UPWIND *
( 0.5 * (ABS(CW) + CW)

)

AN(I J,K) = VISN1 + (- 0.5 * CN + 0.0625 * (ABS(CN) + CN)

& * dyy(j) / dyys(j) + 0.125 * (abs(cn) - en)

& * dyy(j) / dyy(j+i) + 0.0625 * (abs(cs) - cs)

& * DYY(J-1)**2 / (DYY(J) * DYYS(J))) * QUICK

& + UPWIND *
( 0.5 * (ABS(CN) - CN)

)

AS(I J K) = VISS1 + (0.5 * CS + 0.125 * (ABS(CS) + CS)

& * dyy(j-l) / dyy(j-2) + 0.0625 * (abs(cs) - cs)

& * dyy(j-l) / dyys(j) + 0.0625 * (abs(cn) + en)

& * DYY(J)**2 / (DYY(J-l) * DYYS(J))) * QUICK

& + UPWIND *
( 0.5 * (ABS(CS) + CS))

AF(I J K) = VISF1 + (- 0.5 * CF * DZZ(K) / DZZS(K+1)

& + 0.125 * (abs(cf) + cf) * dzz(k) * dzz(k+l)

& / (dzzs(k+l) * (dzzs(k) +dzzs(k+l)))

& + 0.125 * (abs(cf) - cf) * dzz(k) * dzz(k+l)

& / (dzzs(k+i) * dzzs(k+2))
& + 0.125 * (abs(cb) - cb) * dzz(k-l) * dzz(k)

& / (DZZS(K+1) * (DZZS(K) + DZZS(K+1)))) * QUICK

& + UPWIND *
( 0.5 * (ABS(CF) - CF)

)

AB(I,J,K) = VISB1 + (0.5 * CB * DZZ(K) / DZZS(K)

& + 0.125 * (abs(cb) + cb) * dzz(k) * dzz(k-l)

& / (dzzs(k-l) * dzzs(k)

)

& + 0.125 * (abs(cb) - cb) * dzz(k-l) * dzz(k)

& / (dzzs(k) * (dzzs(k) + dzzs(k+i)))

& + 0.125 * (abs(cf) + cf) * dzz(k+l) * dzz(k)

& / (DZZS(K) * (DZZS(K) + DZZS(K+1)))) * QUICK

& + UPWIND *
( 0.5 * (ABS(CB) + CB)

)

AEE(I,J,K) = - 0.125 * QUICK
& * (ABS(CE) - CE) * DXX(I) * DXX(I+1)

& / (DXXS(I+2) * (DXXS(I+1) + DXXS(I+2)))

AWW(I,J,K) = - 0.125 * QUICK
& * (ABS(CW) + CW) * DXX(I) * DXX(I-l)

& / (DXXS(I) * (DXXS(I-l) + DXXS(I)))

ANN(I,J,K) = - 0.0625 * QUICK
& * (ABS(CN) - CN) * DYY(J)**2
& / (DYY(J+1) * DYYS(J+1))
ASS(I,J,K) = - 0.0625 * QUICK

& * (ABS(CS) + CS) * DYY(J-1)**2
& / (DYY(J-2) * DYYS(J-l)

)

AFF(I,J,K) = - 0.125 * QUICK
& * (ABS(CF) - CF) * DZZ(K) * DZZ(K+1)

& / (DZZS(K+2) * (DZZS(K+1) + DZZS(K+2)))
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ABB(I,J,K) = - 0.125 * QUICK
& * (ABS(CB) + CB) * DZZ(K) * DZZ(K-l)

& / (DZZS(K) * (DZZS(K-l) + DZZS(K)))

AP(I,J,K) - AE(I,J,K) + AW(I,J,K) + AN(I,J,K) + AS(I,J,K)

& + AF(I,J,K) + AB(I,J,K) + AWW(I,J,K)

& + AEE(I,J,K) + ASS(I,J,K) + ANN(I,J,K)

& + ABB (I, J, K) + AFF(I,J,K) + VOLDT

SU(I,J,K) = VOLDT * VOD(I,J,K)
& + DZXS * (P(I,J-1,K) - P(I,J,K))

& + RA * (T(I,J,K) * DYY(J-l) + T(I,J-1,K)

& * DYY(J)) / (DYY(J) + DYY(J-l))

& * DXX(I) * DYYS(J) * DZZ(K)

100 CONTINUE
C
C CALCULATION OF THE SOURCE TERM

C
DO 101 I=NVST+2,NI

DO 101 J=3,NJ
DO 101 K=2,NK

SU(I,J,K) = SU(I,J,K)
& + AWW(I,J,K) * VPD(I-2,J,K)

101 CONTINUE
C

c

DO 102 I=NVST,NI-2
DO 102 J=3,NJ

DO 102 K=2,NK
SU(I,J,K) = SU(I,J,K)

& + AEE(I,J,K) * VPD(I+2,J,K)

102 CONTINUE

DO 103 I=NVST,NI
DO 103 J=4,NJ

DO 103 K=2,NK
SU(I,J,K) = SU(I,J,K)

& + ASS(I,J,K) * VPD(I,J-2,K)

103 CONTINUE
C

DO 104 I=NVST,NI
DO 104 J=3,NJM1

DO 104 K=2,NK
SU(I,J,K) = SU(I,J,K)

& + ANN(I,J,K) * VPD(I,J+2,K)

104 CONTINUE
C

DO 105 I=NVST,NI
DO 105 J=3,NJ

DO 105 K=4,NK
SU(I,J,K) = SU(I,J,K)

& + ABB(I,J,K) * VPD(I,J,K-2)

105 CONTINUE
C

DO 106 I=NVST,NI
DO 106 J=3,NJ

DO 106 K=2,NK-2
SU(I,J,K) = SU(I,J,K)

& + AFF(I,J,K) * VPD(I,J,K+2)
106 CONTINUE

C
C BOUNDARY CONDITIONS (TOP AND BOTTOM WALL)

C
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DO 121 K=2,NK
DO 121 I=NVST,NI

AS(I,3,K) = 0.

SU(I,3,K) = SU(I,3,K)
& - ASS(I,3,K) * VPD(I,3,K)

SU(I,NJ,K) = SU(I,NJ,K)
& - ANN(I,NJ,K) * VPD(I,NJ,K)

AN(I,NJ,K) = 0.

121 CONTINUE
C
C LEFT AND RIGHT WALL
C

DO 122 K=2,NK
DO 122 J=3,NJ

AP(NVST,J,K) = AP(NVST,J,K) + AW(NVST,J,K)

&
- AWW(NVST, J,K)

AW(NVST,J,K) = 0.

SU(NVST+1,J,K) = SU(NVST+1,J,K)
&

- AWW(NVST+1,J,K) * VPD(NVST,J,K)

SU(NIM1,J,K) = SU(NIM1,J,K)
& - AEE(NIM1,J,K) * VPD(NI,J,K)

AP(NI,J,K) = AP(NI,J,K) + AE(NI,J,K)

& - AEE(NI,J,K)
AE(NI,J,K) = 0.

122 CONTINUE
c

c FRONT AND BACK WALL
c

DO 123 J=3,NJ
DO 123 I=NVST,NI

AP(I,J,2) = AP(I,J,2) + AB(I,J,2) - ABB (I, J, 2)

SU(I,J,3) = SU(I,J,3)
& - ABB (I, J, 3) * VPD(I,J,2)

SU(I
;
J,NKM1) = SU(I,J,NKM1)

& - AFF(I,J,NKM1) * VPD(I,J,NK)

AB(I,J,2) = 0.

AP(I f
J,NK) = AP(I,J,NK) + AF(I,J,NK) - AFF(I,J,NK)

AF(I,J,NK) = 0.

123 CONTINUE
C

IF (NCHP .NE. 0) THEN
c
c V-VELOCITY SET TO ZERO IN CHIP
c

DO 130 M=1,NJCHIP
DO 130 N=1,NKCHIP

DO 130 I=IBGN,IEND
DO 130 J=JBGN(M) ,JEND(M)+1

DO 130 K=KBGN(N) ,KEND(N)
AP(I,J,K) = small
AW(I,J,K) = 0.0
AE(I,J,K) = 0.0
AS(I,J,K) = 0.0
AN(I,J,K) = 0.0
AB(I,J,K) = 0.0
AF(I,J ;

K) = 0.0
SU(I,J,K) = 0.0

130 CONTINUE
c

C CHIP BOUNDARY CONDITIONS (TOP AND BOTTOM)
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DO 131 M=1,NJCHIP
DO 131 N=1,NKCHIP

DO 131 I=IBGN,IEND
DO 131 K=KBGN(N) ,KEND(N)

JJS = JEND(M)
JJS2 = JEND(M)
JJN1 = JBGN(M)
JJP1 = JBGN(M)
AS(I,JJS2,K) =

SU(I,JJS2,K) =

&

&

&

&

131 CONTINUE

SU(I,JJN1,K) =

AN(I,JJN1,K) =

+ 2

- 1

+ 1

0.

SU(I, JJS2,K)
ASS(I, JJS2,K)
ASS(I, JJS2,K)
SU(I, JJN1,K)
ANN(I,JJN1,K)
ANN(I, JJN1,K)
0.

* VPD(I,JJS,K)
* VPD(I, JJS2,K)

* VPD(I, JJP1,K)
* VPD(I,JJN1,K)

c

C
c

FRONT AND BACK WALL

DO 132 M=1,NJCHIP
DO 132 N=1,NKCHIP

DO 132 I=IBGN,IEND
DO 132 J=JBGN(M) , JEND(M)+1

KKB = KEND(N)
KKB1 = KEND(N) + 1

KKB2 = KEND(N) + 2

KKF = KBGN(N)
KKF1 = KBGN(N) - 1

KKF2 = KBGN(N) - 2

AP(I,J,KKB1) = AP(I, J,KKB1)
& + AB(I, J,KKB1)

AB(I,J,KKB1) = 0.

SU(I,J,KKB2) = SU(I, J,KKB2)
&

- ABB(I, J,KKB2)
& - ABB(I, J,KKB2)

SU(I,J,KKF2) = SU(I, J,KKF2)
& - AFF(I, J,KKF2)
& - AFF(I, J,KKF2)

AP(I,J,KKF1) = AP(I, J,KKF1)
& + AF(I, J,KKF1)

AF(I,J,KKF1) = 0.

132 CONTINUE
c
C RIGHT WALL
c

- ABB(I, J,KKB1)

* VPD(I,J,KKB)
* VPD(I, J,KKB1)

* VPD(I,J,KKF)
* VPD(I, J,KKF1)

- AFF(I,J,KKF1)

DO 133 M=1,NJCHIP
DO 133 N=1,NKCHIP

DO 133 J=JBGN(M) , JEND(M)
DO 133 K=KBGN(N) ,KEND(N)

II = IEND
III = IEND + 1

112 = IEND + 2

AP(II1,J,K) = AP(II1,J,K)
+

SU(II2,J,K) =

AW(II1, J,K)

AW(II1, J,K)
SU(II2, J,K)
AWW(II2, J,K)
AWW(II2, J,K)
0.

