

AMPHIB: A USERS MANUAL

D. Mukutmoni
M. D. Kelleher
Y. K. Joshi
^pproved for public release; distribution is unlimited.
Prepared for:

Naval Postgraduate School

tterey, California 93943

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943

Rear Admiral T.A. Mercer
H. Schull
Superintendent Provost

This report was prepared in conjuction with research sponsored in part by the Naval Weapons Support Center, Crane, Indiana.

Reproduction of all part of this report is authorized.

This report was prepared by:

AMPHIB: A USERS MANUAL

A Documentation of a General Purpose Code for Electronic Cooling Applications

prepared by
Devadatta Mukutmoni, Yogendra K. Joshi and
Matthew D. Kelleher

Department of Mechanical Engineering Naval Postgraduate School
Monterey, CA 93943

AMPHIB

Abstract

A general purpose three-dimensional code (AMPHIB) that solves electronic cooling problems is documented. In its present structure, the code is set up for computations in liquid immersion cooling of an \mathbf{m} by \mathbf{n} array of chips embedded in a substrate in a threedimensional rectangular enclosure. Nevertheless, it can be modified to solve problems in forced, mixed and natural convection for a wide range of boundary conditions. The subroutines and the input are described in detail. A listing of the code and sample example problems are also included.

- Milsten

2

livibut al aits swifmikuan

TABLE OF CONTENTS

Page

NOMENCLATURE FOR REPORT 4
INTRODUCTION 6
OUTLINE OF ALGORITHM 15
EXAMPLES 21
INPUTS AND SUBROUTINES 33
APPENDICES
A 45
B 49
C 59
REFERENCES 111

Nomenclature for the Report

$A_{P}, A_{N}, A_{S}, A_{W}, A_{E}, A_{F}, A_{B}$ Coefficients of the finite difference equation
g
C
G

H
i
j
k
Nu
P
Pr
q
Ra
S
t
T
T_{C}
T_{H}
ΔT
U

V
W
x
y
z

Acceleration due to gravity, $\frac{\mathrm{m}^{2}}{\mathrm{~s}}$
Scaling factor in the convection-diffusion equation
Non-dimensional mass flux at the boundaries of a cell
Height of the cavity, m
x subscript
y subscript
z subscript
Nusselt number
Non-dimensional pressure
Prandtl number
Volumetric heat generation, $\frac{\mathrm{W}}{\mathrm{m}^{3}}$
Product of Rayleigh and Prandtl number
Source term in difference equation
Non-dimensional time
Non-dimensional temperature
Cold wall temperature, ${ }^{\circ} \mathrm{C}$
Hot wall temperature, ${ }^{\circ} \mathrm{C}$
Temperature difference, $\mathrm{T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{C}},{ }^{\circ} \mathrm{C}$
Non-dimensional x -direction velocity
Non-dimensional y-direction velocity
Non-dimensional z-direction velocity
Non-dimensional horizontal spatial coordinate
Non-dimensional vertical spatial coordinate
Non-dimensional spatial coordinate in the direction of depth

Greek Symbols
α

$$
\text { Thermal diffusivity, } \frac{\mathrm{m}^{2}}{\mathrm{~s}}
$$

$\beta \quad$ Coefficient of volume expansion, $\frac{1}{\mathrm{~K}}$
ϕ
κ
$\Delta x, \Delta y, \Delta z$

v

ρ

Superscripts

Subscripts
c
p,n,s,e,w,f,b, ee,ww,ss,nn, bb,ff
P, N, S, E, W, F,B, Node designation of basic grid EE,WW,SS,NN, BB, FF

Generic non-dimensional field variable
Thermal Conductivity, $\frac{\mathrm{W}}{\mathrm{mK}}$
Non-dimensional mesh or cell size
Dynamic viscosity, $\frac{\mathrm{m}^{2}}{\mathrm{~s}}$
Density, $\frac{\mathrm{kg}}{\mathrm{m}^{3}}$

Estimated quantity
Correction to estimated quantity
Present time level

Refers to the chip
Designation of control volume boundaries

INTRODUCTION

1.1 General Remarks

Over the years, computational fluid dynamics has emerged as a powerful tool to solve engineering and scientific problems related to fluid flow. This ranges from the familiar such as solving for flow past a supersonic airplane; flow in an internal combustion engine; flow in an oil reservoir; atmospheric flows and flow in turbo-machines to the esoteric such as geophysical and astrophysical fluid dynamics.

The increase in computing power which roughly doubles every two years has contributed immensely to the feasibility of solving realistic engineering problems. More stunning advances in computing resources are expected in the near future. For instance, massively parallel architecture promises to create a prototypical teraflop machine (which is capable of 10^{12} floating point operations per second) by 1995 (Deng et. al, 1992). This can well be appreciated considering the fact that three-dimensional unsteady problems of moderate complexity can be simulated rather effectively using an RS/ 6000 workstation which is capable of a 16 megaflops $\left(10^{6}\right)$ performance for a CFD code.

CFD has gradually evolved to become a cost-effective alternative to experimentation with respect to engineering design in many cases. For instance in the aerospace industry, the lead time in design and development of aircrafts has been considerably reduced (Fletcher, 1988), thanks to CFD replacing time-consuming and costly testing procedures in many of the steps. This cost-effectiveness is expected to improve relentlessly, as computing costs decrease.

Nevertheless, CFD must be used in the design process with utmost care. In the first place, CFD can never claim to replace experiments; at least not yet. Experiments form a critical component of the overall process. It is imperative that the CFD code be validated by experiments for the particular case. There are several reasons for that. The validity of the boundary conditions, the refinement of the grid or the validity of certain simplifying assumptions can only be checked and confirmed by experiments. There might even be bugs which need to be fixed. For computer codes which include turbulence modelling it is sometimes required to check whether the emperically determined constants are valid for the given case.

The thermal management of electronic components (otherwise known as electronic cooling) can also benefit from these advances in computing power. The design process has in the past relied heavily on empirical testing. Convective heat transfer modelling was expensive due to the complex mathematical equations involved. The heat transfer coefficients were determined from experiments and were then used in simpler conduction calculations to determine the maximum chip temperature and other quantities of interest to an engineer.

With advances in Computational Fluid Dynamics and computing power, the convection and conduction problems can be solved simultaneously in a coupled manner. Computational fluid flow and heat transfer is increasingly being used as part of this design process. A number of general-purpose commercial code available (such as PHOENICS, FLUENT, FIDAP etc) can be used to solve applications in electronic cooling. There are several drawbacks though. The codes are too general (and very expensive!). A considerable amount of effort must be expended in order to tailor them to the specific application. More important, the source code is almost never available. The option of modifying the code does not arise.

The present code AMPHIB attempts to redress these disadvantages. It is a generalpurpose code that is exclusively designed to solve problems in electronic cooling. AMPHIB is also fully validated by experiments. It can therefore be used directly in such applications with minimal modifications if at all. To the best of our knowledge, this is the first software package that specifically solves these class of problems. Since the source code is readily available, the code can be modified to solve problems of much greater complexity such as those involving turbulence modelling, mass transfer etc.

1.2 Purpose of the Code

The primary purpose of the code is as a design tool for applications in electronic cooling. As noted earlier, experiments form an integral part of this procedure. The usefulness of the code is best illustrated with examples.

Consider a hypothetical configuration shown in figure 1.1. A power dissipating chip is protruding from a vertical substrate. It is being cooled by a dielectric fluid in direct contact with the chip surface. The dielectric fluid is hermetically sealed in an enclosure which contains the chip and substrate. Heat exchangers at the top and the bottom wall extract heat from the liquid. This configuration is what is commonly known as cooling by liquid immersion.

To check design, experiments may have been carried out to monitor the chip temperature for a case that is considered optimum. The chip symmetrically placed at the center of the substrate would seem to be a reasonably optimal design. Chip temperatures are recorded for different power levels in the chip. However, some nagging doubts still remain. Is this really the optimal configuration? What if the chip was placed in an eccentric position? Would the chip temperature be reduced? Also, would it matter if the substrate was a different material of higher conductivity e.g, ceramic instead of plexiglas. What would be the effect of increasing the spacing between the substrate and the vertical wall opposite to it?

These are legitimate questions. Unfortunately it is very time consuming to respond to these questions experimentally. This is where CFD codes such as AMPHIB fit in. As a first step, the code is used to validate the experiments. The chip temperatures predicted by the program must be made to match those that were experimentally determined within an acceptable bound.

Appropriate models of the boundary conditions must be introduced in the program. To have a well defined problem the geometrical and physical parameters of the setup must be included in the code. This includes the complete dimensions of the enclosure, the dimensions of the chip, the thermo-physical properties of the chip, substrate and fluid. The power dissipated by the chip and the temperature of the heat sinks (the top and bottom wall) and the location of the chip must also be known.

The present code (AMPHIB) can handle the problem so described without modifications. If the code predicts reasonably well, it is quite straightforward to change the parameters to predict chip temperatures for a different geometry or different materials. The exact details of the code and implementation are given in a different chapter.

Consider another configuration of a greater complexity shown in figure 1.2. A three by three array of chip protrusions is shown. Experiments were performed with a certain spacing. All the chip dimensions are the same. The chip is so configured that the largest dimension is aligned to the vertical. Experiments were performed for a certain spacing between the substrate and the opposite wall. Unfortunately, due to constraints in the instrumentation, experimentation was possible only for spacings that were larger than the design constraint. Spacing between chips and wall are typically very small since the chip density in real applications are quite high.

The numerical code can be very usefully applied to such a situation. Firstly, the code validates the experimental results for the large spacing. Later, numerical computations are done for the smaller design spacing. It is also possible to check computationally whether a slightly different alignment of chips is a good idea. For instance, if the largest
dimension of the identical chips was aligned to the horizontal rather than the vertical direction. This is a rather trivial thing to do computationally but a rather cumbersome thing to do experimentally. In the latter case, a whole new experimental setup has to be constructed. The optimal approach is to judiciously combine numerics with experimentation in the design process. The configuration shown in figure 1.2 can be handled by AMPHIB with no changes. In fact, the program can handle an $\mathbf{n} \times \mathbf{m}$ array of chips on a substrate where n and m are whole numbers. Theoretically, there are no limits on the number of chips in the computations. Nevertheless, a 5 by 5 chip array would itself require 10^{7} bytes of memory for reasonably accurate results in three-dimensional computations. Thus, there are practical limits on the total number that can be handled by the code.

There are other related configurations which can be tackled by the program with minor modifications. One case, which is important from the engineering point of view is shown in figure 1.3. The array of chips shown is cooled by a fluid that is circulated by a pump. This is a mixed convection problem. An important question is should the fluid circulate from the top to the bottom or the other way round. The answer may not be simple. It could depend on the power dissipation rate, the properties as well as the geometry of the configuration. The code can be used. The modifications in the code that are necessary to solve such a problem are discussed in a later chapter.

A more general configuration is shown in figure 1.4. The whole chip assembly and the enclosure is at angle with the vertical and fluid is circulated through it. This problem can be solved with surprisingly little changes with AMPHIB.

1.3 Overview of the Report

In chapter two, the algorithm of the code is presented. The description is brief. Interested readers can look into the references provided in that chapter for additional details. A good readable account of the control volume method applied to heat transfer and fluid flow problems is given in Patankar (1980). Readers interested in the code purely as a user are advised to go to chapter four directly which describes the inputs and subroutines of AMPHIB.

Chapter three describes three example problems that were looked into. One of the example deals with convection and conduction in an enclosure with a three by three array of chips embedded in a substrate. Another example is convection in an enclosure with no substrate or chip. Both these examples are compared with experiments. That is precisely why they were chosen. These two examples underscore the essential correctness and accuracy of the code. The third example is not related to any experiments. It is a
benchmark. It is useful to have one, especially when changes are made in the code. One can always fall back on this case for debugging and checking purposes.

Chapter four provides a detailed and complete account of the inputs to the program (all of them initialized in BLOCK DATA) and the subroutines. Appendix A details the implementation of the boundary conditions. This chapter is important for someone who intends to modify the code and thus extend the scope of AMPHIB. The present version of the code has a fixed type of boundary condition. There are no options or flags in the code which would enable one to chose an arbitrary set of boundary conditions for each wall. Appendix A has easy to follow instructions on how to change the code in order to accommodate a more general set of boundary conditions.

Appendix B provides explicit algebraic expressions for the difference equations and numerical boundary conditions that are implemented in the code. Appendix C gives a listing for AMPHIB.

Fluid-filled enclosure

Figure 1.1

In this configuration, a single chip embedded in a substrate is being cooled by a dielectric fluid. The fluid is hermetically sealed in a chamber. The heated fluid is cooled by heat exchangers at the top and bottom walls. The first step is to mathematically model the physical problem. For example, the top and bottom wall can be modelled as isothermal heat sinks. The computer code can then be used to calculate the chip temperatures for different geometrical parameters and transport properties.

Heat Exchanger

Figure 1.2

This is a chip-substrate configuration of a slightly greater complexity. There are nine chips in a three by three array that is being cooled by a dielectric fluid in an enclosure. This problem can be solved by AMPHIB without changes provided that the chip locations are along a rectangular grid.

Fluid inlet

Fluid Outlet

Figure 1.3

This is a configuration similar to figure 1.2 , except that cooling is now aided by fluid that is being circulated by a pump. This problem can be solved by AMPHIB only after modifications are being made in the code which is described at length in a later chapter.

Fluid inlet

Figure 1.4

The direction of the gravity vector

This is a chip-substrate configuration that is being cooled in a mixed-convection mode. However, as in many real-life situations, the whole assembly is at an angle with the vertical. Nevertheless, this problem can be solved by AMPHIB with minimal changes in the program.

OUTLINE OF ALGORITHM

2.1 The Scope of the Program

The program is a general purpose finite difference FORTRAN-77 code designed to solve unsteady and steady three-dimensional heat transfer and fluid flow problems in rectangular cartesian coordinates. The code is designed to effectively handle conjugate heat transfer situations, i.e., when conduction and convection is solved simultaneously. However, pure convection or conduction problems can also be solved.

The program uses the control volume method (Patankar, 1980) to discretize the governing Navier-Stokes, continuity and the energy equations in the primitive variable formulation. The SIMPLEX algorithm (Van Doormal and Raithby, 1985) is used to determine the five field variables (the three velocity components, temperature and pressure). It is essentially a more implicit version of SIMPLE (Patankar, 1980). Due to the more implicit nature of the algorithm, larger time steps can be used without encountering numerical instability. This leads to considerable saving of computer resources for steady state computations since a smaller number of time steps would be required. The computational work per time step would be increased somewhat, but is more than compensated by the decrease in the total number of time steps required to reach a converged solution.

The algorithm is for three-dimensional and unsteady heat transfer and fluid flow problems that marches in time. Time stepping is performed by a first order Backward-Euler scheme. The algorithm is therefore implicit in time. The grids are staggered, and the QUICK scheme is used for interpolating the convective terms (Leonard, 1983). Staggered grid means that grid points for the velocities (the so called vector grid) are different from those of pressure and temperature grid points (the scalar grid). More will be said of it later. Generally speaking, the staggered grid leads to more accurate results since the need to interpolate reduces somewhat. It is now an accepted norm for all CFD calculations with finite differences with the primitive variable formulation.

QUICK (quadratic interpolation for convective kinetics) is a third order polynomial interpolation scheme for the convective terms. It is almost as stable as the first order
upwind scheme and vastly more accurate. It does have the twin advantages of being robust as well as accurate compared to the more conventional techniques such as upwinding or central differencing which are the mainstay of most if not all commercially available codes to solve convection problems. It is a well known fact (Patankar, 1988) that although QUICK is very accurate it is not as robust as the upwind scheme. There are times when the QUICK scheme might not converge due to insufficient number of grid points in regions of high velocities. The code therefore has the option of using the upwind scheme when such a situation arises. In particular, the code uses a scheme which is a weighted average of QUICK and upwind. Depending on the case one can have a range of schemes ranging from pure upwind to pure QUICK.

Except for the viscosity, the fluid is assumed to have constant transport properties and is incompressible except for density changes to account for buoyancy. Viscous dissipation and pressure work are neglected. These assumptions are justified for most applications. The harmonic mean formulation for the interfacial diffusivities is used to effectively handle sharp discontinuities in property values in the computational domain that arise in conjugate problems (Patankar, 1980). Such is the case in electronic cooling problems since the thermo-physical properties vary drastically between the fluid and the solid regions. A substrate and package are examples of solid regions where properties might differ sharply.

2.2 Algorithmic Details

The code uses the Control Volume Method to solve five coupled non-linear partial differential equations (governing equations). All the equations can be cast in the form of a three-dimensional convection-diffusion equation of the following type:

$$
\begin{equation*}
\frac{\partial \phi}{\partial t}+\frac{\partial}{\partial x}(U \phi)+\frac{\partial}{\partial y}(V \phi)+\frac{\partial}{\partial z}(W \phi)=C\left(\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}\right)+S \tag{2.1}
\end{equation*}
$$

The different governing equations can be recovered by setting different values for the canonical variable ϕ and the constant C as well as the source term S which are tabulated below.

x-momentum			дP	+ T Pr Ra
	U	Pr	$\frac{\partial \mathrm{P}}{\partial \mathrm{x}}$	
	V	Pr	$\frac{\partial P}{\partial y}$	
y-momentum	V		$\begin{aligned} & \overline{\partial y} \\ & \partial \mathrm{P} \end{aligned}$	
z-momentum	W	Pr	$\frac{\partial z}{}$	
Energy	T	1	0	
Continuity	1	0	0	

The governing equations are a result of a very specific set of non-dimensionalization of the dependent and independent variables. The x, y and z coordinates are non-dimensionalized by H, the enclosure height. The velocities are scaled by $\frac{\alpha}{H}$, the time is non-dimensionalized by $\frac{H^{2}}{\alpha}$, the pressure difference by $\frac{\rho \alpha^{2}}{\mathrm{H}^{2}}$; and the temperature difference by $\frac{\mathrm{qH}^{2}}{\mathrm{k}_{\mathrm{c}}}$. q is the volumetric rate of heat generation per chip, α is the thermal diffusivity of the fluid, ρ is the fluid density and the the conductivity of the chip is k_{c}. For a different set of scales the governing equations will be of the same form as equation (1) but with different values of C and S .

A grid is imposed in the physical domain and the governing equations are discretized on the grid. For the control volume method, the governing equations are first integrated around a volume about the grid point known as the control volume. The problem is now reduced to that of calculating the values of the dependent variables at the grid locations. The generic convection-diffusion equation (equation 1) is reduced to an algebraic equation of the following form:

$$
\begin{equation*}
A_{p} \phi_{\mathrm{P}}=A_{E} \phi_{E}+A_{W} \phi_{W}+A_{N} \phi_{N}+A_{S} \phi_{S}+A_{E} \phi_{E}+A_{B} \phi_{B}+A_{F} \phi_{F}+S \tag{2.2}
\end{equation*}
$$

The scalar variables (pressure and temperature) are in the non-staggered grid. The grid consists of the grid points and control volume surrounding it. In figure 2.1 the shaded region indicates the non-staggered grid. The grid points are indicated by the circular dots. The subscripts refer to the location with respect to the grid point as shown in the same figure.

1. The grid point in question is referred to by the subscript P.
2. The grid point to the right of P is subscripted by E (east). Similarly the grid point to the right of E is the $E E$ grid point as indicated in figure 2.2.
3. The grid point to the left of P is the W (west) point.
4. The grid point above P is N (north).
5. The grid point below P is S (south).
6. The B and F grid points are not shown in the figure. The B (back) grid point is located above the paper immediately above P. This is consistent with a right-handed cartesian system. Similarly, the F (front) grid point is located under the plane of the paper.
7. The grid points WW, NN, SS, BB and FF are similarly defined.

The grids are chosen such that the walls of the enclosure coincide with the control volume faces of the non-staggered grid. The staggered grids are for the vector variables (the three velocities u, v and w). The staggered grids are shifted by half a control volume towards their respective negative directions. In figure 2.1 the grid point for the u-velocity (velocity in the x-direction) are shown as triangular dots. The control volume surrounding the u-velocity grid is highlighted by bold dashed lines.

The u-velocity grid points are thus located at the east and west faces of the nonstaggered control volume. The staggered grid points for the v-velocity are portrayed as square dots. The staggered v-velocity control volume is enclosed by bold dashed lines just as the other one. The v-velocity grid points coincide with the north and south face of the scalar grid as shown in the figure.

The coupled fluid flow and heat transfer problem is solved using the SIMPLEX algorithm. Details are given in Van Doormal and Raithby (1985). Briefly, equations are solved for the temperature, the three velocities, the pressure correction and the coupling constants for the three momentum equations. The flow chart is shown in figure 2.2. The temperature, the velocities, the coupling constants, and the pressure corrections. The most updated field variables are used at each stage, e.g., for solving the v-velocity the updated u velocity and temperature are used and so on.

Figure 2.1
The staggered grid, which is one of the cornerstones of the control volume method is shown. The non-staggered control volume is bounded by plain lines. The dotted lines pass through the grid points. The non-staggered grid point which is the location of the temperature and pressure is represented by circular dots. The u-velocity grid points are represented by triangular dots. Similarly, the v -velocity grid points are represented by square dots. The grid in the third direction is analogous.

Figure 2.2
The coupled heat transfer and fluid flow problem is solved by an iterative algorithm known as SIMPLEX. Iterations are necessary, since the problem is non-linear. The algebraic equations are linearized at every iteration step, and are approximate. Each iteration provides an improvement on this approximation. After many iterations, a converged and accurate solution of the non-linear problem is obtained. In contrast, if only conduction is solved for, no iterations are needed since the equations of conduction are linear.

EXAMPLES

3.1 General Remarks

Some specific examples are discussed in this chapter. This serves as a validation for the code for the given applications, namely cooling of a three by three array of chips mounted on a substrate as well as convection without chip or substrate.
3.2 Convection in the absence of Substrate and Chip

The boundary conditions are the following:

1. Top wall cooled and bottom wall heated. $\mathrm{THOT}=0.5, \mathrm{TCOOL}=-0.5$.
2. All side walls insulated.

The parameters as initialized in BLOCK DATA are the following:

DATA NIP2, NIP1, NI,NIM1/37,36,35,34/
DATA NJP2,NJP1,NJ,NJM1/33,32,31,30/
DATA NKP2,NKP1,NK,NKM1/27,26,25,24/
DATA NNMAX,NMAX,IMAX,ITMAX,KRUN,NPRINT/29952,5000,10,5,1,100/
DATA SMALL,EPS,SORMAX/1.0E20,1.0E-8,2.0/
DATA ISUB,ICHIP,JCHIP,KCHIP,NCHP,ICHOICE/2,2,2,2,0,0/
DATA XBR,YBR,ZBR/0.40,0.13,0.30/
DATA H,WTH,BTH/12.3,14.6,25.0/
DATA HCHIP,WCHIP,BCHIP,BSUB/24.0,8.0,6.0,19.5/
DATA ALC,ALS,THOT,TCOOL,TAVG/2823.0,3.5,0.5,- 0.5,19./
DATA RHS,RHC/1.20,0.262/
DATA QQQ,DTIME,RA ,PR,XPER,ROLL/1.5,1.0E-5,1.0E7,130.,2.0,2.0/
DATA IUNFRM/0/
DATA QUICK/1.0/
DATA NJCHIP,NKCHIP/3,3/
DATA YCHIP,ZCHIP/38.0,76.0,114.0,50.8,101.6,152.4/

Note that the number of prescribed parameters are in excess of what is required. For example, when NCHP is set to 0 the chip parameters such as ISUB, HCHIP etc are not required and can be set quite arbitrarily.

In figure 3.2, the numerical results are compared with experiments. Both the numerical and experimental results are for a natural convection problem with no substrate or chip in a three-dimensional rectangular enclosure. The heated bottom wall provides the driving force for the flow. Figure 3.1 provides a schematic diagram of the enclosure geometry. Figure 3.2 shows the velocity field across a vertical mid-section as shown in figure 3.1. The results from four different cases are compared with the experiments due to Arroyo and Saviron (1992).

The velocity vectors on the right side are the experiments and on the left are the numerical computations. Each pair corresponds to a particular Rayleigh number. The BLOCK DATA has been initialized for a Rayleigh number of 44,744 . The Rayleigh numbers for the five cases starting from the top are the following: 6319.0, 11101.0, 22884.0, 44744.0 and 66604.0 . For high Rayleigh number computations, it is generally sound practice to begin at a lower Rayleigh number and work ones way upwards. In other words, use a lower Rayleigh number as an initial condition to start a higher Rayleigh number calculation. Also, note that frequent restarts are necessary even for a particular Rayleigh number since steady-state may not be achieved in a single run.

Figure 3.3 compares the computations (on the left) with the same set of experiments for the first three cases (i.e., $6319.0,11101.0$ and 22884.0). What is now compared are the same set of velocities. However, the data is displayed in terms of pathlines. Since, pathlines can be observed by very standard flow visualization techniques, it is a very useful thing to compare. The degree of match between the two is striking. Also note that the code does not need to be modified. It must be emphasized, that such a good comparison between experiments and numerics are very rare. It is not often that such a comparison is even attempted for three-dimensional flows. Thus, the results do demonstrate the essential correctness of the code.

3.2 Convection with Substrate and Chip

The boundary conditions are the following:

1. The top and bottom wall are isothermal heat sinks. This case is the mathematical modelling of the case shown in figure 1.2. $\mathrm{THOT}=0.0, \mathrm{TCOOL}=0.0$.
2. All side walls insulated.

The parameters as initialized in BLOCK DATA are the following:

DATA NIP2, NIP1, NI,NIM1/21,20,19,18/
DATA NJP2,NJP1,NJ,NJM1/39,38,37,36/
DATA NKP2,NKP1,NK,NKM1/66,65,64,63/
DATA NNMAX,NMAX,IMAX,ITMAX,KRUN,NPRINT/49400,4000,10,5,1,100/
DATA SMALL,EPS,SORMAX/1.0E20,1.0E-8,2.0/
DATA ISUB,ICHIP,JCHIP,KCHIP,NCHP,ICHOICE/4,4,4,3,1,1/
DATA XBR,YBR,ZBR/0.75,1.00,1.00/
DATA H,WTH,BTH/152.,203.2,49.5/
DATA HCHIP,WCHIP,BCHIP,BSUB/24.0,8.0,6.0,19.5/
DATA ALC,ALS,THOT,TCOOL,TAVG/3338.0,2.0,0.0,0.0,19.0/
DATA QQQ,DTIME,PR,RA,XPER,ROLL/1.5,2.0E-8,200.0,1.0E9,0.0,0.0/
DATA IUNFRM/0/
DATA QUICK/1.0/
DATA NJCHIP,NKCHIP/3,3/
DATA YCHIP,ZCHIP/38.0,76.0,114.0,50.8,101.6,152.4/

This corresponds to a case with a three-by-three array of chips that are configured uniformly and symmetrically on one of the vertical sidewalls that includes the substrate as well. The run is for a fairly fine grid $(20 \times 38 \times 65)$. The fluid is the Fluorinert liquid FC7 1 . The viscosity is assumed to be a strong function of temperature. The power dissipation per chip is 1.5 W . The flow field for this set of computations is highly three-dimensional and unsteady.

The dimensions of chips and enclosure are shown in figure 3.4. Figure 3.5 shows some of the preliminary data that have been obtained from such a study. For a FC75 fluid it can be seen in figure $3.5(\mathrm{a})$ that the heat lost to the substrate by conduction from the chip decreases with an increase in the Rayleigh number. This is not surprising, since high Rayleigh number flows will be more convection dominated. For higher Rayleigh numbers an increasing proportion of the heat is transferred directly to the fluid. The substrate is made of plexiglas. Things would of course be different if the substrate was a good conductor such as ceramic.

Figure 3.5(b) shows the chip temperatures for the same fluid and same geometry as a function of the Rayleigh number. It is interesting to note that a straight line is obtained in the log-log scale. It is therefore quite likely that a simple correlation can be deduced which can later be applied for design purposes.

Figure 3.6 compares the experimentally obtained pathlines due to Joshi et al. (1990) with the computations using AMPHIB for the case initialized in BLOCK DATA. The power level is 1.5 Watts per chip and the fluid is FC71. The viscosity varies by more than a factor of 10 . This is because the viscosity is a strong function of the temperature for the given fluid. One observes a relatively stagnant flow near the bottom and vertical plumes along the chips. A coarser grid would not suffice for this problem, since the thin boundary layer along the chips and the walls need to be resolved. The results, do indicate that AMPHIB could be usefully employed as a design tool. However, powerful computational resources are required. A number cruncher of the class of a RS/6000 workstation is a must for realistic three-dimensional calculations such as these.

3.4 Convection without Chip or Substrate: Benchmark Study

This example is set up as a benchmark. The boundary conditions are the following:

1. Top wall cooled and bottom wall heated. $\mathrm{THOT}=0.5, \mathrm{TCOOL}=-0.5$.
2. All side walls insulated.

The parameters as initialized in BLOCK DATA are the following:

DATA NIP2, NIP1, NI,NIM1/13,12,11,10/
DATA NJP2,NJP1,NJ,NJM1/13,12,11,10/
DATA NKP2,NKP1,NK,NKM1/13,12,11,10/
DATA NNMAX,NMAX,IMAX,ITMAX,KRUN,NPRINT/1728,500,10,5,0,100/
DATA SMALL,EPS,SORMAX/1.0E20,1.0E-8,2.0/
DATA ISUB,ICHIP,JCHIP,KCHIP,NCHP,ICHOICE/2,2,2,2,0,0/
DATA XBR,YBR,ZBR/0.75,1.00,1.00/
DATA H,WTH,BTH/100.,100.,100./
DATA HCHIP,WCHIP,BCHIP,BSUB/24.0,8.0,6.0,19.5/
DATA ALC,ALS,THOT,TCOOL,TAVG/3338.0,2.0,0.5,-0.5,25.0/
DATA QQQ,DTIME,PR,RA,XPER,ROLL/1.5,2.0E-3,2.5,2.5E4,0.0,0.0/
DATA IUNFRM/1/
DATA QUICK/1.0/
DATA NJCHIP,NKCHIP/3,3/
DATA YCHIP,ZCHIP/38.0,76.0,114.0,50.8,101.6,152.4/

After 500 time steps, at the end of the computations, the heat and mass balance statistics looked like the following:
$\mathrm{NT}=500 \quad \mathrm{TIME}=1.0000$
ITER= 1
NUC $=2.117941$
SOURCE $=0.001057 \quad$ SORSUM $=0.000000$

QCHIP $=0.00000$
NUH=2.117934

QUNS $=-0.001424$
QALL $=-0.000007$
QCRT $=0.000002$
QUNS is relative degree of unsteadiness in the temperature. For steady-state to be reached, QUNS should be about 10^{-6} of NUC.

This doesn't correspond to any experimentally observed case. It is nevertheless a useful benchmark. This case doesn't take much computer time. It runs for about 221 seconds in the CONVEX C240, 90.2 seconds in the AMDAHL 5990/500, and about 66.2 seconds in the CRAY X-MP/216. If large scale modifications have been made in the style and content of the code it will be useful to run the benchmark and check to see if the numbers are unchanged in the output and as such ensures that the changes have been free of errors. It must be emphasized that the numbers after modifications must be unchanged. It is our experience that relatively serious bugs cause minor changes in the output.

Note that the inputs ROLL and XPER will not be described in the next chapter. They are basically not relevant to computations in liquid cooling. XPER must be set to 0 . and ROLL can be set arbitrarily.

Top wall cooled isothermally

Figure 3.1
This is an illustration of a problem with a simple geometry but complicated physics, i.e, Rayleigh-Bénard Convection. The driving force is basically the hot bottom wall. The top wall is the heat sink. This is a very well researched and well documented area in literature. That is why one of the example problem compares the computations of AMPHIB with some well established experimental results. The point of comparison is the velocity field at the mid-section indicated by the shaded area. The velocity field in the enclosure is completely three-dimensional.

Figure 3.2

The computed and experimental velocity fields are compared. The computed velocity fields are on the left. The experimental ones due to Arroyo and Saviron (1992) are on the right. The box is 25 mm wide, 14.6 mm broad and 12.3 mm high. The fluid is silicone oil ($\mathrm{Pr}=130$). From top to bottom, the Rayleigh numbers are respectively $6319.0,11101.0,22884.0,44744.0$ and 66604.0 . Direct comparison between experiments and simulations for three-dimensional flows are extremely rare. This is, to the best of our knowledge, the first of its kind.

Figure 3.3
The computed and experimental velocities are compared for the same section as in figure 3.2. What is however being compared are the pathlines. There is a distinct advantage in comparing pathlines, since they can be observed in experiments directly. On the other hand, velocity vectors have to be deduced from time-lapse photographs in experiments and are more difficult to do. The experiments are on the right, and the simulations are on the left. The Rayleigh numbers starting from the top are
$6319.0,11101.0$ and 22884.0. The degree of agreement between the two is striking.

Figure 3.4

The exact dimensions of the example with chip and substrate are shown. This is the problem that was shown in figure 1.2. The dimensions are specified in terms of the parameters that are initialized in BLOCK DATA of AMPHIB. The dimensions in terms of millimeters are the following: $\mathrm{H}=152$., $\mathrm{WTH}=203.2, \mathrm{BTH}=49.5$, $\mathrm{HCHIP}=24.0, \mathrm{BCHIP}=6.0, \mathrm{WCHIP}=8.0, \mathrm{BSUB}=19.5, \mathrm{YCHIP}(1)=38.0$, $\operatorname{YCHIP}(2)=76.0, \mathrm{YCHIP}(3)=114.0, \mathrm{ZCHIP}(1)=50.8, \mathrm{ZCHIP}(2)=101.6$ and $\mathrm{ZCHIP}(3)=152.4$.

Figure 3.5

The figure at the top plots the percentage heat loss to the substrate as a function of the Rayleigh number. The Rayleigh number is directly proportional to the heat dissipated from the chip. Thus, the plot shows that as the wattage of the chip is increased, more heat as a percentage is lost to the fluid directly. The figure at the bottom compares the average chip temperature as a function of the Rayleigh number. The linear relationship between the two in the log-log scale is interesting. The computations carried out with AMPHIB was for the geometry shown in figure 3.4 for an FC 75 fluid $(\operatorname{Pr}=30)$.

Figure 3.6
The figure at the top represents flow visualization results for an FC71 fluid with a power dissipation level of 1.5 W per chip. The viscosity varies dramatically over an order of magnitude. The enclosure geometry is the one shown in figure 3.4. The results are for a section parallel to the substrate at a distance of 0.5 mm from the chip surfaces. The experiments are due to Joshi et. al (1991). The computed pathlines for the same set of parameters are shown at the bottom figure. The computations are for a fairly fine grid size of $65 \times 38 \times 20$ and incorporates the sharp changes in temperature dependent viscosity. The observed minor differences in the flow pattern are because the flow is unsteady and the exact time instant has not been matched. One observes a relatively stagnant flow near the bottom, vertical plumes along the chips and recirculating zones between the plumes for both the experiments and computations.

Figure 3.7

The same case as seen in figure 3.6. The flow visualization results are on the left, the computational results are on the right. The results seem to agree even in some of the finer details. There is a recirculating zone in the upper left corner. There is also a weak eddy between the bottom and the middle chip. Flow is noticably stronger in the upper regions. The section in question is along a vertical plane perpendicular to the substrate at the midplane.

INPUTS AND SUBROUTINES

4.1 Inputs to the Program

All the input variables are initialized in BLOCK DATA. The inputs to the problem are described in the order of their appearance in the code.

