
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1980

Techniques available for improving the

maintainability of Dod Weapon system software

Pilcher, Russel D.

Monterey, California: U.S. Naval Postgraduate School

http://hdl.handle.net/10945/28593

H^H
HIj /''•-

• EHQflw

•'•.'
I

'

;

:

' K •

fSSBmHS :î
: '''

Bii

•MS"

M
fi»8

•:.•-:::

mm
: '/"..';•: •'.

tBWmJeEm

m

r-v
0*V

4* C*

>r-

y
NAVAL POSTGRADUATE S

Monterey, California

L

THESIS
TECHNIQUES AYAILA3LE FOR IMPROVING THE

MAINTAINABILITY OF DOD WEAPON SYSTEM SOFTWARE

by

Russell D. Pilcher

June 1980

Thesis Advisor i N. F. Schneidewind

Approved for public release? distribution unlimited

T196163

SECURITY CLASSIFICATION OF THIS »»GC fWKmtt D»<» gntorod)

SC*
5f r i +Ult ^,J40

REPORT DOCUMENTATION PAGE
! REPORT nuSTRI

READ INSTRUCTIONS
BEFORE COMPLETING FORM

2. GOVT ACCESSION NO t. RECIPIENT'S CATALOG NUMIEU

4 T| TL E i «n<* iusimt)

Techniques Available for Improving the

Maintainability of DoD Weapon System Software

S. TYPE Or REPORT * PERIOD COVERED
Master's Thesis;
June 1980

* PERFORMING ORG. RERORT NUMBER

7. AuTmOR<»

Russell Dean Pilcher

»- CONTRACT OR GRANT NUMBER^*)

S. PERFORMING ORGANIZATION NAME ANO ADDRESS

Naval Postgraduate School

Monterey, California 939^0

10. PROGRAM ELEMENT. PROJECT TASK
AREA * WORK UNIT NUMBERS

II CONTROLLING OFFICE NAME ANO ADDRESS

Naval Postgraduate School
Monterey, California 939^0

H. REPORT DATE
June 1980

IS. NUMBER OF PAGES

184
14 MONITORING AGENCY name * AOOPESSflf tlltlaranl tram Controlling OHica)

Naval Postgraduate School

Monterey, California 939^0

IS. SECURITY CLASS, (at rMa report)

Unclassified

IS«. OCCL ASSIFI CATION/ DOWN GRAOl NO
SCHEDULE

IS. DISTRIBUTION STATEMENT <ol iff Harnett)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (al if eoetrect entered In »laak 20, II dllterent tram Keport)

IS SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue on reeeree aide II nece*t*ry and Identify by block number)

Software Maintenance; DoD Software; Tactical Software; Software Management;

Software Quality

JO ABSTRACT (Continue on re-retee elda II neeeteawy and Identity my block rrumbet)

Problems associated with the production and operational support of DoD

weapon system software are examined. Emphasis is placed on identifying

techniques that are currently available for improving the maintainability

of this software. A discussion of the software life cycle, structured

programming methodologies, use of high order languages, and documentation

DD
i jan 7J 1473 EDITION OF I NOV SS IS OBSOLETE

(Page 1) S/N oio j-oi4- a«o i

] SECURITY CLASSIFICATION OF THIS PAOt (When Dmla Knterad)

t>CU"ITV Cl*l|l>1CtTIQM Qg Tt.it »»qgr<—..» n*i. «-«•«.«

r requirements for software is included with a review of applicable

DoD policies. Among the conclusions is that there exists a critical

need to recognize maintainability as a primary design objective

for DoD weapon system software.

DD Form 1473 ~
1 Jan 73 2 _____________S/N 0102-014-6601 iccuxtv cuami'ication o* «»• **otn»»>»« o«»« i»i«»»*>

Approved for public release; distribution unlimited

Techniques Available for Improving the
Maintainability of DoD Weapon System Software

by
Russell D. Pilcher

Major, United States Marine Corps
B.S., Utah State University, 1969

Submitted in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June, 1960

I / VJ/

c.\

ABSTRACT

Problems associated with the production and operational

support of DoD weapon system software are examined. Emphasis

is placed on identifying techniques that are currently

available for improving the maintainability of this

software. A discussion of the software life cycle,

structured programming methodologies, use of high order

languages, and documentation requirements for software is

included with a review of applicable DoD policies. Among the

conclusions is that there exists a critical need to

recognize maintainability as a prirary design objective for

DoD weapon system software.