- AWW(II1,J,K)

VPD(II, J,K)
VPD(II1, J,K)
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133

200
c

c

c****

c
C
c
c

c

c
c

CONTINUE
ENDIF

SOLVE THE LINEARISED V MOMENTUM EQUATION

CALL SIP (NVST,3,2,NI,NJ,NK,V)

SET UP SU FOR CALCULATING DV AND SOLVE

DO 200 K=2,NK
DO 200 J=3,NJ

DO 200 I=NVST,NI
SU(I,J,K) = DZZ(K) * DXX(I)

CONTINUE

CALL SIP (NVST,3,2,NI,NJ,NK,DV)

END
*******************************************************************

SUBROUTINE CALW

THIS SUBROUTINE ASSEMBLES THE W-MOMENTUM EQUATION AND

BOUNDARY CONDITION AND SOLVES FOR THE W-VELOCITY (Z DIRECTION)

implicit real*8 (a-h,o-z)
common/ng/dxx(40) ,dyy(40) ,dzz(40) ,x(40) ,y(40) ,z(40)

,

& dxxs(40) ,dyys(40) ,dzzs(40)
common/parm/ra ,

pr , sorsum , dtime , xper , roll , dt_inv , xt line

common/ limits/ni , nipl , niml , nj , njpl , n jml , nk, nkpl , nkml

,

& nip2,njp2,nkp2, iter,nnmax
common/fv_init/tod(12,16,16) , uod ( 12 , 16, 16) , vod ( 12 , 16 , 16)

,

& wod(12,16,16) ,pod(12,16,16)
common/fv_cur/t(12,16,16) ,u(12,16,16),v(12,16,16),

& w(12,16,16) ,p(12, 16,16)
common/ fv_int/tpd (12,16,16), upd (12,16

& wpd(12,16,16) ,ppd(12,16
common/mscn/smp(12, 16, 16) ,resorm(93)

,

& du(12,16,16) ,dv(12,16,16)

,

& dw(12, 16,16) ,pp(12,16,16)
common/coeff/ap(12,16,16) , aw( 12 , 16, 16) , ae ( 12 , 16 , 16)

,

& as (12, 16, 16) , an (12, 16,16) ,ab( 12, 16, 16)

,

& af (12, 16, 16) ,su(12, 16, 16)

COMMON/COEF2/AWW(12, 16, 16) ,AEE(12, 16, 16) , ASS (12, 16, 16)

,

& ANN(12,16,16) ,ABB(12,16,16) , AFF ( 12 , 16 , 16)

common/condu/alpha (12,16,16), rho (12,16,16) , visco (12,16,16)

common/chip/ ibgn,iend, jbgn(3)
,
jend(3) ,kbgn(3) ,kend(3) ,nchp,

& isub, ichip, jchip,kchip
COMMON/SCHEME/QUICK, UPWIND
common/diff /ale, als, thot , tcool, tavg
common/array/njchip,nkchip, ichoice
common /tol/ small, eps, sormax
common/ if irst/nust , nvst , nwst , npst

16) , vpd(12, 16

16)

16)

CALCULATE COEFFICIENTS

do 100 k=3,nk
do 100 j=2,nj

do 100 i=nwst,ni
voldt = dxx(i) * dyy(j) * dzzs(k) / dtime
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C CALCULATE INTERFACIAL KINEMATIC VISCOSlTlfcb

C USING THE HARMONIC MEAN FORMULATION
C

visw = visco(i, j ,k) * visco( i-1
, j , k)

& * (dxx(i-l) + dxx(i)) / (dxx(i-l)
& * visco(i,j,k) + dxx(i) * visco( i-1, j , k)

)

vise = visco(i, j ,k) * visco( i+1
, j , k)

& * (dxx(i+l) + dxx(i)) / (dxx(i+l)
& * visco(i,j,k) + dxx(i) * visco( i+1 , j , k)

)

viss = visco(i,j,k) * visco(i, j-1 , k)

& * (dyy(j-l) +dyy(j)) / (dyy(j-l)
& * visco(i,j,k) + dyy(j) * visco( i ,

j-1 , k)

)

visn = visco(i,j,k) * visco( i ,
j+1 , k)

& * (dyy(j+l) +dyy(j)) / (dyy(j+l)
& * visco(i,j,k) + dyy(j) * visco( i, j+1 , k)

)

visb = visco(i, j ,k-l)
visf = visco(i,j,k)

dzxs = dzzs(k) * dxx(i)
dxys = dxx(i) * dyy

( j

)

dyzs = dyy(j) * dzzs(k)
zxoyn = dzxs / dyys(j+l)
zxoys = dzxs / dyys(j)
xyozf = dxys / dzz(k)
xyozb = dxys / dzz(k-l)
yzoxe = dyzs / dxxs(i+l)
yzoxw = dyzs / dxxs(i)

GN = V(I,J+1,K)
GNB = V(I,J+1,K-1)
GS = V(I,J,K)
GSB = V(I,J,K-1)
GE = U(I+1,J,K)
GEB = U(I+1,J,K-1)
GW = U(I,J,K)
GWB = U(I,J,K-1)
GF = W(I,J,K+1)
GP = W(I,J,K)
GB = W(I,J,K-1)

en = (gn * dzz(k-l) + gnb * dzz(k))
& / (dzz(k-l) + dzz(k)) * dzxs

cs = (gs * dzz(k-l) + gsb * dzz(k))
& / (dzz(k-l) + dzz(k)) * dzxs

ce = (ge * dzz(k-l) + geb * dzz(k))
& / (dzz(k-l) + dzz(k)) * dyzs

cw = (gw * dzz(k-l) + gwb * dzz(k))
& / (dzz(k-l) + dzz(k)) * dyzs

cf = 0.5 * (gf + gp) * dxys
cb = 0.5 * (gb + gp) * dxys

visel = yzoxe * vise
viswl = yzoxw * visw
visnl = zxoyn * visn
vissl = zxoys * viss
visfl = xyozf * visf
visbl = xyozb * visb

AE(I,J,K) - VISE1 + (- 0.5 * CE * DXX(I) / DXXS(I+1)
& + 0.125 * (abs(ce) + ce) * dxx(i) * dxx(i+l)
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& / (dxxs(i+l) * (dxxs(i) + dxxsii+ijjj
& + 0.125 * (abs(ce) - ce) * dxx(i) * dxx(i+l)

& / (dxxs(i+l) * dxxs(i+2))
& + 0.125 * (abs(cw) - cw) * dxx(i-l) * dxx(i)

& / (DXXS(I+1) * (DXXS(I) + DXXS(I+1)))) * QUICK

& + UPWIND * ( 0.5 * (ABS(CE) - CE)

)

AW(I,J,K) = VISW1 + (0.5 * CW * DXX(I) / DXXS(I)

& + 0.125 * (abs(cw) + cw) * dxx(i) * dxx(i-l)

& / (dxxs(i-l) * dxxs(i))
& + 0.125 * (abs(cw) - cw) * dxx(i-l) * dxx(i)

& / (dxxs(i) * (dxxs(i) + dxxs(i+l)))
& + 0.125 * (abs(ce) + ce) * dxx(i+l) * dxx(i)

& / (DXXS(I) * (DXXS(I) + DXXS(I+1)))) * QUICK

& + UPWIND *
( 0.5 * (ABS(CW) + CW)

)

AN(I,J,K) = VISN1 + (- 0.5 * CN * DYY(J) / DYYS(J+1)

& + 0.125 * (abs(cn) + en) * dyy(j) * dyy(j+l)

& / (dyys(j+l) * (dyys(j) + dyys(j+l)))
& + 0.125 * (abs(cn) - en) * dyy ( j ) * dyy(j+l)

& / (dyys(j+l) * dyys(j+2))
& + 0.125 * (abs(cs) - cs) * dyy(j-l) * dyy(})

& / (DYYS(J+1) * (DYYS(J) + DYYS(J+1)))) * QUICK

& + UPWIND *
( 0.5 * (ABS(CN) - CN))

AS(I,J,K) = VISS1 + (0.5 * CS * DYY(J) / DYYS(J)

& + 0.125 * (abs(cs) + cs) * dyy ( j ) * dyy(j-l)

& / (dyys(j-l) * dyys(j)

)

& + 0.125 * (abs(cs) - cs) * dyy(j-l) * dyy (j )

& / (dyys(j) * (dyys(j) + dyys(j+l)))
& + 0.125 * (abs(cn) + en) * dyy(j+l) * dyy

( j

)

& / (DYYS(J) * (DYYS(J) + DYYS(J+1)))) * QUICK

& + UPWIND * ( 0.5 * (ABS(CS) + CS))

AF(I,J,K) = VISF1 + (- 0.5 * CF + 0.0625 * (ABS(CF) + CF)

& * dzz(k) / dzzs(k) + 0.125 * (abs(cf) - cf)

& * dzz(k) / dzz(k+l) + 0.0625 * (abs(cb) - cb)

& * DZZ(K-1)**2 / (DZZ(K) * DZZS(K))) * QUICK
& + UPWIND * ( 0.5 * (ABS(CF) - CF)

)

AB(I,J,K) = VISB1 + (0.5 * CB + 0.125 * (ABS(CB) + CB)

& * dzz(k-l) / dzz(k-2) + 0.0625 * (abs(cb) - cb)

& * dzz(k-l) / dzzs(k) + 0.0625 * (abs(cf) + cf)

& * DZZ(K)**2 / (DZZ(K-l) * DZZS(K))) * QUICK
& + UPWIND *

( 0.5 * (ABS(CB) + CB)

)

AEE(I,J,K) = - 0.125 * QUICK
& * (ABS(CE) - CE) * DXX(I) * DXX(I+1)
& / (DXXS(I+2) * (DXXS(I+1) + DXXS(I+2)))
AWW(I,J,K) = - 0.125 * QUICK

& * (ABS(CW) + CW) * DXX(I) * DXX(I-l)
& / (DXXS(I-l) * (DXXS(I-l) + DXXS(I)))
ANN(I,J,K) = - 0.125 * QUICK

& * (ABS(CN) - CN) * DYY(J) * DYY(J+1)
& / (DYYS(J+2) * (DYYS(J+1) + DYYS(J+2)))
ASS(I,J,K) = - 0.125 * QUICK

& * (ABS(CS) + CS) * DYY(J) * DYY(J-l)
& / (DYYS(J-l) * (DYYS(J-l) +DYYS(J)))
AFF(I,J,K) = - 0.0625 * QUICK

& * (ABS(CF) - CF) * DZZ(K)**2
& / (DZZ(K+1) * DZZS(K+1))
ABB(I,J,K) = - 0.0625 * QUICK

& * (ABS(CB) + CB) * DZZ(K-1)**2
& / (DZZ(K-2) * DZZS(K-l))
AP(I,J,K) = AE(I,J,K) + AW(I,J,K) + AN(I,J,K) + AS(I,J,K)
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& + AF(I,J,K) + AB(I,J,K) + AWW(I,J,K)
& + AEE(I,J,K) + ASS(I,J,K) + ANN(I,J,K)
& + ABB (I, J, K) + AFF(I,J,K) + VOLDT
SU(I,J,K) = VOLDT * WOD(I,J,K)

& + DXYS * (P(I,J,K-1) - P(I,J,K))
100 continue

C
C CALCULATION OF THE SOURCE TERM
C

DO 101 I=NWST+2,NI
DO 101 J=2,NJ

DO 101 K=3,NK
SU(I,J,K) = SU(I,J,K)

& + AWW(I,J,K) * WPD(I-2,J,K)
101 CONTINUE

C
DO 102 I=NWST,NI-2

DO 102 J=2,NJ
DO 102 K=3,NK

SU(I,J,K) = SU(I,J,K)
& + AEE(I,J,K) * WPD(I+2,J,K)

102 CONTINUE
C

DO 103 I=NWST,NI
DO 103 J=4,NJ

DO 103 K=3,NK
SU(I,J,K) = SU(I,J,K)

& + ASS(I,J,K) * WPD(I,J-2,K)
103 CONTINUE

C
DO 104 I=NWST,NI

DO 104 J=2,NJ-2
DO 104 K=3,NK

SU(I,J,K) = SU(I,J,K)
& + ANN(I,J,K) * WPD(I,J+2,K)

104 CONTINUE
C

DO 105 I=NWST,NI
DO 105 J=2,NJ

DO 105 K=4,NK
SU(I,J,K) = SU(I,J,K)

& + ABB(I,J,K) * WPD(I,J,K-2)
105 CONTINUE

C
DO 106 I=NWST,NI

DO 106 J=2,NJ
DO 106 K=3,NKM1

SU(I,J,K) = SU(I,J,K)
& + AFF(I,J,K) * WPD(I,J,K+2)

106 CONTINUE
c
C BOUNDARY CONDITIONS (TOP AND BOTTOM)
C

DO 121 K=3,NK
DO 121 I=NWST,NI

AP(I,2,K) = AP(I,2,K) + AS(I,2,K) - ASS(I,2,K)
SU(I,3,K) = SU(I,3,K) - ASS(I,3,K) * WPD(I,2,K)
SU(I,NJM1,K) = SU(I,NJM1,K)

& - ANN(I,NJM1,K) * WPD(I,NJ,K)
AS(I,2,K) = 0.
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AP(I,NJ,K) = AP(I,NJ,K) + AN(I,NJ,K) - ANN(I,NJ,K)

AN(I,NJ,K) = 0.