NIP1: The number of control volumes spanning the x-direction for the nonstaggered grid. The number of control volumes in the computational domain will be two less since one control volume on each end is used to impose boundary conditions.
NIP2: \quad It is set to NIP1 +1 .
NI: \quad It is set to NIP1-1.
NIM1: It is set to NIP1-2. It is exactly equal to the number of control volumes in the computational domain. The number of control volumes in a realistic simulation depends strongly on the Rayleigh number. The higher the Rayleigh number the greater the number of grid points required. A useful rule of the thumb is that the average resolution for natural convection problems should at least 0.1 (non-dimensional) in the horizontal directions (x and z) and at least 0.05 in the vertical direction. Typically for a $0.3: 1: 1.3$ geometry NIM1 is set to 10 . Thus, NI, NIP1 and NIP2 are respectively 11 , 12 and 13.
NJP1: The number of control volumes spanning the y-direction for the nonstaggered grid. The number of control volumes in the computational domain will be two less since one control volume on each end is used to impose boundary conditions. NJP1 is set to 22 according to our prescription.
NJP2: \quad It is set to NJP1 +1 .
NJ: It is set to NJP1-1.
NJM1: \quad It is set to NJP1-2.
NKP1: The number of control volumes spanning the z-direction for the nonstaggered grid. The number of control volumes in the computational domain
will be two less since one control volume on each end is used to impose boundary conditions. It is set to 32 for the geometry discussed.
NKP2: It is set to NKP1 +1 .
NK: It is set to NKP1-1.
NKM1: It is set to NKP1-2.
NNMAX: Total number of variables when the matrix is assembled. NNMAX is the product of NIP1, NJP1 and NKP1 and must be initialized accordingly.
NMAX: Prescribed number of time steps per run. There is no convergence criterion to decide whether steady state is reached, since the algorithm is essentially integrating forward in time. NMAX is basically the only control on the length of a run. An NMAX of 1000 is typical. In practice a complete run is never achieved by a single run and a number of restarts are required.
IMAX: The maximum number of iterations in the iterative solver, i.e., even if the residual error criterion is not met the number of iterations does not exceed IMAX. IMAX has been set to 10 .
ITMAX: Maximum number of iterations in the pressure loop. Again, if the mass flux criterion is not met, the number of iterations cannot exceed ITMAX. ITMAX is set to 5 . If the number of iterations consistently exceed ITMAX, it generally means that the time step DTIME must be reduced.
KRUN: A flag to determine if the job is a restart or a new run. If KRUN is set to 0 computations start from scratch. Otherwise, an input file containing the field variables is read in to continue the computations if KRUN is set to 1.
NPRINT: The field variables are written to a file every NPRINT time steps. Also, statistics for the overall mass and energy balance are also printed every NPRINT time steps. This is a checkpointing feature to ensure that the computations are not wasted if the program terminates abnormally. It is typically set to 100 .
SMALL: A variable which is set to an arbitrary high value to force the velocities in the conduction regions to a value very close to zero. Typically SMALL is set to 10^{20}.
EPS: Minimum prescribed residual in the iterative solver. In the subroutine SIP (the iterative solver) the prescribed square of the error norm is calculated from EPS. i.e., $\|\mathbf{A x}-\mathbf{b}\|^{2} \leq N \times E^{2} S^{2}$, where N is the number of variables and the matrix equation is $\mathbf{A x}=\mathbf{b}$. A value of 10^{-8} with all variables in double precision is quite typical. The error norm is normalized
with the norm of the variable unless the norm is small (less than 10^{-4}) in which case the error norm is absolute and not relative. This is automatically taken care of in the linear solver.
SORMAX: The maximum permissible absolute sum of all mass-fluxes from all control volumes at each time step. This parameter controls the number of iterations in the pressure loop. In other words, if the mass fluxes exceed SORMAX the outer pressure loop is traversed again until the flux reduces to a level below SORMAX. For a run where the final flow field is expected to be steady, the value of SORMAX can be fixed quite arbitrarily since at convergence the mass fluxes reduce to an arbitrarily small value. For unsteady runs (e.g., oscillatory flow) the level must be chosen with care. As the grid size is reduced, SORMAX is increased. SORMAX must not exceed 2.0.
ISUB: The number of control volumes spanning the substrate in the x-direction. It should be at least 2 .
ICHIP: The number of control volumes spanning each chip in the x-direction.
JCHIP: The number of control volumes spanning each chip in the y-direction.
KCHIP: The number of control volumes spanning each chip in the z-direction. At the very least, ICHIP, JCHIP and KCHIP should be set to 2 .
NCHP: A flag when set to 0 solves an enclosure problem without chips or substrate. When NCHP is set to 1 the conjugate heat transfer problem is solved which now includes conduction in the substrate and chip as well as fluid convection.
ICHOICE: It is a parameter which determines the fluid to be simulated. If ICHOICE is set to 0 , the fluid has a constant viscosity. If ICHOICE is set to 1 , the fluid is FC75 and if ICHOICE is set to 2, the fluid is FC71. The user can simulate any fluid provided the kinematic viscosity as a function of the temperature is provided. The changes are to be made in the routines PROP and CALT.
XBR: This parameter is required for generating the grid. It is the dimension of the smallest control volume in mm next to the wall in the x-direction. The smallest grid is always next to the wall in order to resolve the boundary layer. Typically, it should be set at a value that is one percent of the enclosure dimension in that direction which is BTH in this case.
YBR: The smallest grid size in the y-direction in mm. Again, one-hundredth of H is suggested. However, for a general case, sensitivity to these
parameters should be tested.
ZBR: The smallest grid size in the z-direction in mm . A similar prescription holds.
H:
The height of the enclosure in mm . This is the y -direction.
WTH: The width of the enclosure in mm. This is the z-direction.
BTH: The length of the enclosure in mm . This is the x -direction.
HCHIP: The dimension of an individual chip in the y-direction in mm.
WCHIP: The dimension of an individual chip in the z-direction in mm .
BCHIP: The dimension of an individual chip in the x-direction in mm .
BSUB: \quad The thickness of the substrate in mm (x-direction).
ALC: Thermal conductivity ratio between chip and fluid.
ALS: \quad Thermal conductivity ratio between substrate and fluid.
THOT: The non-dimensional temperature at the bottom wall.
TCOOL: The non-dimensional temperature at the top wall.
TAVG: \quad The reference temperature in ${ }^{\circ} \mathrm{C}$. This is required to evaluate the viscosity as a function of the temperature. In the case when the top and bottom temperatures are equal, THOT and TCOOL is set to zero, the TAVG is set equal to the temperature of the top and bottom walls.
RHC: The heat capacity (product of density and specific heat) ratio between chip and fluid.
RHS: The heat capacity (product of density and specific heat) ratio between substrate and fluid.
QQQ: This is the heat dissipated per chip in Watts.
DTIME: \quad Non-dimensional time step. The explicit time step for an upwind scheme is calculated by the routine TSTEP. Since the scheme used for the program is QUICK, it is recommended that the time step is about a third of the time step calculated.
PR: \quad Prandtl number of the fluid. This is a non-dimensional property of the fluid defined as $\frac{v}{\alpha}$, where v is the kinematic viscosity and α is the thermal diffusivity.
RA: The product of the Prandtl number and the Rayleigh number which is $\frac{\mathrm{g} \beta \mathrm{qH} H^{5}}{\alpha^{2} \kappa_{c}}$, where g is the acceleration due to gravity; β is the coefficient of volume expansion; L is the length scale (height of the enclosure in this case); and κ_{c} is the thermal conductivity of the chip; q is the volumetric rate of heat generation for each chip. This must be specified only if the it is a
pure enclosure problem (when NCHP $=0$). Otherwise, the product of the Rayleigh and Prandtl numbers are automatically calculated using QQQ.
IUNFRM: This parameter is used in the grid. When set to 0 , a non-uniform grid is generated. Otherwise, a uniform grid is created.
QUICK: It is a number between 0 and 1 . If QUICK is set to 0 . the upwind scheme is used. If QUICK is set to 1 . the quick scheme is used. Any number between the two is a weighted average of the two schemes. It is recommended that for initial runs especially for high Rayleigh numbers (greater than 10^{7}) QUICK be set to 0 . After a converged solution is got QUICK should be set to 1 . However, if there are convergence problems QUICK should be set to zero again. A failure to converge to a steady state (when experiments clearly indicate steady-state) implies that the number of grid points are insufficient. Therefore, NI etc must be increased.
NJCHIP: The number of chips in the vertical y-direction.
NKCHIP: The number of chips in the vertical z-direction.
YCHIP: A one-dimensional array of length NJCHIP. These are the locations of the chip centers in the y-direction.
ZCHIP: A one-dimensional array of length NKCHIP. These are the locations of the chip centers in the z-direction.

The schematic of a typical geometry that is solved is shown in figure 1.1. The substrate and the chip protrusions are shaded. In terms of the variables in the program, the geometry is marked in figure 3.4 as an example for a 3 by 3 three array. In the most general situation, the protrusions are located in a non-uniformly spaced NJCHIP by NKCHIP array. All protrusions have the same dimensions, which is $\mathrm{HCHIP} \times \mathrm{WCHIP} \times \mathrm{BCHIP}$.

4.2 Subroutines

PROGRAM AMPHIB:

This is the main program. It consists of five subroutine calls in sequence. The first subroutine call is for the subroutine OPENF.

SUBROUTINE OPENF

This subroutine opens the files that handle the output and input for the code. The files are the following:
UNIT 8: This is the input data for the field variables ($\operatorname{tod}(i, j, k)$, $\operatorname{uod}(i, j, k), \operatorname{vod}(i, j, k)$, wod(i,j,k) and pod(i,j,k)) i.e., the initial temperature, velocities and pressure. The field variables are read in only if KRUN is set to 1.
UNIT 10: This is an output file of the u, v and w velocities at a specific location for all the time steps. This was used to gauge the dynamical behavior of the system i.e., whether it is steady-state, oscillatory etc.
UNIT 11: This is output file for the field variables updated at specific instances which is determined by NPRINT. This is a checkpointing procedure.
UNIT 12: This is the output file for the mean field variables over the entire run, i.e., over NMAX time steps.

UNIT 13: This is the file where the grid for the given run is stored.

SUBROUTINE GRID:

This subroutine generates the three-dimensional grid for the problem. The subroutine non-dimensionalizes the dimensions first in terms of the height of the cavity, h . It is therefore sufficient to input the data in consistent units (say inches) rather than in millimeters. The subroutine generates a non-uniform grid x of the following type

$$
\begin{equation*}
x=\frac{\operatorname{Tanh}(H K r)}{K} \tag{4.1}
\end{equation*}
$$

This is known as the Robert's transformation (Robert, 1970). The grid distribution ensures that the boundary layers are resolved near the wall. At the same time, the grid is spaced as uniformly as possible away from the wall. There are two grid parameters (H and K) that need to be determined. The variable r represents the uniform grid. Equation 4.1 thus maps a uniform grid (r) to a non-uniform one (x).

The grid distribution generated for the NJCHIP by NKCHIP enclosure is a little more complicated. The non-uniform hyperbolic tangent distribution of the grid is confined to a region near the walls. Otherwise, the grid is made as uniform as possible, away from the wall. The same thing applies to the y and z directions. As an example, consider a 3 by 3 array that was portrayed in figure 1.2 . Two perpendicular sections of the non-staggered control volumes for a $20 \times 38 \times 65$ grid is shown in figure 4 .1. The $x-y$ plane is on the left
and the $z-y$ plane is shown on the right. The grid point is located at the centroid of the control volume for the non-staggered grid.

SUBROUTINE GRID1

This subroutine is called by GRID to calculate the grid parameters for the nonuniform grid (H, K). The routine solves transcendental equations by the bisection and the Newton-Raphson method. Note that the users could supply their own grids in which case GRID and GRID1 are not required. The whole program can only handle grids that are rectangular. The non-uniformity is restricted to their respective directions only.

SUBROUTINE PROP

In this routine the conductivity ratios and the heat capacity ratios are assigned for the chip, substrate and fluid. The heat capacity is the product of the specific heat and density. The parameter ICHOICE determines the fluid chosen. In the present program, the choice is limited to FC71 and FC75. Using the properties, the product of the Rayleigh and Prandtl numbers (sometimes referred to as the Boussinesq number) is calculated using QQQ, the heat dissipated per chip. The user will need to modify this subroutine accordingly for a different set of fluids.

SUBROUTINE INITIO

In this subroutine all variables are initialized. If the computations are started from scratch, the field variables are all initialized to zero. For a restart job (KRUN $=1$), the field variables are read in from UNIT 8. If KRUN is set to 0 , and NCHP set to zero as well, a problem of pure natural convection is solved.

SUBROUTINE PLOOP

This subroutine incorporates the essence of the SIMPLEX algorithm. It also includes an error control routine (Liu, 1979). It calls the following subroutines:

SUBROUTINE CALT

This subroutine calculates the coefficients of the algebraic equation for solving the finite-difference equation for temperature which is of the following form:

$$
\begin{align*}
A_{P} T_{p}=A_{E} T_{E}+A_{W} T_{W} & +A_{N} T_{N}+A_{S} T_{S}+A_{E} T_{E}+A_{B} T_{B} \\
& +A_{F} T_{F}+S \tag{4.2}
\end{align*}
$$

The explicit expressions for the coefficients (i.e., A_{p} etc) as well as the derivation of the equations from scratch are given in appendix B for the interested reader.

The coefficients must be modified for accommodating the boundary conditions. This is also accomplished in the subroutine. The computational details are available in appendix B.

The interfacial thermal conductivities are calculated in this routine. It uses the harmonic mean formulation as suggested by Patankar (1980). Essentially the conductivities are calculated in the following manner:

$$
\begin{equation*}
\kappa_{e}=\kappa_{i} \kappa_{i+1}\left(\frac{\Delta x_{i}+\Delta x_{i+1}}{\Delta x_{i} \kappa_{i+1}+\Delta x_{i+1} \kappa_{i}}\right) \tag{4.3}
\end{equation*}
$$

κ_{e} is the thermal conductivity of the east face. In this manner, sharp changes in conductivities can be handled accurately. The formulation is necessary since properties vary dramatically in a conjugate heat transfer problem such as this. For instance, in a problem with aluminum protrusions, plexiglas substrate and FC75 liquid the conductivity ratio between aluminum and FC75 is almost 2800 . For the heat capacity ratios, the interfacial heat capacities are calculated by linear interpolation.

SUBROUTINE CALU

The finite difference analog of the x-momentum equation is assembled in this subroutine. The equations are linearized and the unknown to be solved is the U-velocity at every grid point. The equation is of the following form:

$$
\begin{align*}
A_{P} U_{p}=A_{E} U_{E}+A_{W} U_{W} & +A_{N} U_{N}+A_{S} U_{S}+A_{E} U_{E}+A_{B} U_{B} \\
& +A_{F} U_{F}+S \tag{4.4}
\end{align*}
$$

The boundary conditions are also incorporated by suitable modifications of the coefficients. All details are provided for in appendix B. The equation for solving the coupling constants (to be discussed later) of the U-velocity for each grid point is also calculated. The coupling constants will be used later in the equation for the pressure correction.

Similarly, the subroutines CALV and CALW are used to assemble the equations and apply boundary conditions for the V and W velocities respectively. The equation for solving the coupling constants are also assembled in these two subroutines.

In all the velocity routines, the interfacial kinematic viscosity for the fluid region is calculated by a harmonic mean formulation.

SUBROUTINE CALP

The pressure correction equation is derived from the continuity equation and enforces mass balance by correcting the pressure and velocities. The fundamental relationships are the following:

$$
\begin{align*}
& U_{e}^{*}=U^{\prime}-d u_{e}\left(P_{E}^{\prime}-P_{P}^{\prime}\right) \tag{4.5}\\
& V_{n}^{*}=V^{\prime}-d v_{n}\left(P_{N}^{\prime}-P_{P}^{\prime}\right) \tag{4.6}\\
& W_{f}^{*}=W^{\prime}-d w_{f}\left(P_{F}^{\prime}-P^{\prime} P\right) \tag{4.7}
\end{align*}
$$

The starred quantities are corrected velocities that satisfy the continuity equations. The primed quantities for pressure are the pressure correction. The coupling constants $d u_{e}, d v_{n}$, and $d w_{f}$ were determined respectively in CALU, CALV and CALW. A pressure correction equation similar in form to equation (6) is set up in CALP.

SUBROUTINE NU

This subroutine calculates the average Nusselt numbers at the cold and hot walls and the generation of internal energy. It does an overall heat balance. The mass balance and the heat balance statistics are printed in this subroutine. NU is called by PLOOP every NPRINT time steps.

SUBROUTINE SIP

This subroutine is called by CALU, CALV and CALW twice every time step for solving the generic linear equations that have been assembled (equation 2.2). The first call is to solve the velocity equations and the second call is made to solve for the coupling constants as dictated by the SIMPLEX algorithm. SIP is called by CALT and CALP once to solve the temperature and pressure correction equations respectively. SIP is an iterative solver. It is controlled by two parameters EPS and IMAX. EPS determines the relative error norm. EPS is generally set to 10^{-8} for double precision calculations. Double precision calculations are recommended and are in fact the default (using the IMPLICIT statement in every subroutine).

IMAX is the maximum number of iterations allowed in the iterative solver. IMAX is typically set to a value of 10 . The subroutine calls the subroutines RES and XL. RES calculates the error vector i.e., Ax - b. XL performs the forward and back substitution for
the incomplete LU decomposition which is an integral part of the solver. The solver is known as Strongly Implicit Procedure and is credited to Stone (1968). The reader can substitute any solver in its place. SIP was found to be the most cost-effective for natural convection problems that were studied. Note that iterative solvers are generally more efficient than direct solvers for three-dimensional problems since the matrices that are assembled are generally speaking ill-conditioned. The condition number (ratio of the largest to the smallest eigen value of the matrix) increases for finer grids. If the smallest eigen value of the matrix is exactly zero, then the matrix is singular.

The input (arguments) to the subroutine are IST, JST, KST, ISP, JSP and KSP and the variable to be solved (the field variable). IST, JST and KST are the starting indices of the computational domain for the x, y and z direction. ISP, JSP and KSP are the last indices for the respective directions.

SUBROUTINE TSTEP

This subroutine calculates the maximum allowable time step for the difference equations of the temperature and the velocities if the scheme were explicit. This information, i.e., the minimum time step is printed every NPRINT time steps. This routine is called by PLOOP. This provides a useful guideline for the time step that is specified by the variable DTIME. The explicit time step is calculated using the CFL criteria and for an upwind interpolation scheme. The criteria for the QUICK scheme will be more stringent. It is therefore recommended that the time step be assigned a value that is between a third or half the computed time step. In this way, numerically induced oscillations can be avoided.

SUBROUTINE CHIPTEMP

This subroutine calculates the average temperature rise of the chips. The temperature is calculated by volume average of temperatures of the control volumes that are contained in the chip. The average temperatures are then suitably scaled to give the temperature rise in degree celsius. The relevant information is then printed. The subroutine is called by PLOOP every NPRINT time steps.

Figure 4.1

The figure on the left and right are two perpendicular views of the grid generated for a fine mesh ($20 \times 38 \times 65$). The control volume sections of the non-staggered grid points are what is shown. The grid generated corresponds to a 3×3 array shown in figure 3.4. Some of the results produced for the above grid are shown in figures 3.6 and 3.7.

Figure 4.2

This is a schematic flow chart of the subroutines in the code AMPHIB.
The main program has five subroutine calls; OPENF, GRID, PROP, INITIO and PLOOP. The subroutine PLOOP is blown up to reveal more details.

APPENDIX A

5.1 Boundary Conditions

5.1.1 The Defaults

The temperature boundary conditions have been set up in the program as follows:
Top wall: Isothermal (perpendicular to y axis)
Bottom wall: Isothermal (perpendicular to y axis)
Left wall: Adiabatic (perpendicular to x axis)
Right wall: Adiabatic (perpendicular to x axis)
Back wall: Adiabatic (perpendicular to z axis)
Front wall: Adiabatic (perpendicular to z axis)
The velocity boundary conditions are all non-slip.
The temperature boundary conditions are imposed in the subroutine CALT. The scope of the program can be expanded by imposing different combinations of boundary conditions. The three commonly used boundary conditions are: (1) Adiabatic (2) Isothermal, (3) Convective or mixed and (4) specified heat flux. Each of these will now be described in detail. The velocity boundary conditions imposed in the program are all nonslip.

5.1.2 Adiabatic Boundary Conditions

This corresponds to the condition of having the heat flux set to zero at the wall. For example, $\frac{\partial T}{\partial x}$ (at the left wall) $=0$. The numerical boundary condition corresponding to this for the control volume next to the left wall $(i=2)$ is $T_{W}=T_{P}$. Substituting this condition in the algebraic equation (equation 2.2), the coefficients must be modified in the following manner:

$$
A_{P}=A_{P}-A_{W} \text { and } A_{W}=0
$$

For the control volume that is one away from the wall ($i=3$), the numerical boundary condition is $\mathrm{T}_{\mathrm{WW}}=\mathrm{T}_{\mathrm{W}}$. This corresponds to $\mathrm{S}=\mathrm{T}_{\mathrm{W}} \mathrm{A}_{\mathrm{WW}}$ in the program.

5.1.3 Isothermal Boundary Conditions

This corresponds to the condition where the temperature at the wall is specified. For example, T (at the bottom wall) = THOT . The numerical boundary condition corresponding to this for the control volume next to the bottom wall $(\mathrm{j}=2)$ is $\mathrm{T}_{\mathrm{S}}+\mathrm{T}_{\mathrm{P}}=2$ THOT. Substituting this condition in the algebraic equation (equation 2.2), the coefficients must be modified in the following manner:

$$
\mathrm{A}_{P}=\mathrm{A}_{P}+\mathrm{A}_{S}, \mathrm{~S}=2 \mathrm{THOT} \mathrm{~A}_{S} \text { and } \mathrm{A}_{S}=0
$$

For the control volume that is one away from the wall ($j=3$), the numerical boundary condition is $T_{S S}=2 \mathrm{THOT}-\mathrm{T}_{\mathrm{S}}$. This corresponds to $\mathrm{S}=\left(2 \mathrm{THOT}-\mathrm{T}_{\mathrm{S}}\right) \mathrm{A}_{\mathrm{WW}}$ in the program.

5.1.4 Convective Boundary Condition

This corresponds to the case when the temperature at the wall satisfies a boundary condition of the type $\frac{\partial T}{\partial z}+(\mathrm{HCON}) \mathrm{T}=0$, for example at the back wall. The numerical boundary condition corresponding to this for the control volume next to the bottom wall $(k=2)$ is $\operatorname{HCON}\left(\frac{T_{P}+T_{B}}{2}\right)+\frac{T_{P}-T_{B}}{\Delta z}=0$. Substituting this condition in the algebraic equation (equation 2.2), the coefficients must be modified in the following manner:

$$
A_{P}=A_{P}-\operatorname{CONST} A_{B} \text {, where CONST }=\frac{\frac{1}{\Delta z}+\frac{H}{2}}{\frac{1}{\Delta z}-\frac{H}{2}}
$$

For the control volume that is one away from the wall $(\mathrm{k}=3)$, the numerical boundary condition is $T_{B B}=$ CONST T_{B}. This corresponds to $S=($ CONST $) T_{B} A_{B B}$ in the program.

5.1.4 Heat Flux Boundary Condition

This corresponds to the condition of having the heat flux specified at the wall. For example, $\frac{\partial T}{\partial x}$ (at the left wall) $=\mathrm{C}$. The numerical boundary condition corresponding to this for the control volume next to the left wall $(i=2)$ is $\mathrm{T}_{\mathrm{W}}=\mathrm{T}_{\mathrm{P}}$ - Const, where Const $=$
$C \Delta x$. Substituting this condition in the algebraic equation (eqn 5), the coefficients must be modified in the following manner:

$$
A_{P}=A_{P}-A_{W}, S=-A_{W} \text { Const and } A_{W}=0 .
$$

For the control volume that is one away from the wall ($\mathrm{i}=3$), the numerical boundary condition is $T_{W W}=T_{W}-$ Const. This corresponds to $S=\left(T_{W}-\right.$ Const $) A_{W W}$ in the program. Note that the adiabatic condition is a special case, when $\mathrm{C}=0$.

5.2 Velocity Boundary Conditions

All velocities i.e., the U, V and W velocities are set to zero (non-slip condition) for all six walls in the program. The most commonly used boundary conditions and their implementation will now be described.

5.2.1 Non-Slip Conditions

The numerical implementation is complicated by the staggered nature of the grid. Consider the left wall as an example. For the u-velocity the grid point coincides with the left wall due to stagger). Hence, in equation 2.2 we simply set $A_{W}=0$ (since $U_{W}=0$).
For the V and W velocities for the control volume next to the wall ($\mathrm{i}=2$ for V and W , and i $=3$ for U) we have $V_{P}=-V_{W}$ and $W_{P}=-W_{W}$. Hence $A_{P}=A_{P}+A_{W}$ and $A_{W}=0$ in each of the cases.

For the control volume one away from the wall ($\mathrm{i}=3$ for V and W , and $\mathrm{i}=4$ for U) we have $U_{W w}$ as identically zero. Hence $A_{W W}=0$ for the U-velocity grid. For the V and W velocities we have $\mathrm{V}_{\mathrm{W}}=-\mathrm{V}_{\mathrm{WW}}$ and $\mathrm{W}_{\mathrm{W}}=-\mathrm{W}_{\mathrm{WW}}$. Hence, $\mathrm{S}=-\mathrm{A}_{\mathrm{WW}} \mathrm{V}_{\mathrm{W}}$ and $\mathrm{A}_{W W}=0$ for the V velocity equation and $S=-A_{W W} W_{W}$ and $A_{W W}=0$ for the W velocity equation.

5.2.2 Slip Wall Conditions

Again consider the left wall as an example. These boundary conditions are employed to generally impose a symmetry. For instance, if the flow consists of two symmetric vortices, a slip wall can be imposed on one of them and calculations can be carried out for only half the computational domain. The slip wall is the numerical implementation of zero shear stress at the wall. For the left wall it would mean that $\frac{\partial V}{\partial x}=0$
and $\frac{\partial W}{\partial x}=0$. Also $U=0$. The numerical boundary conditions for the U velocity is the same as the non-slip conditions at the wall i.e. $A_{W}=0(i=3)$ and $A_{W W}=0(i=4)$. The boundary conditions for the V and W are identical to the adiabatic condition for the temperature i.e., $A_{P}=A_{P}-A_{W}$ and $A_{W}=0(i=2)$ and $S=T_{W} A_{W W}$ and $A_{W W}=0(i=3)$.

5.2.3 Velocity Prescribed

This is a very important boundary condition. Using this one can solve problems in mixed or forced convection as in figure 1.3. As an example, let the left wall have an inlet with a U -velocity of U_{0} (consistently non-dimensionalized). Also the V and W velocity are zero. For that portion of the wall, the boundary conditions for the U velocity are $S=U_{0} A_{W}$ and $A_{W}=0(i=3)$ and $S=U_{0} A_{W W}$ and $A_{W W}=0(i=4)$. The V and W velocities have the usual non-slip boundary condition.

For the control volume next to the wall ($i=2$ for V and W, and $i=3$ for U), we have $V_{P}=-V_{W}$ and $W_{P}=-W_{W}$. Hence $A_{P}=A_{P}+A_{W}$ and $A_{W}=0$ in each of the cases. For the control volume one away from the wall ($i=3$ for V and W), we have $V_{W}=-V_{W W}$ and $W_{W}=-W_{W W}$. Hence, $S=-A_{W W} V_{W}$ and $A_{W W}=0$ for both.

If there is an inlet there must be an outlet. For the outlet the velocities cannot be prescribed. In fact, only approximate boundary conditions can be used. This is the so called 'natural boundary condition'. For instance, if the outlet is at a portion of the east wall we numerically implement $\frac{\partial U}{\partial x}=0, \frac{\partial V}{\partial x}=0$ and $\frac{\partial W}{\partial x}=0$ at the east wall. The numerical implementation of these conditions have already been discussed and are quite straightforward. Basically, this means that we are not sure what the boundary conditions are but assume that they don't change much near the outlet. Overall mass balance is automatically satisfied.

APPENDIX B

6.1 Difference Equations

In this section the finite difference equations are presented for the equations of the velocities and temperatures. The details of the derivation are skipped. Only the final form of the equations are stated. For additional details of the control volume method the reader is referred to Patankar (1980).

6.1.1 Energy Equation and linear equation for Temperature

The QUICK scheme for estimating temperature fluxes at the east and west faces are the following:

$$
\begin{align*}
& \mathrm{G}_{\mathrm{e}} \mathrm{~T}_{\mathrm{e}}=\mathrm{G}_{\mathrm{e}}\left(\frac{\Delta \mathrm{x}_{\mathrm{i}+1} \mathrm{~T}_{\mathrm{p}}+\Delta \mathrm{x}_{\mathrm{i}} \mathrm{~T}_{\mathrm{E}}}{2 \Delta \mathrm{x}_{\mathrm{e}}}\right) \\
& +\left(\frac{\left|\mathrm{G}_{\mathrm{e}}\right|-\mathrm{G}_{\mathrm{e}}}{8}\right)\left(\frac{\Delta \mathrm{x}_{\mathrm{i}} \Delta \mathrm{x}_{\mathrm{i}+1}}{\Delta \mathrm{x}_{\mathrm{e}} \Delta \mathrm{x}_{\mathrm{ee}}}\right)\left(\frac{\mathrm{T}_{\mathrm{P}} \Delta \mathrm{x}_{\mathrm{ee}}}{\Delta \mathrm{x}_{\mathrm{e}}+\Delta \mathrm{x}_{\mathrm{ee}}}+\frac{\mathrm{T}_{\mathrm{EE}} \Delta \mathrm{x}_{\mathrm{e}}}{\Delta \mathrm{x}_{\mathrm{e}}+\Delta \mathrm{x}_{\mathrm{ee}}}-\mathrm{T}_{\mathrm{E}}\right) \\
& -\left(\frac{\left|\mathrm{G}_{\mathrm{e}}\right|+\mathrm{G}_{\mathrm{e}}}{8}\right)\left(\frac{\Delta \mathrm{x}_{\mathrm{i}} \Delta \mathrm{x}_{\mathrm{i}+1}}{\Delta \mathrm{x}_{\mathrm{e}} \Delta \mathrm{x}_{\mathrm{w}}}\right)\left(\frac{\mathrm{T}_{\mathrm{E}} \Delta \mathrm{x}_{\mathrm{w}}}{\Delta \mathrm{x}_{\mathrm{w}}+\Delta \mathrm{x}_{\mathrm{e}}}+\frac{\mathrm{T}_{\mathrm{W}} \Delta \mathrm{x}_{\mathrm{e}}}{\Delta \mathrm{x}_{\mathrm{e}}+\Delta \mathrm{x}_{\mathrm{w}}}-\mathrm{T}_{\mathrm{p}}\right) \tag{6.1}\\
& G_{w} T_{w}=G_{w}\left(\frac{\Delta x_{i-1} T_{p}+\Delta x_{i} T_{w}}{2 \Delta x_{w}}\right) \\
& +\left(\frac{\left|G_{w}\right|-G_{w}}{8}\right)\left(\frac{\Delta x_{i} \Delta x_{i-1}}{\Delta x_{e} \Delta x_{w}}\right)\left(\frac{T_{E} \Delta x_{w}}{\Delta x_{e}+\Delta x_{w}}+\frac{T_{w} \Delta x_{e}}{\Delta x_{e}+\Delta x_{w}}-T_{p}\right) \\
& -\left(\frac{\left|G_{w}\right|+G_{w}}{8}\right)\left(\frac{\Delta x_{i} \Delta x_{i-1}}{\Delta x_{w w} \Delta x_{w}}\right)\left(\frac{\mathrm{T}_{\mathrm{ww}} \Delta \mathrm{x}_{\mathrm{w}}}{\Delta \mathrm{x}_{\mathrm{w}}+\Delta \mathrm{x}_{\mathrm{w}}}+\frac{\mathrm{T}_{\mathrm{p}} \Delta \mathrm{x}_{\mathrm{ww}}}{\Delta \mathrm{x}_{\mathrm{w}}+\Delta \mathrm{x}_{\mathrm{ww}}}-\mathrm{T}_{\mathrm{w}}\right) \tag{6.2}
\end{align*}
$$

The coefficients of the energy equation are the following:

$$
\begin{align*}
A_{E} & =-\frac{G_{e} \Delta x_{i}}{2 \Delta x_{e}}+\frac{\Delta y_{j} \Delta z_{k}}{\Delta x_{e}}+\left(\frac{\left|G_{e}\right|+G_{e}}{8}\right)\left(\frac{\Delta x_{i} \Delta x_{i+1}}{\Delta x_{e}\left(\Delta x_{w}+\Delta x_{e}\right)}\right. \\
& +\left(\frac{\left|G_{e}\right|-G_{e}}{8}\right)\left(\frac{\Delta x_{i} \Delta x_{i+1}}{\Delta x_{e} \Delta x_{e e}}\right)+\left(\frac{\left|G_{w}\right|-G_{w}}{8}\right) \frac{\Delta x_{i} \Delta x_{i-1}}{\Delta x_{e}\left(\Delta x_{w}+\Delta x_{e}\right)} \tag{6.3}
\end{align*}
$$

$$
\begin{align*}
A_{w} & =\frac{G_{w} \Delta x_{i}}{2 \Delta x_{w}}+\frac{\Delta y_{i} \Delta z_{k}}{\Delta x_{w}}+\left(\frac{\left|G_{w}\right|+G_{w}}{8}\right)\left(\frac{\Delta x_{i} \Delta x_{i-1}}{\Delta x_{w} \Delta x_{w w}}\right) \\
& +\left(\frac{\left|G_{w}\right|-G_{w}}{8}\right) \frac{\Delta x_{i} \Delta x_{i-1}}{\Delta x_{w}\left(\Delta x_{w}+\Delta x_{e}\right)}+\left(\frac{\left|G_{e}\right|+G_{e} \Delta x_{i+1}}{8}\right) \frac{\Delta x_{w}\left(\Delta x_{w}+\Delta x_{e}\right)}{\Delta x_{i}} \tag{6.4}
\end{align*}
$$

$$
\begin{align*}
A_{N} & =-\frac{G_{n} \Delta y_{j}}{2 \Delta y_{n}}+\frac{\Delta x_{j} \Delta z_{k}}{\Delta y_{n}}+\left(\frac{\left|G_{n}\right|+G_{n}}{8}\right)\left(\frac{\Delta y_{j} \Delta y_{j+1}}{\Delta y_{n}\left(\Delta y_{s}+\Delta y_{n}\right)}\right. \\
& +\left(\frac{\left|G_{n}\right|-G_{n}}{8}\right)\left(\frac{\Delta y_{j} \Delta y_{j+1}}{\Delta y_{n} \Delta y_{n n}}\right)+\left(\frac{\left|G_{s}\right|-G_{s}}{8}\right) \frac{\Delta y_{j} \Delta y_{j-1}}{\Delta y_{n}\left(\Delta y_{s}+\Delta y_{n}\right)} \tag{6.5}\\
A_{s} & =\frac{G_{s} \Delta y_{j}}{2 \Delta y_{s}}+\frac{\Delta x_{i} \Delta z_{k}}{\Delta y_{s}}+\left(\frac{\left|G_{s}\right|+G_{s}}{8}\right)\left(\frac{\Delta y_{j} \Delta y_{j-1}}{\Delta y_{s} \Delta y_{s s}}\right) \\
& +\left(\frac{\left|G_{s}\right|-G_{s}}{8}\right) \frac{\Delta y_{j} \Delta y_{j-1}}{\Delta y_{s}\left(\Delta y_{s}+\Delta y_{n}\right)}+\left(\frac{\left|G_{n}\right|+G_{n}}{8}\right) \frac{\Delta y_{j} \Delta y_{j+1}}{\Delta y_{s}\left(\Delta y_{s}+\Delta y_{n}\right)} \tag{6.6}
\end{align*}
$$

$$
\begin{aligned}
A_{F} & =-\frac{G_{f} \Delta z_{k}}{2 \Delta z_{f}}+\frac{\Delta x_{i} \Delta y_{j}}{\Delta z_{f}}+\left(\frac{\left|G_{f}\right|+G_{f}}{8}\right) \frac{\Delta z_{k} \Delta z_{k+1}}{\Delta z_{f}\left(\Delta z_{b}+\Delta z_{f}\right)} \\
& +\left(\frac{\left|G_{f}\right|-G_{f}}{8}\right)\left(\frac{\Delta z_{k} \Delta z_{k+1}}{\Delta z_{f} \Delta z_{f f}}\right)+\left(\frac{\left|G_{b}\right|-G_{b}}{8}\right) \frac{\Delta z_{k} \Delta z_{k-1}}{\Delta z_{f}\left(\Delta z_{b}+\Delta z_{f}\right)} \\
A_{B} & =\frac{G_{b} \Delta z_{k}}{2 \Delta z_{b}}+\frac{\Delta x_{i} \Delta y_{j}}{\Delta z_{b}}+\left(\frac{\left|G_{b}\right|+G_{b}}{8}\right) \frac{\Delta z_{k} \Delta z_{k-1}}{\Delta z_{b} \Delta z_{b b}} \\
& +\left(\frac{\left|G_{b}\right|-G_{b}}{8}\right) \frac{\Delta z_{k} \Delta z_{k-1}}{\Delta z_{b}\left(\Delta z_{b}+\Delta z_{f}\right)}+\left(\frac{\left|G_{f}\right|+G_{f}}{8}\right) \frac{\Delta z_{k} \Delta z_{k+1}}{\Delta z_{b}\left(\Delta z_{b}+\Delta z_{f}\right)}
\end{aligned}
$$

$$
S=\frac{\Delta x_{i} \Delta y_{j} \Delta z_{k}}{\Delta t} T_{\mathrm{p}}^{\mathrm{n}-1}-\left(\frac{\left|\mathrm{G}_{\mathrm{e}}\right|-\mathrm{G}_{\mathrm{e}}}{8}\right) \frac{\Delta \mathrm{x}_{\mathrm{i}} \Delta \mathrm{x}_{\mathrm{i}+1}}{\Delta \mathrm{x}_{\mathrm{ee}}\left(\Delta \mathrm{x}_{\mathrm{ee}}+\Delta \mathrm{x}_{\mathrm{e}}\right)} \mathrm{T}_{\mathrm{EE}}
$$

$$
-\left(\frac{\left|G_{w}\right|+G_{w}}{8}\right) \frac{\Delta x_{i} \Delta x_{i-1}}{\Delta x_{w w}\left(\Delta x_{w w}+\Delta x_{w}\right)} T_{w w}
$$

$$
-\left(\frac{\left|G_{n}\right|-G_{n}}{8}\right) \frac{\Delta y_{j} \Delta y_{j+1}}{\Delta y_{n n}\left(\Delta y_{n n}+\Delta y_{n}\right)} T_{N N}
$$

$$
-\left(\frac{\left|G_{s}\right|+G_{s}}{8}\right) \frac{\Delta y_{j} \Delta y_{j-1}}{\Delta y_{s s}\left(\Delta y_{s s}+\Delta y_{s}\right)} T_{s s}
$$

$$
-\left(\frac{\left|G_{f}\right|-G_{f}}{8}\right) \frac{\Delta z_{k} \Delta z_{k+1}}{\Delta z_{f f}\left(\Delta z_{f f}+\Delta z_{f}\right)} T_{\mathrm{FF}}
$$

$$
\begin{equation*}
-\left(\frac{\left|\mathrm{G}_{\mathrm{b}}\right|+\mathrm{G}_{\mathrm{b}}}{8}\right) \frac{\Delta \mathrm{z}_{\mathrm{k}} \Delta \mathrm{z}_{\mathrm{k}-1}}{\Delta \mathrm{z}_{\mathrm{bb}}\left(\Delta \mathrm{z}_{\mathrm{bb}}+\Delta \mathrm{z}_{\mathrm{b}}\right)} \mathrm{T}_{\mathrm{BB}} \tag{6.9}
\end{equation*}
$$

$$
\begin{align*}
A_{P}= & A_{E}+\frac{A_{w}+A_{N}}{}+A_{s}+A_{F}+A_{B} \\
& -\left(\frac{\left|G_{e}\right|-G_{e}}{8}\right) \frac{\Delta x_{i} \Delta x_{i+1}}{\Delta x_{e e}\left(\Delta x_{e e}+\Delta x_{e}\right)} \\
& -\left(\frac{\left|G_{w}\right|+G_{w}}{8}\right) \frac{\Delta x_{i} \Delta x_{i-1}}{\Delta x_{w w}\left(\Delta x_{w w}+\Delta x_{w}\right)} \\
& -\left(\frac{\left|G_{n}\right|-G_{n}}{8}\right) \frac{\Delta y_{j} \Delta y_{j+1}}{\Delta y_{n n}\left(\Delta y_{n n}+\Delta y_{n}\right)} \\
& -\left(\frac{\left|G_{s}\right|+G_{s}}{8}\right) \frac{\Delta y_{j} \Delta y_{j-1}}{\Delta y_{s s}\left(\Delta y_{s s}+\Delta y_{s}\right)} \\
& -\left(\frac{\left|G_{f}\right|-G_{f}}{8}\right) \frac{\Delta z_{k} \Delta z_{k+1}}{\Delta z_{f f}\left(\Delta z_{f f}+\Delta z_{f}\right)} \\
& -\left(\frac{\left|G_{b}\right|+G_{b}}{8}\right) \frac{\Delta z_{k} \Delta z_{k-1}}{\Delta z_{b b}\left(\Delta z_{b b}+\Delta z_{b}\right)}+\frac{\Delta x_{i} \Delta y_{j} \Delta z_{k}}{\Delta t} \tag{6.10}
\end{align*}
$$

The coefficient A_{p} etc have their usual meaning.