TABLE OF CONTENTS

I. INTRODUCTION £

A. NEED FOR IMPROVED SOFTWARE MAINTENANCE 8

B. PURPOSE AND APPROACH 11

C. DEFINITIONS 13

II. THE SOFTWARE LIFE CYCLE 20

A. SOFTWARE LIFE CYCLE MODELS 20

B. MANAGING THE SOFTWARE LIFE CYCLE 26

1

.

General 25

2. DoD Management Policies 30

a. Design Reviews 31

d. Configuration Management 31

3. Software vs Eardware 35

III. DEVELOPMENT ISSUES FOR IMPROVED MAINTENANCE 37

A. GENERAL 3?

B. STRUCTURED PROGRAMMING 37

1. Top-down Design 38

2. Modular Design 41

3. Structured Coding 44

C. LANGUAGE CONSIDERATIONS 50

1. High Level vs Assembly Level Language 50

2. DoD's Use of High Level Language 55

a. Standard High Level Languages 55

5

b . ADA 55

c. Navy's Use of CMS-2 57

3. Patching 57

D. AUTOMATED AIDS 53

IV. DOCUMENTATION FOR MEETING MAINTENANCE REQUIREMENTS 61

A. GENERAL 61

B. MAINTENANCE DOCUMENTATION STANDARDS 63

1. Program Maintenance Manual 63

2. Combat System Program Description Documents .. .64

C. ALTERNATIVES FOR REPRESENTING PROGRAM STRUCTURE .. .64

1 . Flowcharts 64

2. Hierarchy Plus Input-Process-Output (EIPO) 73

3. Decision Tables 76

4. Nassi-Shneiderman Charts 80

5. Program Listings 85

6 . Summary 87

V. SOFTWARE MAINTENANCE POLICIES WITHIN DOD 89

A. BACKGROUND 69

B. CURRENT POLICIFS 90

1. MIL-STD-463 (USAF) 90

2. MIL-STI-52779 (AD) 90

3. SECNAVINST 3560.1 91

4. DODDIR 5000.29 91

5. MIL-STD-1521 (USAF) 91

6. DODINST 5e00.31 92

7. MIL-STD-1679 (NAVY) 92

6

C. SURVEY 01 DOC MAINTENANCE ORGANIZATIONS 92

1. Pacific Missile Test Center 93

2. Naval Ocean Systems Center 94

3. Naval Surface Weapons Center 94

4. Naval Air Development Center 95

5. TACFIRE Software Support Group 97

6. Marine Corps Tactical System Support Activity. 99

D. RESEARCH TO IMPROVE SOFTWARE MAINTENANCE 100

VI. CONCLUSIONS ANT RECOMMENDATIONS 122

APPENDIX A - Program Maintenance Manual 105

APPENDIX B - Combat System Program Description Grour 114

APPENDIX C - Standards and Conventions for Use of the
CMS -2 Language 152

APPENDIX D - Program Planning Summary 17?

LIST OF REFERENCES 17B

INITIAL DISTRIBUTION LIST 184

I. INTRODUCTION

A. NEED TOR IMPROVED SOFTWARE MAINTENANCE

On 9 November 1979 the North American Air Defense

Command Headquarters in Colorado received an alert of a

Soviet missile attack [1] . Fortunately, within 6 minutes it

was determined to be an apparent computer malfunction but

not before 10 U.S. and Canadian interceptors took off from

their bases. While not triggering the nuclear holocaust that

looms over the modern world, such an event at least shatters

the confidence cf many individuals in Department of Defense

(DoD) computer systems.

Articles, such as the one appearing in the San Francisco

Sunday Examiner [2] , which highlight a wide variety of large

scale, expensive DoD computer system failures and refer to

Federal Computer Systems as a "multi-billion-dollar

quagmire" do little to convince the public that DoD

personnel are capable of designing, developing or

maintaining complex computer systems.

Ample examples illustrate that software in DoD computer

systems is the main culprit behind these highly visible

failures. Since it appears unlikely that complex, weapon

system software will be produced error-free in the

foreseeable future, the maintenance of this software takes

on a critically important role.

Besides the ramifications that non-maintainable software

"brings, the cost associated with the software life cycle is

cause for increasingly serious concern. In fact, a Defense

Science Board Task Force on Technology Base Strategy [3],

composed of members from industry, medicine, government and

universities, concluded that the cost of software has "become

a national problem and is of particular concern to DoD.