121 CONTINUE
c
c LEFT AND RIGHT WALL
c

DO 122 K=3,NK
DO 122 J=2,NJ

AP(NWST,J,K) = AP(NWST,J,K) + AW(NWST,J,K)
& - AWW(NWST, J,K)

AW(NWST,J,K) = 0.

SU(NWST+1,J,K) = SU(NWST+1, J,K)

& - AWW(NWST+1, J,K) * WPD(NWST, J,K)

SU(NIM1,J,K) = SU(NIM1,J,K)
& - AEE(NIM1,J,K) * WPD(NI,J,K)

AP(NI,J,K) = AP(NI,J,K) + AE(NI,J,K) - AEE(NI,J,K)
AE(NI,J,K) = 0.

122 CONTINUE
c
c FRONT AND BACK WALL
c

DO 12 3 J=2,NJ
DO 123 I=NWST,NI

AB(I, J, 3) = 0.

SU(I,J,3) = SU(I,J,3) - ABB(I,J,3) * WPD(I,J,3)
SU(I,J,NK) = SU(I,J,NK)

& - AFF(I,J,NK) * WPD(I,J,NK)
AF(I,J,NK) = 0.

123 CONTINUE
C

if (nchp .ne. 0) then
c
c W-VELOCITY SET TO ZERO IN CHIP
c

DO 130 M=1,NJCHIP
DO 130 N=1,NKCHIP

DO 130 I=IBGN,IEND
DO 130 J=JBGN(M) , JEND(M)

DO 130 K=KBGN(N) ,KEHD(N)+1
AP(I,J,K) = small
AW(I,J,K) = 0.0
AE(I,J,K) = 0.0
AS(I,J,K) = 0.0
AN(I,J,K) = 0.0
AB(I,J,K) = 0.0
AF(I,J,K) = 0.0
SU(I,J

;
K) = 0.0

130 CONTINUE
c
C CHIP BOUNDARY CONDITIONS (TOP AND BOTTOM)
c

DO 131 M=1,NJCHIP
DO 131 N=1,NKCHIP

DO 131 I=IBGN,IEND
DO 131 K=KBGN(N) ,KEND(N)+1

JJS = JEND(M)
JJS1 = JEND(M) + 1

JJS2 = JEND(M) + 2

JJN = JBGN(M)
JJN1 = JBGN(M) - 1
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JJN2 = JBGN(M) - 2

AP(I,JJS1,K) = AP(I,JJS1,K)
& + AS(I,JJS1,K) - ASS(I, JJS1,K)

AS(I,JJS1,K) = 0.

SU(I,JJS2,K) = SU(I,JJS2,K)
& - ASS(I,JJS2,K) * WPD(I,JJS,K)
& - ASS(I,JJS2,K) * WPD(I,JJS1,K)

SU(I,JJN2,K) = SU(I,JJN2,K)
& - ANN (I, JJN2,K) * WPD(I,JJN,K)
& - ANN(I,JJN2,K) * WPD(I,JJN1,K)

AP(I,JJN1,K) = AP(I,JJN1,K)
& + AN(I,JJN1,K) - ANN(I, JJN1,K)

AN(I,JJN1,K) = 0.

131 CONTINUE
C
C FRONT AND BACK WALL
c

DO 132 M=1,NJCHIP
DO 132 N=1,NKCHIP

DO 132 I=IBGN,IEND
DO 132 J=JBGN(M) , JEND(M)

KKB = KEND(N)
KKB2 = KEND(N) + 2

KKP1 = KBGN(N) + 1

KKF1 = KBGN(N) - 1

AB(I,J,KKB2) = 0.

SU(I,J,KKB2) = SU(I,J,KKB2)
& - ABB(I,J,KKB2) * WPD(I,J,KKB)
& - ABB(I,J,KKB2) * WPD ( I , J , KKB2

)

SU(I,J,KKF1) = SU(I,J,KKF1)
& - AFF(I,J,KKF1) * WPD(I,J,KKP1)
& - AFF(I,J,KKF1) * WPD(I,J,KKF1)

AF(I,J,KKF1) = 0.

132 CONTINUE
c
C RIGHT WALL
c

DO 133 M=1,NJCHIP
DO 133 N=1,NKCHIP

DO 133 J=JBGN(M) , JEND(M)
DO 133 K=KBGN(N) ,KEND(N)+1

II = IEND
III = IEND + 1

112 = IEND + 2

AP(II1,J,K) = AP(II1,J,K)
& + AW(II1,J,K) - AWW(II1,J,K)

SU(II2,J,K) = SU(II2,J,K)
& - AWW(II2,J,K) * WPDCII^^)
& - AWW(II2,J,K) * WPD(II1,J,K)

AW(II1,J,K) = 0.

133 CONTINUE
ENDIF

c
c SOLVE THE LINEARISED W MOMENTUM EQUATIONS
c

CALL SIP (NWST,2,3,NI,NJ,NK,W)
C
c SET UP SU FOR CALCULATING DW AND SOLVE
c

DO 200 K=3,NK
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DO 200 J=2,NJ
DO 200 I=NWST,NI

su(i,j,k) = dxx(i) * dyy ( j

)

200 CONTINUE
c

CALL SIP (NWST,2,3,NI,NJ,NK,DW)
c

END
c * **********************************************************************

SUBROUTINE CALP
C
C THIS SUBROUTINE ASSEMBLES THE PRESSURE CORRECTION EQUATION.

C THE PRESSURE CORRECTION IS SET TO ZERO AT ALL THE BOUNDARIES

C
implicit real*8 (a-h,o-z)
common/ng/dxx(40) ,dyy(40) ,dzz(40) ,x(40) ,y(40) ,z(40)

,

& dxxs(40) ,dyys(40) ,dzzs(40)
common/parm/ra ,

pr , sorsum, dtime , xper , roll , dt_inv, xtime

common / to 1/ small , eps, sormax
cornmon/dims/h,wth,bth,hchip,wchip,bchip,bsub
common/ limits/ni , nipl , niml , nj , njpl , njml, nk, nkpl , nkml

,

& nip2 ,njp2 , nkp2 , iter , nnmax
common/ fv_init/tod( 12, 16, 16) ,uod(12, 16,16) , vod(12, 16, 16)

,

& wod(12, 16, 16) ,pod(12, 16, 16)

common/fv_cur/t(12,16,16) ,u(12,16,16),v(12,16,16),
& w(12, 16, 16) ,p(12, 16, 16)

common/ fv_int/tpd( 12, 16, 16) ,upd(12, 16, 16) ,vpd(12, 16, 16)

,

& wpd(12, 16, 16) ,ppd(12, 16, 16)

common/mscn/smp(12, 16, 16) ,resorm(93)

,

& du(12, 16,16) ,dv(12, 16,16)

,

& dw(12, 16,16) ,pp(12,16, 16)

common/coeff/ap(12,16, 16), aw (12, 16, 16), ae (12, 16, 16),

& as(12,16,16) , an (12, 16,16 )
,ab( 12, 16,16 )

,

& af (12, 16, 16) ,su(12,16,16)
COMMON/COEF2/AWW(12, 16, 16) ,AEE(12, 16, 16) , ASS (12, 16, 16)

,

& ANN(12,16,16) , ABB (12 ,16, 16) , AFF ( 12 , 16 , 16

)

common/mean/t_mean(12, 16, 16) ,u_mean(12, 16, 16)

,

& v_mean(12, 16, 16) ,w_mean(12, 16, 16)

,

& p_mean(12 , 16, 16)
COMMON/SCHEME/QUICK, UPWIND
common/array/njchip, nkchip, ichoice
common/ if irst/nust , nvst , nwst, npst

c
c SET UP COEFFICIENTS
c

do 100 k=2,nk
do 100 j=2,nj

do 100 i=npst,ni
dxys = dxx(i) * dyy(j)
dyzs = dyy(j) * dzz(k)
dzxs = dzz(k) * dxx(i)
an(i,j,k) = dzxs * dv(i,j+l,k)
as(i,j,k) = dzxs * dv(i,j,k)
ae(i,j,k) = dyzs * du(i+l,j,k)
aw(i,j,k) = dyzs * du(i,j,k)
af(i,j,k) = dxys * dw(i,j,k+l)
ab(i,j,k) = dxys * dw(i,j,k)
en = v(i,j+l,k) * dzxs
cs = v(i,j,k) * dzxs
ce = u(i+l, j ,k) * dyzs
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cw = u(i, j,k) * dyzs
cf = w(i,j,k+l) * dxys
cb = w(i,j,k) * dxys
smp(i,j,k) = - ce + cw - en + cs - cf + cb

su(i, j,k) = smp(i, j ,k)

100 continue
c
c BOUNDARY CONDITIONS (TOP AND BOTTOM)

c
do 101 k=2,nk

do 101 i=npst,ni
as(i,2,k) = 0.

an(i,nj ,k) = 0.

101 continue
c
c LEFT AND RIGHT WALL
c

do 102 k=2,nk
do 102 j=2,nj

aw(npst,j,k) = 0.

ae (ni, j ,k) =0.
102 continue

c

C FRONT AND BACK WALL
c

do 103 i=npst,ni
do 103 j=2,nj

ab(i,j,2) = 0.

af(i,j,nk) = 0.

103 continue
c

c CALCULATE AP
c

do 200 j=2,nj
do 200 i=npst,ni

do 200 k=2,nk
ap(i,j,k) = an(i,j,k) + as(i,j,k) + ae(i f

j,k)

& + aw(i,j,k) + af(i,j,k) + ab(i,j,k)

200 continue
c

c SOLVE THE PRESSURE CORRECTION EQUATION
c

call sip (npst,2,2,ni,nj ,nk,pp)
c
c U VELOCITY CORRECTION
c

do 201 i=nust,ni
do 201 j=2,nj

do 201 k=2,nk
U(I,J,K) = U(I,J,K) + DU(I,J,K) * (PP(I-1,J,K) - PP(I,J,K))

201 continue
c

c V VELOCITY CORRECTION
c

do 202 j=3,nj
do 202 k=2,nk

do 202 i=nvst,ni
V(I,J,K) - V(I,J,K) + DV(I,J,K) * (PP(I,J-1,K) - PP(I,J,K))

202 continue
c
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c W VELOCITY CORRECTION
C

do 203 k=3,nk
do 203 i=nwst,ni

do 203 j=2,nj
W(I,J,K) = W(I,J,K) + DW(I,J,K) * (PP(I,J,K-1) - PP(I,J,K))

203 continue
c

c PRESSURE CORRECTION
c

do 204 j=2,nj
do 204 i=npst,ni

do 204 k=2,nk
p(i,j,k) - p(i,j,M + pp(i,j,k)
PP(I,J,K) = 0.