6.1.2 x-Momentum Equation and Linear Equation for u

For the x-momentum equation, the velocities must be interpolated differently due to the staggered nature of the grid. The QUICK scheme results in the following for the east and west faces of the control volume:

$$
\begin{align*}
G_{e} u_{e} & =G_{e}\left(\frac{u_{P}+u_{E}}{2}\right) \\
& +\left(\frac{\left|G_{e}\right|-G_{e}}{16}\right)\left(\frac{\Delta x_{i}^{2}}{\Delta x_{e}}\right)\left(\frac{u_{E E}-u_{E}}{\Delta x_{i+1}}-\frac{u_{E}-u_{p}}{\Delta x_{i}}\right) \\
& -\left(\frac{\left|G_{e}\right|+G_{e}}{16}\right)\left(\frac{\Delta x_{i}^{2}}{\Delta x_{w}}\right)\left(\frac{u_{E}-u_{p}}{\Delta x_{i}}-\frac{u_{p}-u_{W}}{\Delta x_{i-1}}\right) \tag{6.11}\\
G_{w} u_{w} & =G_{w}\left(\frac{u_{P}+u_{w}}{2}\right) \\
& +\left(\frac{\left|G_{w}\right|-G_{w}}{16}\right)\left(\frac{\left.\Delta x_{i-1}\right|^{2}}{\Delta x_{w}}\right)\left(\frac{u_{E}-u_{p}}{\Delta x_{i}}-\frac{u_{P}-u_{W}}{\Delta x_{i-1}}\right) \\
& -\left(\frac{\left|G_{w}\right|+G_{w}}{16}\right)\left(\frac{\Delta x_{i-1}^{2}}{\Delta x_{w w}}\right)\left(\frac{u_{P}-u_{W}}{\Delta x_{i-1}}-\frac{u_{w}-u_{W W}}{\Delta x_{i-2}}\right) \tag{6.12}
\end{align*}
$$

The coefficients of the discretized x-momentum equations are the following:

$$
\begin{align*}
A_{E} & =-\frac{G_{e}}{2}+\operatorname{Pr} \frac{\Delta y_{j} \Delta z_{k}}{\Delta x_{i}}+\left(\frac{\left|G_{e}\right|+G_{e}}{16}\right) \frac{\Delta x_{i}}{\Delta x_{w}} \\
& +\left(\frac{\left|G_{e}\right|-G_{e}}{8}\right) \frac{\Delta x_{i}}{\Delta x_{i+1}}+\left(\frac{\left|G_{w}\right|-G_{w}}{16}\right) \frac{\Delta x_{i-1}{ }^{2}}{\Delta x_{w} \Delta x_{i}} \tag{6.13}\\
A_{w} & =\frac{G_{w}}{2}+\operatorname{Pr} \frac{\Delta y_{j} \Delta z_{k}}{\Delta x_{i-1}}+\left(\frac{\left|G_{w}\right|+G_{w}}{8}\right) \frac{\Delta x_{i-1}}{\Delta x_{i-2}} \\
& +\left(\frac{\left|G_{w}\right|-G_{w}}{16}\right) \frac{\Delta x_{i-1}}{\Delta x_{w}}+\left(\frac{\left|G_{e}\right|+G_{e}}{16}\right) \frac{\Delta x_{i}^{2}}{\Delta x_{w} \Delta x_{i-1}} \tag{6.14}\\
A_{N} & =-\frac{G_{n} \Delta y_{j}}{2 \Delta y_{n}}+\operatorname{Pr} \frac{\Delta x_{w} \Delta z_{k}}{2 \Delta y_{n}}+\left(\frac{\left|G_{n}\right|+G_{n}}{8}\right)\left(\frac{\Delta y_{j} \Delta y_{j+1}}{\Delta y_{n}\left(\Delta y_{s}+\Delta y_{n}\right)}\right. \\
& +\left(\frac{\left|G_{n}\right|-G_{n}}{8}\right)\left(\frac{\Delta y_{j} \Delta y_{j+1}}{\Delta y_{n} \Delta y_{n n}}\right)+\left(\frac{\left|G_{s}\right|-G_{s}}{8}\right) \frac{\Delta y_{j} \Delta y_{j-1}}{\Delta y_{n}\left(\Delta y_{s}+\Delta y_{n}\right)} \tag{6.15}
\end{align*}
$$

$$
\begin{align*}
A_{s} & =\frac{G_{s} \Delta y_{j}}{2 \Delta y_{s}}+\operatorname{Pr} \frac{\Delta x_{w} \Delta z_{k}}{2 \Delta y_{s}}+\left(\frac{\left|G_{s}\right|+G_{s}}{8}\right)\left(\frac{\Delta y_{j} \Delta y_{j-1}}{\Delta y_{s} \Delta y_{s s}}\right) \\
& +\left(\frac{\left|G_{s}\right|-G_{s}}{8}\right) \frac{\Delta y_{j} \Delta y_{j-1}}{\Delta y_{s}\left(\Delta y_{s}+\Delta y_{n}\right)}+\left(\frac{\left|G_{n}\right|+\mathrm{G}_{n}}{8}\right) \frac{\Delta y_{j} \Delta y_{j+1}}{\Delta y_{s}\left(\Delta y_{s}+\Delta y_{n}\right)} \tag{6.16}
\end{align*}
$$

$$
\begin{align*}
A_{F}= & -\frac{G_{f} \Delta z_{k}}{2 \Delta z_{f}}+\operatorname{Pr} \frac{\Delta x_{w} \Delta y_{j}}{2 \Delta z_{f}}+\left(\frac{\left|G_{f}\right|+G_{f}}{8}\right) \frac{\Delta z_{k} \Delta z_{k+1}}{\Delta z_{f}\left(\Delta z_{b}+\Delta z_{f}\right)} \\
+ & \left(\frac{\left|G_{f}\right|-G_{f}}{8}\right) \frac{\Delta z_{k} \Delta z_{k+1}}{\Delta z_{f} \Delta z_{f f}}+\left(\frac{\left|G_{b}\right|-G_{b}}{8}\right) \frac{\Delta z_{k} \Delta z_{k-1}}{\Delta z_{f}\left(\Delta z_{b}+\Delta z_{f}\right)} \tag{6.17}\\
A_{B}= & \frac{G_{b} \Delta z_{k}}{2 \Delta z_{b}}+\operatorname{Pr} \frac{\Delta x_{w} \Delta y_{j}}{2 \Delta z_{b}}+\left(\frac{\left|G_{b}\right|+G_{b}}{8}\right) \frac{\Delta z_{k} \Delta z_{k-1}}{\Delta z_{b} \Delta z_{b b}} \\
+ & \left(\frac{\left|G_{b}\right|-G_{b}}{8}\right) \frac{\Delta z_{k} \Delta z_{k-1}}{\Delta z_{b}\left(\Delta z_{b}+\Delta z_{f}\right)}+\left(\frac{\left|G_{f}\right|+G_{f}}{8}\right) \frac{\Delta z_{k} \Delta z_{k+1}}{\Delta z_{b}\left(\Delta z_{b}+\Delta z_{f}\right)} \tag{6.18}\\
S=\frac{\Delta x_{w} \Delta y_{j} \Delta z_{k}}{\Delta t} u_{p}^{n-1}- & \left(\frac{\left|G_{e}\right|-G_{e}}{16}\right) \frac{\Delta x_{i}^{2}}{\Delta x_{e} \Delta x_{i+1}} u_{E E} \\
& -\left(\frac{\left|G_{w}\right|+G_{w}}{16} \frac{\Delta x_{i-1}}{\Delta x_{w w} \Delta x_{i-2}}\right) u_{w} \\
& -\left(\frac{\left|G_{n}\right|-G_{n}}{8}\right) \frac{\Delta y_{j} \Delta y_{j+1}}{\Delta y_{n n}\left(\Delta y_{n n}+\Delta y_{n}\right)} u_{N N} \\
& -\left(\frac{\left|G_{s}\right|+G_{s}}{8}\right) \frac{\Delta y_{j} \Delta y_{j-1}}{\Delta y_{s s}\left(\Delta y_{s s}+\Delta y_{s}\right)} u_{s s} \\
& -\left(\frac{\left|G_{f}\right|-G_{f}}{8}\right) \frac{\Delta z_{k} \Delta z_{k+1}}{\Delta z_{f f}\left(\Delta z_{f f}+\Delta z_{f}\right)} u_{F F} \\
& -\left(\frac{\left|G_{b}\right|+G_{b}}{8}\right) \frac{\Delta z_{k} \Delta z_{k-1}}{\Delta z_{b b}\left(\Delta z_{b b}+\Delta z_{b}\right)} u_{B B} \\
& -\left(P_{p}-P_{w}\right) \Delta y_{j} \Delta z_{k} \tag{6.19}
\end{align*}
$$

$$
\begin{align*}
A_{P}= & A_{E}+\frac{A_{w}+A_{N}+A_{s}+A_{F}+A_{B}}{} \\
& -\left(\frac{\left|G_{e}\right|-G_{e}}{16}\right) \frac{\Delta x_{i}^{2}}{\Delta x_{e} \Delta x_{i+1}} \\
& -\left(\frac{\left|G_{w}\right|+G_{w}}{16} \frac{\Delta x_{i-1}^{2}}{\Delta x_{w w} \Delta x_{i-2}}\right) \\
& -\left(\frac{\left|G_{n}\right|-G_{n}}{8}\right) \frac{\Delta y_{j} \Delta y_{j+1}}{\Delta y_{n n}\left(\Delta y_{n n}+\Delta y_{n}\right)} \\
& -\left(\frac{\left|G_{s}\right|+G_{s}}{8}\right) \frac{\Delta y_{j} \Delta y_{j-1}}{\Delta y_{s s}\left(\Delta y_{s s}+\Delta y_{s}\right)} \\
& -\left(\frac{\left|G_{f}\right|-G_{f}}{8}\right) \frac{\Delta z_{k} \Delta z_{k+1}}{\Delta z_{f f}\left(\Delta z_{f f}+\Delta z_{f}\right)} \\
& -\left(\frac{\left|G_{b}\right|+G_{b}}{8}\right) \frac{\Delta z_{k} \Delta z_{k-1}}{\Delta z_{b b}\left(\Delta z_{b b}+\Delta z_{b}\right)}+\frac{\Delta x_{i} \Delta y_{j} \Delta z_{k}}{\Delta t} \tag{6.20}
\end{align*}
$$

6.1.3 y-Momentum Equation and Linear Equation for v

The coefficients of the y-momentum equations are the following:

$$
A_{N}=-\frac{G_{n}}{2}+\operatorname{Pr} \frac{\Delta x_{i} \Delta z_{k}}{\Delta y_{j}}+\left(\frac{\left|G_{n}\right|+G_{n}}{16}\right) \frac{\Delta y_{i}}{\Delta y_{s}}
$$

$$
\begin{aligned}
& +\left(\frac{\left|G_{n}\right|-G_{n}}{8}\right) \frac{\Delta y_{j}}{\Delta y_{j+1}}+\left(\frac{\left|G_{s}\right|-G_{s}}{16}\right) \frac{\Delta y_{j-1}{ }^{2}}{\Delta y_{s} \Delta y_{j}} \\
& A_{s}=\frac{G_{s}}{2}+\operatorname{Pr} \frac{\Delta x_{i} \Delta z_{k}}{\Delta y_{j-1}}+\left(\frac{\left|G_{s}\right|+G_{s}}{8}\right) \frac{\Delta y_{j-1}}{\Delta y_{j-2}} \\
& +\left(\frac{\left|G_{s}\right|-G_{s}}{16}\right) \frac{\Delta y_{j-1}}{\Delta y_{s}}+\left(\frac{\left|G_{n}\right|+G_{n}}{16}\right) \frac{\Delta y_{j}^{2}}{\Delta y_{s} \Delta y_{j-1}} \\
& A_{E}=-\frac{G_{e} \Delta x_{i}}{2 \Delta x_{e}}+\operatorname{Pr} \frac{\Delta y_{s} \Delta z_{k}}{2 \Delta x_{e}}+\left(\frac{\left|G_{e}\right|+G_{e}}{8}\right)\left(\frac{\Delta x_{i} \Delta x_{i+1}}{\Delta x_{e}\left(\Delta x_{e}+\Delta x_{w}\right)}\right. \\
& +\left(\frac{\left|G_{e}\right|-G_{e}}{8}\right)\left(\frac{\Delta x_{i} \Delta x_{i+1}}{\Delta x_{e} \Delta x_{e e}}\right)+\left(\frac{\left|G_{w}\right|-G_{w}}{8}\right) \frac{\Delta x_{i} \Delta x_{i-1}}{\Delta x_{e}\left(\Delta x_{e}+\Delta x_{w}\right)} \\
& A_{w}=\frac{G_{w} \Delta x_{i}}{2 \Delta x_{w}}+\operatorname{Pr} \frac{\Delta y_{s} \Delta z_{k}}{2 \Delta x_{w}}+\left(\frac{\left|G_{w}\right|+G_{w}}{8}\right)\left(\frac{\Delta x_{i} \Delta x_{i-1}}{\Delta x_{w} \Delta x_{w w}}\right) \\
& +\left(\frac{\left|G_{w}\right|-G_{w}}{8}\right) \frac{\Delta x_{i} \Delta x_{i-1}}{\Delta x_{w}\left(\Delta x_{e}+\Delta x_{w}\right)}+\left(\frac{\left|G_{e}\right|+G_{e}}{8}\right) \frac{\Delta x_{i} \Delta x_{i+1}}{\Delta x_{w}\left(\Delta x_{e}+\Delta x_{w}\right)} \\
& A_{F}=-\frac{G_{f} \Delta z_{k}}{2 \Delta z_{f}}+\operatorname{Pr} \frac{\Delta x_{i} \Delta y_{s}}{2 \Delta z_{f}}+\left(\frac{\left|G_{f}\right|+G_{f}}{8}\right) \frac{\Delta z_{k} \Delta z_{k+1}}{\Delta z_{f}\left(\Delta z_{b}+\Delta z_{f}\right)} \\
& +\left(\frac{\left|\mathrm{G}_{\mathrm{f}}\right|-\mathrm{G}_{\mathrm{f}}}{8}\right) \frac{\Delta \mathrm{z}_{\mathrm{k}} \Delta \mathrm{z}_{\mathrm{k}+1}}{\Delta \mathrm{z}_{\mathrm{f}} \Delta \mathrm{z}_{\mathrm{ff}}}+\left(\frac{\left|\mathrm{G}_{\mathrm{b}}\right|-\mathrm{G}_{\mathrm{b}}}{8}\right) \frac{\Delta \mathrm{z}_{\mathrm{k}} \Delta \mathrm{z}_{\mathrm{k}-1}}{\Delta \mathrm{z}_{\mathrm{f}}\left(\Delta \mathrm{z}_{\mathrm{b}}+\Delta \mathrm{z}_{\mathrm{f}}\right)} \\
& A_{B}=\frac{G_{b} \Delta z_{k}}{2 \Delta z_{b}}+\operatorname{Pr} \frac{\Delta x_{i} \Delta y_{s}}{2 \Delta z_{b}}+\left(\frac{\left|G_{b}\right|+G_{b}}{8}\right) \frac{\Delta z_{k} \Delta z_{k-1}}{\Delta z_{b} \Delta z_{b b}} \\
& +\left(\frac{\left|G_{b}\right|-G_{b}}{8}\right) \frac{\Delta z_{k} \Delta z_{k-1}}{\Delta z_{b}\left(\Delta z_{b}+\Delta z_{f}\right)}+\left(\frac{\left|G_{f}\right|+G_{f}}{8}\right) \frac{\Delta z_{k} \Delta z_{k+1}}{\Delta z_{b}\left(\Delta z_{b}+\Delta z_{f}\right)} \\
& S=\frac{\Delta x_{i} \Delta y_{s} \Delta z_{k}}{\Delta t} v_{p}^{n-1}-\left(\frac{\left|G_{n}\right|-G_{n}}{16}\right) \frac{\Delta y_{j}^{2}}{\Delta y_{n} \Delta y_{j+1}} v_{N N} \\
& -\left(\frac{\left|G_{s}\right|+G_{s}}{16}\right) \frac{\Delta y_{j-1}{ }^{2}}{\Delta y_{s s} \Delta y_{j-2}} \\
& -\left(\frac{\left|G_{e}\right|-G_{e}}{8}\right) \frac{\Delta x_{i} \Delta x_{i+1}}{\Delta x_{\mathrm{ee}}\left(\Delta x_{e e}+\Delta x_{\mathrm{e}}\right)} v_{\mathrm{EE}} \\
& -\left(\frac{\left|G_{w}\right|+G_{w}}{8}\right) \frac{\Delta x_{i} \Delta x_{i-1}}{\Delta x_{w w}\left(\Delta x_{w w}+\Delta x_{w}\right)} v_{w w} \\
& -\left(\frac{\left|G_{\mathrm{f}}\right|-\mathrm{G}_{\mathrm{f}}}{8}\right) \frac{\Delta \mathrm{z}_{\mathrm{k}} \Delta \mathrm{z}_{\mathrm{k}+1}}{\Delta \mathrm{z}_{\mathrm{ff}}\left(\Delta \mathrm{z}_{\mathrm{ff}}+\Delta \mathrm{z}_{\mathrm{f}}\right)} \mathrm{v}_{\mathrm{FF}} \\
& -\left(\frac{\left|G_{b}\right|+G_{b}}{8}\right) \frac{\Delta z_{k} \Delta z_{k-1}}{\Delta z_{b b}\left(\Delta z_{b b}+\Delta z_{b}\right)} v_{B B} \\
& -\left(\mathrm{P}_{\mathrm{P}}-\mathrm{P}_{\mathrm{S}}\right) \Delta \mathrm{x}_{\mathrm{i}} \Delta \mathrm{z}_{\mathrm{k}}+\frac{\mathrm{T}_{\mathrm{S}} \Delta \mathrm{y}_{\mathrm{j}}+\mathrm{T}_{\mathrm{s}} \Delta \mathrm{y}_{\mathrm{j}-1}}{2 \Delta \mathrm{y}_{\mathrm{s}}} \Delta \mathrm{x}_{\mathrm{i}} \Delta \mathrm{y}_{\mathrm{s}} \Delta \mathrm{z}_{\mathrm{k}} \\
& A_{P}=A_{E}+A_{W}+A_{N}+A_{S}+A_{F}+A_{B} \\
& -\left(\frac{\left|G_{n}\right|-G_{n}}{16}\right) \frac{\Delta y_{j}{ }^{2}}{\Delta y_{n} \Delta y_{j+1}}
\end{aligned}
$$

$$
\begin{align*}
& \left(\frac{\left|G_{s}\right|+G_{s}}{16} \frac{\Delta y_{j-1}^{2}}{\Delta y_{n n} \Delta y_{j-2}}\right) \\
- & \left(\frac{\left|G_{e}\right|-G_{e}}{8}\right) \frac{\Delta x_{i} \Delta x_{i+1}}{\Delta x_{e e}\left(\Delta x_{e e}+\Delta x_{e}\right)} \\
- & \left(\frac{\left|G_{w}\right|+G_{w}}{8}\right) \frac{\Delta x_{i} \Delta x_{i-1}}{\Delta x_{w w}\left(\Delta x_{w w}+\Delta x_{w}\right)} \\
- & \left(\frac{\left|G_{f}\right|-G_{f}}{8}\right) \frac{\Delta z_{k} \Delta z_{k+1}}{\Delta z_{f f}\left(\Delta z_{f f}+\Delta z_{f}\right)} \\
- & \left(\frac{\left|G_{b}\right|+G_{b}}{8}\right) \frac{\Delta z_{k} \Delta z_{k-1}}{\Delta z_{b b}\left(\Delta z_{b b}+\Delta z_{b}\right)}+\frac{\Delta x_{i} \Delta y_{s} \Delta z_{k}}{\Delta t} \tag{6.28}
\end{align*}
$$

6.1.4 z -Momentum Equation and linear equation for w

The coefficients of the z-momentum equations are the following:

$$
\begin{align*}
A_{F} & =-\frac{G_{f}}{2}+\operatorname{Pr} \frac{\Delta x_{i} \Delta y_{j}}{\Delta z_{k}}+\left(\frac{\left|G_{f}\right|+G_{f}}{16}\right) \frac{\Delta z_{k}}{\Delta z_{b}} \\
& +\left(\frac{\left|G_{f}\right|-G_{f}}{8}\right) \frac{\Delta z_{k}}{\Delta z_{k+1}}+\left(\frac{\left|G_{b}\right|-G_{b}}{16}\right) \frac{\Delta z_{k-1}^{2}}{\Delta z_{b} \Delta z_{k}} \tag{6.29}\\
A_{B} & =\frac{G_{b}}{2}+\operatorname{Pr} \frac{\Delta x_{i} \Delta y_{j}}{\Delta z_{k-1}}+\left(\frac{\left|G_{b}\right|+G_{b}}{8}\right) \frac{\Delta z_{k-1}}{\Delta z_{k-2}} \\
& +\left(\frac{\left|G_{b}\right|-G_{b}}{16}\right) \frac{\Delta z_{k-1}}{\Delta z_{b}}+\left(\frac{\left|G_{n}\right|+G_{n}}{16}\right) \frac{\Delta z_{k}^{2}}{\Delta z_{b} \Delta z_{k-1}} \tag{6.30}\\
A_{E} & =-\frac{G_{e} \Delta x_{i}}{2 \Delta x_{e}}+\operatorname{Pr} \frac{\Delta y_{j} \Delta z_{b}}{\Delta x_{e}}+\left(\frac{\left|G_{e}\right|+G_{e}}{8}\right)\left(\frac{\Delta x_{i} \Delta x_{i+1}}{\Delta x_{e}\left(\Delta x_{e}+\Delta x_{w}\right)}\right. \\
& +\left(\frac{\left|G_{e}\right|-G_{e}}{8}\right)\left(\frac{\Delta x_{i} \Delta x_{i+1}}{\Delta x_{e} \Delta x_{e e}}\right)+\left(\frac{\left|G_{w}\right|-G_{w}}{8}\right) \frac{\Delta x_{i} \Delta x_{i-1}}{\Delta x_{e}\left(\Delta x_{e}+\Delta x_{w}\right)} \tag{6.31}
\end{align*}
$$

$$
\begin{align*}
A_{w} & =\frac{G_{w} \Delta x_{i}}{2 \Delta x_{w}}+\operatorname{Pr} \frac{\Delta y_{j} \Delta z_{b}}{2 \Delta x_{w}}+\left(\frac{\left|G_{w}\right|+G_{w}}{8}\right)\left(\frac{\Delta x_{i} \Delta x_{i-1}}{\Delta x_{w} \Delta x_{w w}}\right) \\
& +\left(\frac{\left|G_{w}\right|-G_{w}}{8}\right) \frac{\Delta x_{i} \Delta x_{i-1}}{\Delta x_{w}\left(\Delta x_{e}+\Delta x_{w}\right)}+\left(\frac{\left|G_{e}\right|+G_{e}}{8}\right) \frac{\Delta x_{i} \Delta x_{i+1}}{\Delta x_{w}\left(\Delta x_{e}+\Delta x_{w}\right)} \tag{6.32}
\end{align*}
$$

$$
A_{N}=-\frac{G_{n} \Delta y_{j}}{2 \Delta y_{n}}+\operatorname{Pr} \frac{\Delta x_{i} \Delta z_{b}}{\Delta y_{n}}+\left(\frac{\left|G_{n}\right|+G_{n}}{8}\right) \frac{\Delta y_{j} \Delta y_{j+1}}{\Delta y_{n}\left(\Delta y_{s}+\Delta y_{n}\right)}
$$

$$
\begin{equation*}
+\left(\frac{\left|G_{n}\right|-G_{n}}{8}\right) \frac{\Delta y_{j} \Delta y_{j+1}}{\Delta y_{n} \Delta y_{n n}}+\left(\frac{\left|G_{s}\right|-G_{s}}{8}\right) \frac{\Delta y_{j} \Delta y_{j-1}}{\Delta y_{n}\left(\Delta y_{n}+\Delta y_{s}\right)} \tag{6.33}
\end{equation*}
$$

$$
\mathrm{A}_{\mathrm{s}}=\frac{\mathrm{G}_{\mathrm{s}} \Delta \mathrm{y}_{\mathrm{j}}}{2 \Delta \mathrm{y}_{\mathrm{s}}}+\operatorname{Pr} \frac{\Delta \mathrm{x}_{\mathrm{i}} \Delta \mathrm{z}_{\mathrm{b}}}{\Delta \mathrm{y}_{\mathrm{s}}}+\left(\frac{\left|\mathrm{G}_{\mathrm{s}}\right|+\mathrm{G}_{\mathrm{s}}}{8}\right) \frac{\Delta y_{j} \Delta y_{j-1}}{\Delta y_{s} \Delta y_{s s}}
$$

$$
\begin{equation*}
+\left(\frac{\left|G_{s}\right|-G_{s}}{8}\right) \frac{\Delta y_{j} \Delta y_{j-1}}{\Delta y_{s}\left(\Delta y_{s}+\Delta y_{n}\right)}+\left(\frac{\left|G_{n}\right|+G_{n}}{8}\right) \frac{\Delta y_{j} \Delta y_{j+1}}{\Delta y_{s}\left(\Delta y_{s}+\Delta y_{n}\right)} \tag{6.34}
\end{equation*}
$$

$$
\begin{align*}
S=\frac{\Delta x_{i} \Delta y_{j} \Delta z_{b}}{\Delta t} w_{p}^{n-1} & -\left(\frac{\left|G_{f}\right|-G_{f}}{16}\right) \frac{\Delta z_{k}^{2}}{\Delta z_{f} \Delta z_{k+1}} w_{\mathrm{FF}} \\
& -\left(\frac{\left|G_{b}\right|+G_{b}}{16}\right) \cdot \frac{\Delta z_{k-1}^{2}}{\Delta z_{\mathrm{bb}} \Delta z_{k+1}} w_{B B} \\
& -\left(\frac{\left|G_{e}\right|-G_{e}}{8}\right) \frac{\Delta x_{i} \Delta x_{i+1}}{\Delta x_{e e}\left(\Delta x_{e e}+\Delta x_{e}\right)} w_{E E} \\
& -\left(\frac{\left|G_{w}\right|+G_{w}}{8}\right) \frac{\Delta x_{i} \Delta x_{i-1}}{\Delta x_{w w}\left(\Delta x_{w w}+\Delta x_{w}\right)} w_{w W} \\
& -\left(\frac{\left|G_{n}\right|-G_{n}}{8}\right) \frac{\Delta y_{j} \Delta y_{j+1}}{\Delta y_{n n}\left(\Delta y_{n n}+\Delta y_{n}\right)} w_{N N} \\
& -\left(\frac{\left|G_{s}\right|+G_{s}}{8}\right) \frac{\Delta y_{j} \Delta y_{j-1}}{\Delta y_{s s}\left(\Delta y_{s s}+\Delta y_{s}\right)} w_{s s} \\
& -\left(P_{P}-P_{B}\right) \Delta x_{i} \Delta y_{j} \tag{6.35}
\end{align*}
$$

$A_{P}=A_{E}+A_{W}+A_{N}+A_{S}+A_{F}+A_{B}$

$$
-\left(\frac{\left|G_{f}\right|-G_{f}}{16}\right) \frac{\Delta z_{k}{ }^{2}}{\Delta z_{f} \Delta z_{k+1}}
$$

$$
-\left(\frac{\left|G_{b}\right|+G_{b}}{16} \frac{\Delta z_{k-1}{ }^{2}}{\Delta z_{f f} \Delta z_{k-2}}\right)
$$

$$
-\left(\frac{\left|G_{e}\right|-G_{e}}{8}\right) \frac{\Delta x_{i} \Delta x_{i+1}}{\Delta x_{e e}\left(\Delta x_{e e}+\Delta x_{e}\right)}
$$

$$
-\left(\frac{\left|G_{w}\right|+G_{w}}{8}\right) \frac{\Delta x_{i} \Delta x_{i-1}}{\Delta x_{w w}\left(\Delta x_{w w}+\Delta x_{w}\right)}
$$

$$
-\left(\frac{\left|G_{n}\right|-G_{n}}{8}\right) \frac{\Delta y_{j} \Delta y_{j+1}}{\Delta y_{n n}\left(\Delta y_{n n}+\Delta y_{n}\right)}
$$

$$
\begin{equation*}
-\left(\frac{\left|G_{s}\right|+G_{s}}{8}\right) \frac{\Delta y_{j} \Delta y_{j-1}}{\Delta y_{s s}\left(\Delta y_{s s}+\Delta y_{s}\right)}+\frac{\Delta x_{i} \Delta y_{j} \Delta z_{b}}{\Delta t} \tag{6.36}
\end{equation*}
$$

6.1.5 The Pressure Correction Equation

The pressure correction equation is derived from the discretized continuity equation. The continuity equation is the following:

$$
\begin{equation*}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0 \tag{6.37}
\end{equation*}
$$

Integrating around the control volume

$$
\begin{align*}
& \left(u_{e}-u_{w}\right) \Delta y_{j} \Delta z_{k}+\left(v_{n}-v_{s}\right) \Delta x_{i} \Delta z_{k}+\left(w_{f}-w_{b}\right) \Delta x_{i} \Delta y_{j} \\
= & 0 \tag{6.38}
\end{align*}
$$

A pressure correction relationships given before are the following:

$$
\begin{aligned}
& \mathrm{u}_{\mathrm{e}}^{\prime}=\mathrm{du}_{\mathrm{e}}\left(\mathrm{P}_{\mathrm{P}}^{\prime}-\mathrm{P}_{\mathrm{E}}{ }^{\prime}\right) \\
& \mathrm{u}_{\mathrm{w}}=\mathrm{du}_{\mathrm{w}}\left(\mathrm{P}_{\mathrm{w}}^{\prime}-\mathrm{P}_{\mathrm{P}}^{\prime}\right) ; \\
& \mathrm{v}_{\mathrm{n}}^{\prime}=\mathrm{d} \mathrm{v}_{\mathrm{n}}\left(\mathrm{P}_{\mathrm{P}}^{\prime}-\mathrm{P}_{\mathrm{N}}{ }^{\prime}\right)
\end{aligned}
$$

$$
\begin{align*}
& \mathrm{v}_{\mathrm{s}}^{\prime}=\mathrm{d} \mathrm{v}_{\mathrm{s}}\left(\mathrm{P}_{\mathrm{s}}^{\prime}-\mathrm{P}_{\mathrm{P}}^{\prime}\right) \\
& \mathrm{w}_{\mathrm{f}}^{\prime}=\mathrm{d} \mathrm{w}_{\mathrm{f}}\left(\mathrm{P}_{\mathrm{P}}^{\prime}-\mathrm{P}_{\mathrm{F}}^{\prime}\right) \\
& \mathrm{w}_{\mathrm{b}}^{\prime}=\mathrm{d} \mathrm{w}_{\mathrm{b}}\left(\mathrm{P}_{\mathrm{B}}^{\prime}-P_{\mathrm{P}}^{\prime}\right) \tag{6.39}
\end{align*}
$$

The coupling constants are calculated using the SIMPLEX algorithm. Further details are given in Van Doormal and Raithby (1985). also,
$u_{e}=u_{e}{ }^{*}+u_{e}{ }^{\prime}$
$u_{w}=u_{w}{ }^{*}+u_{w}{ }^{\prime}$
$v_{\mathrm{n}}=\mathrm{v}_{\mathrm{n}}{ }^{*}+\mathrm{v}_{\mathrm{n}}{ }^{\prime}$
$\mathrm{v}_{\mathrm{s}}=\mathrm{v}_{\mathrm{s}}{ }^{*}+\mathrm{v}_{\mathrm{s}}{ }^{\text {. }}$
$\mathrm{w}_{\mathrm{f}}=\mathrm{w}_{\mathrm{f}}{ }^{*}+\mathrm{w}_{\mathrm{f}}^{\prime}$
$\mathrm{w}_{\mathrm{b}}=\mathrm{w}_{\mathrm{b}}{ }^{*}+\mathrm{w}_{\mathrm{b}}{ }^{\prime}$
The starred quantities represent the velocities which satisfy the momentum equations but not the continuity equation. The primed quantities are the velocity corrections which results in velocities that satisfy the continuity equation. Hence, using equations 6.39 and 6.40 in 6.38 we obtain a pressure correction equation of the following type:

$$
A_{P} P_{P}^{\prime}=A_{E} P_{E}^{\prime}+A_{W} P_{W}^{\prime}+A_{N} P_{N}^{\prime}+A_{S} P_{S}^{\prime}+A_{F} P_{F}^{\prime}+A_{B} P_{B}^{\prime}+S
$$

Where,
$A_{E}=d u_{e} \Delta y_{j} \Delta z_{k}$;
$A_{w}=d u_{w} \Delta y_{j} \Delta z_{k}$;
$\mathrm{A}_{\mathrm{N}}=\mathrm{dv}_{\mathrm{n}} \Delta \mathrm{x}_{\mathrm{i}} \Delta \mathrm{z}_{\mathrm{k}}$;
$A_{S}=\mathrm{dv}_{\mathrm{s}} \Delta \mathrm{x}_{\mathrm{i}} \Delta \mathrm{z}_{\mathrm{k}}$;
$A_{F}=d w_{f} \Delta x_{i} \Delta y_{j} ;$
$A_{B}=d w_{b} \Delta x_{i} \Delta y_{j} ;$
$A_{P}=A_{E}+A_{W}+A_{N}+A_{S}+A_{F}+A_{B}$
$S=-u_{e}{ }^{*} \Delta y_{j} \Delta z_{k}+u_{w}{ }^{*} \Delta y_{j} \Delta z_{k}-v_{n}{ }^{*} \Delta x_{i} \Delta z_{k}+v_{s}{ }^{*} \Delta x_{i} \Delta z_{k}$

- $\mathrm{w}_{\mathrm{f}}{ }^{*} \Delta \mathrm{x}_{\mathrm{i}} \Delta \mathrm{y}_{\mathrm{j}}+{ } \mathrm{w}_{\mathrm{b}}{ }^{*} \Delta \mathrm{x}_{\mathrm{i}} \Delta \mathrm{y}_{\mathrm{j}}$

After solving the equations for pressure correction, the velocities and pressures are corrected.