When costs associated with weapon system software are

more closely analyzed, it is found that maintenance

activities account for a large percentage. The Rome Air

Development Center gives the figure of up to seventy percent

[4]. Actual projects can be used for illustration. For

instance, SAGE, a military defense system, had an average

software maintenance cost of approximately 23 million

dollars per year after 10 years of operation, compared to an

initial development cost of 252 million dollars [5] . De Roze

[6] explains that Air Force Avionics software costs around

$75 per instruction to develop, but the maintenance for this

software costs around $4,000 per instruction.

These large percentages for software maintenance costs

can be confirmed by examples from industry, Mills [7] roints

out "in only 25 years 75 percent of data processing

personnel • are already taken up with maintenance, not

development." On the IBM operating system, IBM 760 OS,

approximately four times as much time was spent on

maintenance as on development [8] . Boehm [9] reports that "a

recent analysis of software activities at General Motors

indicated that about 75 percent of GM's Software effort gees

into maintenance, and that GK is fairly typical in this

respect of industry at large."

There are indications that maintenance problems are

compounded for real-time system software. Daly [101 , for

example, found that programmers were able to maintain only

one-fourth to one-third as many instructions of on-line,

real-time programs as other type software.

The study of software maintenance becomes so important

because of the need to Keep DoB real-time, weapon system

software operating as error-free as possible ard the need to

check the escalating cost associated with modifying this

software that the study of software maintenance becomes so

important .

The software associated with the U. S. Navy's new

TRIDENT class subrarine, known as the TRIDENT Command and

Control System (TRIDENT CCS), is a current, real-time weapon

system software project that provides an interesting and

beneficial example for illustrating the need for weapon

system software maintenance activities.

The original source code was written in the Navy's high

order language (HCL), CMS-2. Even though this code was

generated by highly experienced software engineers and,

according to Oxman [11], "was of a very high caliber and

quality", the maintainability of the CCS software has become

10

a matter of concern. In part, this is a result of the way

software errors found during the integration test and

evaluation stages were corrected. Logic fixes were applied

directly via the object code rather than by using the source

code. Now the TRIDENT CCS has over thirty-five thousand

words of object level only code. An effort is currently

underway to improve the maintainability of the TRIDENT CCS.

B. PURPOSE AND APPROACH

The purpose of this thesis is to evaluate available

maintenance techniques that are applicable for use with DoD

weapon system software such as the TRIDENT CCS. This

evaluation is based upon the current state of the art as

discussed in the technical literature and existing DoD

policies. Where possible, actual TRIDENT CCS software has

been used to provide a realistic example for comparing

various maintenance techniques.

The approach used will be to present in the next

chapter, Chapter II, a discussion of the overall software

life cycle illustrating the relationship maintenance has to

the various life cycle phases. Software life cycle

management methodologies useful for obtaining improved

software maintainaM lity will be incorporated, such as the

use of design reviews and configuration management. Some

significant differences between software and hardware

acquisition will also be included.

11

Chapter III covers the techniques that must he applied

during the development nhase of the software life cycle, for

obtaining more maintainable software, specifically, the use

of structured programming methodologies, use of high order

languages, and automated aids.

Chapter IV addresses the important issue of software

documentation. A full set of applicable DoT documents used

to support the maintenance of weapon system software is

identified. Emphasis, however, is placed on comparing those

techniques that are currently available for representing the

program logic to the maintenance programmer: flowcharts,

hierarchy plus input-process-output (HIPO) diagrams,

decision tables, Nassi-Shneiderman charts, and program

listings .

Chapter V concerns specific software maintenance

policies within DoD. This includes an identification of the

current directives, instructions, and standards that impact

on weapon system software maintenance; the results from a

limited survey of some DoD organizations that are involved

in software maintenance activities; and trends that exist

for research in the area of software maintenance technology.

Finally, Chapter VI contains conclusions and

recommenda ti ons

.

12

C. DEFINITIONS

Pefore any further discussion, exactly what is neant by

the term "software maintainability" should be made clear.

Unfortunately, there is no universally accepted definition;

therefore, some perceptions from various authors will be

presented .