204 continue

RECALCULATE MASS FLUX ERRORS AFTER U , V, W , P , CORRECTIONS
c

c

sorsum = .

resorm( iter) = 0.

do 205 j=2,nj
do 205 i=npst,ni

do 205 k=2,nk
dxys = dxx(i) * dyy(j)
dyzs = dyy(j) * dzz(k)
dzxs = dzz(k) * dxx(i)
en = v(i, j+l,k) * dzxs
cs = v(i, j,k) * dzxs
ce = u(i+l, j,k) * dyzs
cw = u(i, j,k) * dyzs
cf = w(i, j,k+l) * dxys
cb = w(i, j ,k) * dxys
smp(i,j,k) = - ce + cw - en + cs - cf + cb

sorsum = sorsum + smp(i,j,k)
resorm(iter) = resorm(iter) + abs (smp ( i , j , k)

)

205 continue
end

c *********************************************************************

subroutine nu
C
C THIS SUBROUTINES DETERMINES THE OVERALL HEAT BALANCE FOR THE

C ENTIRE ENCLOSURE
C

implicit real*8 (a-h,o-z)
common/ng/dxx(40) ,dyy(40) ,dzz (40) ,x(40) ,y (40) , z (40)

,

& dxxs(40) ,dyys(40) ,dzzs(40)
common /parm/ra ,

pr , sorsum, dtime, xper , roll , dt_inv, xtime

common / to 1/ small , eps, sormax
common /dims/h, wth, bth, hchip, wchip, bchip, bsub
common/ count /nt,nmax, imax, itmax, krun, nprint
common/mscn/smp(12 / 16, 16) ,resorm(93)

,

& du(12, 16,16) ,dv(12,16, 16)

,

& dw(12,16,16) ,pp(12, 16,16)
common/ limits/ni , nipl , niml , nj , njpl, njml , nk, nkpl , nkml

,

& nip2 ,njp2 ,nkp2 , iter,nnmax
common/fv_init/tod(12,16,16) ,uod ( 12 , 16 , 16) , vod ( 12 , 16 , 16)

,

& wod(12, 16, 16) ,pod(12, 16, 16)

common/ fv_cur/t( 12, 16,16),u(12,16,16),v(12,16,16),
& w(12, 16,16) ,p(12,16, 16)
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common/ conau/ a ipna (i^ (
ib,ioj , rno^ i^id,idj , v x^^^\ ±*. , x<-> , j.^ ,

common/chip/ ibgn, iend, jbgn(3)
,
jend(3) ,kbgn(3) ,kend(3) , nchp,

& isub, ichip, jchip,kchip
common/diff/alc,als,thot,tcool,tavg
common/array/njchip, nkchip, ichoice

c
RNUC = 0.

RNUH = 0.

QCHIP = 0.

guns = .

QCRT = 0.

do 10 i=l,ni
do 10 j=l

;
nj

do 10 k=l,nk
quns = quns + (t(i,j,k) - tod(i, j ,k) ) * dxx(i)

& * dyy(j) * dzz(k) / dtime
QCRT = QCRT + T(I,J,K) * SMP(I,J,K)

10 continue
al

=
' 1. / dyys(2)

a2 = 1. / dyys(njpl)
DO 20 1=2, NI

DO 2 K=2,NK
DTDYH = al * (T(I,2,K) - T(I,1,K)) * ALPHA(I,2,K)
DTDYC = a2 * (T(I ;

NJP1,K) - T(I,NJ,K)) * ALPHA ( I , NJ , K)

RNUC = RNUC - DTDYC * dzz(k) * dxx(i)
RNUH = RNUH - DTDYH * dzz(k) * dxx(i)

20 CONTINUE
C
C CALCULATE HEAT GENERATED FROM CHIP
C

do 30 m=l,njchip
do 30 n=l, nkchip

do 30 i=ibgn,iend
do 30 j=jbgn (m)

,
jend (m)

do 30 k=kbgn (n) ,kend (n)

qchip = qchip + ale * dxx(i) * dyy
( j ) * dzz(k)

30 continue
AA = 1. / (bth * wth)
RNUH = RNUH * AA
RNUC = RNUC * AA
QCHIP = QCHIP * AA
QCRT = QCRT * AA
QALL = QCHIP + RNUH - RNUC
WRITE(6,500) NT,XTIME, ITER, RESORM ( ITER) ,SORSUM,

& RNUC, RNUH, QCHIP, QALL, QUNS, QCRT
500 FORMAT(lX, 'NT = ' , 19 , 5X, 'TIME=' , f7 . 4 , /

,

& IX, 'ITER=',I2, 5X, 'SOURCE=' ,F9.6,5X, 'SORSUM=' , F9 . 6 , /

,

& IX, 'NUC=' f F10.6, 5X, 'NUH=' ,F10.6,/,
& IX, 'QCHIP=' ,F10.6,5X, 'QALL=' ,F10.6,/,
& IX, 'QUNS=' ,F10.6, 5X, 'QCRT=' ,F10.6, /)

END

SUBROUTINE SIP ( 1ST , JST , KST , ISP , JSP , KSP , PHI

)

implicit real*8 (a-h,o-z)
common/ limits/ni , nipl , niml , nj , njpl , njml, nk, nkpl, nkml

,

& nip2 ,njp2 ,nkp2 , iter ,nnmax
common / to 1/ small , eps, sormax
common /dims/h, wth, bth , hchip, wchip, bchip,bsub
common/ coeff /ap(12, 16, 16) ,aw(12,16,16) ,ae(12,16,16) ,

& as (12, 16, 16) ,an(12, 16, 16) , ab ( 12 , 16 , 16)

,
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& af (12,16,16) ,su(12, 16, 16)

common/ abc/kmax , nl , kl
common/count/nt,nmax, imax, itmax,krun, nprint

COMMON/ MAT/A1(3072) ,A2(3072) , A3 (3072) , A4 ( 3072 ), A5 ( 3072 )

,

& A6 (3072) ,A7 (3072) ,B(3072) ,D (3072)

DIMENSION Xl(3072) ,X2(3072) ,XR1(3072)

,

& S(12,16,16) ,PHI(12,16,16)
C

Nl = ISP - 1ST + 1

Kl = (ISP - 1ST + 1) * (JSP - JST + 1)

KMAX = (ISP - 1ST + 1) * (JSP - JST + 1) * (KSP - KST + 1)

EPS2 = KMAX * EPS**2
C
C DEFINING A SCRATCH ARRAY FOR FURTHER MODIFICATIONS

C
DO 9 K=KST,KSP

DO 9 J=JST,JSP
DO 9 I=IST,ISP

S(I,J,K) = SU(I,J,K)
9 CONTINUE

C
C EXTRACT MATRIX A, RHS VECTOR B AND VECTOR XU-AN INITIAL

C GUESS FROM GIVEN DATA

C
DO 2 K=KST,KSP

DO 2 J=JST,JSP
DO 2 I=IST,ISP

M = I - 1ST + 1 + (J - JST) * Nl + (K - KST) * Kl

A1(M) = AP(I,J,K)
A2(M) = -AE(I,J,K)
A3(M) = -AW(I,J,K)
A4(M) = -AN(I,J,K)
A5(M) = -AS(I,J,K)
A6(M) = -AF(I,J,K)
A7(M) = -AB(I,J,K)
B(M) = S(I,J,K)
X1(M) = PHI(I,J,K)

2 CONTINUE

c THE DIAGONAL ELEMENT OF L IN THE INCOMPLETE LU

c DECOMPOSITION
c

D(l) = Al(l)
DO 113 1=2, Nl

D(I) = A1(I) - A2(I-1) * A3(I) / D(I-l)

113 CONTINUE
DO 114 I=N1+1,K1

D(I) = A1(I) - A2(I-1) * A3(I) / D(I-l) - A4(I-N1)

& * A5(I) / D(I-N1)
114 CONTINUE

DO 115 I=K1+1,KMAX
D(I) = A1(I) - A2(I-1) * A3(I) / D(I-l)

& - A4(I-N1) * A5(I) / D(I-N1)
& - A6(I-K1) * A7(I) / D(I-K1)

115 CONTINUE
DO 116 1=1, KMAX

D(I) = 1. / D(I)
116 CONTINUE

ITR =

88





c THE MAIN ITERATION LOOP BEGINS
c

7 CONTINUE
ITR = ITR + 1

CALL RES (X1,XR1)
CALL XL (XR1,X2)
DO 117 I=1,KMAX

X2(I) = X2(I) + X1(I)
117 CONTINUE

V2 = 0.

DO 55 I=1,KMAX
V2 = V2 + XR1(I) **2

55 CONTINUE
X2MAG = 0.

DO 56 I=1,KMAX
X2MAG = X2MAG + X2(I)**2

56 continue
if (x2mag .gt. 0.0001) v2 = v2 / x2mag

c
c RELABELING THE VECTORS BEFORE NEXT ITERATION
c

do 50 i=l,kmax
X1(I) = X2(I)

50 continue
IF (V2 .GT. EPS2 .AND. ITR .LT. IMAX) GO TO 7

c
c RECOVER THE SOLUTION VECTOR AND RETURN THE AVERAGE
c PHI AS WELL AS THE RMS ERROR
c

IF (MOD(NT,nprint) .EQ. 0) PRINT *, ITR,V2
do 3 k=kst,ksp

do 3 j=jst,jsp
do 3 i=ist,isp

m = i - ist + 1 + (j - jst) * nl + (k - kst) * kl

phi(i, j,k) = xl(m)
3 continue

end

SUBROUTINE RES(X1,X2)
implicit real*8 (a-h,o-z)
COMMON/ABC/KMAX , Nl , Kl
common / limits/ ni , nipl , niml,nj,njpl,njml,nk, nkpl, nkml,

& nip2 , njp2 , nkp2 , iter , nnmax
common/ mat/al(3072) , a2 ( 3 072) , a3 ( 3072 ) , a4 ( 3072 ) , a5 (3072 )

,

& a6 (3 072) ,a7( 3 072) ,b(3072) ,d (3072)
dimension xl (3072) , x2 (3072)

C
c
c CALCULATE Axl
c

X2(l) = al(l) * xl(l) + a2(l) * xl(2)
& + a4(l) * xl(l+nl) + a6(l) * xl(l+kl)
do 10 i=2,nl

x2(i) = al(i) * xl(i) + a2(i) * xl(i+l)
& + a4(i) * xl(i+nl) + a6(i) * xl(i+kl)
& + a3(i) * xl(i-l)

10 continue
do 20 i=nl+l,kl

x2(i) = al(i) * xl(i) + a2(i) * xl(i+l)
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& + a4(i) * xl(i+nl) + a5(i) * xl(i-nl)
& + a3(i) * xl(i-l) + a6(i) * xl(i+kl)

20 continue
DO 30 I=K1+1,KMAX-K1

x2(i) = al(i) * xl(i) + a2(i) * xl(i+l)
& + a4(i) * xl(i+nl) + a5(i) * xl(i-nl)
& + a3(i) * xl(i-l) + a6(i) * xl(i+kl)
& + a7(i) * xl(i-kl)

30 continue
DO 32 I=KMAX-K1+1,KMAX-N1

x2(i) = al(i) * xl(i) + a2(i) * xl(i+l)
& + a4(i) * xl(i+nl) + a5(i) * xl(i-nl)
& + A3(I) * Xl(I-l) + A7(I) * Xl(I-Kl)

3 2 CONTINUE
DO 34 I=KMAX-N1+1,KMAX-1

x2(i) = al(i) * xl(i) + a2(i) * xl(i+l)
& + A5(I) * Xl(I-Nl) + A3(I) * Xl(I-l)
& + A7(I) * Xl(I-Kl)

3 4 CONTINUE
X2(KMAX) = Al(KMAX) * Xl(KMAX) + A5(KMAX) * Xl(KMAX-Nl)

& + A3(KMAX) * Xl(KMAX-l) + A7(KMAX) * Xl(KMAX-Kl)
do 40 i=l,kmax

X2(I) = B(I) - X2(I)
40 continue

end
c * ****************************************************************************

subroutine xl(xl,x3)
implicit real*8 (a-h,o-z)
common/abc/kmax, nl ,kl
common/ mat/al(3072) , a2 ( 3 07 2 )