6.2 Numerical Boundary Conditions

All the coefficients and the relations shown so far are valid for interior points. Near the boundary some special treatment is necessary. For example, the central differencing
used to estimate the diffusive fluxes cannot be used for the wall since there is no grid point beyond the wall. There are basically two approaches open to us:

1. Use different interpolation and differencing scheme as we approach the wall. For instance, a one sided three point differencing scheme could be used at the wall.
2. Use the same interpolation and differencing scheme but create additional fictitious grid points or control volumes beyond the boundary and assign suitable values to the grid points for the different variables. Both approaches are equivalent.

The second approach was used for this problem. The advantage being that it is a lot simpler to implement since the same scheme is used with modifications. To that end, additional control volumes were used outside the calculation domain to impose the boundary condition. The one guideline we follow is that the boundary conditions imposed should be second order or higher.

6.2.1 Velocity Boundary Conditions

The no slip boundary conditions are to be imposed at all walls. For the x momentum equation, the u-velocity grid is staggered in the x-direction the grid point coincides with the wall for the east and west walls perpendicular to the x-direction as shown in figure. In the other directions the control volume surfaces coincide with the walls as shown in figure. For the staggered direction the computational grid extends up to the point i as shown. Point $i+1$ is the wall. $i+2$ is the pseudo-point beyond the wall. Up to $i-1$ no special treatment is necessary. For the equation of point i a special value needs to be assigned to $i+2$. Noting that the wall is a plane of anti-symmetry for a scheme of second order accuracy we impose,

$$
u_{i+2}=-u_{i}
$$

u_{i+1} is of course set equal to zero. Consequently, substituting the values in equation A-20 for the point i ,
$A_{E}=0$, the source term S is affected also because $u_{E E}=-u_{P}$. Similarly, A_{P} is suitably modified. The west wall is similarly dealt with.

For the other walls only the control volume next to the wall needs to be dealt with hence $u_{i+1}=-u_{i}$ or,
$u_{P}=-u_{E}$
therefore, $A_{P}=A_{P}+A_{E}$ and $A_{E}=0$
The v -velocity and the w -velocity boundary conditions are similarly dealt with. What must be kept in mind is that the v-velocity grid is staggered in the y direction and that the w velocity grid is staggered in the z direction.

1

In cases where symmetry was exploited $u_{i+1}=u_{i}$ was used instead.

6.2.2 Temperature Boundary Conditions

There are two types of boundary conditions to be considered; adiabatic and isothermal. The temperature grid is not staggered. The adiabatic boundary condition is identical to the symmetry condition hence for the grid point next to the east wall
$\mathrm{T}_{\mathrm{P}}=\mathrm{T}_{\mathrm{E}}$
therefore, $A_{P}=A_{P}-A_{E}$ and $A_{E}=0$.
For the isothermal boundary condition the value of the temperature grid point outside the domain was assigned by a linear extrapolation. Hence, we have the following;

$$
\mathrm{T}_{\mathrm{E}}=2 \mathrm{~T}_{\text {wall }}-\mathrm{T}_{\mathrm{p}}
$$

The symmetry conditions are identical to the adiabatic conditions.

6.2.3 Pressure Correction Boundary Conditions

The velocity corrections at the wall must all be zero. This is because as a result of the no-slip conditions the velocities at the wall are identically zero. Hence,

$$
P_{P}^{\prime}=P_{E}^{\prime}
$$

Therefore, in the governing equations;

$$
A_{P}=A_{P}-A_{E} \text { and } A_{E}=0
$$

Similar modifications will have to be made at the other walls.

APPENDIX C

6.1 General Remarks

The listing of the code is provided in this appendix. The code is written in a manner that facilitates comprehension. The indentation of all DO loops and space between operands all add to the clarity. There are plenty of comments inserted in the code. In fact, it is quite possible to understand most of the code, without actually going through the documentation.

Note that all three-dimensional variables are subscripted (NIP1,NJP1,NKP1). A higher number can also be dimensioned, but that is a waste of computer resources. It is assumed that the user has access to some full-screen editors, therefore it is quite straightforward to change indices for the arrays. That may be required when the grid sizes are changed or if a different physical problem is being attempted. All one-dimensional variables in the subroutine SIP must be dimensioned NNMAX which is a product of NIP1, NJP1 and NKP1. In the specific example of the listing, NIP1 $=12, \mathrm{NJP} 1=16, \mathrm{NKP} 1=$ 16 and NNMAX $=3072$. This problem requires about 1.2 Mbytes of memory in a $\mathrm{RS} / 6000$ workstation. The listing follows.

PROGRAM AMPHIB
end
BLOCK DATA
implicit real*8 (a-h,o-z)
common/blayer/xbr,ybr,zbr
common/unfrm/iunfrm
common/parm/ra, pr, sorsum,dtime, xper, roll,dt_inv, xtime
common/tol/small,eps, sormax
common/dims/h, wth, bth, hchip, wchip, bchip, bsub
common/count/nt, nmax, imax, itmax, krun, nprint
common/chip/ibgn, iend, jbgn(3), jend (3), kbgn (3), kend (3), nchp,
\& isub, ichip,jchip,kchip
common/limits/ni,nip1,nim1,nj,njp1,njm1,nk,nkp1,nkm1,
\&
nip2, njp2,nkp2,iter, nnmax
common/diff/alc,als, thot, tcool, tavg
common/scheme/quick, upwind
common/array/njchip,nkchip,ichoice
common/spaced/ychip(3),zchip(3)
COMMON/RHOCP/RHS,RHC
COMMON / POWER/QQQ, QCOND
c
DATA NIP2,NIP1,NI,NIM1/13,12,11,10/
DATA NJP2,NJP1,NJ,NJM1/17,16,15,14/
DATA NKP2,NKP1,NK,NKM1/17,16,15,14/
DATA NNMAX, NMAX, IMAX, ITMAX, KRUN, NPRINT/3072,4000,10,5,
\&
DATA SMALL, EPS, SORMAX/1.0e20,1.0E-8,2./
DATA ISUB, ICHIP, JCHIP, KCHIP, NCHP, ICHOICE/2,2,2,2,1,1/
DATA XBR,YBR, ZBR/1.50,1.00,1.50/
DATA H,WTH, BTH/140.,140.0,100./
DATA HCHIP, WCHIP, BCHIP,BSUB/24.,8.,6.,19.5/
DATA ALC, ALS, THOT,TCOOL,TAVG/3338.,2.0,0.0,0.0,19.0/
DATA RHC,RHS/1.20,0.262/
DATA QQQ, DTIME, pr, ra,XPER,ROLL/2.0e-03,2.0E-7,28.,1.0e6,0.0,0.0/
DATA IUNFRM/1/
DATA QUICK/1./
DATA NJCHIP,NKCHIP/3,3/
DATA YCHIP, ZCHIP/38.0,76.0,114.0,50.8,101.6,152.4/
END
SUBROUTINE CALT
THIS SUBROUTINE ASSEMBLES THE DISCRETE ANALOG OF THE ENERGY EQUATION, APPLIES THE BOUNDARY CONDITION AND THEN SOLVES FOR THE TEMPERATURE.

```
    implicit real*8 (a-h,o-z)
    common/ng/dxx(40),dyy(40),dzz(40),x(40),y(40),z(40),
& dxxs(40),dyys(40),dzzs(40)
    common/parm/ra,pr, sorsum,dtime,xper,roll,dt_inv,xtime
    common/limits/ni,nipl,nim1,nj,njpl,njm1,nk, nkp1,nkm1,
&
                            nip2,njp2,nkp2,iter, nnmax
    common/fv_init/tod}(12,16,16),\operatorname{lod}(12,16,16),\operatorname{vod}(12,16,16)
& wod(12,16,16),pod}(12,16,16
    common/fv_cur/t (12,16,16),u(12,16,16),v(12,16,16),
& - w(12,16,16),p(12,16,16)
    common/fv int/tpd(12,16,16),upd(12,16,16),vpd(12,16,16),
& - wpd(12,16,16),ppd (12,16,16)
    common/coeff/ap(12,16,16),aw(12,16,16),ae(12,16,16),
& as (12,16,16),an(12,16,16),ab(12,16,16),
& af(12,16,16),su(12,16,16)
    COMMON/COEF2 / AWW (12,16,16), AEE (12,16,16), ASS (12,16,16),
& ANN (12,16,16), ABB(12,16,16), AFF (12,16,16)
    common/chip/ibgn,iend,jbgn(3),jend(3),kbgn(3),kend(3),nchp,
&
    common/condu/alpha(12,16,16),rho(12,16,16),visco(12,16,16)
    COMMON / POWER/QQQ,QCOND
    COMMON / SCHEME/QUICK,UPWIND
    common/diff/alc,als, thot, tcool,tavg
    common/array/njchip,nkchip,ichoice
```

 CALCULATE COEFFICIENTS
 do \(80 \mathrm{k}=2, \mathrm{nk}\)
 do \(80 j=2, n j\)
 do \(80 \mathrm{I}=2\), ni
 \&

```
VOLDT = DXX(I) * DYY(J) * DZZ(K) / DTIME
    * RHO(I,J,K)
```

CALCULATE INTERFACIAL THERMAL DIFFUSIVITIES USING THE HARMONIC MEAN FORMULATION

```
CONDW = ALPHA(I,J,K) * ALPHA(I-1,J,K)
    * (DXX(I-1) + DXX(I)) / (DXX(I-1)
    * ALPHA(I,J,K) + DXX(I) * ALPHA(I-1,J,K))
CONDE = ALPHA(I,J,K) * ALPHA(I+1,J,K)
    * (DXX(I+1) + DXX(I)) / (DXX(I+1)
    * ALPHA(I,J,K) + DXX(I) * ALPHA(I+1,J,K))
CONDS = ALPHA(I,J,K) * ALPHA(I,J-1,K)
    * (DYY (J-1) + DYY(J)) / (DYY(J-1)
    * ALPHA(I,J,K) + DYY(J) * ALPHA(I,J-1,K))
CONDN = ALPHA(I,J,K) * ALPHAA(I,J+1,K)
    * (DYY(J+1) + DYY(J)) / (DYY(J+1)
    * ALPHA(I,J,K) + DYY(J) * ALPHA(I,J+1,K))
CONDB = ALPHA(I,J,K) * ALPPHA(I,J,K-1)
    * (DZZ(K-1) + DZZ(K)) / (DZZ(K-1)
    * ALPHA(I,J,K) + DZZ(K) * ALPHA(I,J,K-1))
CONDF = ALPHA (I,J,K) * ALPHA (I,J,K+1)
    * (DZZ(K+1) + DZZ(K)) / (DZZ(K+1)
    * ALPHA(I,J,K) + DZZ(K) * ALPHA(I,J,K+1))
```

```
CONDN1 = DZZ(K) * DXX(I) / DYYS(J+1) * CONDN
CONDS1 = DZZ(K) * DXX(I) / DYYS(J) * CONDS
CONDF1 = DXX(I) * DYY(J) / DZZS(K+1) * CONDF
CONDB1 = DXX(I) * DYY(J) / DZZS(K) * CONDB
```

CONDE1 $=\mathrm{DYY}(J) \star \operatorname{DZZ}(\mathrm{K}) / \mathrm{DXXS}(\mathrm{I}+1) \star$ CONDE
CONDW1 $=$ DYY (J) * DZZ (K) / DXXS(I) * CONDW

C

C
\&
\&
\&
\&
\&
$\&$
C

C

```
GP}=\textrm{RHO}(I,J,K
GW = RHO(I-1,J,K)
GE = RHO(I+1,J,K)
GS = RHO(I,J-1,K)
GN = RHO(I,J+1,K)
GB}=\textrm{RHO}(I,J,K-1
GF = RHO(I,J,K+1)
    RW = (GP * DXX(I-1) +GW * DXX(I))
    / (DXX(I-1) + DXX(I))
    RE=(GP * DXX(I+1) + GE * DXX(I))
    / (DXX(I+1) + DXX(I))
    RS = (GP * DYY(J-1) +GS * DYY(J))
    /(DYY(J-1) + DYY(J))
    RN = (GP * DYY (J+1) + GN * DYY (J))
    / (DYY(J+1) + DYY(J))
    RB = (GP * DZZ (K-1) +GB * DZZ(K))
    / (DZZ(K-1) + DZZ(K))
    RF=(GP * DZZ (K+1) + GF * DZZ (K))
    / (DZZ(K+1) + DZZ(K))
```

$C E=U(I+1, J, K) * \operatorname{DYY}(J) \star \operatorname{DZZ}(K) \star R E$
$C W=U(I, J, K) * D Y Y(J) * D Z Z(K) * R W$
$C N=V(I, J+1, K) * D Z Z(K) * D X X(I) * R N$
$C S=V(I, J, K) * \operatorname{DZZ}(K) * D X X(I) * R S$
$C F=W(I, J, K+1) * \operatorname{DXX}(I) * \operatorname{DYY}(J) * R F$
$C B=W(I, J, K) * \operatorname{DXX}(I) * \operatorname{DYY}(J) * R B$

$A E(I, J, K)=$ CONDE1 + QUICK	
\&	* (-0.5 * CE * DXX(I) / DXXS (I+1)
\&	$+0.125 *(a b s(c e)+c e) * d x \times(i) * d x x(i+1)$
\&	$/(\mathrm{dxxs}(i+1) *(\mathrm{dxxs}(\mathrm{i})+\mathrm{dxxs}(i+1)))$
\&	$+0.125 *(a b s(c e)-c e) * d \times x(i) * d \times x(i+1)$
\&	/ (dxxs (i+1) * dxxs (i+2))
\&	+0.125 * (abs (cw) - cw ${ }^{\text {c }}$ * dxx (i-1) * dxx(i)
\&	/ (DXXS (I+1) * (DXXS (I) + DXXS (I+1))))
\&	+ UPWIND * (0.5 * (ABS (CE) - CE) $)$
AW (I, J, K)	$=$ CONDW1 + QUICK
\&	* (0.5 * CW * DXX(I) / DXXS (I)
\&	$+0.125 *(a b s(c w)+c w) * d x \times(i) * d \times x(i-1)$
\&	/ (dxxs (i-1) * dxxs (i))
\&	+ 0.125 * (abs(cw) - cw ${ }^{\text {c }}$ * dxx(i-1) * dxx(i)
\&	$/(\mathrm{dxxs}(\mathrm{i}) \star(\mathrm{dxxs}(\mathrm{i})+\mathrm{dxxs}(i+1))$)
\&	+ 0.125 * (abs(ce) + ce) * dxx (i+1) * dxx(i)
\&	$/(\mathrm{DXXS}(\mathrm{I}) *(\mathrm{DXXS}(\mathrm{I})+\mathrm{DXXS}(\mathrm{I}+1)))$)
\&	+ UPWIND * (0.5 * (ABS (CW) + CW))
AN ($\mathrm{I}, \mathrm{J}, \mathrm{K}$)	$=$ CONDN1 + QUICK
\&	* (-0.5 * CN * DYY(J) / DYYS (J+1)
\&	+ 0.125 * (abs(cn) + cn) * dYY(j) * dYY(j+1)
\&	$/($ dyys $(j+1) *(d y y s(j)+d y y s(j+1)))$
\&	+ 0.125 * (abs(cn) - cn) * dYY(j) * dyY ${ }^{\text {(}+1)}$
\&	/ (dyYs $(j+1)$ * dyys $(j+2))$
\&	+ 0.125 * (abs(cs) - cs) * dyY (j-1) * dYY (j)
\&	/ (DYYS(J+1) * (DYYS(J) + DYYS (J+1))))
\&	+ UPWIND * (0.5 * (ABS (CN) - CN)
AS (I, J, K)	$=$ CONDS1 + QUICK
	* (0.5 * CS * DYY(J) / DYYS(J)


```
\&
    \(+0.125 \star(\mathrm{abs}(\mathrm{cs})+c s)\)
    / (dyys(j-1) * dyys(j))
    \(+0.125 *(a b s(c s)-c s) * d y y(j-1) * d y y(j)\)
    / (dyys(j) * (dyys(j) + dyys(j+1)))
    \(+0.125 *(\operatorname{abs}(c n)+c n) * \operatorname{dyy}(j+1) * d y y(j)\)
    \(/(D Y Y S(J) *(D Y Y S(J)+D Y Y S(J+1))))\)
    + UPWIND * ( 0.5 * (ABS(CS) + CS))
    \(A F(I, J, K)=C O N D F 1+Q U I C K\)
    * (- 0.5 * CF * DZZ (K) / DZZS (K+1)
    \(+0.125 *(a b s(c f)+c f) * d z z(k) * d z z(k+1)\)
    / (dzzs(k+1) * (dzzs(k) + dzzs(k+1)))
    +0.125 * (abs(cf) - cf) * dzz(k) * dzz(k+1)
    / (dzzs \((k+1)\) * dzzs \((k+2))\)
    \(+0.125 *(a b s(c b)-c b) * d z z(k-1) * d z z(k)\)
    / (DZZS \((K+1) *(\operatorname{DZZS}(K)+\operatorname{DZZS}(K+1))))\)
    + UPWIND * ( 0.5 * (ABS (CF) - CF))
    \(A B(I, J, K)=C O N D B 1+Q U I C K\)
    * (0.5 * CB * DZZ(K) / DZZS (K)
    \(+0.125 *(a b s(c b)+c b) * d z z(k) * d z z(k-1)\)
    / (dzzs(k-1) * dzzs(k))
    \(+0.125 *(a b s(c b)-c b) * d z z(k-1) * d z z(k)\)
    / (dzzs(k) * (dzzs(k) + dzzs(k+1)))
    \(+0.125 *(\operatorname{abs}(c f)+c f) * d z z(k+1) * d z z(k)\)
    / (DZZS (K) * (DZZS (K) + DZZS (K+1))))
    + UPWIND * ( \(0.5 *(\mathrm{ABS}(\mathrm{CB})+C B))\)
\(\operatorname{AEE}(I, J, K)=-0.125 *\) QUICK
\& \(*(A B S(C E)-C E) * D X X(I) * D X X(I+1)\)
    \(/(\operatorname{DXXS}(I+2) *(D X X S(I+1)+\operatorname{DXXS}(I+2)))\)
    \(\mathrm{AWW}(I, J, K)=-0.125 * \mathrm{QUICK}\)
\& * (ABS (CW) + CW) * DXX(I) * DXX(I-1)
\& / (DXXS (I-1) * (DXXS (I-1) + DXXS(I)))
\(\operatorname{ANN}(I, J, K)=-0.125 *\) QUICK
\& * (ABS (CN) - CN) * DYY(J) * DYY (J+1)
\& \(/(\operatorname{DYYS}(J+2) *(D Y Y S(J+1)+\operatorname{DYYS}(J+2)))\)
ASS (I,J,K) \(=-0.125\) * QUICK
\& \(\quad\) (ABS (CS) + CS) * DYY(J) * DYY (J-1)
\& / (DYYS(J-1) * (DYYS(J-1) + DYYS(J)))
\(\operatorname{AFF}(I, J, K)=-0.125 *\) QUICK
\& \(*(A B S(C F)-C F) * D Z Z(K) * D Z Z(K+1)\)
\& \(/(\operatorname{DZZS}(K+2) *(\operatorname{DZZS}(K+1)+\operatorname{DZZS}(K+2)))\)
\(\operatorname{ABB}(I, J, K)=-0.125 *\) QUICK
\(\& \quad *(\mathrm{ABS}(\mathrm{CB})+\mathrm{CB}) * \mathrm{DZZ}(\mathrm{K}) * \mathrm{DZZ}(\mathrm{K}-1)\)
\(\& \quad /(\operatorname{DZZS}(K-1) *(\operatorname{DZZS}(K-1)+\operatorname{DZZS}(K)))\)
```

```
    \(\operatorname{ap}(i, j, k)=\operatorname{ae}(i, j, k)+\operatorname{aw}(i, j, k)+\operatorname{an}(i, j, k)+a s(i, j, k)\)
```

 \(\operatorname{ap}(i, j, k)=\operatorname{ae}(i, j, k)+\operatorname{aw}(i, j, k)+\operatorname{an}(i, j, k)+a s(i, j, k)\)
 $\& \quad+A F(I, J, K)+A B(I, J, K)+A W W(I, J, K)$
$\& \quad+A F(I, J, K)+A B(I, J, K)+A W W(I, J, K)$
$\& \quad+\operatorname{AEE}(I, J, K)+\operatorname{ASS}(I, J, K)+\operatorname{ANN}(I, J, K)$
$\& \quad+\operatorname{AEE}(I, J, K)+\operatorname{ASS}(I, J, K)+\operatorname{ANN}(I, J, K)$
$\& \quad+\operatorname{ABB}(I, J, K)+\operatorname{AFF}(I, J, K)+$ VOLDT
$\& \quad+\operatorname{ABB}(I, J, K)+\operatorname{AFF}(I, J, K)+$ VOLDT
$\operatorname{SU}(I, J, K)=\operatorname{VOLDT} * \operatorname{TOD}(I, J, K)$
$\operatorname{SU}(I, J, K)=\operatorname{VOLDT} * \operatorname{TOD}(I, J, K)$
80 continue
CALCULATION OF THE SOURCE TERM
DO $81 \mathrm{I}=4, \mathrm{NI}$
DO $81 \mathrm{~J}=2, \mathrm{NJ}$
DO $81 \mathrm{~K}=2$,NK
$S U(I, J, K)=S U(I, J, K)$
\& + AWW (I, J, K) * TPD $(I-2, J, K)$
81 CONTINUE

```
C

C
C


\(1\)

        DO \(82 \mathrm{I}=2, \mathrm{NI}-2\)
        DO \(82 \mathrm{~J}=2\), NJ
            DO \(82 \mathrm{~K}=2\),NK
                        \(S U(I, J, K)=S U(I, J, K)\)
                \(+\operatorname{AEE}(I, J, K) \star \operatorname{TPD}(I+2, J, K)\)

82 CONTINUE
\&
        DO \(83 \mathrm{I}=2\),NI
            DO \(83 \mathrm{~J}=4\), NJ
                DO \(83 \mathrm{~K}=2\),NK
                    \(S U(I, J, K)=S U(I, J, K)\)
                        \(+\operatorname{ASS}(I, J, K) * \operatorname{TPD}(I, J-2, K)\)
83 CONTINUE
C
        DO \(84 \mathrm{I}=2\), NI
            DO \(84 J=2, N J-2\)
                DO \(84 \mathrm{~K}=2\), NK
                \(\operatorname{SU}(I, J, K)=S U(I, J, K)\)
    \&
    84 CONTINUE
C
        DO \(85 \mathrm{I}=2\), NI
            DO \(85 \mathrm{~J}=2\), NJ
                DO \(85 \mathrm{~K}=4\), NK
                        \(S U(I, J, K)=S U(I, J, K)\)
            \&
                    \(+\operatorname{ANN}(I, J, K) \star \operatorname{TPD}(I, J+2, K)\)
                        \(+\operatorname{ABB}(I, J, K) * \operatorname{TPD}(I, J, K-2)\)
    85 CONTINUE
C
        DO \(86 \mathrm{I}=2\), NI
            DO \(86 \mathrm{~J}=2, \mathrm{NJ}\)
                DO \(86 \mathrm{~K}=2, \mathrm{NK}-2\)
                        \(\operatorname{SU}(I, J, K)=S U(I, J, K)\)
            \&
                        \(+\operatorname{AFF}(\mathrm{I}, \mathrm{J}, \mathrm{K}) \star \operatorname{TPD}(\mathrm{I}, \mathrm{J}, \mathrm{K}+2)\)
86 CONTINUE
    if (nchp .ne. 0) then

CHIP HEAT GENERATION
                    do \(90 \mathrm{~m}=1\), njchip
                        do \(90 \mathrm{n}=1\), nkchip
                        do \(90 \mathrm{i}=\mathrm{ibgn}\), iend
                        do 90 j=jbgn(m), jend (m)
                        do \(90 \mathrm{k}=\mathrm{kbgn}(\mathrm{n})\), kend ( n )
                        su(i,j,k) = alc * dxx(i) * dyy(j)
    \&
            continue
        endif
                    BOUNDARY CONDITIONS (TOP AND BOTTOM, ISOTHERMAL)
    do \(101 \mathrm{k}=2, \mathrm{nk}\)
            do \(101 \quad i=2\), ni
            \(A P(I, 2, K)=A P(I, 2, K)+A S(I, 2, K)-A S S(I, 2, K)\)
            \(\operatorname{su}(i, 2, k)=\operatorname{su}(i, 2, k)+2 . * \operatorname{as}(i, 2, k) *\) thot
            as \((i, 2, k)=0\).
            \(\operatorname{SU}(I, 3, K)=S U(I, 3, K)+A S S(I, 3, K)\)
                        * (2. * THOT - TPD (I, 2, K) )
            \(\operatorname{SU}(I, N J M 1, K)=\operatorname{SU}(I, N J M 1, K)+\operatorname{ANN}(I, N J M 1, K)\)
            * (2. * TCOOL - TPD (I,NJ,K))
```

$A P(I, N J, K)=A P(I, N J, K)+A N(I, N J, K)-A N N(I, N J, K)$
$\operatorname{su}(i, n j, k)=\operatorname{su}(i, n j, k)+2 . * \operatorname{an}(i, n j, k) *$ tcool
an(i,nj,k) $=0$.

```

101 continue
ADIABATIC WALLS (LEFT AND RIGHT)
do \(102 \mathrm{k}=2, \mathrm{nk}\)
do \(102 j=2, n j\)
\[
A P(2, J, K)=A P(2, J, K)-A W(2, J, K)-A W W(2, J, K)
\]
\[
a w(2, j, k)=0
\]
\[
\operatorname{SU}(3, J, K)=\operatorname{SU}(3, J, K)+\operatorname{AWW}(3, J, K) * \operatorname{TPD}(2, J, K)
\]
\[
A P(N I, J, K)=A P(N I, J, K)-A E(N I, J, K)-A E E(N I, J, K)
\]
\[
\mathrm{SU}(\mathrm{NIM1}, \mathrm{~J}, \mathrm{~K})=\mathrm{SU}(\mathrm{NIM1}, \mathrm{~J}, \mathrm{~K})
\]
\&
                        ae(ni,j,k) \(=0\).

102 continue
ADIABATIC WALLS (BACK AND FRONT)
do \(103 j=2, n j\)
do 103 i=2,ni
\(\operatorname{AP}(I, J, 2)=A P(I, J, 2)-A B(I, J, 2)-A B B(I, J, 2)\)
\(a b(i, j, 2)=0\).
\(\operatorname{SU}(I, J, 3)=\operatorname{SU}(I, J, 3)+A B B(I, J, 3) * \operatorname{TPD}(I, J, 2)\)
\(A P(I, J, N K)=A P(I, J, N K)-A F(I, J, N K)-A F F(I, J, N K)\)
\(\operatorname{SU}(I, J, N K M 1)=\operatorname{SU}(I, J, N K M 1)\)
\& \(+\operatorname{AFF}(I, J, N K M 1) * \operatorname{TPD}(I, J, N K)\)
\(\operatorname{af}(i, j, n k)=0\).
103 continue
SOLVE DIFFERENCE EQUATION
call \(\operatorname{sip}(2,2,2, n i, n j, n k, t)\)
PRESCRIBE WALL TEMPERATURES CONSISTENT WITH THE BOUNDARY CONDITIONS
(RIGHT AND LEFT WALL)

310 continue
C
```

do 310 k=2,nk

```
do 310 k=2,nk
            do 310 j=2,nj
            do 310 j=2,nj
                        t(nip1,j,k)=t(ni,j,k)
                        t(nip1,j,k)=t(ni,j,k)
                        t(1,j,k)=t(2,j,k)
```

 t(1,j,k)=t(2,j,k)
    ```

FRONT AND BACK WALL
do \(320 \quad j=2, n j\)
do \(320 \mathrm{i}=2\), ni
\(t(i, j, n k p 1)=t(i, j, n k)\)
\(t(i, j, 1)=t(i, j, 2)\)
320 continue
TOP AND BOTTOM WALL
```

do 330 k=2,nk
do 330 i=2,ni
t(i,1,k) = 2. * thot - t(i, 2,k)
t(i,njp1,k) = 2. * tcool - t(i,nj,k)

```

330 continue
THE KINEMATIC VISCOSITY IS CALCULATED, WHICH IS A STRONG FUNCTION OF TEMPERATURE
do \(350 \quad i=2\), ni
do \(350 \quad j=2, n j\)
do \(350 \mathrm{k}=2\), nk
ttmp \(=\) tavg \(+q\) cond \(* t(i, j, k)\)
if (ichoice.eq. 0) then
gnu \(=p r\)
endif
if (ichoice.eq. 1) then
gnu \(=(1.4074-2.96 e-2 *\) ttmp
\&
\&
\&
\(+3.8018 e-4 *\) ttmp**2
- \(2.731 e-6\) * ttmp**3
\(+8.168 e^{-9} *\) ttmp**4) * 29.088
endif
if (ichoice .eq. 2) then
gnu \(=(251.62-13.723 *\) tavg
\(\&\) \(+3.056 e-1\) * tavg**2 - \(3.1704 e-3\) * tavg**3 \(+1.2668 e-5\) * tavg**4) * 28.666
endif
visco(i,j,k) \(=\) gnu
350 continue
C
end
SUBROUTINE CALU
\(C\)
\(C\)
\(C\)
\(C\)
THIS SUBROUTINE ASSEMBLES THE U-MOMENTUM EQUATION AND BOUNDARY CONDITION AND SOLVES FOR THE U-VELOCITY (X-DIRECTION)
\[
\text { implicit real*8 }(a-h, o-z)
\]
common/ng/dxx(40),dyy(40),dzz(40),x(40),y(40),z(40),
\& dxxs(40),dyys(40),dzzs(40)
common/parm/ra, pr, sorsum, dtime, xper, roll, dt_inv, xtime
common/limits/ni,nip1, nim1, nj, njp1, njm1, nk, nkp1, nkm1,
\& nip2, njp2,nkp2, iter, nnmax
common/fv_init/tod \((12,16,16), \operatorname{lod}(12,16,16), \operatorname{vod}(12,16,16)\),
\& \(\quad \operatorname{wod}(12,16,16), \operatorname{pod}(12,16,16)\)
common/fv_cur/t \((12,16,16), u(12,16,16), v(12,16,16)\),
\& \(\quad \mathrm{w}(12,16,16), \mathrm{p}(12,16,16)\)
common/fv_int/tpd \((12,16,16), \operatorname{upd}(12,16,16), \operatorname{vpd}(12,16,16)\),
\(\& \quad-\quad \operatorname{wpd}(12,16,16), \operatorname{ppd}(12,16,16)\)
common/mscn/smp \((12,16,16), \operatorname{resorm}(93)\),
\& \(\quad d u(12,16,16), d v(12,16,16)\),
\& \(\quad d w(12,16,16), p p(12,16,16)\)
common/coeff/ap \((12,16,16)\), aw \((12,16,16)\), ae \((12,16,16)\),
\& as \((12,16,16)\), an \((12,16,16), a b(12,16,16)\),
\& af \((12,16,16)\),su( \(12,16,16\) )
COMMON / COEF2 / AWW \((12,16,16), \operatorname{AEE}(12,16,16), \operatorname{ASS}(12,16,16)\),
\&
\(\operatorname{ANN}(12,16,16), \operatorname{ABB}(12,16,16), \operatorname{AFF}(12,16,16)\)
common/condu/alpha \((12,16,16)\), \(\operatorname{rho}(12,16,16), \operatorname{visco}(12,16,16)\)
common/chip/ibgn, iend, jbgn (3), jend (3), kbgn (3), kend (3), nchp,
\&
isub,ichip,jchip,kchip
common/scheme/quick, upwind
common/diff/alc, als, thot, tcool, tavg
common/array/njchip, nkchip, ichoice
common/tol/small, eps, sormax
common/ifirst/nust, nvst, nwst, npst

CALCULATE COEFFICIENTS
do \(100 \mathrm{k}=2, \mathrm{nk}\)
do \(100 \mathrm{j}=2, \mathrm{nj}\)
do 100 i=nust, ni
voldt \(=d x x s(i) * d y y(j) * d z z(k) / d t i m e\)
CALCULATE INTERFACIAL KINEMATIC VISCOSITIES USING THE HARMONIC MEAN FORMULATION
```

visw = visco(i-1,j,k)
vise = visco(i,j,k)
viss = visco(i,j,k) * visco(i,j-1,k)
* (dyy(j-1) + dyy(j)) / (dyy(j-1)
* visco(i,j,k) + dyy(j) * visco(i,j-1,k))
visn = visco(i,j,k) * visco(i,j+1,k)
* (dyy(j+1) + dyy(j)) / (dyy(j+1)
* visco(i,j,k) + dyy(j) * visco(i,j+1,k))
visb = visco(i,j,k) * visco(i,j,k-1)
* (dzz(k-1) + dzz(k)) / (dzz(k-1)
* visco(i,j,k) + dzz(k) * visco(i,j,k-1))
visf = visco(i,j,k) * visco(i,j,k+1)
* (dzz(k+1) + dzz(k)) / (dzz(k+1)
* visco(i,j,k) + dzz(k) * visco(i,j,k+1))

```
```

dxys = dxxs(i) * dyy(j)
dyzs = dyy(j) * dzz(k)
dzxs = dzz(k) * dxxs(i)
zxoyn = dzxs / dyys(j+1)
zxoys = dzxs / dyys(j)
xyozf = dxys / dzzs(k+1)
xyozb = dxys / dzzs(k)
yzoxe = dyzs / dxx(i)
yzoxw = dyzs / dxx(i-1)