Myers [5] lists maintainability as one of ten major

categories of software objectives: generality, human

factors, adaptability, maintainability, security,

documentation, product cost, schedule, efficiency and

reliability. It is important to understand the relationships

among these categories so that appropriate tradeoffs can be

made during the process of software development. Ee explains

that maintainability and adaptability are closely related

and that both are compatible with obtaining software

reliability. The definition presented for "maintainability"

is that it "is a measure of th a cost and time required to

fix software errors in an operational system." The

associated term, "adaptability", is defined as "a measure

for the ease of extending the product, such as adding new

user functions to the product."

More formalized definitions are offered by Tausworthe

[12] I

Maintenance: alterations to software during the post
delivery period in the form of sustaining engineering or
modification not requiring a reinitiation of the
software development cycle.

13

Sustaining Engineering: Software related activities in
the post-delivery period, "principally supportive in
form, which keep that software operational within its
functional specifications. . . The holding or keeping of
software in~ a state of efficiency or validity despite
interface fluctuations in system, subsystem or

applications capabilities.

Adaptation: Modification of existing software in order
that it may be used as a module in a program
development, as opposed to developing another module for
that same purpose.

Modification: The process of altering a program and its
specification so as to perform either a new task or a

different but similar task. In all cases, the functional
scope of a program under modification changes.

Figure 1-1 [131 is a chart that brings many of these

similar terms together as they are related to the more

general concept of software quality. It illustrates what

attributes are associated with each of three factors of

software quality (operation, revision, and transition).

Notice that maintainability is listed as an attribute

associated with product revision.

MAINTAINABILITY -

CAN I FIX IT?

FLEXIBILITY -

CAN I CHANGE IT?

TESTABILITY -

CAN I TEST IT?

PORTABILITY - WILL I BE ABLE TO USE IT

ON ANOTHER MACHINE?

REUSABILITY - WILL I BE ABLE TO REUSE

SOME OF THE SOFTWARE?

% XlNTEROPERABILITY - WILL I BE ABLE TO
-* \ INTERFACE IT WITH

4, \ ANOTHER SYSTEM?

\

CORRECTNESS - DOES IT DO WHAT I WANT?

RELIABILITY - DOES IT DO IT ACCURATELY ALL THE TIME?

USABILITY - CAN I RUN IT?

EFFECIENCY - WILL IT RUN ON MY HARDWARE AS

WELL AS IT CAN?

INTEGRITY - IS IT SECURE?

Figure 1-1. Software Quality [13]

14

Yet another attempt to provide a relationship among the

various factors in quality software is given in Figure 1-2

[14]. The factors are categorized into two classes: (1)

measurement of what is quality and (?) control over software

production to ensure that quality is obtained. Note that

maintenance falls under flexibility which in turn falls

under the measurement of what is quality.

15

3)

v

I
+>

CO

Eh

t

H

•H

16

Swanson [15] has attempted to provide a basis for an

understanding of the "dimensionality" of the maintenance

problem. He feels it is important to distinguish between

types of software maintenance activities. He categorizes

maintenance into three major types: corrective maintenance,

adaptive maintenance, and perfective maintenance. Corrective

maintenance is performed in response to failures such as the

abnormal termination of a program or the failure in meeting

performance criteria. Adaptive maintenance is performed in

response to changes in environments such as the installation

of a new generation of system hardware. Perfective

maintenance is performed to make the program a more perfect

design implementation such as to improve processing

efficiency or to add new features.

It is interesting to note that there are proponents for

dropping the terminology "software maintenance" altogether.

The FDP Analyzer [16] suggests a better name for

"maintenance" type activities would be "production

programming." The contention being this would help alleviate

the stigma that maintenance is technician level rather than

professional level work. Kline [17] argues that

misconceptions about software reliability and

maintainability have been, to some extent, due to

inappropriate terminology. In order to minimize confusion

with hardware maintainability, he suggests replacing the

1?

term "software maintainability" with the more descriptive

term "software configuration management."

It is evident that no standard terminology exists for

this area. Rather than pursue the search for even mere

definitions it will simply be stated that software

maintainability, as used in this thesis, will refer to the

degree a software product facilitates updating to satisfy

new requirements or modification to correct mistakes

(adapted from [4])

.

The tools and techniques that currently exist for

producing more maintainable software are addressed next.

Throughout the remaining chapters it should be kept in mind

that, while specifically addressing software maintenance,

the principles presented are generally applicable to the

many other nuances of successfully accommodating changes to

software (e.g., portability, flexibility, adaptability).