, a3 ( 3 07 2 )
, a4 ( 3 07 2 ) , a5 ( 3 072 ) ,

& a6 (3072) ,a7 (3072) ,b(3072) ,d (3072)

dimension xl(3072) ,x2(3072) ,x3(3072)
X2(l) = xl(l) * d(l)
do 31 i=2,nl

X2(I) = D(I) * (X1(I) - A3(I) * X2(I-1))
31 continue

do 32 i=nl+l,kl
X2(I) = D(I) * (X1(I) - A3(I) * X2(I-1)

& - A5(I) * X2(I-N1)

)

32 continue
do 33 i=kl+l,kmax

X2(I) = D(I) * (X1(I) - A3(I) * X2(I-1)
& - A5(I) * X2(I-N1) - A7(I) * X2(I-K1))

33 continue
x3(kmax) = x2(kmax)
do 67 i=kmax-l ,kmax-nl+l , -1

X3(I) = X2(I) - D(I) * A2(I) * X3(I+1)
67 continue

do 68 i=kmax-nl ,kmax-kl+l , -1
X3(I) = X2(I) - D(I)*(A2(I)*X3(I+1) + A4 ( I) *X3 ( I+Nl)

)

68 continue
do 69 i=kmax-kl , 1

, -1
X3(I) = X2(I) - D(I)*(A2(I)*X3(I+1) + A4 ( I

) *X3 ( I+Nl

)

& + A6(I)*X3(I+K1)

)

69 continue
end

c****************************************************************************'
SUBROUTINE PROP

C
C IN THIS SUBROUTINE THE INTERFACIAL THERMAL DIFFUSIVITIES ARE
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CALCULATED.

implicit real*8 (a-h,o-z)
common/ng/dxx(40) ,dyy(40) ,dzz(40) ,x(40) ,y(40) ,z(40)

,

, dxxs(40) ,dyys(40) ,dzzs(40)
common/ parm/ra, pr, sorsum, dtime, xper , roll,dt_inv, xtime
common/tol/small , eps , sormax
common/dims/h,wth,bth, hchip, wchip, bchip, bsub
common/ limits/ni, nipl, niml , nj , njpl , njml, nk, nkpl , nkml

,

t nip2 ,njp2 , nkp2 , iter , nnmax
common/ count /nt, nmax, imax, itmax, krun, nprint
common/chip/ibgn, iend, jbgn(3)

,
jend(3) ,kbgn(3) ,kend(3) , nchp,

, isub, ichip, jchip, kchip
common/dif f /ale, a Is, thot, tcool, tavg
COMMON/RHOCP/RHS , RHC
common/condu/alpha(12, 16,16) ,rho(12, 16, 16) ,visco(12, 16, 16)

COMMON/POWER/QQQ,QCOND
common/array/njehip, nkchip, ichoice

if (ichoice . eq . 1) then
cond = 0.065 - 7.895E-5 * tavg
rh = (1.825 - 0.00246 * tavg) * 1000.

cp = 4186. * (0.2411 + 3.7037E-4 * tavg)
alp = cond / (rh * cp)

beta = 0.00246 / (1.825
PRINT *

t
' ******** FLUID

endif
if (ichoice . eq . 2) then

cond = 0.071
rh = (2.002 - 0.00224 *

cp = 4186. * (0.2411 + :

alp = cond / (rh * cp)
beta = 0.00224 / (2.002 - 0.00224 * tavg)
PRINT *,'******** FLUID IS FC71 ************'

endif

- 0.00246 * tavg)
IS FC75 ************'

tavg) * 1000.
1.7037E-4 * tavg)

if (ichoice .ne. 0) then
ra = 9.81 * beta * qqq * h**2 * 1.0E-6

t / (hchip * bchip * wchip * ale * cond * alp * alp)

qcond = qqq * 1.0E3
i / (h * hchip * bchip * wchip * ale * cond)

PRINT *,'THE POWER DISSIPATED PER CHIP IS', QQQ
PRINT *,'THE BOUSSINESQ NUMBER IS',RA

endif

PRINT THE INPUT PARAMETERS

if (ichoice
print *

print *

print *

endif

eq. 0) then
'A CONSTANT VISCOSITY FLUID IS ASSUMED'
WHOSE PRANDTL NUMBER IS',pr
AND WHOSE BOUSSINESQ NUMBER IS',ra

PRINT *,'THE ASPECT RATIOS ARE ' , BTH , WTH
PRINT *,'THE TIME STEP IS', DTIME
PRINT *, 'NUMBER OF TIME STEPS', NMAX
if (krun .eq. 1) then

print *, '*********THIS IS A RESTART*********'
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else
print *, '*********THIS IS NOT A RESTART*****'

endif
if (nchp .eq. 1) then

print *,'*****cHIP AND SUBSTRATE PRESENT*****'
else

print *,'****NO CHIP OR SUBSTRATE***'
endif

C
C SET UP THE THERMAL DIFFUSIVITY
C FOR DIFFERENT CONTROL VOLUMES
C
C FLUID DIFFUSIVITY
C

DO 10 I=1,NIP1
DO 10 J=1,NJP1

DO 10 K=1,NKP1
ALPHA (I, J, K) = 1.

RHO(I,J,K) = 1.

10 CONTINUE
if (nchp .ne. 0) then

C
C SUBSTRATE DIFFUSIVITY
C

DO 15 I=1,IBGN-1
DO 15 J=1,NJP1

DO 15 K=1,NKP1
ALPHA (I, J, K) = ALS
RHO(I,J

;
K) = RHS

15 CONTINUE
C

C CHIP DIFFUSIVITY FOR CHIPS
C

DO 20 M=1,NJCHIP
DO 20 N=1,NKCHIP

do 20 i=ibgn,iend
do 20 j=jbgn(m)

,
jend (m)

do 20 k=kbgn (n) ,kend (n)

ALPHA (I, J ,K) = ALC
RHO(I,J,K) = RHC

20 continue
endif
end

subroutine openf
c
c THIS SUBROUTINE OPENS ALL FILES
c
c UNIT 8: THIS IS THE INPUT FILE FOR THE FIELD VARIABLES. IT IS

c USED FOR A RESTART JOB.
c UNIT 10: THIS FILE STORES THE U,V AND W VELOCITIES FOR A GIVEN
c LOCATION.
c UNIT 11: THIS FILE STORES THE FIELD VARIABLES AT PRESCRIBED
c INTERVALS. THIS IS A CHECKPOINTING PROCEDURE,
c UNIT 12: THIS FILE STORES THE MEAN FIELD VARIABLES,
c

OPEN ( 8 , FILE= ' c2 1 . data ' , STATUS= ' UNKNOWN ' , FORM= ' UNFORMATTED '

)

OPEN ( 10 , FILE= ' c2 v . data ' , STATUS= ' UNKNOWN '

)

OPEN (11, FILE= ' c2 tmp . data ' , STATUS= ' UNKNOWN ' , FORM= ' UNFORMATTED '

)

OPEN ( 12, FILE='c2m. data' , STATUS=' UNKNOWN' , FORM= ' UNFORMATTED '

)
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0PEN(13 , FILE='c2grd.data' , STATUS=' UNKNOWN'

)

end
c*******************************************************

subroutine initio
c
c IN THIS SUBROUTINE ALL VARIABLES ARE INITIALIZED TO DEFAULTS
c OR THE FIELD VARIABLES ARE READ.

implicit real*8 (a-h,o-z)
common/ng/dxx(40) ,dyy(40) ,dzz(40) ,x(40) ,y(40) ,z(40)

,

& dxxs(40) ,dyys(40) ,dzzs(40)
common /parm/ra ,

pr , sorsum, dtime, xper , roll ,dt_inv, xtime
common /tol /small, eps , sormax
common/dims/h, wth, bth, hchip,wchip, bchip, bsub
common/ limits/ni , nipl ,niml,nj,njpl,njml,nk, nkpl, nkml,

& nip2 , njp2 , nkp2 , iter , nnmax
common/ fv_init/ tod (12, 16, 16) ,uod(12,16, 16) , vod(12, 16, 16)

,

& wod(12, 16, 16) ,pod(12, 16, 16)
common/ fv_cur/t( 12, 16, 16) ,u(12,16,16) ,v(12,16,16)

,

& w(12, 16, 16) ,p(12, 16, 16)
common/fv_int/tpd(12, 16, 16) ,upd(12, 16, 16) , vpd(12, 16, 16)

,

& wpd(12,16,16) ,ppd(12, 16,16)
common /mscn/smp( 12,16,16

& du(12,16,16)
& dw(12,16,16)
common/coef f /ap( 12,16,16

& as(12, 16, 16
& af(12,16,16
common/mean/ t_mean ( 12 , 16

& v_mean(12 , 16
& p mean (12,16

, resorm (93 )

,

dv(12, 16, 16)

,

pp(12,16,16)
,aw(12,16,16) ,ae(12,16,16)

,

, an (12, 16, 16), ab (12, 16, 16),
,su(12, 16, 16)
16) ,u_mean( 12 , 16, 16)

,

16) ,w_mean(12 , 16, 16) ,

16)
common / count /nt, nmax, imax, itmax, krun, nprint
common/chip/ibgn, iend, jbgn(3)

,
jend(3) ,kbgn(3) , kend (3) , nchp,

& isub, ichip, jchip, kchip
common/scheme/quick, upwind
common/dif f /ale, a Is, thot , tcool , tavg
common / array /n jchip, nkchip, ichoice
common/ if irst/nust, nvst , nwst , npst
DATA PI/3.14159265359/

SETTING UP THE WEIGHTED AVERAGE

UPWIND = 1.0 - QUICK

qck = 100. * quick
uwd = 100. * upwind
print *,'THE SCHEME IS ', qck, ' PERCENTAGE QUICK AND'
print *

;
uwd, 'PERCENTAGE UPWIND'

SET THE I-DIRECTION INDEX FOR CALU,CALV AND CALW

thenif (nchp .eq.
nust = 3

nvst = 2

nwst = 2

npst = 2

else
nust = ibgn
nvst = ibgn
nwst = ibgn

+ 1
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npst
endif

ibgn

c

c

c

c

INITIALIZE ALL VARIABLES TO ZERO OR DEFAULTS
BEFORE START OF COMPUTATIONS

DO 205 I=1,NIP1
DO 205 J=1,NJP1

DO 205 K=1,NKP1
UOD(I,J,K) = 0.

U(I
UPD
VOD
V(I
VPD
W(I
WPD
WOD
POD
P(I
PPD

=

DU(I,

J

DV ( I ,

J

DW ( I ,

J

SU(I,

J

PP(I,J
AP(I,

J

AW ( I ,

J

AE(I,

J

AN ( I , J
AS (I, J

J,K) =
I,J,K) =

I,J,K) =

J,K) =

I,J,K)
J,K)
I,J,K)
I,J,K)
I,J,K)
J,K)
I,J,K)

K
K

=
=
0.
=

=
=

SMP(I, J,K)
T_MEAN
U_MEAN
V_MEAN
W_MEAN
P MEAN

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.
=

J,K)
J,K)
J,K)
J,K)
J,K)

0.

0.

0.

0.

0.

205 CONTINUE
c

C
c

RESTART JOB IF KRUN IS SET TO ONE

IF (KRUN . EQ. 1) THEN
READ (8) TOD ,UOD, VOD, WOD, POD

ELSE
DO 220 J=1,NJP1

DO 220 I=1,NIP1
DO 220 K=1,NKP1

TOD (I, J, K) = THOT -

* (y(j) -

= 0.