```
\(G N=V(I, J+1, K)\)
GNW \(=V(I-1, J+1, K)\)
\(G S=V(I, J, K)\)
GSW \(=V(I-1, J, K)\)
\(G E=U(I+1, J, K)\)
\(G P=U(I, J, K)\)
\(G W=U(I-1, J, K)\)
\(\mathrm{GF}=\mathrm{W}(\mathrm{I}, \mathrm{J}, \mathrm{K}+1)\)
GFW \(=W(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K}+1)\)
\(G B=W(I, J, K)\)
GBW \(=W(I-1, J, K)\)
    \(\mathrm{cn}=(\mathrm{gn} * \mathrm{dxx}(\mathrm{i}-1)+\mathrm{gnw} * \mathrm{dxx}(\mathrm{i}))\)
    \(/(d x x(i-1)+d x x(i))\) * \(d z x s\)
    \(\mathrm{cs}=(\mathrm{gs} * \mathrm{dxx}(\mathrm{i}-1)+\mathrm{gsw}\) * \(\mathrm{dxx}(\mathrm{i}))\)
    \(/(d x x(i-1)+d x x(i)) * d z x s\)
        ce \(=0.5\) * (ge + gp) * dyzs
        \(\mathrm{cw}=0.5\) * (gp + gw) * dyzs
        \(c f=(g f * d x x(i-1)+g f w * d x x(i))\)
    \(/(d x x(i-1)+d x x(i))\) * \(d x y s\)
\(\mathrm{cb}=(\mathrm{gb} * \mathrm{dxx}(\mathrm{i}-1)+\mathrm{gbw} * \mathrm{dxx}(\mathrm{i}))\)
\begin{tabular}{|c|c|}
\hline AE(I, J, K) & \(=\) VISE \(1+(-0.5 * C E+0.0625 *(A B S(C E)+C E)\) \\
\hline \& & * dxx(i) / dxxs(i) + 0.125 * (abs (ce) - ce) \\
\hline \& & * dxx(i) / dxx (i+1) + 0.0625 * (abs (CW) - CW) \\
\hline \& & * DXX (I-1)**2 / (DXX(I) * DXXS (I))) * QUICK \\
\hline \& & + UPWIND * ( 0.5 * (ABS (CE) - CE)) \\
\hline AW ( \(I, ~ J, K)\) & \(=\) VISW \(1+(0.5 * C W+0.125 *(A B S(C W)+C W)\) \\
\hline \& &  \\
\hline \& & * dxx (i-1) / dxxs (i) + 0.0625 * (abs (ce) + ce) \\
\hline \& & * DXX \((\mathrm{I}) * * 2 /(\mathrm{DXX}(\mathrm{I}-1)\) * DXXS (I)) ) * QUICK \\
\hline \& & + UPWIND * ( 0.5 * (ABS (CW) + CW) ) \\
\hline AN ( I , J , K ) & \(=\) VISN \(1+(-0.5 * C N * \operatorname{DYY}(J) / \operatorname{DYYS}(J+1)\) \\
\hline \& & + 0.125 * (abs(cn) + cn) * dYY (j) * dYY \({ }^{\text {( }}\) +1) \\
\hline \& & / (dyys \((j+1)\) * (dyys \(\left.{ }^{\text {(j) }}+\mathrm{dyYs}(j+1)\right)\) ) \\
\hline \& & + 0.125 * (abs(cn) - cn) * dyY (j) * dyy \(j+1)\) \\
\hline \& & / (dyys \((j+1)\) * dyys \((j+2)\) ) \\
\hline \& & + 0.125 * (abs (cs) - cs) * dyy \((j-1)\) * dYY ( J ) \\
\hline \& & / (DYYS (J+1) * (DYYS(J) + DYYS (J+1)))) * QUICK \\
\hline \& & + UPWIND * ( 0.5 * (ABS (CN) - CN) ) \\
\hline AS ( \(I, J, K\) ) & \(=\) VISS \(1+(0.5 *\) CS \(*\) DYY (J) / DYYS (J) \\
\hline \& & + 0.125 * (abs(cs) + cs) * dyY(j) * dyY \({ }^{\text {( }}\) (1) \\
\hline \& & / (dYYs \((j-1)\) * dYYs(j)) \\
\hline \& & + 0.125 * (abs(cs) - cs) * dyY (j-1) * dYY (j) \\
\hline \& & / (dyYs(j) * (dyYs(j) + dYYs(j+1))) \\
\hline \& & + 0.125 * (abs(cn) + cn) * dYY (j+1) * dyY \({ }^{\text {( }}\) ) \\
\hline \& & / (DYYS(J) * (DYYS(J) + DYYS(J+1)))) * QUICK \\
\hline \& & + UPWIND * ( 0.5 * (ABS (CS) + CS) \()\) \\
\hline AF ( \(I, J, K\) ) & \(=\) VISF1 \(+(-0.5 * C F * D Z Z(K) / \mathrm{DZZS}(\mathrm{K}+1)\) \\
\hline \& & \(+0.125 *(\operatorname{abs}(\mathrm{cf})+\mathrm{cf}) * \mathrm{dzz}(k) *\) dzz \((k+1)\) \\
\hline \& & / (dzzs \((k+1) *(d z z s(k)+d z z s(k+1)))\) \\
\hline \& & + 0.125 * (abs (cf) - cf ) * dzz (k) * dzz (k+1) \\
\hline \& & / (dzzs (k+1) * dzzs \((k+2))\) \\
\hline \& & + 0.125 * (abs (cb) - cb) * dzz (k-1) * dzz \(\mathrm{c}^{(k)}\) \\
\hline \& & / (DZZS \((\mathrm{K}+1)\) * (DZZS \((\mathrm{K})+\mathrm{DZZS}(\mathrm{K}+1))\) )) * QUICK \\
\hline \& & + UPWIND * ( 0.5 * (ABS (CF) - CF) \()\) \\
\hline AB ( \(I, J, K\) ) & \(=\) VISB1 \(+(0.5 *\) CB * DZZ (K) / DZZS \((\mathrm{K})\) \\
\hline \& & \(+0.125 *(\mathrm{abs}(\mathrm{cb})+\mathrm{cb}) * \mathrm{dzz}(\mathrm{k})\) * dzz \((\mathrm{k}-1)\) \\
\hline \& & / (dzzs (k-1) * dzzs (k)) \\
\hline \& & +0.125 * (abs (cb) - cb) * dzz (k-1) * dzz (k) \\
\hline \& & / (dzzs \((\mathrm{k}) *\) (dzzs \((\mathrm{k})+\mathrm{dzzs}(\mathrm{k}+1))\) ) \\
\hline \& & + 0.125 * (abs (cf) + cf ) * dzz (k+1) * dzz (k) \\
\hline \& & / (DZZS K\()\) * (DZZS \((\mathrm{K})+\mathrm{DZZS}(\mathrm{K}+1))\) ) \({ }^{\text {( }}\) * QUICK \\
\hline \& & + UPWIND * ( 0.5 * (ABS (CB) + CB) ) \\
\hline
\end{tabular}

C
\begin{tabular}{|c|c|}
\hline \(\operatorname{AEE}(I, J, K)\) & \(=-0.0625 *\) QUICK \\
\hline \& & * (ABS (CE) - CE) * DXX (I)**2 \\
\hline \& & / ( \(\mathrm{DXX}(\mathrm{I}+1)\) * DXXS (I+1)) \\
\hline AWW (I, J, K) & \(=-0.0625 *\) QUICK \\
\hline \& & * (ABS (CW) + CW) * DXX (I-1)**2 \\
\hline \& & / ( \(\mathrm{DXX}(\mathrm{I}-2) *\) DXXS \((\mathrm{I}-1))\) \\
\hline ANN (I, J, K) & \(=-0.125 *\) QUICK \\
\hline
\end{tabular}
```

 \&
 \&
\&

```
* \(\quad\) ABS (CN)
/ (DYYS(J+2) * (DYYS(J+1) + DYYS(J+2)))
ASS (I,J.,K) \(=-0.125\) * QUICK
\& * (ABS(CS) + CS) * DYY(J) * DYY(J-1)
\& \(/(\operatorname{DYYS}(J-1) *(D Y Y S(J-1)+\operatorname{DYYS}(J)))\)
\(\operatorname{AFF}(\mathrm{I}, \mathrm{J}, \mathrm{K})=-0.125\) * QUICK
\& * (ABS (CF) - CF) * DZZ (K) * DZZ (K+1)
\& \(/(\operatorname{DZZS}(K+2) *(\operatorname{DZZS}(K+1)+\operatorname{DZZS}(K+2)))\)
\(\operatorname{ABB}(I, J, K)=-0.125 *\) QUICK
c
    \(A P(I, J, K)=A E(I, J, K)+A W(I, J, K)+A N(I, J, K)+A S(I, J, K)\)
    \& \(+A F(I, J, K)+A B(I, J, K)+A W W(I, J, K)\)
\& \(\quad+\operatorname{AEE}(I, J, K)+\operatorname{ASS}(I, J, K)+\operatorname{ANN}(I, J, K)\)
\& \(\quad+\operatorname{ABB}(I, J, K)+\operatorname{AFF}(I, J, K)+\) VOLDT
\(\operatorname{SU}(I, J, K)=\operatorname{VOLDT} * \operatorname{UOD}(I, J, K)\)
\& \(+D Y Z S\) * \((P(I-1, J, K)-P(I, J, K))\)
    100 continue
C
C

CALCULATION OF THE SOURCE TERM
DO \(101 \mathrm{I}=\mathrm{NUST}+1\), NI
DO \(101 \mathrm{~J}=2\), NJ DO \(101 \mathrm{~K}=2\), NK
\[
\operatorname{SU}(I, J, K)=\operatorname{SU}(I, J, K)
\]
\&
101 CONTINUE
C
\[
\text { DO } 102 \mathrm{I}=\text { NUST,NI-1 }
\]

DO \(102 \mathrm{~J}=2\), NJ
DO \(102 \mathrm{~K}=2\), NK
```

 SU(I,J,K) = SU(I,J,K)
    ```
\&
102 CONTINUE
C
\[
\text { DO } 103 \text { I=NUST,NI }
\]
\[
\text { DO } 103 \mathrm{~J}=4, \mathrm{NJ}
\]
\[
\text { DO } 103 \mathrm{~K}=2 \text {,NK }
\]
\[
\operatorname{SU}(I, J, K)=\operatorname{SU}(I, J, K)
\]
\&
\[
+\operatorname{ASS}(I, J, K) * \operatorname{UPD}(I, J-2, K)
\]

103 CONTINUE
```

 DO 104 I=NUST,NI
 DO 104 J=2,NJ-2
 DO 104 K=2,NK
 SU(I,J,K)=SU(I,J,K)
 + ANN(I,J,K) * UPD(I,J+2,K)
 \&
104 CONTINUE

```
C
    DO \(105 \mathrm{I}=\mathrm{NUST}\), NI
            DO \(105 \mathrm{~J}=2\), NJ
                        DO \(105 \mathrm{~K}=4, \mathrm{NK}\)
                        \(\operatorname{SU}(I, J, K)=\operatorname{SU}(I, J, K)\)
                        \(+\operatorname{ABB}(I, J, K)\) * UPD (I,J,K-2)
            \&
        105 CONTINUE
    C
```

 DO 106 I=NUST,NI
 DO }106\textrm{J}=2,\textrm{NJ
 DO 106 K=2,NK-2
    ```




1
\(\mid\)

1
                    \(\operatorname{SU}(I, J, K)=S U(I, J, K)\)
                        \(+\operatorname{AFF}(I, J, K) * \operatorname{UPD}(I, J, K+2)\)
\& CONTINUE

BOUNDARY CONDITIONS (TOP AND BOTTOM)
DO \(121 \mathrm{~K}=2\), NK
DO \(121 \mathrm{I}=\mathrm{NUST}, \mathrm{NI}\)
\(\operatorname{AP}(I, 2, K)=\operatorname{AP}(I, 2, K)+\operatorname{AS}(I, 2, K)-\operatorname{ASS}(I, 2, K)\)
\(A S(I, 2, K)=0\). \(\operatorname{SU}(I, 3, K)=\operatorname{SU}(I, 3, K)-\operatorname{ASS}(I, 3, K) * \operatorname{UPD}(I, 2, K)\) \(\operatorname{SU}(I, N J M 1, K)=S U(I, N J M 1, K)\)
- ANN(I,NJM1,K) * UPD(I,NJ,K)
\&
\[
\begin{aligned}
& A P(I, N J, K)=A P(I, N J, K)+A N(I, N J, K)-A N N(I, N J, K) \\
& A N(I, N J, K)=0 .
\end{aligned}
\]

121 CONTINUE
        DO \(122 \mathrm{~K}=2\), NK
            DO \(122 \mathrm{~J}=2\), NJ
                AW (NUST, J, K) \(=0\).
                SU(NUST,J,K) \(=\) SU(NUST,J,K)
\&
                        - AWW (NUST,J,K) * UPD(NUST,J,K)
                        \(S U(N I, J, K)=S U(N I, J, K)\)
                        - AEE(NI,J,K) * UPD(NI,J,K)
        \(A E(N I, J, K)=0\).
    122 CONTINUE
            FRONT AND BACK WALL
                DO \(123 \mathrm{~J}=2\), NJ
            DO \(123 \mathrm{I}=\mathrm{NUST}\), NI
                \(A P(I, J, 2)=A P(I, J, 2)+A B(I, J, 2)-A B B(I, J, 2)\)
                \(\mathrm{AB}(I, J, 2)=0\).
                \(\operatorname{SU}(I, J, 3)=\operatorname{SU}(I, J, 3)-A B B(I, J, 3) * \operatorname{UPD}(I, J, 2)\)
                \(\operatorname{SU}(I, J, N K M 1)=S U(I, J, N K M 1)\)
            \&
                - AFF (I,J,NKM1) * UPD(I,J,NK)
                    \(A P(I, J, N K)=A P(I, J, N K)+A F(I, J, N K)-A F F(I, J, N K)\)
                \(A F(I, J, N K)=0\).
    123 CONTINUE
    IF (NCHP . NE. O) THEN
            U-VELOCITY SET TO ZERO IN CHIP
            DO \(130 \mathrm{M}=1\), NJCHIP
            DO \(130 \mathrm{~N}=1\), NKCHIP
                DO \(130 \mathrm{I}=\mathrm{IBGN}+1\), IEND +1
                DO \(130 \mathrm{~J}=\mathrm{JBGN}(\mathrm{M})\), J END (M)
                    DO \(130 \mathrm{~K}=\operatorname{KBGN}(\mathrm{N}), \operatorname{KEND}(\mathrm{N})\)
                        \(A P(I, J, K)=\) small
                        \(A W(I, J, K)=0\).
                        \(A E(I, J, K)=0\).
                        \(A S(I, J, K)=0\).
                        \(A N(I, J, K)=0\).
                        \(A B(I, J, K)=0\).
                        \(A F(I, J, K)=0\).
                        \(S U(I, J, K)=0\).

CONTINUE CHIP BOUNDARY CONDITIONS (TOP AND BOTTOM)

DO \(131 \mathrm{M}=1\), NJCHIP
DO \(131 \mathrm{~N}=1\), NKCHIP
DO \(131 \mathrm{I}=\mathrm{IBGN}+1\), IEND +1
DO \(131 \mathrm{~K}=\operatorname{KBGN}(\mathrm{N}), \operatorname{KEND}(\mathrm{N})\) JJS \(=\) JEND (M) JJS1 \(=\) JEND \((M)+1\) \(J J S 2=J E N D(M)+2\) JJN = JBGN(M) JJN1 \(=\mathrm{JBGN}(\mathrm{M})-1\) \(J J N 2=J B G N(M)-2\) \(A P(I, J J S 1, K)=A P(I, J J S 1, K)\) \(+A S(I, J J S 1, K)-A S S(I, J J S 1, K)\) AS (I,JJS1,K) \(=0\). \(\operatorname{SU}(I, J J S 2, K)=S U(I, J J S 2, K)\)
- ASS(I,JJS2,K) * UPD (I, JJS, K)
\[
\text { - ASS (I,JJS2,K) * UPD }(I, J J S 1, K)
\]
\(\operatorname{SU}(I, J J N 2, K)=S U(I, J J N 2, K)\)
- ANN(I,JJN2,K) * UPD (I,JJN,K)
- ANN (I,JJN2,K) * UPD (I,JJN1,K)

AP (I,JJN1,K) = AP(I,JJN1,K)
\(+A N(I, J J N 1, K)-A N N(I, J J N 1, K)\) \(A N(I, J J N 1, K)=0\).
131 CONTINUE
FRONT AND BACK WALL
DO \(132 \mathrm{M}=1\), NJCHIP
DO \(132 \mathrm{~N}=1\), NKCHIP
DO \(132 \mathrm{I}=\mathrm{IBGN}+1\), IEND +1
DO \(132 \mathrm{~J}=\mathrm{JBGN}(\mathrm{M}), \mathrm{J} E N D(\mathrm{M})\)
\(\mathrm{KKB}=\operatorname{KEND}(\mathrm{N})\)
\(\operatorname{KKB1}=\operatorname{KEND}(N)+1\)
KKB2 \(=\operatorname{KEND}(N)+2\)
\(\mathrm{KKF}=\operatorname{KBGN}(\mathrm{N})\)
KKF1 \(=\operatorname{KBGN}(N)-1\)
\(\operatorname{KKF2}=\operatorname{KBGN}(\mathrm{N})-2\)
\(A P(I, J, K K B 1)=A P(I, J, K K B 1)\)
\&
\&
\&
\&
\&
\&
132 CONTINUE
RIGHT WALL
DO \(133 \mathrm{M}=1\), NJCHIP
DO \(133 \mathrm{~N}=1\), NKCHIP
DO \(133 \mathrm{~J}=\mathrm{J} B G N(\mathrm{M})\), J END ( M )
DO \(133 \mathrm{~K}=\operatorname{KBGN}(\mathrm{N}), \operatorname{KEND}(\mathrm{N})\)
II2 \(=\) IEND +2


)
```

AW(II2,J,K)=0
SU(II2,J,K) = SU(II2,J,K)
- AWW(II2,J,K) * UPD(IEND,J,K)
- AWW(II2,J,K) * UPD(II2,J,K)

```
\&
\&
    133
        CONTINUE
    ENDIF

SOLVE THE LINEARISED U MOMENTUM EQUATIONS
CALL SIP (NUST, 2, 2,NI,NJ,NK,U)
```

CALCULATE DU NEEDED FOR PRESSURE CORRECTION AND SOLVE

```
```

DO 200 K=2,NK
DO 200 J=2,NJ
DO 200 I=NUST,NI
SU(I,J,K) = DYY(J) * DZZ(K)

```

200 CONTINUE
CALL SIP (NUST, 2, 2,NI,NJ,NK,DU)
c
END
SUBROUTINE CALV
THIS SUBROUTINE ASSEMBLES THE V-MOMENTUM EQUATION AND
BOUNDARY CONDITION AND SOLVES FOR THE V-VELOCITY (Y DIRECTION)
implicit real*8 (a-h,o-z)
common/ng/dxx(40),dyy(40),dzz(40),x(40),y(40),z(40),
\&
common/parm/ra, pr, sorsum, dtime, xper, roll,dt_inv, xtime
common/limits/ni,nipl,nim1,nj, njp1, njm1, nk, nkpl, nkm1,
\& nip2, njp2, nkp2,iter, nnmax
common/fv_init/tod \((12,16,16), \operatorname{lod}(12,16,16), \operatorname{vod}(12,16,16)\),
\& \(\quad \operatorname{wod}(12,16,16), \operatorname{pod}(12,16,16)\)
common/Ev_cur/t \((12,16,16), \mathrm{u}(12,16,16), \mathrm{v}(12,16,16)\),
\& \(\quad w(12,16,16), p(12,16,16)\)
common/fv_int/tpd \((12,16,16), \operatorname{upd}(12,16,16), \operatorname{vpd}(12,16,16)\),
\& wpd \((12,16,16), \operatorname{ppd}(12,16,16)\)
common/mscn/smp \((12,16,16)\), resorm(93),
\& \(\quad d u(12,16,16), d v(12,16,16)\),
\& \(\quad d w(12,16,16), p p(12,16,16)\)
common/coeff/ap \((12,16,16)\), aw \((12,16,16)\), ae \((12,16,16)\),
\& \(\quad a s(12,16,16)\), an \((12,16,16), a b(12,16,16)\),
\& \(\quad a f(12,16,16)\),su( \(12,16,16\) )
COMMON / COEF2 / AWW \((12,16,16), \operatorname{AEE}(12,16,16), \operatorname{ASS}(12,16,16)\),
\&
common/condu/alpha \((12,16,16)\), rho \((12,16,16)\), visco \((12,16,16)\)
common/chip/ibgn, iend,jbgn (3),jend(3),kbgn(3),kend (3), nchp,
\& isub,ichip,jchip,kchip
COMMON/SCHEME/QUICK,UPWIND
common/diff/alc, als, thot, tcool, tavg
common/array/njchip, nkchip,ichoice
common/tol/small, eps, sormax
common/ifirst/nust, nvst, nwst, npst

\section*{CALCULATE COEFFICIENTS}
do \(100 k=2, n k\)
do \(100 j=3, n j\)
do 100 i=nvst,ni

CALCULATE INTERFACIAL KINEMATIC VISCOSITIES
USING THE HARMONIC MEAN FORMULATION
```

visw = visco(i,j,k) * visco(i-1,j,k)
* (dxx(i-1) + dxx(i)) / (dxx(i-1)
* visco(i,j,k) + dxx(i) * visco(i-1,j,k))
vise = visco(i,j,k) * visco(i+1,j,k)
* (dxx(i+1) + dxx(i)) / (dxx(i+1)
* visco(i,j,k) + dxx(i) * visco(i+1,j,k))
viss = visco(i,j-1,k)
visn = visco(i,j,k)
visb = visco(i,j,k) * visco(i,j,k-1)
* (dzz(k-1) + dzz(k)) / (dzz(k-1)
* visco(i,j,k) + dzz(k) * visco(i,j,k-1))
visf = visco(i,j,k) * visco(i,j,k+1)
* (dzz(k+1) + dzz(k)) / (dzz(k+1)
* visco(i,j,k) + dzz(k) * visco(i,j,k+1))
dxys = dxx(i) * dyys(j)
dyzs = dyys(j) * dzz(k)
dzxs = dzz(k) * dxx(i)
zxoyn = dzxs / dyy(j)
zxoys = dzxs / dyy(j-1)
xyozf = dxys / dzzs(k+1)
xyozb = dxys / dzzs(k)
yzoxe = dyzs / dxxs(i+1)
yzoxw = dyzs / dxxs(i)

```
```

GN = V(I,J+1,K)
GP}=V(I,J,K
GS = V(I,J-1,K)
GE = U(I+1,J,K)
GSE = U(I+1,J-1,K)
GW = U(I,J,K)
GSW = U(I,J-1,K)
GF = W(I,J,K+1)
GSF = W(I,J-1,K+1)
GB = W(I,J,K)
GSB =W(I,J-1,K)

```
\(\mathrm{cn}=0.5 *(\mathrm{gn}+\mathrm{gp}) * \mathrm{dzxs}\)
\(\mathrm{cs}=0.5\) * (gp + gs) * dzxs
ce \(=(\) ge * dyy (j-1) + gse * dyy (j))
    / (dyy(j-1) + dyy(j)) * dyzs
\(\mathrm{cw}=(\mathrm{gw} * \operatorname{dyy}(j-1)+g s w * \operatorname{dyy}(j))\)
    / (dyy(j-1) + dyy(j)) * dyzs
\(\mathrm{cf}=(\mathrm{gf} * \operatorname{dyy}(j-1)+\mathrm{gsf} * \operatorname{dyy}(j))\)
    / (dyy(j-1) + dyy(j)) * dxys
\(\mathrm{cb}=(\mathrm{gb}\) * dyy (j-1) + gsb * dyy(j))
    / (dyy(j-1) + dyy(j)) * dxys
```

vise1 = yzoxe * vise
visw1 = yzoxw * visw
visn1 = zxoyn * visn
viss1 = zxoys * viss
visf1 = xyozf * visf

```
\[
1
\]




\begin{tabular}{|c|c|}
\hline AE (I, J, K) & \(=\) VISE1 + (-0.5 * CE * DXX (I) / DXXS (I+1) \\
\hline & + 0.125 * (abs(ce) + ce) * dxx (i) * dxx (i+1) \\
\hline \[
\&
\] & / (dxxs(i+1) * (dxxs(i) + dxxs(i+1) \\
\hline \& & + 0.125 * (abs(ce) - ce) * dxx(i) * dx \\
\hline \& & / (dxxs (i+1) * dxxs (i+2)) \\
\hline \[
\&
\] & + 0.125 * (abs(cw) - cw) * dxx (i-1) * dxx \\
\hline \& & / (DXXS (I+1) * (DXXS (I) + DXXS (I+1)))) * QUICK \\
\hline & + UPWIND * ( 0.5 * (ABS (CE) - CE) ) \\
\hline AW (I, J, K) & \(=\) VISW1 + (0.5 * CW * DXX(I) / DXXS (I) \\
\hline & + 0.125 * (abs(cw) + cw) * dxx(i) * dxx(i-1) \\
\hline \[
\&
\] & / (dxxs(i-1) * dxxs(i)) \\
\hline \[
\&
\] & + 0.125 * (abs(cw) - cw) * dxx(i-1) * dxx(i) \\
\hline \& & / (dxxs(i) * (dxxs(i) + dxxs (i+1) \({ }^{\text {a }}\) \\
\hline \& & + 0.125 * (abs(ce) + ce) * dxx(1+1) * dxx(i) \\
\hline \& & / (DXXS (I) * (DXXS (I) + DXXS (I+1))) ) * QUICK \\
\hline & + UPWIND * ( 0.5 * (ABS (CW) + CW) ) \\
\hline AN(I, J, K) & \(=\) VISN1 + (-0.5 * CN + 0.0625 * (ABS (CN) \\
\hline & * dyy(j) / dyys(j) + 0.125 * (abs(cn) - cn) \\
\hline \[
\approx
\] & * dyy \((\mathrm{j}) / \mathrm{dyy}(\mathrm{j}+1)+0.0625\) * (abs(cs) - cs) \\
\hline & * DYY(J-1)**2 / (DYY(J) * DYYS(J))) * QUICK \\
\hline & + UPWIND * ( 0.5 * (ABS(CN) - CN) \\
\hline AS (I, J, K) & \(=\) VISS \(1+(0.5 *\) CS + \(0.125 *\) (ABS (CS) + CS) \\
\hline & * dyy (j-1) / dyy (j-2) + 0.0625 * (abs (cs) - cs) \\
\hline &  \\
\hline & * DYY(J)**2 / (DYY(J-1) * DYYS(J))) * QUICK \\
\hline & + UPWIND * ( 0.5 * (ABS (CS) + CS) ) \\
\hline AF ( I, J, K) & \(=\) VISF1 + (-0.5 * CF * DZZ (K) / DZZS \\
\hline & + 0.125 * (abs(cf) + cf) * dzz(k) * dzz(k+1) \\
\hline & / (dzzs (k+1) * (dzzs(k) + dzzs (k+1) ) \\
\hline & + 0.125 * (abs(cf) - cf) * dzz(k) * dz \\
\hline & / (dzzs \((\mathrm{k}+1)\) * dzzs \((\mathrm{k}+2)\) ) \\
\hline & + 0.125 * (abs(cb) - cb) * dzz (k-1) * dzz(k) \\
\hline & / (DZZS \((\mathrm{K}+1)\) * (DZZS \((\mathrm{K})+\mathrm{DZZS}(\mathrm{K}+1)) \mathrm{)})\) * QUICK \\
\hline & + UPWIND * ( 0.5 * (ABS(CF) - CF) ) \\
\hline AB ( \(\mathrm{I}, \mathrm{J}, \mathrm{K}\) ) & \(=\) VISB1 + (0.5 * CB * DZZ (K) / DZZS \((\mathrm{K})\) \\
\hline & + 0.125 * (abs(cb) + cb) * dzz(k) * dzz \\
\hline & / (dzzs(k-1) * dzzs(k)) \\
\hline & + 0.125 * (abs(cb) - cb) * dzz(k-1) * dzz(k) \\
\hline & / (dzzs(k) * (dzzs \((\mathrm{k})+\mathrm{dzzs}(\mathrm{k}+1)\) ) \()\) \\
\hline & + 0.125 * (abs(cf) + cf) * dzz (k+1) * dzz (k) \\
\hline \& & / (DZZS \((\mathrm{K})\) * (DZZS \((\mathrm{K})+\) DZZS \((\mathrm{K}+1)))\) ) * QUICK \\
\hline \& & + UPWIND * ( 0.5 * (ABS (CB) + CB) ) \\
\hline AEE ( I, J, K & ) \(=-0.125\) * QUICK \\
\hline & * (ABS (CE) - CE) * DXX(I) * DXX (I+1) \\
\hline & \(/(\operatorname{DXXS}(\mathrm{I}+2)\) * (DXXS (I+1) + DXXS (I+2)) ) \\
\hline AWW (I, J, K & K) = - 0.125 * QUICK \\
\hline & * (ABS (CW) + CW) * DXX(I) * DXX(I-1) \\
\hline & / (DXXS(I) * (DXXS (I-1) + DXXS(I)) ) \\
\hline ANN ( I, J, K & K) \(=-0.0625\) * QUICK \\
\hline & * (ABS(CN) - CN) * DYY(J) **2 \\
\hline & / (DYY(J+1) * DYYS(J+1)) \\
\hline ASS (I, J, K & K) \(=-0.0625\) * QUICK \\
\hline \& & * (ABS(CS) + CS) * DYY(J-1)**2 \\
\hline \& & / (DYY(J-2) * DYYS(J-1)) \\
\hline AFF(I, J, K ) & K) = - 0.125 * QUICK \\
\hline \& & * (ABS (CF) - CF) * DZZ (K) * DZZ \((\mathrm{K}+1)\) \\
\hline \& & / (DZZS \((\mathrm{K}+2)\) * (DZZS \((\mathrm{K}+1)\) + DZZS \((\mathrm{K}+2)\) ) \\
\hline
\end{tabular}
\& * (ABS (CB) + CB) * DZZ (K) * DZZ (K-1)
/ (DZZS (K) * (DZZS (K-1) + DZZS (K)))
\(A P(I, J, K)=A E(I, J, K)+A W(I, J, K)+A N(I, J, K)+A S(I, J, K)\)
\& \(\quad+A F(I, J, K)+A B(I, J, K)+A W W(I, J, K)\)
\& \(\quad+\operatorname{AEE}(I, J, K)+\operatorname{ASS}(I, J, K)+\operatorname{ANN}(I, J, K)\)
\& \(\quad \operatorname{ABB}(I, J, K)+\operatorname{AFF}(I, J, K)+\operatorname{VOLDT}\)
\(\operatorname{SU}(I, J, K)=\operatorname{VOLDT} * \operatorname{VOD}(I, J, K)\)
\& \(\quad+\quad D Z X S\) * \((P(I, J-1, K)-P(I, J, K))\)
+ RA * (T(I,J,K) * DYY(J-1) + T(I,J-1,K)
* DYY(J)) / (DYY(J) + DYY(J-1))
* DXX(I) * DYYS(J) * DZZ(K)
100 CONTINUE
CALCULATION OF THE SOURCE TERM
Do \(101 \mathrm{I}=\mathrm{NVST}+2, \mathrm{NI}\)
Do \(101 \mathrm{I}=\mathrm{NVST}+2, \mathrm{NI}\)
            DO \(101 \mathrm{~J}=3, \mathrm{NJ}\)
            DO \(101 \mathrm{~J}=3, \mathrm{NJ}\)
                DO \(101 \mathrm{~K}=2\), NK
                DO \(101 \mathrm{~K}=2\), NK
                        \(\operatorname{SU}(I, J, K)=S U(I, J, K)\)
                        \(\operatorname{SU}(I, J, K)=S U(I, J, K)\)
                                \(+\operatorname{AWW}(I, J, K) \star \operatorname{VPD}(I-2, J, K)\)
                                \(+\operatorname{AWW}(I, J, K) \star \operatorname{VPD}(I-2, J, K)\)
101 CONTINUE
    Do \(102 \mathrm{I}=\mathrm{NVST}, \mathrm{NI}-2\)
            DO \(102 \mathrm{~J}=3\), NJ
                DO \(102 \mathrm{~K}=2\), NK
                        \(\operatorname{SU}(I, J, K)=\operatorname{SU}(I, J, K)\)
                        \(+\operatorname{AEE}(I, J, K) * \operatorname{VPD}(I+2, J, K)\)
102 CONTINUE
        DO \(103 \mathrm{I}=\mathrm{NVST}, \mathrm{NI}\)
            DO \(103 \mathrm{~J}=4\), NJ
                DO \(103 \mathrm{~K}=2\),NK
                        \(\operatorname{SU}(I, J, K)=\operatorname{SU}(I, J, K)\)
    \&
        CONTINUE
C
        DO \(104 \mathrm{I}=\mathrm{NVST}, \mathrm{NI}\)
            DO 104 J=3,NJM1
                DO \(104 \mathrm{~K}=2\), NK
                        \(\operatorname{SU}(I, J, K)=\operatorname{SU}(I, J, K)\)
            \&
                        \(+\operatorname{ANN}(I, J, K) * \operatorname{VPD}(I, J+2, K)\)
    104 CONTINUE
        DO 105 I=NVST,NI
            DO \(105 \mathrm{~J}=3\), NJ
                        DO \(105 \mathrm{~K}=4\), NK
                        \(\operatorname{SU}(I, J, K)=S U(I, J, K)\)
            \&
                        \(+\operatorname{ABB}(I, J, K) * \operatorname{VPD}(I, J, K-2)\)
    105 CONTINUE
C
        DO 106 I=NVST,NI
            DO \(106 \mathrm{~J}=3\), NJ
                        DO \(106 \mathrm{~K}=2, \mathrm{NK}-2\)
                        \(\operatorname{SU}(I, J, K)=\operatorname{SU}(I, J, K)\)
            \& \(+\operatorname{AFF}(\mathrm{I}, \mathrm{J}, \mathrm{K}) * \operatorname{VPD}(\mathrm{I}, \mathrm{J}, \mathrm{K}+2)\)
        106 CONTINUE
\(\begin{array}{ll}\mathrm{C} \\ \mathrm{C} & \text { BOUNDARY CONDITIONS (TOP AND BOTTOM WALL) }\end{array}\)




DO 121 I=NVST,NI
\[
A S(I, 3, K)=0
\]
\[
S U(I, 3, K)=S U(I, 3, K)
\]
\[
-\operatorname{ASS}(I, 3, K) * \operatorname{VPD}(I, 3, K)
\]
\(S U(I, N J, K)=S U(I, N J, K)\)
\& \(\quad-\operatorname{ANN}(I, N J, K) * \operatorname{VPD}(I, N J, K)\)
\(A N(I, N J, K)=0\).
121 CONTINUE

LEFT AND RIGHT WALL
DO \(122 \mathrm{~K}=2\), NK
DO \(122 \mathrm{~J}=3, \mathrm{NJ}\)
AP \((\) NVST, \(J, K)=A P(N V S T, J, K)+A W(N V S T, J, K)\)
\&
\(A W(N V S T, J, K)=0\).
\(\operatorname{SU}(N V S T+1, J, K)=S U(N V S T+1, J, K)\)
\&
\&
\(\& \quad-A E E(N I, J, K)\)
\(A E(N I, J, K)=0\).
122 CONTINUE
FRONT AND BACK WALL
DO \(123 \mathrm{~J}=3\), NJ
DO \(123 \mathrm{I}=\mathrm{NVST}, \mathrm{NI}\)
\(A P(I, J, 2)=A P(I, J, 2)+A B(I, J, 2)-A B B(I, J, 2)\)
\(S U(I, J, 3)=S U(I, J, 3)\)
\(\&\)
\(-\operatorname{ABB}(I, J, 3) * \operatorname{VPD}(I, J, 2)\)
\(\operatorname{SU}(I, J, N K M 1)=S U(I, J, N K M 1)\)
- \(\operatorname{AFF}(I, J, N K M 1) * \operatorname{VPD}(I, J, N K)\)
\(A B(I, J, 2)=0\).
\(A P(I, J, N K)=A P(I, J, N K)+A F(I, J, N K)-A F F(I, J, N K)\)
\(A F(I, J, N K)=0\).
123 CONTINUE
IF (NCHP . NE. 0) THEN

\section*{V-VELOCITY SET TO ZERO IN CHIP}

DO \(130 \mathrm{M}=1\), NJCHIP
DO \(130 \mathrm{~N}=1\), NKCHIP
DO \(130 \mathrm{I}=\mathrm{IBGN}, \mathrm{I} E N D\)
DO \(130 \mathrm{~J}=\mathrm{J} B G N(\mathrm{M})\), JEND (M) + 1
DO \(130 \mathrm{~K}=\operatorname{KBGN}(\mathrm{N}), \operatorname{KEND}(\mathrm{N})\)
\(\mathrm{AP}(I, J, K)=\) small
\(A W(I, J, K)=0.0\)
\(A E(I, J, K)=0.0\)
\(A S(I, J, K)=0.0\)
\(A N(I, J, K)=0.0\)
\(A B(I, J, K)=0.0\)
\(A F(I, J, K)=0.0\)
\(S U(I, J, K)=0.0\)
130

CONTINUE
CHIP BOUNDARY CONDITIONS (TOP AND BOTTOM)
                            JJS \(=\mathrm{JEND}(\mathrm{M})\)
                                JJS2 \(=\mathrm{JEND}(\mathrm{M})+2\)
                        JJN1 \(=\mathrm{JBGN}(\mathrm{M})-1\)
                        \(J J P 1=J B G N(M)+1\)
                        \(A S(I, J J S 2, K)=0\).
                            \(S U(I, J J S 2, K)=S U(I, J J S 2, K)\)
                                    - ASS(I,JJS2,K) * VPD(I,JJS,K)
                                    - ASS (I,JJS2,K) * VPD(I,JJS2,K)
            \(\operatorname{SU}(I, J J N 1, K)=S U(I, J J N 1, K)\)
                    - ANN(I,JJN1,K) * VPD(I,JJP1,K)
                    - ANN(I,JJN1,K) * \(\operatorname{VPD}(I, J J N 1, K)\)
                            AN \((I, J J N 1, K)=0\).