Also, it is extremely important to be aware that there

are a variety of parameters which can be used to measure the

quality of a software product, as the previous discussion

has illustrated. An attempt to optimize one parameter is

often at the expense of other parameters. For example,

optimizing the maintainability of software may be at the

expense of development schedule or, conversely, and what

appears to have been a common pitfall of past projects, to

optimize development schedule may be at the expense of

subsequent maintainability. These opposing objectives must

18

be understood and appreciated by all levels of management

before tradeoff decisions are made.

19

II. THE SOFTWARE LIFE CYCLE

A. SOFTWARE LIFE CYCLE MOEELS

The first step in studying techniques associated with

rraintai liability of weapon system software is to examine all

the phases through which software transitions prior to and

including the operational point where maintenance is

performed. This is commonly called the software life cycle.

It is important that this is understood, because the

decisions made throughout the earlier phases will ultimately

affect the software's maintainability. Unfortunately, as

opposed to hariware, there is no universal agreement on the

phases of the software life cycle, with well-defined

boundaries, so several models will be discussed in order to

provide a broader understanding.

The first software life cycle model discussed will be

one proposed by Manley [18] . This model is only a slight

modification of the already well-understood DoD system life

cycle, as presented in DOD INST 5003.1, and as shown in

Figure ?-l

.

One advantage of using this model is that the

terminology appearing in existing BoL documents need not be

replaced but simply modified. A disadvantage is that it does

little to illustrate the interrelationships that exist among

the various phases.

20

An interesting conclusion reached in Manley's report is

that one software life cycle model applies equally to all

types of software. This includes both weapon system software

as well as automated data processing software. The report

recommends that further research he conducted in order to

add conceptual detail to the individual life cycle subphases

and further recommends that research efforts should be

concentrated on the support phase where maintenance is

oerf ormed

.

DEFENSE SYSTEM
LIFE CYCLE

MAJOR PHASE

SOFTWARE
LIFE CYCLE
SUPPHASE

Conceptual

Requirements
Definition

Requirements
Validation

Validation Validation

Full-Scale
Development

Full-Scale
Development

Production Production

Deployment

Debugging

Fine tuning

Support

Maintenance

Modification

Figure 2-1. Software Life Cycle Model [16]

21

Brown [19] provides a e-ood contrast of two views of the

software life cycle. One view as a fixed sequence of the

following events and the other, more accurate view, as a

complex and highly dynamic interaction of the following

events (see Figure 2-2):

1. Concept (Requirements) Definition
2. Detailed Requirements Specification
3. Preliminary Design
4. Detailed Design
5. Code and Debug
6. Checkout
?. Test planning
8. Test execution
9. Test evaluation
10. Acceptance and Use
11. Maintenance (Modification) and Re-test

While Figure 2-2 represents the interrelationships among

the phases of the software life cycle, it overly simplifies

the importance of the maintenance phase (node 11). This

bottom loon really illustrates what should he considered as

a mini-life cycle which would include many of the same

phases and interrelationships shown hy the previous nodes.

22

figure 2-2. 'Sequential' View and a 'More Accurate' View
of Software Production [19]

Sequential More Accurate

©

r

©

C9

Concept Definition

Specification

Preliminary Design

Detailed Design

Code and Debug

Checkout

Test Planning

Test Execution

Test Evaluation

Acceptance

Maintenance

23

McHenry [20] describes weapon system software life cycle

management from a contractor's nerspecti ve. He states that

today's procurement processes still use the traditional life

cycle model consisting of the sequential steps of "define,

design, develop, integrate, test, and operate." After

evaluating four different procurement strategies "being used

for the procurement of weapon system software today, he

concludes that this is not a satisfactory way to envisior or

to manage the software development process. The deployment

and operation phases of the software life cycle, where

maintenance becomes a key issue, are said to be often

overlooked or neglected because of the pressures and crises

which occur during the develonment phases. To compound this

problem, there is a tendency to apply low skill persons to

"maintenance" tasks.

Ee recommends more emphasis he placed on software design

so that the product is less costly to maintain and advocates

the use of, what he terms, readiness management (planning

for change) by doing such things as conducting exercises

where simulated modifications occur.

The software life cycle model described by the Rome Air

Development Center [4] seems to accurately model the

software life cycle (Figure 2-3).