TOD(I, J,K)
= TOD (I, J, K)

220

tod(i, j,k)
T(I,J,K) =

TPD(I, J,K)
CONTINUE

THOT - TCOOL)
0.5 * dyy(j))

c

c
c

AMPLITUDE OF PERTURBATIONS

Al = 1. / bth
YPER = ROLL * XPER / bth

U VELOCITY PERTURBATIONS

94



I

p

I!



do 230 k=2,nk
DO 23 J=2,NJ

DO 230 I=3,NI
U(I,J,K) = - xper * cos(pii * (y(j) + 0.5 * dyy(j))

)

& * sin(roll * pi * al * x(i)

)

UOD(I,J,K) - U(I,J,K)
UPD(I,J,K) = U(I,J,K)

230 CONTINUE
c
c V VELOCITY PERTURBATIONS
c

do 235 k=2,nk
DO 2 35 J=3,NJ

DO 235 I=2,NI
V(I,J,K) = yper * sin(pi * y(j))

& * COS (ROLL * PI * Al * (x(i) + 0.5 * dxx(i) )

)

VOD(I,J,K) = V(I,J,K)
VPD(I,J,K) = V(I,J,K)

235 CONTINUE
ENDIF

C
c SET THE VELOCITIES OUTSIDE THE COMPUTATIONAL
c DOMAIN TO ZERO
c

do 505 i=l,nipl
DO 505 J=1,NJP1

UOD(I,J,l) = 0.

UOD(I, J,NKP1) = 0.

VOD ( I , J , 1 ) = .

VOD(I, J,NKP1) = 0.

WOD(I,J,l) = 0.

WOD(I,J,2) = 0.

WOD(I, J,NKP1) = 0.

505 CONTINUE
DO 510 I=1,NIP1

DO 510 K=1,NKP1
UOD(I, 1,K) = 0.

U0D(I,NJP1,K) = 0.

VOD(I,l,K) = 0.

VOD (I, 2, K) = 0.

V0D(I,NJP1,K) = 0.

WOD(I, 1,K) = 0.

W0D(I,NJP1,K) = 0.

510 CONTINUE
DO 520 J=1,NJP1

DO 520 K=1,NKP1
UOD(l,J,K) = 0.

UOD(2,J,K) = 0.

U0D(NIP1, J,K) = 0.

VOD(l,J,K) = 0.

V0D(NIP1, J,K) = 0.

WOD(l,J,K) = 0.

W0D(NIP1, J,K) = 0.

520 CONTINUE
c
c SET THE VELOCITIES AND PRESSURE IN THE SUBSTRATE TO ZERO
c

if (nchp .ne. 0) then
do 530 i=l , ibgn
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do 530 j=l,njpl
do 530 k=l,nkpl

uod(i, j , k) = .

530 continue
c

do 540 i=l,ibgn-l
do 540 j=l,njpl

do 540 k=l,nkpl
vod (i, j ,k) = .

wod( i , j ,k) = .

pod(i, j,k) = 0.

540 continue
endif

C
C INITIALISE U,V,W,T,P
C

DO 210 K=1,NKP1
DO 210 J=1,NJP1

DO 210 I=1,NIP1
T(I,J,K) = TOD(I,J,K)
U(I,J,K) = UOD(I,J,K)
V(I,J,K) = VOD(I,J,K)
W(I,J,K) = WOD(I,J,K)
P(I,J,K) = P0D(I,J,K)

210 CONTINUE
end

subroutine ploop
c
c THIS SUBROUTINE INCLUDES THE PRESSURE LOOP. IT INCORPORATES THE
c SIMPLEX ALGORITHM AND THE INFAMOUS ERROR CONTROL ROUTINE DUE TO
c THE VENERABLE VINCENT LIU OF THE ARGONNE NATIONAL LABS WHO DEVISED
c IT AS A HOBBY WHILE AT THE UNIV OF NOTRE DAME.
c

implicit real*8 (a-h,o-z)
common/ng/dxx(40) ,dyy(40) ,dzz(40) ,x(40) ,y(40) ,z(40)

,

& dxxs(40) ,dyys(40) ,dzzs(40)
common/ limits/ni ,nipl,niml,nj,njpl,njml,nk, nkpl,nkml,

& nip2 , njp2 ,nkp2 , iter , nnmax
common/ pa rm/ra, pr , sorsum, dtime, xper , roll,dt_inv,xtime
common/ tol/ small , eps, sormax
common/dims/h,wth,bth,hchip, wchip,bchip, bsub
common/ fv_init/tod( 12, 16, 16) ,uod(12, 16, 16) , vod (12, 16, 16)

& wod(12, 16, 16) ,pod(12, 16, 16)
common/ fv_cur/t( 12, 16,16),u(12,16,16),v(12,16,16),

& w(12, 16, 16) ,p(12, 16, 16)
common/ fv_int/tpd( 12, 16, 16) ,upd(12, 16, 16) , vpd(12, 16, 16)

,

& wpd(12, 16, 16) ,ppd(12, 16, 16)
common/mscn/smp( 12 , 16, 16) , resorm(93 )

,

& du(12, 16, 16) ,dv(12, 16, 16)

,

& dw(12, 16, 16) ,pp(12, 16, 16)
common/ coef f /ap(12 ,16, 16) , aw (12, 16, 16) ,ae(12,16,16)

,

& as(12,16,16),an(12,16,16),ab(12,16,16),
& af (12, 16, 16) ,su(12, 16, 16)
COMMON/COEF2/AWW(12, 16, 16) ,AEE(12, 16, 16) , ASS (12, 16, 16)

,

& ANN (12, 16,16) , ABB (12, 16, 16) ,AFF(12, 16, 16)
common /mean/t_mean (12,16,16) , u_mean(12 , 16 , 16)

,

& v_mean( 12 , 16 , 16) , w_mean (12,16,16)

,

& p_mean ( 12 , 16, 16)
common/ count /nt , nmax, imax, itmax,krun, nprint

96



11

I

I



common/chip/ ibgn,iend, jbgn(3)
,
jend(3) ,kbgn(3) , kend(3) ,nchp,

& isub, ichip, jchip,kchip
common/array/njchip,nkchip, ichoice
common/diff /ale, als, thot , tcool,tavg

c
DIMENSION UU(5000) ,W(5000) ,WW(5000)

c CALL CPUTIME (BEGIN, IIR)

XTIME = 0.

NT =

c
c THE MAIN TIME MARCHING LOOP BEGINS HERE
c

300 continue
c

NT = NT + 1

c

c UPDATE THE MEAN VELOCITIES , TEMPERATURE AND
c PRESSURE
c

CI = 1. / FLOAT (NT)

do 310 k=l,nkpl
DO 310 J=1,NJP1

DO 310 I=1,NIP1
U_MEAN(I,J,K) = (1. - CI) * U_MEAN(I,J,K)

& + CI * U(I,J,K)
V_MEAN(I,J,K) = (1. - CI) * V_MEAN(I,J,K)

& + cl * v(i, j,k)
W_MEAN(I, J,K) = (1. - Cl) * W_MEAN(I,J,K)

& + cl * w(i, j,k)
T_MEAN(I,J,K) = (1. - Cl) * T_MEAN(I,J,K)

& + cl * t(i, j ,k)

310 continue
c
c STORE THE FIELD VARIABLES EVERY 1000 TIME STEPS
c AS A KIND OF CHECKPOINTING
c

IF (MOD(NT,nprint) .EQ. 0) THEN
WRITE(ll) T,U,V,W,P
REWIND 11

ENDIF
c
C STOP COMPUTATIONS AT THE MAXIMUM PRESCRIBED
c TIME STEP
c

IF(NT .GT. NMAX) THEN
DO 10 1=1, NMAX

WRITE(10,*) UU(I) ,VV(I) ,WW(I)
10 CONTINUE

WRITE ( 12 ) T_MEAN , U_MEAN , V_MEAN , W_MEAN , P_MEAN
c CALL CPUTIME (END, IIR)

TT = (END - BEGIN) * l.E-06
PRINT *,'THE CPUTIME USED WAS',TT

STOP
ENDIF

C
XTIME = XTIME + DTIME

C
C START CALCULATIONS
C

ITER =
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JTERM =
JJTERM =

DEFINE THE UPDATED TPD(I,J,K), UPD(I,J,K) AND VPD(I,J,K)
FOR SU(I,J,K)

DO 48 K=1,NKP1
DO 48 J=1,NJP1

DO 48 I=1,NIP1
TPD(I,J,K) = T(I,J,K)
UPD(I,J,K) = U(I,J,K)
VPD(I,J,K) = V(I,J,K)
WPD(I,J,K) = W(I,J,K)

48 CONTINUE

29 CONTINUE
JTERM = JTERM + 1

CALL CALT

DO 2220 I=1,NIP1
DO 2220 K=1,NKP1

DO 2 2 20 J=2,NJ
IF (T(I,J,K) .LT. TCOOL) T(I,J,K) = TCOOL

CONTINUE

PRESSURE CORRECTION LOOP

301 CONTINUE

ITER = ITER + 1

CALL CALU

CALL CALV

CALL CALW

CALL CALP

if (resorm(iter) .le. sormax) go to 49

if(iter .eq. 1) go to 302
if (resorm(iter) .le. resorm( iter-1) )

go to 302

go to 304
302 if(jterm .ge. 2) go to 37

source=resorm ( iter)
go to 39

37 if (resorm(iter) .le. source) go to 38

go to 304
38 source=resorm( iter)
39 continue

do 23 k=l,nkpl
do 23 j=l,njpl

do 23 i=l,nipl
tpd(i,j,k) = t(i,j,k)
upd(i, j,k) = u(i, j,k)
vpd(i,j,k) = v(i,j,k)
wpd(i, j ,k) = w(i, j,k)
ppd(i, j,k) = p(i, j,k)

23 continue
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j jterm=0
if(iter .eq. itmax) go to 49

if(jterm .eq. 2) go to 35

if(iter .eq. 4) go to 29

35 continue
if(jterm .eq. 3) go to 58

if(iter .eq. 7) go to 29

58 continue
j jterm=0
go to 301

304 continue
j jterm=j jterm+1
if(jterm . eq . 1) go to 41

if(jterm . eq . 2 .and. jjterm . eq . 1 .and. iter .ne. 5) go to 41

go to 82
41 continue

do 40 k=l,nkpl
do 40 j=l,njpl

do 40 i=l,nipl
u(i,j,k) = upd(i,j,k)
v(i,j,k) = vpd(i,j,k)
w(i, j,k) = wpd(i, j,k)

P(i, j,k) = ppd(i,j,k)
40 continue

if(iter .eq. itmax) go to 49

go to 29
82 continue

do 43 k=l,nkpl
do 43 j=l,njpl

do 43 i=l,nipl
t(i,j,k) = tpd(i,j,k)
u(i, j,k) = upd(i, j ,k)

v(i, j,k) = vpd(i, j ,k)

w(i, j,k) = wpd(i, j,k)

P(i, j,k) = PPd(i, j ,k)

43 continue
if(iter .eq. itmax) go to 49

if((jterm .eq. 3 .and. iter .ne. 8) .or. jjterm .eq. 2) go to 49

go to 301
49 continue

II = NIP1 * 2 / 3

JJ = NJP1 * 2 / 3

KK = NKP1 * 2 / 3

UU(NT) = U(II,JJ,KK)
W(NT) = V(II /

JJ,KK)
WW(NT) = W(II,JJ,KK)

PRINT ENERGY AND MASS BALANCE STATISTICS AT REGULAR
INTERVALS

IF (MOD(NT,nprint) .EQ. 0) THEN
CALL NU
call chiptemp
call tstep

ENDIF
c
c UPDATE VARIABLES FOR THE NEXT TIME STEP
c

DO 305 K=1,NKP1

99





DO 305 J=1,NJP1
DO 305 I=1,NIP1

TOD(I,J,K) = T(I,J,K)
UOD(I,J,K) = U(I,J,K)
VOD(I,J,K) = V(I,J,K)
WOD(I,J,K) = W(I,J,K)