\section*{131 CONTINUE}

\section*{FRONT AND BACK WALL}
```

DO 132 M=1,NJCHIP
DO 132 N=1,NKCHIP
DO 132 I=IBGN,IEND
DO 132 J=JBGN(M),JEND (M)+1
KKB = KEND(N)
KKB1 = KEND(N) + 1
KKB2 = KEND(N) + 2
KKF = KBGN(N)
KKF1 = KBGN(N) - 1
KKF2 = KBGN(N) - 2
AP(I,J,KKB1)=AP(I,J,KKB1)
+AB(I,J,KKB1) - ABB(I,J,KKB1)
AB(I,J,KKB1)=0.
SU(I,J,KKB2)=SU(I,J,KKB2)
- ABB(I,J,KKB2) * VPD(I,J,KKB)
- ABB(I,J,KKB2) * VPD(I,J,KKB1)
SU(I,J,KKF2)=SU(I,J,KKF2)
- AFF(I,J,KKF2) * VPD(I,J,KKF)
- AFF(I,J,KKF2) * VPD(I,J,KKF1)
AP(I,J,KKF1)=AP(I,J,KKF1)
+AF(I,J,KKF1) - AFF(I,J,KKF1)
AF(I,J,KKF1)=0.

```
    132 CONTINUE
                    RIGHT WALL
                DO \(133 \mathrm{M}=1\), NJCHIP
            DO \(133 \mathrm{~N}=1\), NKCHIP
            DO \(133 \mathrm{~J}=\mathrm{JBGN}(\mathrm{M}), \mathrm{J} E N D(M)\)
                DO \(133 \mathrm{~K}=\mathrm{KBGN}(\mathrm{N}), \operatorname{KEND}(\mathrm{N})\)
                        II = IEND
                        II1 \(=\) IEND +1
                II2 \(=\) IEND +2
                        \(A P(I I 1, J, K)=A P(I I 1, J, K)\)
                            \(+A W(I I 1, J, K)-A W W(I I 1, J, K)\)
            \(S U(I I 2, J, K)=S U(I I 2, J, K)\)
                                    - AWW(II2,J,K) * VPD(II,J,K)
                                    - AWW(II2,J,K) * VPD (II1,J,K)
            \(A W(I I 1, J, K)=0\).

ENDIF

DO \(200 \mathrm{~K}=2\),NK
DO \(200 \mathrm{~J}=3\), NJ DO \(200 \mathrm{I}=\mathrm{NVST}, \mathrm{NI}\)
\(S U(I, J, K)=D Z Z(K) * \operatorname{DXX}(I)\)
200 CONTINUE
CALL SIP (NVST, 3,2,NI,NJ,NK,DV)

SUBROUTINE CALW
THIS SUBROUTINE ASSEMBLES THE \(W\)-MOMENTUM EQUATION AND BOUNDARY CONDITION AND SOLVES FOR THE W-VELOCITY (Z DIRECTION)
implicit real*8 ( \(a-h, o-z\) )
common/ng/dxx(40),dyy(40),dzz(40),x(40),y(40),z(40),
\& dxxs(40),dyys(40),dzzs(40)
common/parm/ra,pr, sorsum, dtime, xper, roll,dt_inv, xtime
common/limits/ni,nip1,nim1,nj,njp1,njm1,nk, nkpl,nkm1,
\&
common/fv_init/tod \((12,16,16) \operatorname{lvod}(12,16,16), \operatorname{vod}(12,16,16)\),
\& \(\quad \operatorname{wod}(12,16,16), \operatorname{pod}(12,16,16)\)
common/fv_cur/t \((12,16,16), u(12,16,16), v(12,16,16)\),
\& w ( \(12,16,16), p(12,16,16)\)
common/fv_int/tpd \((12,16,16), \operatorname{upd}(12,16,16), \operatorname{vpd}(12,16,16)\),
\& \(\quad \operatorname{wpd}(12,16,16), \operatorname{ppd}(12,16,16)\)
common/mscn/smp \((12,16,16)\), resorm \((93)\),
\& \(\quad d u(12,16,16), d v(12,16,16)\),
\& \(\quad d w(12,16,16), p p(12,16,16)\)
common/coeff/ap \((12,16,16)\), aw \((12,16,16)\), ae \((12,16,16)\),
\& as \((12,16,16)\), an \((12,16,16), a b(12,16,16)\),
\& af \((12,16,16)\),su( \(12,16,16\) )
COMMON / COEF2 / AWW \((12,16,16), \operatorname{AEE}(12,16,16), \operatorname{ASS}(12,16,16)\),
\& \(\quad \operatorname{ANN}(12,16,16), \operatorname{ABB}(12,16,16), \operatorname{AFF}(12,16,16)\)
common/condu/alpha \((12,16,16)\), \(\operatorname{rho}(12,16,16), \operatorname{visco}(12,16,16)\)
common/chip/ibgn, iend, jbgn (3), jend (3), kbgn (3), kend (3), nchp,
\& isub,ichip,jchip,kchip
COMMON/SCHEME/QUICK,UPWIND
common/diff/alc, als, thot, tcool, tavg
common/array/njchip, nkchip,ichoice
common/tol/small,eps, sormax
common/ifirst/nust, nvst, nwst, npst
do \(100 \mathrm{k}=3\), nk
do \(100 j=2, n j\)
\[
\text { do } 100 \mathrm{i}=\text { nwst, ni }
\]
\[
\text { voldt }=\mathrm{dxx}(\mathrm{i}) * \operatorname{dyy}(j) * \operatorname{dzzs}(k) / \text { dtime }
\]

```

 C
 C
 C
USING THE HARMONIC MEAN FORMULATION
\&
visw = visco(i,j,k) * visco(i-1,j,k)
* (dxx(i-1) + dxx(i)) / (dxx(i-1)
* visco(i,j,k) + dxx(i) * visco(i-1,j,k))
vise = visco(i,j,k) * visco(i+1,j,k)
* (dxx(i+1) + dxx(i)) / (dxx(i+1)
* visco(i,j,k) + dxx(i) * visco(i+1,j,k))
viss = visco(i,j,k) * visco(i,j-1,k)
* (dyy(j-1) + dyy(j)) / (dyy(j-1)
* visco(i,j,k) + dyy(j) * visco(i,j-1,k))
visn = visco(i,j,k) * visco(i,j+1,k)
* (dyy(j+1) + dyy(j)) / (dyy(j+1)
* visco(i,j,k) + dyy(j) * visco(i,j+1,k))
visb = visco(i,j,k-1)
visf = visco(i,j,k)
dzxs = dzzs(k) * dxx(i)
dxys = dxx(i) * dyy(j)
dyzs = dyy(j) * dzzs(k)
zxoyn = dzxs / dyys(j+1)
zxoys = dzxs / dyys(j)
xyozf = dxys / dzz(k)
xyozb = dxys / dzz(k-1)
yzoxe = dyzs / dxxs(i+1)
yzoxw = dyzs / dxxs(i)
C

$$
\begin{aligned}
& \mathrm{GN}=\mathrm{V}(I, J+1, K) \\
& \mathrm{GNB}=\mathrm{V}(\mathrm{I}, \mathrm{~J}+1, \mathrm{~K}-1) \\
& \mathrm{GS}=\mathrm{V}(\mathrm{I}, \mathrm{~J}, \mathrm{~K}) \\
& \mathrm{GSB}=\mathrm{V}(\mathrm{I}, \mathrm{~J}, \mathrm{~K}-1) \\
& \mathrm{GE}=\mathrm{U}(\mathrm{I}+1, \mathrm{~J}, \mathrm{~K}) \\
& \mathrm{GEB}=\mathrm{U}(\mathrm{I}+1, J, K-1) \\
& \mathrm{GW}=\mathrm{U}(I, J, K) \\
& \mathrm{GWB}=\mathrm{U}(\mathrm{I}, \mathrm{~J}, \mathrm{~K}-1) \\
& \mathrm{GF}=\mathrm{W}(\mathrm{I}, \mathrm{~J}, \mathrm{~K}+1) \\
& \mathrm{GP}=\mathrm{W}(\mathrm{I}, \mathrm{~J}, \mathrm{~K}) \\
& \mathrm{GB}=\mathrm{W}(I, J, K-1)
\end{aligned}
$$

```

C
\[
\begin{aligned}
& \mathrm{cn}=(\mathrm{gn} * \mathrm{dzz}(\mathrm{k}-1)+\mathrm{gnb} * \mathrm{dzz}(\mathrm{k})) \\
& \text { / (dzz(k-1) + dzz(k)) * dzxs } \\
& \mathrm{cs}=(\mathrm{gs} * \mathrm{dzz}(\mathrm{k}-1)+\mathrm{gsb} \text { * } \mathrm{dzz}(\mathrm{k})) \\
& \text { / (dzz(k-1) + dzz(k)) * dzxs } \\
& c e=(g e * d z z(k-1)+g e b * d z z(k)) \\
& \text { / (dzz(k-1) + dzz(k)) * dyzs } \\
& \mathrm{cw}=(\mathrm{gw} * \mathrm{dzz}(k-1)+g w b * d z z(k)) \\
& \text { / (dzz(k-1) + dzz(k)) * dyzs } \\
& c f=0.5 \text { * (gf + gp) * dxys } \\
& c b=0.5 *(g b+g p) * d x y s
\end{aligned}
\]

C
\[
\begin{aligned}
\text { vise1 } & =\text { yzoxe * vise } \\
\text { visw1 } & =\text { yzoxw * visw } \\
\text { visn1 } & =\text { zxoyn * visn } \\
\text { viss1 } & =\text { zxoys * viss } \\
\text { visf1 } & =\text { xyozf * visf } \\
\text { visb1 } & =\text { xyozb * visb }
\end{aligned}
\]
c
\[
\begin{aligned}
\mathrm{AE}(\mathrm{I}, \mathrm{~J}, \mathrm{~K}) & =\mathrm{VISE} 1+(-0.5 * \operatorname{CE} * \operatorname{DXX}(\mathrm{I}) / \operatorname{DXXS}(\mathrm{I}+1) \\
& +0.125 *(\mathrm{abs}(\mathrm{ce})+\mathrm{ce}) * \operatorname{dxx}(\mathrm{i}) * \operatorname{dxx}(\mathrm{i}+1)
\end{aligned}
\]
```

\&
(dxxs(i+1) * (dxxs(l) + dxxs(l+1)))
/ (dxXs(i+1) * dxXs(i+2))
+0.125 * (abs(cw) - cw) * dxx(i-1) * dxx(i)
/ (DXXS(I+1) * (DXXS(I) + DXXS(I+1)))) * QUICK
+ UPWIND * (0.5 * (ABS(CE) - CE))
= VISW1 + (0.5 * CW * DXX(I) / DXXS(I)
+0.125 * (abs(cw) + cw) * dxx(i) * dxx(i-1)
/ (dx\timess(i-1) * dx\timess(i))
+ 0.125 * (abs(cw) - cw) * dxx(i-1) * dxx(i)
/ (dxxs(i) * (dxxs(i) + dxxs(i+1)))
+0.125 * (abs(ce) + ce) * dxx(i+1) * dxx(i)
/ (DXXS(I) * (DXXS(I) + DXXS(I+1)))) * QUICK
+ UPWIND * (0.5 * (ABS(CW) + CW))
AN (I,J,K) = VISN1 + (-0.5 * CN * DYY(J) / DYYS (J+1)
+0.125 * (abs(cn) + cn) * dyy(j) * dyy(j+1)
/ (dyys(j+1) * (dyys(j) + dyys(j+1)))
+0.125 * (abs(cn) - cn) * dyy(j) * dyy(j+1)
/ (dyys(j+1) * dyys(j+2))
+ 0.125 * (abs(cs) - cs) * dyy(j-1) * dyy(j)
/ (DYYS(J+1) * (DYYS(J) + DYYS(J+1)))) * QUICK
+ UPWIND * (0.5 * (ABS(CN) - CN))
AS(I,J,K) = VISS1 + (0.5 * CS * DYY(J) / DYYS(J)
+ 0.125 * (abs(cs) + cs) * dyy(j) * dyy(j-1)
/ (dyys(j-1) * dyys(j))
+0.125 * (abs(cs) - cs) * dyy(j-1) * dyy(j)
/ (dyys(j) * (dyys(j) + dyys(j+1)))
+0.125 * (abs(cn) + cn) * dyy(j+1) * dyy(j)
/ (DYYS(J) * (DYYS(J) + DYYS(J+1)))) * QUICK
+ UPWIND * (0.5 * (ABS(CS) + CS))
AF(I,J,K) = VISF1 + (-0.5 * CF + 0.0625* (ABS(CF) + CF)
* dzz(k) / dzzs(k) + 0.125 * (abs(cf) - cf)
* dzz(k) / dzz(k+1) + 0.0625 * (abs(cb) - cb)
* DZZ(K-1)**2 / (DZZ(K) * DZZS(K))) * QUICK
+ UPWIND * (0.5 * (ABS(CF) - CF))
AB(I,J,K) = VISB1 + (0.5 * CB + 0.125 * (ABS(CB) + CB)
* dzz(k-1) / dzz(k-2) + 0.0625 * (abs(cb) - cb)
* dzz(k-1) / dzzs(k) + 0.0625 * (abs(cf) + cf)
* DZZ(K)**2 / (DZZ(K-1) * DZZS(K))) * QUICK
+ UPWIND * (0.5 * (ABS(CB) + CB))

```
```

$\operatorname{AEE}(\mathrm{I}, \mathrm{J}, \mathrm{K})=-0.125 *$ QUICK

```
\(\operatorname{AEE}(\mathrm{I}, \mathrm{J}, \mathrm{K})=-0.125 *\) QUICK
\(\begin{array}{ll}\& & \star(\operatorname{ABS}(C E)-C E) \star \operatorname{DXX}(I) * \operatorname{DXX}(I+1) \\ \& & /(D X X S(I+2) *(D X X S(I+1)+D X X S(I+2)))\end{array}\)
\(\begin{array}{ll}\& & \star(\operatorname{ABS}(C E)-C E) \star \operatorname{DXX}(I) * \operatorname{DXX}(I+1) \\ \& & /(D X X S(I+2) *(D X X S(I+1)+D X X S(I+2)))\end{array}\)
    \(\operatorname{AWW}(I, J, K)=-0.125 *\) QUICK
    \(\operatorname{AWW}(I, J, K)=-0.125 *\) QUICK
\& * (ABS (CW) + CW) * DXX(I) * DXX(I-1)
\& * (ABS (CW) + CW) * DXX(I) * DXX(I-1)
\& \(/(\mathrm{DXXS}(\mathrm{I}-1) \star(\mathrm{DXXS}(\mathrm{I}-1)+\mathrm{DXXS}(\mathrm{I})))\)
\& \(/(\mathrm{DXXS}(\mathrm{I}-1) \star(\mathrm{DXXS}(\mathrm{I}-1)+\mathrm{DXXS}(\mathrm{I})))\)
    \(\operatorname{ANN}(I, J, K)=-0.125 *\) QUICK
    \(\operatorname{ANN}(I, J, K)=-0.125 *\) QUICK
    * (ABS (CN) - CN) * DYY(J) * DYY (J+1)
    * (ABS (CN) - CN) * DYY(J) * DYY (J+1)
\(\&_{\&}^{*} \quad /\) (DYYS \(\left.(J+2) \star(D Y Y S(J+1)+\operatorname{DYYS}(J+2))\right)\)
\(\&_{\&}^{*} \quad /\) (DYYS \(\left.(J+2) \star(D Y Y S(J+1)+\operatorname{DYYS}(J+2))\right)\)
    \(\operatorname{ASS}(I, J, K)=-0.125 *\) QUICK
    \(\operatorname{ASS}(I, J, K)=-0.125 *\) QUICK
\& * (ABS (CS) + CS) * DYY(J) * DYY(J-1)
\& * (ABS (CS) + CS) * DYY(J) * DYY(J-1)
\& / (DYYS(J-1) * (DYYS(J-1) + DYYS(J)))
\& / (DYYS(J-1) * (DYYS(J-1) + DYYS(J)))
    \(\operatorname{AFF}(I, J, K)=-0.0625 *\) QUICK
    \(\operatorname{AFF}(I, J, K)=-0.0625 *\) QUICK
\& \(\quad *(\mathrm{ABS}(\mathrm{CF})-\mathrm{CF}) * \mathrm{DZZ}(\mathrm{K}) * * 2\)
\& \(\quad *(\mathrm{ABS}(\mathrm{CF})-\mathrm{CF}) * \mathrm{DZZ}(\mathrm{K}) * * 2\)
\& \(\quad /(\mathrm{DZZ}(\mathrm{K}+1)\) * \(\mathrm{DZZS}(\mathrm{K}+1))\)
\& \(\quad /(\mathrm{DZZ}(\mathrm{K}+1)\) * \(\mathrm{DZZS}(\mathrm{K}+1))\)
    \(\operatorname{ABB}(\mathrm{I}, \mathrm{J}, \mathrm{K})=-0.0625\) * QUICK
    \(\operatorname{ABB}(\mathrm{I}, \mathrm{J}, \mathrm{K})=-0.0625\) * QUICK
\& \(*(\mathrm{ABS}(\mathrm{CB})+\mathrm{CB}) \star \mathrm{DZZ}(\mathrm{K}-1) * * 2\)
\& \(*(\mathrm{ABS}(\mathrm{CB})+\mathrm{CB}) \star \mathrm{DZZ}(\mathrm{K}-1) * * 2\)
\& / (DZZ \((K-2)\) * DZZS \((K-1))\)
\& / (DZZ \((K-2)\) * DZZS \((K-1))\)
    \(A P(I, J, K)=A E(I, J, K)+A W(I, J, K)+A N(I, J, K)+A S(I, J, K)\)
```

 \(A P(I, J, K)=A E(I, J, K)+A W(I, J, K)+A N(I, J, K)+A S(I, J, K)\)
    ```
            \(+A F(I, J, K)+A B(I, J, K)+A W W(I, J, K)\)
                            \(\& \quad+\operatorname{AEE}(I, J, K)+\operatorname{ASS}(I, J, K)+\operatorname{ANN}(I, J, K)\)
                            \(\& \quad+\operatorname{ABB}(I, J, K)+\operatorname{AFF}(I, J, K)+\) VOLDT
        \(\operatorname{SU}(I, J, K)=\operatorname{VOLDT} \star \operatorname{WOD}(I, J, K)\)
    \& \(+D X Y S *(P(I, J, K-1)-P(I, J, K))\)
    100 continue
C
    CALCULATION OF THE SOURCE TERM
    DO \(101 \mathrm{I}=\mathrm{NWST}+2\), NI
        DO \(101 \mathrm{~J}=2, \mathrm{NJ}\)
            DO \(101 \mathrm{~K}=3\), NK
                        \(S U(I, J, K)=S U(I, J, K)\)
                        \(+\operatorname{AWW}(I, J, K) \star \operatorname{WPD}(I-2, J, K)\)
    \&
    101 CONTINUE
C
    DO 102 I=NWST,NI-2
        DO \(102 \mathrm{~J}=2\), NJ
            DO \(102 \mathrm{~K}=3\), NK
                \(S U(I, J, K)=S U(I, J, K)\)
\&
                                    \(+\operatorname{AEE}(I, J, K) \star \operatorname{WPD}(I+2, J, K)\)
    102 CONTINUE
C
    DO \(103 \mathrm{I}=\) NWST,NI
        DO \(103 \mathrm{~J}=4\), NJ
                        DO \(103 \mathrm{~K}=3\), NK
                        \(\operatorname{SU}(I, J, K)=S U(I, J, K)\)
                                \(+\operatorname{ASS}(I, J, K) * \operatorname{WPD}(I, J-2, K)\)
\&
    103 CONTINUE
C
    DO \(104 \mathrm{I}=\mathrm{NWST}, \mathrm{NI}\)
        DO \(104 \mathrm{~J}=2, \mathrm{NJ}-2\)
                DO \(104 \mathrm{~K}=3\), NK
                        \(\operatorname{SU}(I, J, K)=S U(I, J, K)\)
\&
    104 CONTINUE
C
    DO \(105 \mathrm{I}=\) NWST,NI
        DO \(105 \mathrm{~J}=2\), NJ
                        DO \(105 \mathrm{~K}=4\), NK
                        \(\operatorname{SU}(I, J, K)=\operatorname{SU}(I, J, K)\)
\&
                        \(+\operatorname{ABB}(I, J, K) \star \operatorname{WPD}(I, J, K-2)\)
\& CONTINUE
C
    DO 106 I=NWST,NI
            DO \(106 \mathrm{~J}=2\), NJ
                DO 106 K=3,NKM1
                        \(\operatorname{SU}(I, J, K)=S U(I, J, K)\)
            \&
                        \(+\operatorname{AFF}(I, J, K) \star \operatorname{WPD}(I, J, K+2)\)
    106 CONTINUE
c
                BOUNDARY CONDITIONS (TOP AND BOTTOM)
    DO \(121 \mathrm{~K}=3\), NK
        DO \(121 \mathrm{I}=\mathrm{NWST}, \mathrm{NI}\)
            \(A P(I, 2, K)=A P(I, 2, K)+A S(I, 2, K)-\operatorname{ASS}(I, 2, K)\)
            \(\operatorname{SU}(I, 3, K)=S U(I, 3, K)-\operatorname{ASS}(I, 3, K) * \operatorname{WPD}(I, 2, K)\)
            \(\operatorname{SU}(I, N J M 1, K)=\operatorname{SU}(I, N J M 1, K)\)
            \(\&\)
            \(A S(I, 2, K)=0\).

\section*{}
\[
A P(I, N J, K)=A P(I, N J, K)+A N(I, N J, K)-\operatorname{ANN}(I, N J, K)
\]
\[
A N(I, N J, K)=0 .
\]

121 CONTINUE

\section*{LEFT AND RIGHT WALL}
DO \(122 \mathrm{~K}=3\), NK
            DO \(122 \mathrm{~J}=2, \mathrm{NJ}\)
            \(\mathrm{AP}(\mathrm{NWST}, \mathrm{J}, \mathrm{K})=\mathrm{AP}(\mathrm{NWST}, \mathrm{J}, \mathrm{K})+\mathrm{AW}(\mathrm{NWST}, \mathrm{J}, \mathrm{K})\)
\&
\&
                            \(\operatorname{SU}(N W S T+1, J, K)=S U(N W S T+1, J, K)\)
                                    - AWW(NWST+1,J,K) * WPD(NWST,J,K)
                            SU(NIM1,J,K) \(=\) SU(NIM1,J,K)
\& - AEE(NIM1,J,K) * WPD (NI,J,K)
    \(\operatorname{AP}(N I, J, K)=\operatorname{AP}(N I, J, K)+A E(N I, J, K)-\operatorname{AEE}(N I, J, K)\)
    \(\operatorname{AE}(N I, J, K)=0\).

122 CONTINUE

\section*{FRONT AND BACK WALL}
DO \(123 \mathrm{~J}=2\), NJ
            DO \(123 \mathrm{I}=\mathrm{NWST}, \mathrm{NI}\)
            \(A B(I, J, 3)=0\).
            \(\operatorname{SU}(I, J, 3)=\operatorname{SU}(I, J, 3)-\operatorname{ABB}(I, J, 3) * \operatorname{WPD}(I, J, 3)\)
            \(S U(I, J, N K)=S U(I, J, N K)\)
            \&
                            \(A F(I, J, N K)=0\).
123 CONTINUE
```

if (nchp .ne. 0) then

```
            w-VELOCITY SET TO ZERO IN CHIP
            DO \(130 \mathrm{M}=1\), NJCHIP
            DO \(130 \mathrm{~N}=1\), NKCHIP
                DO 130 I=IBGN,IEND
                        DO \(130 \mathrm{~J}=\mathrm{JBGN}(\mathrm{M}), \mathrm{JEND}(\mathrm{M})\)
                        DO \(130 \mathrm{~K}=\mathrm{KBGN}(\mathrm{N}), \operatorname{KEND}(\mathrm{N})+1\)
                            AP(I,J,K) = small
                            \(\operatorname{AW}(I, J, K)=0.0\)
                            \(\mathrm{AE}(\mathrm{I}, \mathrm{J}, \mathrm{K})=0.0\)
                            AS \((I, J, K)=0.0\)
                            \(\mathrm{AN}(\mathrm{I}, \mathrm{J}, \mathrm{K})=0.0\)
                            \(A B(I, J, K)=0.0\)
                            \(A F(I, J, K)=0.0\)
                            \(\operatorname{SU}(I, J, K)=0.0\)
            CONTINUE

CHIP BOUNDARY CONDITIONS (TOP AND BOTTOM)
DO \(131 \mathrm{M}=1\), NJCHIP
    DO \(131 \mathrm{~N}=1\), NKCHIP
        DO \(131 \mathrm{I}=\mathrm{IBGN}, \mathrm{IEND}\)
            DO \(131 \mathrm{~K}=\operatorname{KBGN}(\mathrm{N}), \operatorname{KEND}(\mathrm{N})+1\)
                JJS \(=\) JEND (M)
                JJS1 \(=\operatorname{JEND}(\mathrm{M})+1\)
                JJS2 \(=\) JEND \((\mathrm{M})+2\)
                JJN \(=\) JBGN(M)
                \(\operatorname{JJN} 1=\operatorname{JBGN}(\mathrm{M})-1\)
\[
\begin{aligned}
& J J N 2=J B G N(M)-2 \\
& A P(I, J J S 1, K)=A P(I, J J S 1, K)
\end{aligned}
\]
\(\&\)
\&
\&
\&
\&
\&
131 CONTINUE
```

FRONT AND BACK WALL

```
```

DO 132 M=1,NJCHIP
DO 132 N=1,NKCHIP
DO 132 I=IBGN,IEND
DO 132 J=JBGN(M),JEND(M)
KKB = KEND(N)
KKB2 = KEND(N) + 2
KKP1 = KBGN(N) + 1
KKF1 = KBGN(N) - 1
AB(I,J,KKB2) = 0.
SU(I,J,KKB2)=SU(I,J,KKB2)
- ABB(I,J,KKB2) * WPD(I,J,KKB)
- ABB(I,J,KKB2) * WPD(I,J,KKB2)
SU(I,J,KKF1) = SU(I,J,KKF1)
- AFF(I,J,KKF1) * WPD(I,J,KKP1)
- AFF(I,J,KKF1) * WPD(I,J,KKF1)
AF(I,J,KKF1)=0.

```
        \&
        \&
        \&
        \&
    132
C
C
CONTINUE
                    RIGHT WALL
            DO \(133 \mathrm{M}=1\), NJCHIP
            DO \(133 \mathrm{~N}=1\), NKCHIP
            DO \(133 \mathrm{~J}=\mathrm{JBGN}(\mathrm{M})\), JEND (M)
                        DO \(133 \mathrm{~K}=\operatorname{KBGN}(\mathrm{N}), \operatorname{KEND}(\mathrm{N})+1\)
                        II = IEND
                        II1 \(=\) IEND +1
                    II2 \(=\) IEND +2
                    \(\mathrm{AP}(\mathrm{II} 1, \mathrm{~J}, \mathrm{~K})=\mathrm{AP}(\mathrm{II} 1, \mathrm{~J}, \mathrm{~K})\)
                        \(+A W(I I 1, J, K)-A W W(I I 1, J, K)\)
            SU(II2,J,K) = SU(II2,J,K)
                        - AWW(II2,J,K) * WPD(II,J,K)
                        - AWW(II2,J,K) * WPD(II1,J,K)
            \(A W(I I 1, J, K)=0\).
        133 CONTINUE
        ENDIF
            \&
        \(\&\)
        \&
        SOLVE THE LINEARISED \(W\) MOMENTUM EQUATIONS
        CALL SIP (NWST, 2, 3,NI,NJ,NK,W)
        SET UP SU FOR CALCULATING DW AND SOLVE
        DO \(200 \mathrm{~K}=3\), NK

DO 200 I=NWST,NI
\[
\operatorname{su}(i, j, k)=d x x(i) * d y y(j)
\]

CALL SIP (NWST, 2, 3,NI,NJ,NK,DW)

END
SUBROUTINE CALP
THIS SUBROUTINE ASSEMBLES THE PRESSURE CORRECTION EQUATION. THE PRESSURE CORRECTION IS SET TO ZERO AT ALL THE BOUNDARIES
```

implicit real*8 (a-h,o-z)
common/ng/dxx(40),dyy(40),dzz(40),x(40),y(40),z(40),
\&
common/parm/ra,pr, sorsum,dtime,xper,roll,dt_inv,xtime
common/tol/small, eps, sormax
common/dims/h,wth,bth,hchip,wchip,bchip,bsub
common/limits/ni,nip1,nim1,nj,njpl,njm1,nk,nkp1,nkm1,
\&
nip2,njp2,nkp2,iter,nnmax
common/fv_init/tod(12,16,16),\operatorname{lod}(12,16,16),\operatorname{vod}(12,16,16),
\& wod(12,16,16),pod}(12,16,16
common/fv_cur/t(12,16,16),u(12,16,16),v(12,16,16),
\& w(12,16,16),p(12,16,16)
common/fv_int/tpd(12,16,16),\operatorname{upd}(12,16,16),\operatorname{vpd}(12,16,16),
\& wpd(12,16,16),ppd(12,16,16)
common/mscn/smp(12,16,16),resorm(93),
\& du(12,16,16),dv(12,16,16),
\& dw(12,16,16),pp(12,16,16)
common/coeff/ap(12,16,16),aw(12,16,16),ae(12,16,16),
\& as (12,16,16),an(12,16,16),ab(12,16,16),
\& af(12,16,16),su(12,16,16)
COMMON / COEF2 / AWW (12,16,16), AEE (12,16,16), ASS (12,16,16),
\& ANN (12,16,16), ABB (12,16,16), AFF(12,16,16)
common/mean/t mean(12,16,16),u_mean(12,16,16),
\& v_mean(12,16,16),w_mean(12,16,16),
\& p_mean(12,16,16)

```

COMMON/SCHEME/QUICK,UPWIND
common/array/njchip, nkchip, ichoice
common/ifirst/nust, nvst, nwst, npst

SET UP COEFFICIENTS
do \(100 \mathrm{k}=2\), nk
    do \(100 j=2, n j\)
        do 100 i=npst, ni
            \(d x y s=d x x(i) * d y y(j)\)
            \(d y z s=d y y(j) * d z z(k)\)
            \(\mathrm{dzxs}=\mathrm{dzz}(\mathrm{k}) * \mathrm{dxx}(\mathrm{i})\)
            \(\operatorname{an}(i, j, k)=\operatorname{dzxs} * d v(i, j+1, k)\)
            \(\operatorname{as}(i, j, k)=d z x s * d v(i, j, k)\)
            ae(i,j,k) \(=\) dyzs * du(i+1,j,k)
            \(a w(i, j, k)=d y z s ~ * d u(i, j, k)\)
            \(\operatorname{af}(i, j, k)=d x y s * d w(i, j, k+1)\)
            \(a b(i, j, k)=d x y s{ }^{\prime}+d w(i, j, k)\)
            \(\mathrm{cn}=v(\mathrm{i}, j+1, k) * \mathrm{dzxs}\)
            \(c s=v(i, j, k) * d z x s\)
            \(c e=u(i+1, j, k) * d y z s\)

\section*{-}
```

cw $=u(i, j, k) * d y z s$
cf $=w(i, j, k+1) \quad * \quad d x y s$
$\mathrm{cb}=\mathrm{w}(\mathrm{i}, j, k)$ * dxys
$\operatorname{smp}(i, j, k)=-c e+c w-c n+c s-c f+c b$
$\operatorname{su}(i, j, k)=\operatorname{smp}(i, j, k)$

```
    100 continue
        BOUNDARY CONDITIONS (TOP AND BOTTOM)
do 101 k=2,nk
    do 101 i=npst,ni
        \(\operatorname{as}(i, 2, k)=0\).
        \(a n(i, n j, k)=0\).
    101 continue
            LEFT AND RIGHT WALL
do \(102 \mathrm{k}=2\), nk
            do \(102 \quad j=2, n j\)
            aw(npst,j,k) \(=0\).
            ae \((n i, j, k)=0\).
    102 continue
            FRONT AND BACK WALL
        do 103 i=npst,ni
            do \(103 \mathrm{j}=2, \mathrm{nj}\)
                \(a b(i, j, 2)=0\).
                        \(\operatorname{af}(\mathrm{i}, \mathrm{j}, \mathrm{nk})=0\).
    103 continue
        CALCULATE AP
        do \(200 \mathrm{j}=2, \mathrm{nj}\)
            do 200 i=npst,ni
            do \(200 \mathrm{k}=2, \mathrm{nk}\)
            \(a p(i, j, k)=a n(i, j, k)+a s(i, j, k)+a e(i, j, k)\)
        \&
                                    \(+a w(i, j, k)+a f(i, j, k)+a b(i, j, k)\)
    200 continue
        SOLVE THE PRESSURE CORRECTION EQUATION
        call \(\operatorname{sip}(n p s t, 2,2, n i, n j, n k, p p)\)
            U VELOCITY CORRECTION
        do 201 i=nust,ni
            do 201 j=2,nj
                        do \(201 \mathrm{k}=2, \mathrm{nk}\)
            \(U(I, J, K)=U(I, J, K)+D U(I, J, K) *(P P(I-1, J, K)-P P(I, J, K))\)
    201 continue
        v VELOCITY CORRECTION
        do \(202 \mathrm{j}=3\), nj
            do \(202 \mathrm{k}=2\), nk
            do 202 i=nvst,ni
            \(V(I, J, K)=V(I, J, K)+D V(I, J, K) *(P P(I, J-1, K)-P P(I, J, K))\)
        202 continue
do \(203 \mathrm{k}=3\), nk
    do 203 i=nwst,ni
            do \(203 \mathrm{j}=2\), nj
        \(W(I, J, K)=W(I, J, K)+D W(I, J, K) *(P P(I, J, K-1)-P P(I, J, K))\)
continue

\section*{PRESSURE CORRECTION}
```

do 204 j=2,nj
do 204 i=npst,ni
do 204 k=2,nk
p(i,j,k) = p(i,j,k) + pp(i,j,k)
PP(I,J,K) = 0.

```
    204 continue
    c
c
RECALCULATE MASS FLUX ERRORS AFTER U,V,W, P, CORRECTIONS
sorsum \(=0\).
resorm(iter) \(=0\).
do \(205 \mathrm{j}=2, \mathrm{nj}\)
    do 205 i=npst,ni
            do \(205 \mathrm{k}=2\), nk
                \(d x y s=d x x(i) * d y y(j)\)
                    \(d y z s=d y y(j) * d z z(k)\)
                    \(d z \times s=d z z(k) * d x x(i)\)
                    \(\mathrm{cn}=\mathrm{v}(\mathrm{i}, \mathrm{j}+1, \mathrm{k})\) * dzxs
                    cs \(=v(i, j, k) * d z x s\)
                    ce \(=u(i+1, j, k) * d y z s\)
                    \(\mathrm{cw}=\mathrm{u}(\mathrm{i}, \mathrm{j}, \mathrm{k})\) * dyzs
                        \(\mathrm{cf}=\mathrm{w}(\mathrm{i}, \mathrm{j}, \mathrm{k}+1)\) * dxys
                \(\mathrm{cb}=\mathrm{w}(\mathrm{i}, \mathrm{j}, \mathrm{k}) *\) dxys
                \(\operatorname{smp}(i, j, k)=-c e+c w-c n+c s-c f+c b\)
                sorsum \(=\) sorsum \(+\operatorname{smp}(i, j, k)\)
                resorm(iter) \(=\) resorm(iter) \(+\operatorname{abs}(s m p(i, j, k))\)
    205 continue
    end
subroutine nu
THIS SUBROUTINES DETERMINES THE OVERALL HEAT BALANCE FOR THE ENTIRE ENCLOSURE
```

implicit real*8 (a-h,o-z)
common/ng/dxx(40),dyy(40),dzz(40),x(40),y(40),z(40),
\&
common/parm/ra,pr,sorsum,dtime,xper,roll,dt_inv,xtime
common/tol/small,eps,sormax
common/dims/h,wth,bth,hchip,wchip,bchip,bsub
common/count/nt,nmax,imax, itmax,krun,nprint
common/mscn/smp(12,16,16),resorm(93),
\& du(12,16,16),dv(12,16,16),
\& dw (12,16,16),pp(12,16,16)
common/limits/ni,nip1,nim1,nj,njp1,njm1,nk,nkp1,nkm1,
\& nip2,njp2,nkp2,iter,nmmax
common/fv_init/\operatorname{tod}(12,16,16),\operatorname{vod}(12,16,16),\operatorname{vod}(12,16,16),
\& - wod(12,16,16),pod}(12,16,16
common/fv_cur/t(12,16,16),u(12,16,16),v(12,16,16),
\& - w(12,16,16),p(12,16,16)

```
common/chip/ibgn,iend,jbgn(3), jend (3), kbgn (3), kend (3), nchp, \& isub,ichip,jchip,kchip
common/diff/alc,als, thot, tcool, tavg
common/array/njchip,nkchip,ichoice
\&
```