305 CONTINUE
GO TO 300
end

subroutine tstep
implicit real*8 (a-h,o-z)

c
c THE MAXIMUM TIME STEP FOR AN EXPLICIT MARCH IS CALCULATED,
c THIS IS USEFUL FOR DECIDING THE TIME STEP THAT NEEDS
c TO BE SPECIFIED,
c ALSO, THE VOLUME AVERAGED PRANDTL NUMBER IS CALCULATED.
c

common/ fv_cur/t( 12, 16,16) ,u ( 12 , 16 , 16) , v( 12 , 16 , 16)

,

& w(12, 16, 16) ,p(12, 16, 16)
common/condu/alpha(12, 16, 16) ,rho(12, 16, 16) , visco(12, 16, 16)

common /dims/h, wth, bth,hchip, wchip, bchip, bsub
common/ng/dxx(40) ,dyy(40) ,dzz(40),x(40),y(40),z(40),

& dxxs(40) ,dyys(40) ,dzzs(40)
common/ limits/ ni, nipl,niml,nj,njpl,njml,nk, nkpl, nkml,

& nip2 , njp2 , nkp2 , iter , nnmax
common / pa rm/ ra, pr , sorsum, dtime, xper , roll,dt_inv, xtime
common/ if irst/nust , nvst , nwst , npst

tmin =- 0.

do 10 i=2 , ni
do 10 j=2,nj

do 10 k== 2, , nk
tmpl = 0.5 *

& +

& 4-

((u(i,j,k) + u(i+l,j,k)) / dxx(i)
(v(i, j,k) + v(i, j+i,k) ) / dyy(j)
(w(i,j,k) + w(i,j,k+l)) / dzz(k))

tmp2 1. / dxx(i)**2 + 1. / dyy(j)**2
& + 1. / dzz(k)**2

tmp = max (tmpl,tmp2)
tmp = tmpl
if (tmp .gt. tmin) tmin = tmp

10 continue
tmin =1. / tmin

umin = 0.

do 20 i=nust,ni
do 20 j=2,nj

do 20 k=2,nk
tmpl = 0.5 * (2. * u(i,j,k) / dxxs(i)

& + (v(i,j,k) + v(i,j+l,k)) / dyy(j)
& + (w(i,j,k) + w(i,j,k+l)) / dzz(k))

tmp2 = visco(i,j,k) * (1. / dxxs(i)**2
& + 1. / dyy(j)**2 + 1. / dzz(k)**2)

tmp = max (tmpl,tmp2)
tmp = tmpl
if (tmp .gt. umin) umin = tmp

20 continue
umin = 1. / umin

vmin = 0.
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do 30 i=nvst,ni
do 30 j=3,nj

do 3 k=2,nk
tmpl = 0.5 * (2. * v(i,j,k) / dyys(j)

& + (u(i,j,k) + u(i+l,j,k)) / dxx(i)

& + (w(i,j,k) + w(i,j,k+l)) / dzz(k))

tmp2 = visco(i,j,k) * (1. / dxx(i)**2
& + 1. / dyys(j)**2 + 1. / dzz(k)**2)

c tmp = max (tmpl,tmp2)
tmp = tmpl
if (tmp .gt. vmin) vmin = tmp

30 continue
vmin = 1. / vmin

c
wmin =0.
do 40 i=nwst,ni

do 40 j=2,nj
do 40 k=3,nk

tmpl = 0.5 * (2. * w(i,j,k) / dzzs(k)

& + (v(i,j,k) + v(i,j+l,k)) / dyy(j)

& + (u(i,j,k) + u(i+l,j,k)) / dxx(i))

tmp2 = visco(i,j,k) * (1. / dxx(i)**2
& + I- / dyy(j)**2 + 1. / dzzs(k)**2)

c tmp = max (tmpl,tmp2)
tmp = tmpl
if (tmp .gt. wmin) wmin = tmp

40 continue
wmin = 1. / wmin
tt = min (tmin,umin, vmin, wmin)
print *,'THE EXPLICIT TIME STEP IS',tt

c

c THE VOLUME AVERAGED PRANDTL NUMBER IS CALCULATED.

c
vavgpr = .

do 50 i=nust,ni
do 50 3=2, nj

do 50 k=2,nk
vavgpr = vavgpr + dxx(i) * dyy(j) * dzz(k)

& * visco( i , j ,k)

50 continue
vavgpr = vavgpr / (wth * bth)
print *,'THE VOLUME AVERAGED PRANDTL NUMBER IS', vavgpr
end

c * **********************************************************************

subroutine grid
c

C THIS SUBROUTINE GENERATES THE GRID. THE ROBERTS TRANSFORMATION
c IS USED TO RESOLVE BOUNDARY LAYER NEAR THE WALL.

c
implicit real*8 (a-h,o-z)
common/ng/dxx(40) ,dyy(40) ,dzz(40),x(40),y(40),z(40),

& dxxs(40) ,dyys(40) ,dzzs(40)
common /blayer/xbr ,ybr , zbr
common /unfrm/iunf rm
common/dims /h, wth, bth, hchip, wchip, bchip, bsub
common/chip/ibgn, iend, jbgn(3)

,
jend(3) ,kbgn(3) ,kend(3) ,nchp,

& isub, ichip, jchip,kchip
common/ limits/ni, nipl,niml,nj,njpl,njml,nk, nkpl, nkml,

& nip2 , njp2 ,nkp2
common/ array /nj chip, nkchip

101





common/spaced/ychip(3) ,zchip(3)

dimension kgap(4)
,
jgap(4) ,ygap(4) ,zgap(4)

,

& dygap(4) ,dzgap(4)

print *,'THE HEIGHT OF THE ENCLOSURE IS',h,'mm'
print *,'THE WIDTH OF THE ENCLOSURE IS '

, wth ,
' mm"

print *,'THE LENGTH OF THE ENCLOSURE IS', bth, 'mm'

wth = wth / h
bth = bth / h
xbr = xbr / h
ybr = ybr / h
zbr = zbr / h

print *,'THE CHIP DIMENSIONS ARE THE FOLLOWING:'
print *,'CHIP HEIGHT ( Y-DIRECTION) ' , hchip, 'mm'

print *,'CHIP WIDTH (Z-DIRECTION) ', wchip, 'mm'

print *,'CHIP LENGTH (X-DIRECTION) ', bchip, 'mm'

NONDIMENSIONALIZE THE LENGTH PARAMETERS WHICH ARE GIVEN IN MM

hchip = hchip / h
wchip = wchip / h

bchip = bchip / h
bsub = bsub / h

if (iunfrm .eq. 0) then
if (nchp .ne. 0) then

do 10 i=l,njchip
ychip(i) = ychip(i) / h

continue

do 20 i=l,nkchip
zchip(i) = zchip(i) / h

20 continue

dx = bchip / float(ichip)
dy = hchip / float(jchip)
dz = wchip / float(kchip)

zgap(l) = zchip(l) - 0.5 * wchip
zgap(nkchip+l) = wth - zchip(nkchip) - 0.5 * wchip
ygap(l) = ychip(l) - 0.5 * hchip
ygap(njchip+l) = 1.0 - ychip(njchip) - 0.5 * hchip

kgap(l) = int(f loat(kchip) * zgap(l) / wchip) - 4

dzgap(l) = zgap(l) / f loat (kgap( 1)

)

jgap(l) = int(f loat( jchip) * ygap(l) / hchip) + 3

dygap(l) = ygap(l) / f loat (
jgap(l)

)

do 25 i=2,nkchip
zgap(i) - zchip(i) - zchip(i-l) - wchip
kgap(i) = int (float (kchip) * zgap(i) / wchip) - 2

dzgap(i) = zgap(i) / float (kgap( i)

)

25 continue
do 30 i=2,njchip

ygap(i) = ychip(i) - ychip(i-l) - hchip
jgap(i) = int(f loat(jchip) * ygap(i) / hchip) + 1
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c

c

c

dygap(i) = ygap(i) / f loat( jgap(i)

)

30 continue

ktotal =
jtotal =
do 35 i=l,nkchip

ktotal = ktotal + kgap(i)
35 continue

do 40 i=l,njchip
jtotal = jtotal + jgap(i)

40 continue
ktotal = ktotal + nkchip * kchip
jtotal = jtotal + njchip * jchip

kgap(nkchip+l) = nkml - ktotal
dzgap(nkchip+l) = zgap(nkchip+l) / float (kgap(nkchip+l)

)

jgap(njchip+l) = njml - jtotal
dygap(njchip+l) = ygap(njchip+l) / float (jgap (n^chip+l)

)

if ((nkml - ktotal) .It. 4) then
print *, 'INSUFFICIENT # OF POINTS IN THE Z-DIRECTION'

stop
endif

if ((njml - jtotal) .It. 6) then
print *, 'INSUFFICIENT # OF POINTS IN THE Y-DIRECTION'

stop
endif

call gridl (ygap(l) ,ybr, jgap(l) ,ykl,yhl)

call gridl (ygap(njchip+l)
,
ybr

,
jgap(njchip+l) ,

yk2
,
yh2)

call gridl (zgap(l) , zbr , kgap ( 1) , zkl , zhl)

call gridl (zgap(nkchip+l) , zbr , kgap(nkchip+l) , zk2 , zh2)

GRID GENERATION IN THE Y AND Z-DIRECTION (TOP AND BOTTOM)

do 45 j=2, jgap(l)+2
y(j) = tanh (ykl * yhl * dygap(l) * float(j - jgap(l) - 2))

& / ykl + ygap(l)
45 continue

y(D = " y(3)

do 50 k=2,kgap(l)+2
z(k) = tanh (zkl * zhl * dzgap(l) * float(k - kgap(l) - 2))

& / zkl + zgap(l)
50 continue

z(l) = - z(3)

jj = 2 + jtotal
yy = ychip(njchip) + 0.5 * hchip
do 55 j=l, jgap(njchip+l) +1

y(j+jj) = tanh (yk2 * yh2 * dygap(njchip+l)
& * float(j) ) / yk2 + yy

55 continue
y(njp2) = 1.0 + y(njpl) - y(nj)

kk = 2 + ktotal
zz = zchip(nkchip) + 0.5 * wchip
do 60 k=l,kgap(nkchip+l) +1

z(k+kk) = tanh (zk2 * zh2 * dzgap (nkchip+1)
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c

c

& * float(k) ) / zk2 + zz

60 continue
z(nkp2) wth + z(nkpl) - z(nk)

yy = - hchip
jj = 2 - jchip
do 65 i=l,njchip

jj * jj + jchip + jgap(i)

yy = yy + hchip + ygap(i)
do 65 j=l, jchip

y(jj+j) = dy * float(j) + yy
65 continue

zz = - wchip
kk = 2 - kchip
do 70 i=l,nkchip

kk = kk + kchip + kgap(i)
zz = zz + wchip + zgap(i)
do 70 k=l, kchip

z(kk+k) = dz * float(k) + zz

70 continue

yy = 0.

jj - 2

do 75 i=2,njchip
jj = jj + jchip + jgap(i-l)

yy = yy + hchip + ygap(i-l)
do 75 j=l,jgap(i)

y(jj+j) = dygap(i) * float(j) + yy
75 continue

zz = 0.

kk = 2

do 80 i=2,nkchip
kk = kk + kchip + kgap(i-l)
zz = zz + zgap(i-l) + wchip
do 80 k=l,kgap(i)

z(kk+k) = dzgap(i) * float(k) + zz

80 continue
c

c GRID GENERATION IN THE X-DIRECTION
c

ii = (niml - ichip - isub) / 2

ii = 2 * ii
inc = niml - ichip -isub - ii

isub = isub + inc
dsub = bsub / float (isub)

do 160 i=l,isub+2
x(i) = dsub * float(i - 2)