 RNUC = 0.
    ```
        RNUH \(=0\).
        QCHIP \(=0\).
        quns \(=0\).
        QCRT \(=0\).
    do \(10 \mathrm{i}=1\), ni
        do \(10 \mathrm{j}=1, \mathrm{nj}\)
            do \(10 \mathrm{k}=1\), nk
                                quns \(=\) quns \(+(t(i, j, k)-t o d(i, j, k)) * d x x(i)\)
    \&
                    QCRT \(=\operatorname{QCRT}+\mathrm{T}(I, J, K) * \operatorname{SMP}(I, J, K)\)

10 continue
        a1 = \(1 . /\) dyys(2)
        a2 = 1. / dyys(njp1)
        DO \(20 \mathrm{I}=2\), NI
            DO \(20 \mathrm{~K}=2\),NK
            DTDYH \(=\mathrm{al} *(\mathrm{~T}(\mathrm{I}, 2, \mathrm{~K})-\mathrm{T}(\mathrm{I}, 1, \mathrm{~K})) * \operatorname{ALPHA}(\mathrm{I}, 2, \mathrm{~K})\)
            DTDYC \(=\mathrm{a} 2 *(\mathrm{~T}(\mathrm{I}, \mathrm{NJP1}, \mathrm{~K})-\mathrm{T}(\mathrm{I}, \mathrm{NJ}, \mathrm{K})) * \operatorname{ALPHA}(\mathrm{I}, \mathrm{NJ}, \mathrm{K})\)
            RNUC \(=\) RNUC - DTDYC * \(\mathrm{dzz}(\mathrm{k}) * \mathrm{dxx}(\mathrm{i})\)
            RNUH \(=\) RNUH - DTDYH * \(\mathrm{dzz}(\mathrm{k}) * \mathrm{dxx}(\mathrm{i})\)
20 CONTINUE

CALCULATE HEAT GENERATED FROM CHIP
do \(30 \mathrm{~m}=1\), njehip
do \(30 \mathrm{n}=1\), nkehip
do 30 i=ibgn, iend
do 30 j=jbgn(m), jend (m) do \(30 \mathrm{k}=\mathrm{kbgn}(\mathrm{n})\), kend( n )
qchip = qchip + alc * dxx(i) * dyy(j) * dzz(k)
30 continue
\(A A=1 . /(\) bth * wth \()\)
RNUH \(=\) RNUH * AA
RNUC \(=\) RNUC * AA
QCHIP \(=\) QCHIP * AA
QCRT \(=\) QCRT * AA
QALL \(=\) QCHIP + RNUH - RNUC
WRITE \((6,500)\) NT,XTIME, ITER,RESORM(ITER), SORSUM,

\section*{\&}

RNUC, RNUH, QCHIP, QALL, QUNS, QCRT
500 FORMAT ( \(1 \mathrm{X},{ }^{\prime} \mathrm{NT}={ }^{\prime}, \mathrm{I} 9,5 \mathrm{X},{ }^{\prime}\) TIME \(=\) ', f7.4. \(/\),
\& \(1 \mathrm{X},{ }^{\prime}\) 'ITER=', I2, \(5 \mathrm{X}, '\) SOURCE=',F9.6,5X,'SORSUM=',F9.6.1,
\& \(\quad 1 \mathrm{X},{ }^{\prime} \mathrm{NUC}=\mathrm{\prime}, \mathrm{~F} 10.6,5 \mathrm{X}, \mathrm{NUH}=1, \mathrm{~F} 10.6, /\),
\& \(\quad 1 \mathrm{X},{ }^{\prime} \mathrm{QCHIP}=\prime, \mathrm{F} 10.6,5 \mathrm{X}, \mathrm{QALL}=\prime, \mathrm{F} 10.6, /\),
\& \(1 \mathrm{X},{ }^{\prime}\) 'QUNS =', F10.6,5X,'QCRT=',F10.6, /)
END
SUBROUTINE SIP(IST,JST,KST,ISP,JSP,KSP, PHI)
implicit real* \(8(a-h, 0-z)\)
common/limits/ni,nip1,nim1,nj,njp1,njm1,nk,nkp1,nkm1,
\&
nip2,njp2,nkp2,iter, nnmax
common/tol/small, eps, sormax
common/dims/h, wth, bth,hchip,wchip,bchip,bsub
common/coeff/ap \((12,16,16)\), aw \((12,16,16)\), ae \((12,16,16)\),
\& as \((12,16,16)\), an \((12,16,16), a b(12,16,16)\),
                            af \((12,16,16)\), su \((12,16,16)\)
    common/abc/kmax, n1,k1
    common/count/nt, nmax, imax, itmax, krun, nprint
    COMMON/ MAT/A1 (3072),A2 (3072),A3(3072),A4 (3072),A5 (3072),
    \& A6(3072), A7 (3072), B(3072), D(3072)
    DIMENSION X1(3072), X2 (3072), XR1 (3072),
    \& \(\quad S(12,16,16), \operatorname{PHI}(12,16,16)\)
N1 \(=\) ISP - IST +1
\(\mathrm{K} 1=(I S P-I S T+1) *(J S P-J S T+1)\)
KMAX \(=(I S P-I S T+1) *(J S P-J S T+1) *(K S P-K S T+1)\)
EPS2 \(=\) KMAX * EPS**2

DEFINING A SCRATCH ARRAY FOR FURTHER MODIFICATIONS
DO \(9 \mathrm{~K}=\mathrm{KST}, \mathrm{KSP}\)
DO \(9 \mathrm{~J}=\mathrm{JST}, \mathrm{JSP}\)
```

 DO }9\mathrm{ I=IST,ISP
 S(I,J,K) = SU(I,J,K)
    ```

9 CONTINUE
EXTRACT MATRIX A, RHS VECTOR B AND VECTOR XU-AN INITIAL GUESS FROM GIVEN DATA

DO \(2 \mathrm{~K}=\mathrm{KST}, \mathrm{KSP}\)
DO 2 J=JST,JSP DO 2 I=IST,ISP \(\mathrm{M}=\mathrm{I}-\mathrm{IST}+1+(\mathrm{J}-\mathrm{JST}) * \mathrm{~N} 1+(\mathrm{K}-\mathrm{KST}) * \mathrm{~K} 1\) \(A 1(M)=A P(I, J, K)\)
\(A 2(M)=-A E(I, J, K)\)
\(A 3(M)=-A W(I, J, K)\)
\(A 4(M)=-A N(I, J, K)\)
\(A 5(M)=-A S(I, J, K)\)
\(A 6(M)=-A F(I, J, K)\)
\(A 7(M)=-A B(I, J, K)\)
\(B(M)=S(I, J, K)\)
\(X 1(M)=\operatorname{PHI}(I, J, K)\)
2 CONTINUE
THE DIAGONAL ELEMENT OF L IN THE INCOMPLETE LU
DECOMPOSITION
\(\mathrm{D}(1)=\mathrm{A} 1(1)\)
DO \(113 \mathrm{I}=2\), N1
\(D(I)=A 1(I)-A 2(I-1) \star A 3(I) / D(I-1)\)
113 CONTINUE
DO \(114 \mathrm{I}=\mathrm{N} 1+1\), K1
\(D(I)=A 1(I)-A 2(I-1) * A 3(I) / D(I-1)-A 4(I-N 1)\)
\& * A5 (I) / D(I-N1)
114 CONTINUE
DO \(115 \mathrm{I}=\mathrm{K} 1+1\), KMAX
\[
D(I)=A 1(I)-A 2(I-1) * A 3(I) / D(I-1)
\]
\&
- A4 (I-N1) * A5(I) / D(I-N1)
\&
- A6(I-K1) *A7(I) / D(I-K1)

115 CONTINUE
DO \(116 \mathrm{I}=1\), KMAX
\(D(I)=1 . / D(I)\)
116 CONTINUE
ITR \(=0\)
C

```

C THE MAIN ITERATION LOOP BEGINS
C
7 CONTINUE
ITR = ITR + 1
CALL RES (X1,XR1)
CALL XL (XR1,X2)
DO 117 I=1,KMAX
X2(I) = X2(I) + X1(I)
117 CONTINUE
V2 = 0.
DO 55 I=1,KMAX
V2 = V2 + XR1(I)**2
5 5 ~ C O N T I N U E
X2MAG = 0.
DO 56 I=1,KMAX
X2MAG = X2MAG + X2(I)**2
56 continue
if (x2mag .gt. 0.0001) v2 = v2 / x2mag
C
C
C
do }50 i=1,kma
X1(I) = X2(I)
50 continue
IF (V2 .GT. EPS2 .AND. ITR .LT. IMAX) GO TO 7
C
c RECOVER THE SOLUTION VECTOR AND RETURN THE AVERAGE
C PHI AS WELL AS THE RMS ERROR
C
IF (MOD(NT,nprint) .EQ. 0) PRINT *, ITR,V2
do 3 k=kst,ksp
do 3 j=jst,jsp
do 3 i=ist,isp
m = i - ist + 1 + (j - jst) * nl + (k -kst) * kl
phi(i,j,k) = x1(m)
3 continue
end
C***
SUBROUTINE RES(X1,X2)
implicit real*8 (a-h,o-z)
COMMON/ABC/KMAX,N1,K1
common/limits/ni,nip1,nim1,nj,njpl,njm1,nk,nkpl,nkm1,
\&
nip2,njp2,nkp2,iter, nnmax
common/ mat/al(3072),a2(3072),a3(3072),a4(3072),a5(3072),
\& a6(3072),a7(3072),b(3072),d(3072)
dimension x1(3072),x2(3072)
C
C
c CALCULATE AX1
C
RELABELING THE VECTORS BEFORE NEXT ITERATION
x2(1) = al(1) * x1(1) + a2(1) * x1(2)
\& + a4(1) * x1(1+n1) + a6(1) * x1(1+k1)
do 10 i=2,n1
x2(i) = a1(i) * x1(i) + a2(i) * x1(i+1)
\& + a4(i) * x1(i+n1) + a6(i) * x1(i+k1)
\& + a3(i) * x1(i-1)
10 continue
do 20 i=n1+1,kl
x2(i) = a1(i) * x1(i) + a2(i) * x1(i+1)

```
                            \(+a 4(i) * \times 1(i+n 1)+a 5(i) * x 1(i-n 1)\)
\&
20 continue
    DO \(30 \quad \mathrm{I}=\mathrm{K} 1+1, \mathrm{KMAX}-\mathrm{K} 1\)
        \(x 2(i)=a 1(i) * \times 1(i)+a 2(i) * \times 1(i+1)\)
    \(\& \quad+\mathrm{a} 4(\mathrm{i}) * \times 1(\mathrm{i}+\mathrm{n} 1)+\mathrm{a} 5(\mathrm{i}) \star \times 1(\mathrm{i}-\mathrm{n} 1)\)
    \(\& \quad+a 3(i) * \times 1(i-1)+a 6(i) * \times 1(i+k 1)\)
    \& \(\quad+a 7(i) * x 1(i-k 1)\)

30 continue
DO \(32 \mathrm{I}=\mathrm{KMAX}-\mathrm{K} 1+1\), KMAX-N 1
            \(\times 2(i)=a 1(i) * \times 1(i)+a 2(i) * \times 1(i+1)\)
    \(\& \quad+a 4(i) * \times 1(i+n 1)+a 5(i) * \times 1(i-n 1)\)
    \(\& \quad+\mathrm{A} 3(\mathrm{I}) \star \mathrm{X} 1(\mathrm{I}-1)+\mathrm{A} 7(\mathrm{I}) \star \mathrm{X} 1(\mathrm{I}-\mathrm{K} 1)\)

32 CONTINUE
DO 34 I =KMAX-N1+1, KMAX-1
\[
x 2(i)=a 1(i) \star \times 1(i)+a 2(i) \star \times 1(i+1)
\]
\&
\(+A 5(I) * X 1(I-N 1)+A 3(I) * X 1(I-1)\)
\(\& \quad+\mathrm{A} 7(\mathrm{I}) \star \mathrm{X} 1(\mathrm{I}-\mathrm{K} 1)\)
34 CONTINUE
\(\mathrm{X} 2(\mathrm{KMAX})=\mathrm{A} 1(\mathrm{KMAX}) * X 1(\mathrm{KMAX})+\mathrm{A} 5(\mathrm{KMAX}) * X 1(\mathrm{KMAX}-\mathrm{N} 1)\)
\& \(+\mathrm{A} 3(\mathrm{KMAX}) * \mathrm{X} 1(\mathrm{KMAX}-1)+\mathrm{A} 7(\mathrm{KMAX}) * \mathrm{X} 1(\mathrm{KMAX}-\mathrm{K} 1)\)
do \(40 \mathrm{i}=1, \mathrm{kmax}\)
\[
X 2(I)=B(I)-X 2(I)
\]

40 continue
end
subroutine \(\mathrm{xl}(\mathrm{x} 1, \mathrm{x} 3)\)
implicit real*8 (a-h,o-z)
common/abc/kmax, n1,k1
common/ mat/a1(3072), a2 (3072), a3(3072), a4(3072), a5 (3072),
\(\&\)
a6(3072),a7(3072),b(3072),d(3072)
dimension \(\mathrm{x} 1(3072), \times 2(3072), \times 3(3072)\)
\(\mathrm{x} 2(1)=\mathrm{x}(1) \quad \star \mathrm{d}(1)\)
do \(31 \quad \mathrm{i}=2, \mathrm{n} 1\)
\[
X 2(I)=D(I) *(X 1(I)-A 3(I) * X 2(I-1))
\]

31 continue
do \(32 \mathrm{i}=\mathrm{n} 1+1, \mathrm{k} 1\)
\[
X 2(I)=D(I) *(X 1(I)-A 3(I) * X 2(I-1)
\]
\&
\[
-\mathrm{A} 5(\mathrm{I}) \star \mathrm{X} 2(\mathrm{I}-\mathrm{N} 1))
\]

32 continue
do \(33 \mathrm{i}=\mathrm{k} 1+1\), kmax
\[
X 2(I)=D(I) \star(X 1(I)-A 3(I) \star X 2(I-1)
\]
\& \(\quad-\mathrm{A} 5(\mathrm{I}) \star \mathrm{X} 2(\mathrm{I}-\mathrm{N} 1)-\mathrm{A} 7(\mathrm{I}) \star \mathrm{X} 2(\mathrm{I}-\mathrm{K} 1))\)
33 continue
\(x 3(k \max )=x 2(k \max )\)
do \(67 \mathrm{i}=\mathrm{k} \max -1, k \max -\mathrm{n} 1+1,-1\)
\[
X 3(I)=X 2(I)-D(I) \star A 2(I) \star X 3(I+1)
\]

67 continue
do \(68 \mathrm{i}=\mathrm{kmax}-\mathrm{n} 1, \mathrm{kmax}-\mathrm{k} 1+1,-1\) \(X 3(I)=X 2(I)-D(I) *(A 2(I) * X 3(I+1)+A 4(I) * X 3(I+N 1))\)
68 continue
do \(69 \mathrm{i}=\mathrm{kmax}-\mathrm{k} 1,1,-1\) \(\mathrm{X} 3(\mathrm{I})=\mathrm{X} 2(\mathrm{I})-\mathrm{D}(\mathrm{I}) *(\mathrm{~A} 2(\mathrm{I}) * \mathrm{X} 3(\mathrm{I}+1)+\mathrm{A} 4(\mathrm{I}) * \mathrm{X} 3(\mathrm{I}+\mathrm{N} 1)\)
\&
```

 + A6(I)*X3(I+K1))
    ```

69 continue end

SUBROUTINE PROP
IN THIS SUBROUTINE THE INTERFACIAL THERMAL DIFFUSIVITIES ARE

CALCULATED.
implicit real*8 (a-h,o-z)
common/ng/dxx(40),dyy(40),dzz(40),x(40),y(40),z(40),
\& dxxs (40), dyys (40), dzzs(40)
common/parm/ra, pr,sorsum,dtime, xper, roll,dt_inv,xtime
common/tol/small, eps, sormax
common/dims/h, wth, bth, hchip, wchip, bchip, bsub
common/limits/ni,nip1,niml,nj,njp1,njm1,nk,nkp1,nkm1,
\& nip2, njp2, nkp2, iter, nnmax
common/count/nt, nmax, imax, itmax,krun, nprint
common/chip/ibgn, iend, jbgn (3), jend (3),kbgn (3), kend (3), nchp,
\& isub, ichip,jchip,kchip
common/diff/alc, als, thot, tcool, tavg
COMMON / RHOCP / RHS , RHC
common/condu/alpha \((12,16,16), \operatorname{rho}(12,16,16), \operatorname{visco}(12,16,16)\)
COMMON / POWER / QQQ, QCOND
common/array/njchip, nkchip, ichoice
C
if (ichoice .eq. 1) then
cond \(=0.065-7.895 E-5 *\) tavg
\(r h=(1.825-0.00246 *\) tavg \() * 1000\).
\(c p=4186 . *(0.2411+3.7037 \mathrm{E}-4 *\) tavg \()\)
alp \(=\) cond \(/(r h * c p)\)
beta \(=0.00246 /(1.825-0.00246 *\) tavg)
PRINT *, '******** FLUID IS FC75 ************'
endif
if (ichoice.eq. 2) then
cond \(=0.071\)
\(r h=(2.002-0.00224 * \operatorname{tavg}) * 1000\).
\(c p=4186 . *(0.2411+3.7037 \mathrm{E}-4 *\) tavg \()\)
alp \(=\) cond \(/(r h * c p)\)
beta \(=0.00224 /(2.002-0.00224 *\) tavg \()\)
PRINT *, '******** FLUID IS FC71 ************'
endif
C
if (ichoice .ne. 0) then
                ra \(=9.81\) * beta * qqq * \(h * * 2 * 1.0 \mathrm{E}-6\)
\& / (hchip * bchip * wchip * alc * cond * alp * alp)
qcond \(=\) qqq \(* 1.0 \mathrm{E} 3\)
\& / (h * hchip * bchip * wchip * alc * cond)
PRINT *,'THE POWER DISSIPATED PER CHIP IS', QQQ
PRINT *,'THE BOUSSINESQ NUMBER IS',RA
endif
C
C
C PRINT THE INPUT PARAMETERS
C
if (ichoice.eq. 0) then print *, 'A CONSTANT VISCOSITY FLUID IS ASSUMED' print *,'WHOSE PRANDTL NUMBER IS', pr
print *,'AND WHOSE BOUSSINESQ NUMBER IS', ra
endif
C
PRINT *,'THE ASPECT RATIOS ARE ',BTH,WTH
PRINT *,'THE TIME STEP IS', DTIME
PRINT *,'NUMBER OF TIME STEPS', NMAX
if (krun .eq. 1) then
print *, ' \(* * * * * * * * * T H I S ~ I S ~ A ~ R E S T A R T * * * * * * * * * ' ~\)
else
print *, '*********THIS IS NOT A RESTART*****'
endif
if (nchp .eq. 1) then
print *,'*****CHIP AND SUBSTRATE PRESENT*****'
else
print *,'****NO CHIP OR SUBSTRATE***'
endif
SET UP THE THERMAL DIFFUSIVITY FOR DIFFERENT CONTROL VOLUMES

FLUID DIFFUSIVITY
DO \(10 \mathrm{I}=1\), NIP1
DO \(10 \mathrm{~J}=1\), NJP1
DO \(10 \mathrm{~K}=1\), NKP1
ALPHA \((I, J, K)=1\). \(\operatorname{RHO}(I, J, K)=1\).

CONTINUE
CONTINUE
if (nchp .ne. 0) then

\section*{SUBSTRATE DIFFUSIVITY}

DO \(15 \mathrm{I}=1\), IBGN-1
DO \(15 \mathrm{~J}=1\), NJP1 DO \(15 \mathrm{~K}=1\), NKP1

ALPHA \((I, J, K)=A L S\)
RHO (I, J,K) \(=\) RHS

CHIP DIFFUSIVITY FOR CHIPS
DO \(20 \mathrm{M}=1\), NJCHIP
DO \(20 \mathrm{~N}=1\), NKCHIP do 20 i=ibgn, iend
do 20 j=jbgn(m), jend (m)
do \(20 \mathrm{k}=\mathrm{kbgn}(\mathrm{n})\), kend (n)
\(\operatorname{ALPHA}(I, J, K)=A L C\) \(\mathrm{RHO}(I, J, K)=\mathrm{RHC}\)
continue
endif
end
subroutine openf
THIS SUBROUTINE OPENS ALL FILES
UNIT 8: THIS IS THE INPUT FILE FOR THE FIELD VARIABLES. IT IS USED FOR A RESTART JOB.
UNIT 10: THIS FILE STORES THE U,V AND \(W\) VELOCITIES FOR A GIVEN LOCATION.
UNIT 11: THIS FILE STORES THE FIELD VARIABLES AT PRESCRIBED INTERVALS. THIS IS A CHECKPOINTING PROCEDURE.
UNIT 12: THIS FILE STORES THE MEAN FIELD VARIABLES.
\(\operatorname{OPEN}(8, F I L E=\prime\) c21. data',STATUS \(=\) 'UNKNOWN', FORM='UNFORMATTED')
OPEN (10,FILE='c2v.data',STATUS='UNKNOWN')
OPEN (11, FILE='c2tmp.data', STATUS='UNKNOWN',FORM='UNFORMATTED')
OPEN (12,FILE='c2m.data',STATUS='UNKNOWN',FORM='UNFORMATTED')

\section*{II}
\(\operatorname{OPEN}(13\), FILE \(=\) ' c2grd.data', STATUS='UNKNOWN')
end
subroutine initio
IN THIS SUBROUTINE ALL VARIABLES ARE INITIALIZED TO DEFAULTS
OR THE FIELD VARIABLES ARE READ.
```

implicit real*8 (a-h,o-z)
common/ng/dxx(40),dyy(40),dzz(40),x(40),y(40),z(40),
\& dxxs(40),dyys(40),dzzs(40)
common/parm/ra,pr, sorsum,dtime,xper,roll,dt_inv,xtime
common/tol/small,eps, sormax
common/dims/h,wth,bth,hchip,wchip,bchip,bsub
common/limits/ni,nip1,nim1,nj,njp1,njm1,nk,nkp1,nkm1,
\&
nip2,njp2,nkp2,iter, nnmax
common/fv_init/tod}(12,16,16),\operatorname{lod}(12,16,16),\operatorname{vod}(12,16,16)
\& wod(12,16,16),pod(12,16,16)
common/fv_cur/t(12,16,16),u(12,16,16),v(12,16,16),
\& W(12,16,16),p(12,16,16)
common/fv_int/tpd(12,16,16),\operatorname{upd}(12,16,16),\operatorname{vpd}(12,16,16),
\& - wpd(12,16,16),ppd(12,16,16)
common/mscn/smp(12,16,16),resorm(93),
\& du(12,16,16),dv(12,16,16),
\& dw (12,16,16),pp(12,16,16)
common/coeff/ap(12,16,16),aw(12,16,16),ae(12,16,16),
\& as (12,16,16),an(12,16,16),ab(12,16,16),
\& af(12,16,16),su(12,16,16)
common/mean/t_mean(12,16,16),u_mean(12,16,16),
\& v_mean(12,16,16),W_mean(12,16,16),
\& p_mean(12,16,16)
common/count/\overline{n}t,nmax,imax,itmax,krun, nprint
common/chip/ibgn,iend,jbgn(3),jend(3),kbgn(3),kend(3),nchp,
\& isub,ichip,jchip,kchip
common/scheme/quick,upwind
common/diff/alc,als, thot, tcool,tavg
common/array/njchip,nkchip,ichoice
common/ifirst/nust,nvst,nwst, npst
DATA PI/3.14159265359/

```
```

 SETTING UP THE WEIGHTED AVERAGE
    ```
    UPWIND \(=1.0-\) QUICK
    qck \(=100 . *\) quick
    uwd \(=100 . *\) upwind
    print *,'THE SCHEME IS', qck,'PERCENTAGE QUICK AND'
    print *, uwd,'PERCENTAGE UPWIND'

SET THE I-DIRECTION INDEX FOR CALU, CALV AND CALW
```

if (nchp.eq. 0) then
nust $=3$
nvst $=2$
nwst $=2$
npst $=2$
else
nust $=i b g n+1$
nvst $=i b g n$
nwst $=i b g n$

```
```

npst = ibgn

```
endif

INITIALIZE ALL VARIABLES TO ZERO OR DEFAULTS BEFORE START OF COMPUTATIONS

DO \(205 \mathrm{I}=1\),NIP1
DO \(205 \mathrm{~J}=1, \mathrm{NJP1}\)
DO \(205 \mathrm{~K}=1\), NKP1
\(\operatorname{UOD}(I, J, K)=0\).
\(U(I, J, K)=0\).
\(\operatorname{UPD}(I, J, K)=0\).
\(\operatorname{VOD}(I, J, K)=0\).
\(V(I, J, K)=0\).
\(\operatorname{VPD}(I, J, K)=0\).
\(W(I, J, K)=0\).
\(W P D(I, J, K)=0\).
WOD (I, J,K) \(=0\).
\(\operatorname{POD}(I, J, K)=0\).
\(P(I, J, K)=0\).
\(\operatorname{PPD}(I, J, K)=0\).
\(\operatorname{DU}(I, J, K)=0\).
\(\operatorname{DV}(I, J, K)=0\).
DW \((I, J, K)=0\).
\(S U(I, J, K)=0\).
\(\operatorname{PP}(I, J, K)=0\).
\(A P(I, J, K)=0\).
\(A W(I, J, K)=0\).
\(A E(I, J, K)=0\).
AN \((I, J, K)=0\).
\(A S(I, J, K)=0\).
\(\operatorname{SMP}(I, J, K)=0\).
\(T \operatorname{MEAN}(I, J, K)=0\).
\(U^{-} \operatorname{MEAN}(I, J, K)=0\).
\(V^{-} \operatorname{MEAN}(I, J, K)=0\).
\(W^{-} \operatorname{MEAN}(I, J, K)=0\).
\(P_{-}^{-} \operatorname{MEAN}(I, J, K)=0\).
205 CONTINUE
RESTART JOB IF KRUN IS SET TO ONE
IF (KRUN . EQ. 1) THEN
READ (8) TOD, UOD, VOD, WOD, POD
ELSE
DO \(220 \mathrm{~J}=1\), NJP1
DO \(220 \mathrm{I}=1\),NIP1
DO \(220 \mathrm{~K}=1\),NKP1
\(\operatorname{TOD}(I, J, K)=\) THOT \(-(\) THOT - TCOOL \()\)
\&
\(\operatorname{tod}(i, j, k)=0\).
\(T(I, J, K)=T O D(I, J, K)\)
\(\operatorname{TPD}(I, J, K)=\operatorname{TOD}(I, J, K)\)
CONTINUE

\section*{AMPLITUDE OF PERTURBATIONS}
```

A1 = 1. / bth
YPER = ROLL * XPER / bth

```

U VELOCITY PERTURBATIONS
do \(230 \mathrm{k}=2, \mathrm{nk}\)
        DO \(230 \mathrm{~J}=2\), NJ
            DO \(230 \mathrm{I}=3\), NI
                        \(U(I, J, K)=-x p e r * \cos (p i *(Y(j)+0.5 * d y Y(j)))\)
\&
                    * \(\sin (\) roll * pi * al * x(i))
                    \(\operatorname{UOD}(I, J, K)=U(I, J, K)\)
                        \(\operatorname{UPD}(I, J, K)=U(I, J, K)\)

230 CONTINUE

\section*{V VELOCITY PERTURBATIONS}
```

do 235 k=2,nk

```
            DO \(235 \mathrm{~J}=3\), NJ
                DO \(235 \mathrm{I}=2\), NI
                        \(V(I, J, K)=y p e r * \sin (p i * y(j))\)
                        * \(\operatorname{COS}(R O L L\) * PI * A1 * (x(i) + 0.5 * dxx(i)))
            \(\operatorname{VOD}(I, J, K)=V(I, J, K)\)
            \(\operatorname{VPD}(I, J, K)=V(I, J, K)\)
            CONTINUE
            ENDIF
C

SET THE VELOCITIES OUTSIDE THE COMPUTATIONAL DOMAIN TO ZERO
do \(505 \mathrm{i}=1\), nip1
    DO \(505 \mathrm{~J}=1\), NJP1
                \(\operatorname{UOD}(\mathrm{I}, \mathrm{J}, 1)=0\).
                \(\operatorname{UOD}(I, J, N K P 1)=0\).
                \(\operatorname{VOD}(I, J, 1)=0\).
                \(\operatorname{VOD}(I, J, N K P 1)=0\).
            \(\operatorname{WOD}(I, J, 1)=0\).
            WOD (I,J,2) \(=0\).
            WOD \((I, J, N K P 1)=0\).
505 CONTINUE
DO \(510 \mathrm{I}=1\), NIP1
        DO \(510 \mathrm{~K}=1\), NKP1
            \(\operatorname{UOD}(I, 1, K)=0\).
            \(\operatorname{UOD}(I, N J P 1, K)=0\).
            \(\operatorname{VOD}(\mathrm{I}, 1, \mathrm{~K})=0\).
            \(\operatorname{VOD}(I, 2, K)=0\).
            \(\operatorname{VOD}(I, N J P 1, K)=0\).
            \(\operatorname{WOD}(I, 1, K)=0\).
            \(\operatorname{WOD}(I, N J P 1, K)=0\).
510 CONTINUE
    DO \(520 \mathrm{~J}=1\), NJP1
        DO \(520 \mathrm{~K}=1\),NKP1
            \(\operatorname{UOD}(1, J, K)=0\).
            \(\operatorname{UOD}(2, J, K)=0\).
            \(\operatorname{UOD}(N I P 1, J, K)=0\).
            \(\operatorname{VOD}(1, J, K)=0\).
            \(\operatorname{VOD}(N I P 1, J, K)=0\).
            \(\operatorname{WOD}(1, J, K)=0\).
            WOD \((N I P 1, J, K)=0\).
    520 CONTINUE

SET THE VELOCITIES AND PRESSURE IN THE SUBSTRATE TO ZERO
if (nchp .ne. 0) then do \(530 \mathrm{i}=1\), ibgn

\section*{II}
do 530 j=1, njpl
do \(530 \mathrm{k}=1\), nkpl \(\operatorname{uod}(i, j, k)=0\).
```

 do 540 i=1,ibgn-1
    ```
            do 540 j=1,njp1
                        do \(540 k=1, n k p 1\)
                        \(\operatorname{vod}(i, j, k)=0\).
                \(\operatorname{wod}(i, j, k)=0\).
                            \(\operatorname{pod}(i, j, k)=0\).
540 continue
    endif

INITIALISE U, V,W,T,P
DO \(210 \mathrm{~K}=1\), NKP1
DO \(210 \mathrm{~J}=1, \mathrm{NJP} 1\)
DO \(210 \mathrm{I}=1\), NIP1
\(T(I, J, K)=T O D(I, J, K)\)
\(\mathrm{U}(\mathrm{I}, \mathrm{J}, \mathrm{K})=\operatorname{UOD}(\mathrm{I}, \mathrm{J}, \mathrm{K})\)
\(V(I, J, K)=\operatorname{VOD}(I, J, K)\)
\(W(I, J, K)=W O D(I, J, K)\)
\(P(I, J, K)=P O D(I, J, K)\)
210 CONTINUE
end
subroutine ploop
THIS SUBROUTINE INCLUDES THE PRESSURE LOOP. IT INCORPORATES THE SIMPLEX ALGORITHM AND THE INFAMOUS ERROR CONTROL ROUTINE DUE TO THE VENERABLE VINCENT LIU OF THE ARGONNE NATIONAL LABS WHO DEVISED IT AS A HOBBY WHILE AT THE UNIV OF NOTRE DAME.
```

 implicit real*8 (a-h,o-z)
 common/ng/dxx(40),dyy(40),dzz(40),x(40),y(40),z(40),
 \& dxxs(40),dyys(40),dzzs(40)
common/limits/ni,nip1,nim1,nj,njp1,njm1,nk,nkp1,nkm1,
\&
common/parm/ra,pr,sorsum,dtime,xper,roll,dt_inv,xtime
common/tol/small,eps,sormax
common/dims/h,wth,bth,hchip,wchip,bchip,bsub
common/fv_init/tod}(12,16,16),\operatorname{lod}(12,16,16),\operatorname{vod}(12,16,16)
\& wod(12,16,16),pod}(12,16,16
common/fv_cur/t (12,16,16),u(12,16,16),v(12,16,16),
\& w(12,16,16),p(12,16,16)
common/fv_int/tpd(12,16,16),\operatorname{upd}(12,16,16),\operatorname{vpd}(12,16,16),
\&
common/mscn/smp(12,16,16),resorm(93),
\& du(12,16,16),dv(12,16,16),
\& dw(12,16,16),pp(12,16,16)
common/coeff/ap(12,16,16), aw (12,16,16), ae(12,16,16),
\& as (12,16,16),an(12,16,16),ab(12,16,16),
\& af(12,16,16),su(12,16,16)
COMMON / COEF2 / AWW (12,16,16), AEE (12,16,16), ASS (12,16,16),
\& ANN(12,16,16), ABB (12,16,16), AFF(12,16,16)
common/mean/t_mean(12,16,16),u_mean(12,16,16),
\& v_mean(12,16,16),w_mean(12,16,16),
\& p_mean(12,16,16)
common/count/\overline{n}t,nmax,imax, itmax,krun, nprint

```
common/chip/ibgn, iend, jbgn (3), jend (3), kbgn(3), kend (3), nchp,
\& isub,ichip,jchip,kchip
common/array/njchip, nkchip, ichoice
common/diff/alc, als, thot, tcool, tavg
DIMENSION UU (5000), VV (5000), WW (5000)
CALL CPUTIME (BEGIN,IIR)
XTIME \(=0\).
\(\mathrm{NT}=0\)
THE MAIN TIME MARCHING LOOP BEGINS HERE
300 continue
\(\mathrm{NT}=\mathrm{NT}+1\)
UPDATE THE MEAN VELOCITIES,TEMPERATURE AND PRESSURE
\(\mathrm{C} 1=1 . / \mathrm{FLOAT}(\mathrm{NT})\)
do \(310 \mathrm{k}=1\), nkpl
DO \(310 \mathrm{~J}=1\), NJP1
DO \(310 \mathrm{I}=1\),NIP1
\(U_{-} \operatorname{MEAN}(I, J, K)=(1 .-C 1) * U_{-} \operatorname{MEAN}(I, J, K)\)
\(\&\)
\(\&\)
\(V_{-} \operatorname{MEAN}(I, J, K)=(1 .-C 1) \star \operatorname{V} \operatorname{MEAN}(I, J, K)\)
\(+c 1\) * \(v(i, j, k)\)
\(W_{-} \operatorname{MEAN}(I, J, K)=(1 .-C 1) \star W_{-} \operatorname{MEAN}(I, J, K)\)
\& \(+c 1\) * \(w(i, j, k)\)
T_MEAN \((I, J, K)=(1 .-C 1) \star \operatorname{T} \operatorname{MEAN}(I, J, K)\)
\&
\(+c 1 * t(i, j, k)\)
310 continue
STORE THE FIELD VARIABLES EVERY 1000 TIME STEPS
AS A KIND OF CHECKPOINTING
IF (MOD (NT, nprint) .EQ. 0) THEN
WRITE(11) T,U,V,W,P
REWIND 11
ENDIF
STOP COMPUTATIONS AT THE MAXIMUM PRESCRIBED
TIME STEP
IF (NT . GT. NMAX) THEN
DO \(10 \mathrm{I}=1\), NMAX
WRITE ( \(10, *\) ) UU(I), VV (I), WW (I)
10 CONTINUE
WRITE (12) T_MEAN, U_MEAN, V_MEAN, W_MEAN, P_MEAN
CALL CPUTĪME (END,IIR)
\(T T=(E N D-B E G I N) \star 1 . E-06\) PRINT *,'THE CPUTIME USED WAS',TT
STOP
ENDIF
XTIME \(=\) XTIME + DTIME
START CALCULATIONS
ITER \(=0\)

JTERM \(=0\)
JJTERM \(=0\)
DEFINE THE UPDATED \(\operatorname{TPD}(I, J, K) \operatorname{UPD}(I, J, K)\) AND VPD \((I, J, K)\) FOR \(\operatorname{SU}(I, J, K)\)

DO \(48 \mathrm{~K}=1\), NKP1
DO \(48 \mathrm{~J}=1\), NJP1 DO \(48 \mathrm{I}=1\), NIP1 \(\operatorname{TPD}(I, J, K)=T(I, J, K)\) \(\operatorname{UPD}(I, J, K)=U(I, J, K)\) \(\operatorname{VPD}(I, J, K)=V(I, J, K)\) \(W P D(I, J, K)=W(I, J, K)\)
48 CONTINUE
29 CONTINUE
JTERM \(=\) JTERM +1
CALL CALT
DO 2220 I=1,NIP1
DO \(2220 \mathrm{~K}=1\), NKP1
DO \(2220 \mathrm{~J}=2, \mathrm{NJ}\)
IF \((T(I, J, K)\).LT. TCOOL \() T(I, J, K)=T C O O L\)
2220 CONTINUE
PRESSURE CORRECTION LOOP

301 CONTINUE
ITER \(=\) ITER +1
CALL CALU
CALL CALV
CALL CALW
CALL CALP
if(resorm(iter) .le. sormax) go to 49
if(iter.eq. 1) go to 302
if(resorm(iter) .le. resorm(iter-1)) go to 302
go to 304
302 if(jterm.ge. 2) go to 37
source=resorm(iter)
go to 39
37 if(resorm(iter) .le. source) go to 38
go to 304
38 source=resorm(iter)
39 continue
do \(23 \mathrm{k}=1\), nkp1
do \(23 j=1\),njp1
do \(23 i=1\), nip1
\(\operatorname{tpd}(i, j, k)=t(i, j, k)\)
\(\operatorname{upd}(i, j, k)=u(i, j, k)\)
\(\operatorname{vpd}(i, j, k)=v(i, j, k)\)
\(w p d(i, j, k)=w(i, j, k)\)
\(\operatorname{ppd}(i, j, k)=p(i, j, k)\)
23 continue
jjterm=0
if(iter .eq. itmax) go to 49
if(jterm .eq. 2) go to 35
if(iter .eq. 4) go to 29
35 continue
if (jterm .eq. 3) go to 58
if(iter .eq. 7) go to 29
58 continue
jjterm=0
go to 301
304 continue
jjterm=jjterm+1
if (jterm .eq. 1) go to 41
if (jterm .eq. 2 .and. jjterm.eq. 1 .and. iter .ne. 5) go to 41
go to 82
41 continue
do \(40 \mathrm{k}=1\), nkp1
do \(40 \mathrm{j}=1\),njp1
do \(40 \mathrm{i}=1\),nip1
\(u(i, j, k)=u p d(i, j, k)\)
\(v(i, j, k)=\operatorname{vpd}(i, j, k)\)
\(w(i, j, k)=w p d(i, j, k)\)
\(p(i, j, k)=\operatorname{ppd}(i, j, k)\)
40 continue
if(iter .eq. itmax) go to 49
go to 29
82 continue
do \(43 \mathrm{k}=1\), nkp1
do \(43 \mathrm{j}=1\), njp1
do \(43 \mathrm{i}=1\), nip1
\(t(i, j, k)=\operatorname{tpd}(i, j, k)\)
\(u(i, j, k)=\operatorname{upd}(i, j, k)\)
\(v(i, j, k)=\operatorname{vpd}(i, j, k)\)
\(w(i, j, k)=w p d(i, j, k)\)
\(p(i, j, k)=\operatorname{ppd}(i, j, k)\)
43 continue
if(iter .eq. itmax) go to 49
if ((jterm .eq. 3 .and. iter .ne. 8) .or. jjterm .eq. 2) go to 49
go to 301
49 continue
II = NIP1 * 2 / 3
JJ \(=\) NJP1 * \(2 / 3\)
KK = NKP1 * \(2 / 3\)
\(U U(N T)=U(I I, J J, K K)\)
\(V V(N T)=V(I I, J J, K K)\)
\(W W(N T)=W(I I, J J, K K)\)
PRINT ENERGY AND MASS BALANCE STATISTICS AT REGULAR INTERVALS

IF (MOD (NT, nprint) .EQ. 0) THEN
CALL NU
call chiptemp
call tstep
ENDIF
UPDATE VARIABLES FOR THE NEXT TIME STEP
DO \(305 \mathrm{~K}=1\), NKP1
DO \(305 \mathrm{~J}=1\), NJP1
DO \(305 \mathrm{I}=1\),NIP1
    \(\operatorname{TOD}(I, J, K)=T(I, J, K)\)
    \(\operatorname{UOD}(I, J, K)=U(I, J, K)\)
    \(\operatorname{VOD}(I, J, K)=V(I, J, K)\)
    \(\operatorname{WOD}(I, J, K)=W(I, J, K)\)
    305 CONTINUE
    GO TO 300
    end
    subroutine tstep
    implicit real*8 (a-h,o-z)

THE MAXIMUM TIME STEP FOR AN EXPLICIT MARCH IS CALCULATED. THIS IS USEFUL FOR DECIDING THE TIME STEP THAT NEEDS TO BE SPECIFIED.
ALSO, THE VOLUME AVERAGED PRANDTL NUMBER IS CALCULATED.
common/fv_cur/t \((12,16,16), \mathrm{u}(12,16,16), \mathrm{v}(12,16,16)\),
\(\mathrm{w}(12,16,16), \mathrm{p}(12,16,16)\)
common/condu/alpha(12, 16, 16), rho \((12,16,16), \operatorname{visco}(12,16,16)\)
common/dims/h, wth, bth, hchip, wchip, bchip, bsub
common/ng/dxx(40), dyy(40),dzz(40),x(40),y(40),z(40), \&
common/limits/ni, nipl, nim1, nj, njpl, njm1, nk, nkpl, nkm1,
\&
common/parm/ra,pr,sorsum,dtime,xper, roll,dt_inv,xtime
common/ifirst/nust, nvst, nwst, npst
\(\operatorname{tmin}=0\).
do \(10 \mathrm{i}=2\), ni
do \(10 \mathrm{j}=2, \mathrm{nj}\)
do \(10 \mathrm{k}=2, \mathrm{nk}\)
tmp1 \(=0.5 *((u(i, j, k)+u(i+1, j, k)) / d x x(i)\)
\&
\&
\(+(v(i, j, k)+v(i, j+1, k)) / d y y(j)\)
\(+(w(i, j, k)+w(i, j, k+1)) / d z z(k))\)
\(\operatorname{tmp} 2=1 . / \mathrm{dxx}(\mathrm{i}) * * 2+1 . / \mathrm{dyy}(j) * * 2\)
\& \(\quad+1 . / d z z(k) * * 2\)
c \(\quad \operatorname{tmp}=\max (t m p 1, t m p 2)\)
tmp \(=\) tmpl
if (tmp.gt. tmin) \(t m i n=t m p\)
10 continue
tmin \(=1 . / \operatorname{tmin}\)
C
umin \(=0\).
do 20 i=nust, ni
do \(20 j=2, n j\)
do \(20 \mathrm{k}=2, \mathrm{nk}\)
tmp1 \(=0.5 *(2 . * u(i, j, k) / d x \times s(i)\)
\& \(\quad+(v(i, j, k)+v(i, j+1, k)) / d y y(j)\)
\(\& \quad+(w(i, j, k)+w(i, j, k+1)) / d z z(k))\)
tmp2 \(=\operatorname{visco}(i, j, k) *(1 . / d x x s(i) * * 2\)
\(\& \quad+1 . / \mathrm{dyy}(\mathrm{j}) * * 2+1 . / \mathrm{dzz}(\mathrm{k}) * * 2)\)
tmp \(=\max (t m p 1, t m p 2)\)
\(t m p=t m p 1\)
if (tmp.gt. umin) umin = tmp
20 continue
umin \(=1 . /\) umin
C
\(\operatorname{vmin}=0\).
do 30 i=nvst,ni
do \(30 j=3, n j\)
do \(30 \mathrm{k}=2\), nk
tmp1 \(=0.5 *(2 . * v(i, j, k) / \operatorname{dyys}(j)\)
\(+(u(i, j, k)+u(i+1, j, k)) / d x x(i)\)
\(+(w(i, j, k)+w(i, j, k+1)) / d z z(k))\)
\(\operatorname{tmp} 2=\operatorname{visco(i,j,k)} *(1 . / d x x(i) * * 2\)
\(+1 . / \operatorname{dyys}(j) \star * 2+1 . / \mathrm{dzz}(k) * * 2)\)
tmp \(=\max (t m p 1, t m p 2)\)
tmp \(=\) tmp1
if (tmp.gt. vmin) vmin \(=\) tmp
continue
vmin \(=1 . / \mathrm{vmin}\)
wmin \(=0\).
do 40 i=nwst, ni
do \(40 \quad j=2, n j\)
do \(40 k=3, n k\)
tmp1 \(=0.5 *(2 . * w(i, j, k) / d z z s(k)\)
\& \(+(v(i, j, k)+v(i, j+1, k)) / d y y(j)\) \(+(u(i, j, k)+u(i+1, j, k)) / d x x(i))\)
tmp2 \(=\operatorname{visco(i,j,k)} *(1 . / d x x(i) * * 2\)
\(+1 \cdot / \mathrm{dyy}(j) * * 2+1 \cdot / \mathrm{dzzs}(k) * * 2)\)
\&
tmp \(=\max (t m p 1, t m p 2)\)
tmp \(=\) tmp1
if (tmp.gt. wmin) wmin \(=\) tmp
40 continue
wmin \(=1\). / wmin
tt \(=\min\) (tmin,umin, vmin, wmin)
print *,'THE EXPLICIT TIME STEP IS', tt
THE VOLUME AVERAGED PRANDTL NUMBER IS CALCULATED.
```

 vavgpr = 0.
    ```
        do 50 i=nust, ni
        do \(50 \quad j=2, n j\)
            do \(50 \mathrm{k}=2, \mathrm{nk}\)
                        vavgpr \(=\) vavgpr \(+d x x(i) * d y y(j) * d z z(k)\)
    \&
                                * visco(i,j,k)
        continue
        vavgpr \(=\) vavgpr / (wth * bth)
        print *,'THE VOLUME AVERAGED PRANDTL NUMBER IS', vavgpr
        end
subroutine grid
THIS SUBROUTINE GENERATES THE GRID. THE ROBERTS TRANSFORMATION IS USED TO RESOLVE BOUNDARY LAYER NEAR THE WALL.
```

 implicit real*8 (a-h,o-z)
 common/ng/dxx(40),dyy(40),dzz(40),x(40),y(40),z(40),
 \& dxxs(40),dyYs(40),dzzs(40)
common/blayer/xbr,ybr,zbr
common/unfrm/iunfrm
common/dims/h,wth,bth,hchip,wchip,bchip,bsub
common/chip/ibgn, iend,jbgn (3),jend (3), kbgn(3), kend(3), nchp,
\& isub,ichip,jchip,kchip
common/limits/ni,nip1,nim1,nj,njp1,njm1,nk,nkp1,nkm1,
\& nip2,njp2,nkp2
common/array/njchip,nkchip

```
common/spaced/ychip(3),zchip(3)
dimension \(\mathrm{kgap}(4), j g a p(4), y g a p(4)\), zgap(4),
dygap(4),dzgap(4)
print *,'tHE HEIGHT OF THE ENCLOSURE IS',h,'mm'
print *,'THE WIDTH OF THE ENCLOSURE IS', wth,'mm'
print *,'THE LENGTH OF THE ENCLOSURE IS',bth,'mm'
wth \(=\) wth \(/ \mathrm{h}\)
bth \(=b t h / h\)
\(\mathrm{xbr}=\mathrm{xbr} / \mathrm{h}\)
\(\mathrm{ybr}=\mathrm{ybr} / \mathrm{h}\)
\(\mathrm{zbr}=\mathrm{zbr} / \mathrm{h}\)
print *,'THE CHIP DIMENSIONS ARE THE FOLLOWING:'
print *,' CHIP HEIGHT (Y-DIRECTION)', hchip,'mm'
print *,'CHIP WIDTH (Z-DIRECTION)',wchip,'mm'
print *,'CHIP LENGTH(X-DIRECTION)',bchip,'mm'
NONDIMENSIONALIZE THE LENGTH PARAMETERS WHICH ARE GIVEN IN MM
hchip \(=\) hchip \(/ \mathrm{h}\)
wchip \(=\) wchip \(/ \mathrm{h}\)
bchip \(=\) bchip \(/ \mathrm{h}\)
bsub \(=\) bsub \(/ \mathrm{h}\)
if (iunfrm.eq. 0) then
if (nchp .ne. 0) then
do \(10 \mathrm{i}=1\), njchip
ychip(i) = ychip(i) / h
continue
do 20 i=1,nkchip
zchip(i) = zchip(i) / h
continue
\(\mathrm{dx}=\mathrm{bch} i \mathrm{p} / \mathrm{float}(\mathrm{ichip})\)
dy = hchip / float(jchip)
\(\mathrm{dz}=\) wchip / float(kchip)
zgap(1) \(=\) zchip(1) - 0.5 * wchip
zgap(nkchip+1) = wth - zchip(nkchip) - 0.5 * wchip
ygap(1) \(=\) ychip(1) - 0.5 * hchip
\(\operatorname{ygap}(\) njchip+1) \(=1.0-\operatorname{ychip}(n j c h i p)-0.5\) * hchip
kgap(1) \(=\) int(float(kchip) * zgap(1) / wchip) - 4
dzgap(1) \(=\) zgap(1) / float(kgap(1))
jgap (1) \(=\) int(float(jchip) * ygap(1) / hchip) + 3
dygap(1) = ygap(1) / float(jgap(1))
do \(25 \mathrm{i}=2\), nkchip
zgap(i) \(=\) zchip(i) - zchip(i-1) - wchip
kgap(i) \(=\) int(float(kchip) * zgap(i) / wchip) - 2
dzgap(i) \(=z \operatorname{zap}(i) /\) float(kgap(i))
continue
do 30 i=2,njchip
ygap(i) = ychip(i) - ychip(i-1) - hchip
jgap(i) \(=\) int(float(jchip) * ygap(i) /hchip) + 1
dygap(i) \(=\) ygap(i) / float(jgap(i))
ktotal \(=0\)
jtotal \(=0\)
do 35 i=1,nkchip
ktotal \(=\) ktotal + kgap(i)
continue
do 40 i=1,njchip
jtotal \(=j\) jotal \(+j g a p(i)\)
continue
ktotal \(=\) ktotal + nkchip * kchip
jtotal \(=\) jtotal + njchip * jchip
\(\operatorname{kgap}(n k c h i p+1)=n k m 1-k t o t a l\)
dzgap(nkchip+1) \(=\) zgap(nkchip+1) / float(kgap(nkchip+1))
jgap(njchip+1) \(=\) njm1 - jtotal
\(\operatorname{dygap}(\) njchip+1 \()=\operatorname{ygap}(\) njchip+1) /float(jgap(njchip+1))
if ((nkm1 - ktotal). .lt. 4) then print *,'INSUFFICIENT \# OF POINTS IN THE Z-DIRECTION' stop
endif
if ((njm1 - jtotal) .lt. 6) then print *,'INSUFFICIENT \# OF POINTS IN THE Y-DIRECTION' stop
endif
call grid1 (ygap(1),ybr,jgap(1),yk1,yh1)
call grid1 (ygap(njchip+1),ybr,jgap(njchip+1),yk2,yh2)
call grid1 (zgap(1),zbr,kgap(1),zk1,zh1)
call grid1 (zgap(nkchip+1), zbr,kgap(nkchip+1),zk2,zh2)
GRID GENERATION IN THE \(Y\) AND Z-DIRECTION (TOP AND BOTTOM)
do \(45 \mathrm{j}=2\), jgap ( 1 ) +2 \(y(j)=\tanh (y k 1\) * yh1 * dygap(1) * float(j - jgap(1) - 2))
\&
45 continue
\(y(1)=-y(3)\)
do \(50 \mathrm{k}=2, \operatorname{kgap}(1)+2\) \(z(k)=\tanh (z k 1 * z h 1 * \operatorname{dzgap}(1) *\) float(k - kgap(1) - 2))
\&
50 continue
\[
z(1)=-z(3)
\]
\(j j=2+j\) total
\(y y=y c h i p(\) njchip \()+0.5 *\) hchip
do \(55 \mathrm{j}=1\),jgap(njchip+1)+1 \(y(j+j j)=\tanh (y k 2 * y h 2 * d y g a p(n j c h i p+1)\)
\& * float(j)) / yk2 + yy
55 continue \(y(n j p 2)=1.0+y(n j p 1)-y(n j)\)
c \(k k=2+k\) total
\(z z=z c h i p(n k c h i p)+0.5 *\) wchip
do \(60 \mathrm{k}=1\), kg ap(nkchip+1) +1
\(z(k+k k)=\tanh (z k 2 * z h 2 * d z g a p(n k c h i p+1)\)

\section*{\&}
* float (k)) / zk2 + zz

60 continue
\(z(n k p 2)=w t h+z(n k p 1)-z(n k)\)
\(y y=-\) hchip
jj \(=2\) - jchip
do 65 i=1,njchip
jj \(=j j+j c h i p+j g a p(i)\)
\(y y=y y+h c h i p+y g a p(i)\)
do \(65 j=1\), jchip \(y(j j+j)=d y\) * float \((j)+y Y\)
65 continue
C
\(z z=-\) wchip
\(k k=2-k c h i p\)
do \(70 \mathrm{i}=1\), nkchip
\(k k=k k+k c h i p+k g a p(i)\)
\(z z=z z+\) wchip + zgap(i)
do \(70 \mathrm{k}=1\), kchip
\(z(k k+k)=d z *\) float \((k)+z z\)
continue
\(y y=0\).
jj \(=2\)
do 75 i=2, njchip
\(j j=j j+j c h i p+j g a p(i-1)\)
\(y Y=Y y+\) hchip + ygap \((i-1)\)
do 75 j=1,jgap(i)
\(y(j j+j)=\) dygap(i) * float(j) + Yy
75 continue
```

zz=0.
kk = 2
do 80 i=2,nkchip
kk = kk + kchip + kgap(i-1)
zz=zz + zgap(i-1) + wchip
do 80 k=1,kgap(i)
z(kk+k)= dzgap(i) * float(k) + zz

```
    80 continue

GRID GENERATION IN THE X-DIRECTION
ii \(=(\) nim1 - ichip \(-i s u b) / 2\)
ii \(=2\) * \(i i\)
inc \(=\) nim1 - ichip -isub - ii
isub \(=\) isub \(+i n c\)
dsub \(=\) bsub / float(isub)
do \(160 \quad i=1\), isub+2
\(x(i)=\) dsub * float \((i-2)\)
160 continue
```

 dx = bchip / float(ichip)
 xx = bsub
ii = isub + 2
do }170\mathrm{ i=1,ichip
x(i+ii) = dx * float(i) + xx

```
        170 continue
C
    ii \(=\) isub \(+i c h i p+2\)
    \(b b=0.5 *(b t h-b s u b-b c h i p)\)
```

 xx = bsub + bchip + bb
 ii1 = (nim1 - ichip - isub) / 2
 call gridl (bb,xbr,ii1,xk2,xh2)
 ii2 = 2 * iil
 dr = bb / float(ii1)
 do 180 i=1,ii2
 x(i+ii) = tanh (xh2 * xk2 * dr * float (i - ii1)) / xk2
 & + xx
 180 continue
 x(nip1+1) = bth + x(nip1) - x(ni)
 ibgn = isub + 2
 iend = isub + ichip + 1
 jbgn(1) = jgap(1) + 2
 jend(1) = jbgn(1) + jchip - 1
 do 200 i=2,njchip
 jbgn(i) = jbgn(i-1) + jchip + jgap(i)
 jend(i) = jbgn(i) + jchip - 1
 2 0 0 ~ c o n t i n u e
 kbgn(1) = kgap(1) + 2
 kend(1) = kbgn(1) + kchip - 1
 do 220 i=2,nkchip
 kbgn(i) = kbgn(i-1) + kchip + kgap(i)
 kend(i) = kbgn(i) + kchip - 1
 2 2 0 ~ c o n t i n u e
 else
 print *,'THE HEIGHT OF THE ENCLOSURE IS',h,'mm'
 print *,'THE WIDTH OF THE ENCLOSURE IS',wth,'mm'
 print *,'THE LENGTH OF THE ENCLOSURE IS',bth,'mm'
 NONDIMENSIONALIZE THE LENGTH PARAMETERS WHICH ARE GIVEN IN MM
 GRID GENERATION IN THE Z-DIRECTION
 z1 = wth * 0.5
 kz1 = (nkp1 - 2) / 2
 dr1 = z1 / float(kzl)
 call grid1 (z1,zbr,kz1,zk1,zh1)
 z(1) = - zbr
 ii=2 * kzi + 1
 do 181 i=1,ii
 z(i+1) = tanh (zh1 * zk1 * dr1 * float (i - kz1 - 1)) / zk1
 &
 + z1
 181 continue
z(nkp1+1) = wth + zbr
GRID GENERATION IN THE Y-DIRECTION
y1 = 0.5
jy1 = (njp1 - 2) / 2
dr1 = y1 / float(jy1)
call grid1 (y1,ybr,jy1,yk1,yh1)
y(1) = - ybr
ii = 2 * jy1 + 1

```
do \(182 \mathrm{i}=1\), i i
\(y(i+1)=\tanh (y h 1 * y k 1 * d r 1 *\) float \((i-j y 1-1)) / y k 1\) \&
\(+y 1\)
182 continue
\(y(n j p 1+1)=1.0+y b r\)
GRID GENERATION IN THE X-DIRECTION
\(\mathrm{x} 1=0.5\) * bth
\(i \times 1=(n i p 1-2) / 2\)
dr1 \(=\mathrm{xi} /\) float(ix1)
call gridi (x1,xbr,ix1,xkl, xh1)
\(\mathrm{x}(1)=-\mathrm{xbr}\)
ii \(=2\) * \(\mathrm{ix1}+1\)
do \(183 \mathrm{i}=1\), i i
\(x(i+1)=\tanh (x h 1 * x k 1 * \operatorname{dr} 1 * \operatorname{float}(i-i x 1-1)) / x k 1\)
\&
\(+\mathrm{x1}\)
183 continue
\(x(\) nip \(1+1)=\) bth \(+x\) br
endif
else
print *,'THE GRID IS UNIFORM'
```

 dx = bth / float(niml)
 dy = 1.0 / float (njm1)
 dz = wth / float(nkml)
    ```
        UNIFORM GRID
    do \(185 \mathrm{i}=1\), nip2
        \(x(i)=d x *\) float \((i-2)\)
    185 continue
    do \(186 j=1\), njp2
        \(y(j)=d y *\) float \((j-2)\)
    186 continue
    do \(187 \mathrm{k}=1, \mathrm{nkp} 2\)
        \(z(k)=d z *\) float \((k-2)\)
    187 continue
    IF (NCHP . NE. 0) THEN
        IBGN \(=4\)
        IEND \(=5\)
        JBGN (1) \(=4\)
        JEND (1) \(=5\)
        JBGN (2) \(=8\)
        JEND (2) \(=9\)
        JBGN(3) \(=12\)
        JEND (3) \(=13\)
        \(\operatorname{KBGN}(1)=4\)
        \(\operatorname{KEND}(1)=5\)
        \(\operatorname{KBGN}(2)=8\)
            KEND (2) \(=9\)
            \(\operatorname{KBGN}(3)=12\)
            \(\operatorname{KEND}(3)=13\)
        ENDIF
        endif
C
do \(188 \mathrm{i}=1\), nip1
\[
d \times x(i)=x(i+1)-x(i)
\]

188 continue
do \(189 \mathrm{i}=1, \mathrm{njp} 1\)
\(d y y(i)=y(i+1)-y(i)\)
189 continue
do 191 i=1,nkp1
\[
d z z(i)=z(i+1)-z(i)
\]

191 continue
\(d x x(n i p 2)=d x x(n i p 1)\)
dyy(njp2) \(=d y y(n j p 1)\)
\(\mathrm{dzz}(\mathrm{nkp2})=\mathrm{dzz}(\mathrm{nkp1})\)
CALCULATE THE DIMENSIONS OF THE STAGGERED CONTROL VOLUMES
do 245 i=2,nip1
\(\mathrm{dxxs}(\mathrm{i})=0.5 *(\mathrm{dxx}(\mathrm{i}-1)+\mathrm{dxx}(\mathrm{i}))\)
245 continue
dxxs(1) \(=\) dxxs(2)
do \(250 \mathrm{i}=2, \mathrm{njp} 1\)
dyys(i) \(=0.5 *(d y y(i-1)+d y y(i))\)
250 continue
dyys(1) = dyys(2)
do 255 i=2,nkp1
\(\operatorname{dzzs}(\mathrm{i})=0.5 *(\mathrm{dzz}(\mathrm{i}-1)+\mathrm{dzz}(\mathrm{i}))\)
255 continue
\(\operatorname{dzzs}(1)=\operatorname{dzzs}(2)\)
dxxs(nip2) = dxxs(nip1)
dyys(njp2) = dyys(njp1)
dzzs(nkp2) \(=d z z s(n k p 1)\)
CALCULATE THE AREAS AND VOLUMES TO
CHECK ACCURACY OF GRID
svol \(=0\).
do 260 i=2,nip1-1
do 260 j=2, njp1-1
do \(260 \mathrm{k}=2\), nkp1-1
260 continue
svol = svol * h**3
print *,'THE TOTAL VOLUME IS',svol,'cubic mm'
svol \(=0\).
do 261 i=2,nip1-1
\[
\text { do } 261 j=2, n j p 1-1
\]
\[
\text { svol }=\text { svol }+d x x(i) * d y y(j)
\]

261 continue
svol \(=\) svol * h**2
print *,'THE TOTAL XY AREA IS', svol,'square mm'
svol \(=0\).
do 262 j=2,njp1-1
\[
\text { do } 262 \mathrm{k}=2, \mathrm{nkp1}-1
\]
svol \(=\) svol + dyy(j) * dzz(k)
262 continue
svol \(=\) svol * \(\mathrm{h} * * 2\)
print *,'THE TOTAL YZ AREA IS', svol,'square mm'
svol \(=0\).
do \(263 \mathrm{k}=2, \mathrm{nkp} 1-1\)
do 263 i=2,nip1-1
```

svol = svol + dzz(k) * dxx(i)

```

263 continue
svol \(=\) svol \(* h * * 2\)
print *,'THE TOTAL ZX AREA IS', svol,'square mm'
INDIC \(=\) MAXO (NIP2,NJP2,NKP2)
DO \(270 \mathrm{I}=1\),INDIC
```

 write(6,1000) i, dxx(i),x(i),dyy(i),y(i),dzz(i),z(i)
    ```

270 continue
1000 format ( \(1 \mathrm{x}, \mathrm{i} 5,2 \mathrm{x}, 6(\mathrm{f} 9.5,1 \mathrm{x})\) )
PRINT *, IBGN, IEND, JBGN, JEND, KBGN, KEND
write (13,2000) \(x, y, z, d x x, d y y, d z z\)
2000 format (4 (f17.7))
end
subroutine gridl (bb,dx, ngrid, x1,hk)
implicit real*8 (a-h,o-z)
THIS SUBROUTINE CALCULATES THE TWO GRID PARAMETERS
data epps,nmax/1.0e-8,1000/
\(\mathrm{dr}=\mathrm{bb} /\) float(ngrid)
\(c=1 . /(f l o a t(n m a x) * b b)\)
\(y y=1 .-d r / b b\)
\(y 1=y Y-1\).
NARROW DOWN THE ZERO USING THE BISECTION METHOD
\(\mathrm{i}=0\)
ii = 0
8 continue
\(i=i+1\)
x1 \(=c *\) float (i)
\(\mathrm{f} 1=(1 .+\mathrm{x} 1\) * \((\mathrm{bb}-\mathrm{dx})) *(1 .-\mathrm{x} 1\) * bb)**yY
\(\& \quad-(1 .-x 1 *(b b-d x)) *(1 .+x 1\) * \(b b) * * y y\)
\(x 2=c *\) float \((i+1)\)
\(\mathrm{f} 2=(1 .+x 2 *(\mathrm{bb}-\mathrm{dx})) *(1 .-\mathrm{x} 2 * \mathrm{bb}) * * y y\)
\(\&-(1 .-x 2 *(b b-d x)) *(1 .+x 2 * b b) * * y Y\) if (f1 * f2.lt. 0. .or. i .eq. (nmax - 1)) then go to 9
endif
go to 8
continue
\(x 3=0.5 *(x 1+x 2)\)
ii \(=1 i+1\)
\(\mathrm{f} 3=(1 .+\mathrm{x} 3 *(\mathrm{bb}-\mathrm{dx})) *(1 .-\mathrm{x} 3 * \mathrm{bb}) * * Y y\)
\(\& \quad-(1 .-x 3 *(b b-d x)) *(1 .+x 3 * b b) * * Y Y\)
if (f3 * f1 .lt. 0.) then
\(\mathrm{x} 2=\mathrm{x} 3\)
else
\(x 1=x 3\)
endif
if (ii. lt. 5) go to 9
xinit \(=0.5 *(x 1+x 2)\)
THE GRID PARAMETER IS DETERMINED BY NEWTON-RAPHSON ITERATION
x1 = xinit
iter \(=0\)
10 continue
iter \(=\) iter +1
```

 f}=(1.+x1*(bb-dx))*(1.-x1 * bb)**y
 & - (1. - x1 * (bb - dx)) * (1. + x1 * bb)**Yy
 df = (bb - dx) * (1. - x1 * bb)**YY
 & + (bb-dx) * (1. + x1 * bb)**YY
 & - (bb-dr) * (1. + x1 * (bb-dx)) * (1. - x1 * bb)**y1
 & - (bb-dr) * (1. - x1 * (bb - dx)) * (1. + x1 * bb)**y1
 x2 = x1 - f / df
 xeps = abs (x1 - x2)
 x1 = x2
 if (xeps.gt. epps.and. iter.lt. 10) goto 10
 zz = xl * bb
 hk}=0.5/2z*\operatorname{log}((1.+zz)/(1.-zz)
 end
    ```
subroutine chiptemp
THIS SUBROUTINE CALCULATES THE CHIP TEMPERATURES (DIMENSIONAL)
implicit real*8 (a-h,o-z)
common/ng/dxx(40),dyy(40),dzz(40),x(40),y(40),z(40),
\& dxxs(40),dyys(40),dzzs(40)
common/parm/ra, pr, sorsum, dtime, xper, roll, dt_inv,xtime
common/tol/small, eps, sormax
common/dims/h, wth, bth, hchip, wchip, bchip, bsub
common/count/nt, nmax, imax, itmax, krun, nprint
common/mscn/smp \((12,16,16)\), resorm (93),
\&
du \((12,16,16), \operatorname{dv}(12,16,16)\),
\& \(\quad d w(12,16,16), p p(12,16,16)\)
common/limits/ni,nipl,niml,nj,njpl, njml, nk, nkpl, nkml,
\&
common/fv_init/tod \((12,16,16), \operatorname{uod}(12,16,16), \operatorname{vod}(12,16,16)\),
\& common/fv_cur/t \((12,16,16), u(12,16,16), v(12,16,16)\),
\&
\(\mathrm{w}(12,16,16), \mathrm{p}(12,16,16)\)
COMMON / RHOCP/RHS, RHC
common/condu/alpha \((12,16,16)\), \(\operatorname{rho}(12,16,16), \operatorname{visco}(12,16,16)\)
common/chip/ibgn, iend, jbgn (3), jend (3), kbgn (3), kend (3), nchp,
\&
isub, ichip,jchip,kchip
common/diff/alc, als, thot, tcool, tavg
common/array/njchip,nkchip
COMMON / POWER / QQQ, QCOND
dimension \(\operatorname{tt}(3,3), \operatorname{vol}(3,3)\)
C
C
DO \(15 \mathrm{M}=1\), NJCHIP
DO \(15 \mathrm{~N}=1\), NKCHIP \(\operatorname{VOL}(\mathrm{M}, \mathrm{N})=0\). \(T T(M, N)=0\).
15 CONTINUE
    do \(20 \mathrm{~m}=1\), njchip
        do \(20 \mathrm{n}=1\), nkchip
            do \(10 \mathrm{i}=\mathrm{ibgn}\), iend
            do 10 j=jbgn(m), jend (m)
                do \(10 \mathrm{k}=\mathrm{kbgn}(\mathrm{n})\), kend ( n )
                        \(t t(m, n)=t t(m, n)+t(i, j, k) * d x x(i)\)
                    \&
                        * dyy(j) * dzz(k)
                        \(\operatorname{vol}(m, n)=\operatorname{vol}(m, n)+d x x(i) * d y y(j)\)
                            \&
```

continue
TT(M,N)=TT(M,N) / VOL(M,N) * QCOND
continue
print *,'THE TEMPERATURE RISES IN THE CHIP ARE:'
WRITE(6,200) TT
FORMAT (4(F17.6))
end

```

\section*{REFERENCES}

Arroyo M. P. and Saviron J. M., "Rayleigh-Bénard Convection in a Small Box: Spatial Features and Thermal Dependence of the Velocity Field", Journal of Fluid Mechanics, Vol. 235, pp. 325-348, 1992.

Deng, Y, Glimm J. and Sharp D. H., "Perspectives on Parallel Computing", Daedalus, Vol. 121, pp 31-52, 1992.

Fletcher, C. A. J., Computational Techniques for Fluid Dynamics, Vol. 1, SpringerVerlag, 1988.

Joshi, Y., Kelleher M. D., Powell M. and Torres, E. I., "Natural Convection Heat Transfer from an Array of Rectangular Protrusions in an Enclosure Filled with Dielectric Liquid", Presented at the ASME Winter Annual Meeting, 1991.

Leonard B.P., "A Convectively Stable, Third-Order Accurate Finite-Difference Method for Steady Two-Dimensional Flow and Heat Transfer", Numerical Properties and Methodologies in Heat Transfer, edited by Shih, T. M., Hemisphere Publishing Corporation, Washington D.C., pp. 211-226, 1983.

Liu, K. V., A Numerical. Analytical and Experimental Investigation of the RadiationConvection Interaction in a Diffusion Flame Adjacent to a Vertical Flat Plate, Ph.D Thesis, Department of Aerospace and Mechanical Engineering, University of Notre Dame, 1979.

Patankar, S. V., Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, Washington D.C., 1980.

Patankar, S. V., "Recent Developments in Computational Heat Transfer", Journal of Heat Transfer, pp. 1037-1045, Vol. 110, 1988.

Roberts, G. O., "Computational Meshes for Boundary Layer Problems", Proceedings of the Second International Conference on Numerical Methods in Fluid Dynamics, Vol. 8, edited by M. Holt, Springer-Verlag, pp. 171-177, 1970.

Stone, H. J., SLAM Journal for Numerical Analysis, Vol. 5, pp. 530-558, 1968.

Van Doormal, J. P. and Raithby, G. D., "Enhancement of the Simple Method for Predicting Incompressible Fluid Flows", Numerical Heat Transfer, Vol. 17, pp. 147-163, 1984.


32768003475187```