160 continue
c

dx = bchip / float(ichip)
xx = bsub
ii = isub + 2

do 170 i=l, ichip
x(i+ii) = dx * float(i) + xx

170 continue
c

ii = isub + ichip + 2

bb = 0.5 * (bth - bsub - bchip)

c
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xx = bsub + bchip + bb
iil = (niml - ichip - isub) / 2

call gridl (bb, xbr , iil , xk2 , xh2)

ii2 = 2 * iil
dr = bb / float(iil)
do 180 i=l,ii2

x(i+ii) = tanh (xh2 * xk2 * dr * float (i - iil)) / xk2

& + xx
180 continue

x(nipl+l) = bth + x(nipl) - x(ni)

c
ibgn = isub + 2

iend = isub + ichip + 1

c
jbgn(l) = jgap(l) + 2

jend(l) = jbgn(l) + jchip - 1

do 200 i=2,njchip
jbgn(i) = jbgn(i-l) + jchip + jgap(i)
jend(i) = jbgn(i) + jchip - 1

200 continue
c

kbgn(l) = kgap(l) + 2

kend(l) = kbgn(l) + kchip - 1

do 220 i=2,nkchip
kbgn(i) = kbgn(i-l) + kchip + kgap(i)
kend(i) = kbgn(i) + kchip - 1

220 continue
c

else
print *,'THE HEIGHT OF THE ENCLOSURE IS',h,'mm'
print *,'THE WIDTH OF THE ENCLOSURE IS ' , wth , 'mm'

print *,'THE LENGTH OF THE ENCLOSURE IS', bth, 'mm'

c
c NONDIMENSIONALIZE THE LENGTH PARAMETERS WHICH ARE GIVEN IN MM

c
c
c GRID GENERATION IN THE Z-DIRECTION
c

zl = wth * 0.5
kzl = (nkpl - 2) / 2

drl = zl / float(kzl)
call gridl ( zl , zbr , kzl , zkl , zhl)

c
z(l) = - zbr
ii = 2 * kzl + l

do 181 i=l,ii
z(i+l) = tanh (zhl * zkl * drl * float (i - kzl - 1) ) / zkl

& + zl
181 continue

z(nkpl+l) = wth + zbr
c
c GRID GENERATION IN THE Y-DIRECTION
c

yl = 0.5
jyl = (njpl - 2) / 2

drl = yl / float(jyl)
call gridl (yl

,
ybr

,
jyl

,
ykl

,
yhl)

c
y(l) = - ybr
ii = 2 * jyl + 1
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c

c

c

do 182 i=l,ii
y(i+l) = tanh (yhl * ykl * drl * float (i

& + yl
182 continue

y(njpl+l) 1.0 + ybr

GRID GENERATION IN THE X-DIRECTION

xl = 0.5 * bth
ixl = (nipl - 2) / 2

drl = xl / float(ixl)
call gridl (xl, xbr , ixl , xkl, xhl)

x(l) - - xbr
ii = 2 * ixl + 1

do 183 i=l,ii
x(i+l) = tanh (xhl * xkl * drl * float (i - ixl

& + xl
183 continue

x(nipl+l) = bth + xbr
endif
else
print *,'THE GRID IS UNIFORM'

dx = bth / float(niml)
dy = 1.0 / float (njml)
dz = wth / float(nkml)

UNIFORM GRID

do 185 i=l,nip2
x(i) = dx * float(i - 2)

185 continue

jyl - 1)) / ykl

- D) / xkl

do 186 j=l,njp2
y(j) = dy * float(j - 2)

186 continue

do 187 k=l,nkp2
z(k) = dz * float(k - 2)

187 continue
IF (NCHP .NE. 0) THEN

IBGN = 4

IEND = 5

JBGN(1
JEND(1
JBGN(2
JEND(2
JBGN(3
JEND(3
KBGN(1
KEND(1
KBGN(2
KEND(2
KBGN (

3

KEND(3
ENDIF
endif

= 4

= 5

= 8

= 9

= 12
= 13
= 4

= 5

= 8

= 9

= 12
= 13

CALCULATE THE DIMENSIONS OF THE CONTROL VOLUMES
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c
do 188 i=l,nipl

dxx(i) = x(i+l) - x(i)

188 continue
do 189 i=l,njpl

dyy(i) = y(i+i) - y(i)

189 continue
do 191 i=l,nkpl

dzz(i) = z(i+l) - z(i)

191 continue
dxx(nip2) - dxx(nipl)
dyy(njp2) = dyy(njpl)
dzz(nkp2) = dzz(nkpl)

CALCULATE THE DIMENSIONS OF THE STAGGERED CONTROL VOLUMES

do 245 i=2,nipl
dxxs(i) = 0.5 * (dxx(i-l) + dxx(i))

245 continue
dxxs(l) = dxxs(2)
do 250 i=2,njpl

dyys(i) = 0.5 * (dyy(i-l) + dyy(i))

250 continue
dyys(l) = dyys(2)
do 255 i=2,nkpl

dzzs(i) = 0.5 * (dzz(i-l) + dzz(i))

255 continue
dzzs(l) = dzzs(2)
dxxs(nip2) = dxxs(nipl)
dyys(njp2) = dyys(njpl)
dzzs(nkp2) = dzzs(nkpl)

c
c CALCULATE THE AREAS AND VOLUMES TO

c CHECK ACCURACY OF GRID
c

svol = 0.

do 260 i=2,nipl-l
do 260 j=2,njpl-l

do 260 k=2,nkpl-l
svol = svol + dxx(i) * dyy(j) * dzz(k)

260 continue
svol = svol * h**3
print *,'THE TOTAL VOLUME IS ', svol ,' cubic mm'

svol = 0.

do 261 i=2,nipl-l
do 261 j=2,njpl-l

svol = svol + dxx(i) * dyy(j)

261 continue
svol = svol * h**2
print *,'THE TOTAL XY AREA IS ', svol ,' square mm'

svol = 0.

do 262 j=2,njpl-l
do 262 k=2,nkpl-l

svol = svol + dyy(j) * dzz(k)

262 continue
svol = svol * h**2
print *,'THE TOTAL YZ AREA IS ', svol ,' square mm'

svol = 0.

do 263 k=2,nkpl-l
do 263 i=2,nipl-l
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svol = svol + dzz(k) * dxx(i)

263 continue
svol = svol * h**2
print *,'THE TOTAL ZX AREA IS ', svol ,' square mm'

INDIC = MAXO (NIP2,NJP2,NKP2)
DO 270 1=1, INDIC

write (6, 1000) i,dxx(i) ,x(i) ,dyy(i) ,y(i),dzz(i),z(i)

270 continue
1000 format(lx,i5,2x,6(f9.5, lx)

)

PRINT * , IBGN , IEND , JBGN , JEND , KBGN , KEND
write(13,2000) x,y,z,dxx,dyy,dzz

2000 format(4(fl7.7)

)

end

subroutine gridl (bb,dx, ngrid, xl ,hk)

implicit real*8 (a-h,o-z)

C THIS SUBROUTINE CALCULATES THE TWO GRID PARAMETERS

c
data epps,nmax/1.0e-8, 1000/
dr = bb / float(ngrid)
c = 1. / (float(nmax) * bb)

yy = 1. - dr / bb
yl = yy - 1.

c
C NARROW DOWN THE ZERO USING THE BISECTION METHOD

c
i =
ii =

8 continue
i = i + 1

xl = c * float(i)
fl = (1. + xl * (bb - dx) ) * (1. - xl * bb)**yy

& - (l. - xl * (bb - dx) ) * (1. + xl * bb)**yy
x2 = c * float(i+l)
f2 = (1. + x2 * (bb - dx) ) * (1. - x2 * bb)**yy

& - (l. - x2 * (bb - dx)) * (1. + x2 * bb)**yy
if (fl * f2 .It. 0. .or. i .eq. (nmax - 1)) then

go to 9

endif
go to 8

9 continue
x3 = 0.5 * (xl + x2)

ii = ii + 1

f3 = (1. + x3 * (bb - dx) ) * (1. - x3 * bb) **yy
& - (l. - x3 * (bb - dx)) * (1. + x3 * bb)**yy
if (f3 * fl .It. 0.) then

X2 = x3
else

xl = x3
endif
if (ii. It. 5) go to 9

xinit = 0.5 * (xl + x2)

c

c THE GRID PARAMETER IS DETERMINED BY NEWTON-RAPHSON ITERATION

c

xl = xinit
iter =

10 continue
iter = iter + 1
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f = (i. + xl * (bb - dx)) * (1. - xl * bb)**yy

& - (l. - xl * (bb - dx)) * (1. + xl * bb)**yy

df = (bb - dx) * (1. - xl * bb)**yy
& + (bb - dx) * (1. + xl * bb)**yy

bb - dr) * (1. + xl * (bb - dx)) * (1. - xl * bb)**yl

(bb - dr) * (1. - xl * (bb - dx)) * (1. + xl * bb)**yl&

&

x2 = xl - f / df
xeps = abs (xl - x2)

xl = x2
if (xeps .gt. epps .and. iter .It. 10) goto 10

zz = xl * bb
hk = 0.5 / zz * log((l. + zz) / (1. - zz) )

subroutine chiptemp

C THIS SUBROUTINE CALCULATES THE CHIP TEMPERATURES (DIMENSIONAL)

c
implicit real*8 (a-h,o-z)
common/ng/dxx(40) ,dyy(40) ,dzz(40) ,x(40) ,y(40) ,z(40) ,

& dxxs(40) ,dyys(40) ,dzzs(40)

common/parm/ra ,
pr , sorsum , dt ime , xper , rol 1 , dt_inv , xtime

common / to 1/small , eps, sormax
common/dims/h , wth , bth , hchip , wchip , bchip , bsub

common/count/nt,nmax, imax, itmax, krun, npnnt
common/mscn/smp(12, 16, 16) ,resorm(93)

,

& du(12,16,16) ,dv(12,16,16)

,

& dw(12, 16,16) ,pp(12, 16, 16)

common/ limits/ni , nipl , niml , nj , njpl , njml , nk, nkpl , nkml

,

& nip2,njp2,nkp2, iter,nnmax

common/fv_init/tod(12,16,16) , uod ( 12 , 16 , 16) , vod ( 12 , 16 , 16)

,

& wod(12,16, 16) ,pod(12, 16, 16)

common/ fv_cur/t( 12, 16,16) , u ( 12 , 16 , 16) , v ( 12 , 16 , 16)

,

& w(12,16,16) ,p(12,16,16)
COMMON /RHOCP/RHS,RHC
common/condu/alpha(12,16,16) , rho ( 12 , 16 , 16) , visco ( 12 16 , 16)

common/chip/ibgn,iend, jbgn(3) ,
jend(3) ,kbgn(3) ,kend(3) ,nchp,

& isub, ichip, jchip,kchip
common/diff/alc,als,thot,tcool,tavg
common/array/njchip, nkchip
COMMON/POWER/QQQ,QCOND

C
dimension tt (3 , 3 )

, vol ( 3 , 3

)

c
C

DO 15 M=1,NJCHIP
DO 15 N=l, NKCHIP

VOL(M,N) = 0.

TT(M,N) = 0.

15 CONTINUE
C

do 20 m=l,njchip
do 20 n=l, nkchip

do 10 i=ibgn,iend
do 10 j=jbgn(m)

,
jend(m)

do 10 k=kbgn(n) ,kend(n)
tt(m,n) = tt(m,n) + t(i,j,k) * dxx(i)

i
* dyy(j) * dzz(k)

vol(m,n) = vol(m,n) + dxx(i) * dyy(j)
r * dzz(k)
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10 continue
TT(M,N) = TT(M,N) / VOL(M,N) * QCOND

20 continue
print *,'THE TEMPERATURE RISES IN THE CHIP ARE:'

WRITE(6,200) TT
200 FORMAT (4(F17.6))

end
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