24

somwM
SYSTEM SPEC

NEU SOFTUARE
REQUIREMENTS

1_L
software

analysis

SOFTWARE

PMT-I SPECSrE [
SOFTUARE
DESIGN

SOFTWARE

PART- II SPECS
7T

CHANGES TO SOFTUARE PART- 1 SPECS'

COOING 1

CHECKOUT

CHECKED OUT

NDOULE

CHANGES TO SOFTWARE PART-II SPECS

TEST AND
INTEGRATION

CHANGES
NODULÊ

7
ES TO I

OELIVEREO SOFTWARE

INSTALLATION
(PRODUCTION)

! INSTALLED PROGRAMS

FAULT

OETECTION

f REPORT OEFENSE
I SYSTEM FAULT

1EW SOFTWARE

REQUIREMENTS

FAULT

ISOLATION

CHANGE TO SOFTUARE

PART- I SPECS

CHANGES TO SOFTUARE

PART-II SPECS

CHANGES TO PROGRAMS

SOFTUARE
I ANALfSIS

SOFTUARE
PART- I SPECSr r

SOFTUARE

OESIGN

SOFTUARE PART-II SPECS I

CHANGES TO SOFTUARE
PART- I SPECS

COOING t

CHECKOUT

CHECttO OUT MODULE

CHANGES TO SOFTUARE
OART-I1 SPECS

HARDWARE

TEST ANO
INTEGRATION

CHANGES TO MODULE
DELIVERED
SOFTUARE

A
SDR

A
POR*

INSTALLATION

A AAA
COR* EOT

1,

FCA* PCA
f

• MAT NOT «£ FORMALLY HELD

t EACH CPCI HAS A SEPARATE SET OF SPECIFICATIONS ANO SEPARATE REVIEWS

-OPERATION ANO SUPPORT

PDR*

A
#

COR*

A
FQT

Figure 2-3. Software Life Cycle [4]

25

Figure 2-3 shows that the process of software

development is highly interactive, as indicated by the

feedback arrows to accommodate new software requirements and

changes to software specifications. Nore significantly, it

highlights the importance of the operation and support phase

where maintenance is performed through a series of

subphases. Note that these subphases incorporate the same

interactive steps shown for software development: software

analysis, software design, coding and checkout, and test and

integration.

A variety of models have been presented in an effort to

better understand how maintenance relates to the overall

software life cycle. It must be emphasized that even though

maintenance appears chronologically last it must be properly

considered and thoroughly planned for early in the life

cycle.

B. MANAGING THE SOFTWARE LIFE CYCLE

1 . General

Now that a conceptual framework has been presented

for envisioning the life cycle of software and highlighting

the importance of the phase where maintenance is performed,

attention is turned to software management considerations.

This is important because the decisions made by managers of

weapon system software projects will often mean the

difference between whether the final product is maintainable

or non-maintainable.

26

There has been some argument that regardless of what

management techniques are employed, successful development

of large, complex software projects is not always possible.

For example, an Air Force assessment [21] of why its large,

complex computer system, the Advanced Logistics System

(ALS), failed concluded that "...the ALS is beyond the

software state-of-the-art."

This view is contrasted to one offered by Cave [22].

In an article which describes nroject management methods

used for controlling the life cycle of large-scale software

systems, he states "...project failures are generally the

result of improper or inexperienced management and not the

lack of technical ability." The article goes on to conclude

that successful development of large software systems can be

achieved in a consistent manner.

This thesis is based on the premise that Cave's view

is correct. It further assumes that software maintenance

problems can be largely avoided if knowledgeable project

management is applied.

Cooper [23] explains that, in the past, one of the

common pitfalls in project management has been that it was

development-oriented and, therefore, management attempted to

optimize the development process in trying to meet budget

and schedule constraints. This tends to create an initial

design with little documentation, resulting in increased

27

difficulty in maintaining the software and a corresponding

increase in overall life cycle costs.

Another problem with management's ability to produce

maintainable software identified by Cooper was that high

level decision makers lack computer-related experience.

This, undoubtedly, results from the fact that, as a

discipline, software management is still in its infancy.

While there is no simple series of steps for

managers to follow which will ensure successful development

of maintainable software, experience has revealed some

general policies that appear to help. For example. Paly [10]

has reported on his experience in managing developments.

Table 1 1 — 1 provides a comparison of two approaches. Method 1

is the preferred approach to producing a more

cost-effective, more maintainable software product. Note

that he recommends the application of strict maragement

objectives to guide development.

28

Table II—1. Software Design Methods [10]

Method 1

High level language

Structured Code

Composite design (hierarchy
of small segments)

Parallel, top-down, bottom
up design all optionally-
used

Simple data structures and
work areas (not) tightly
packed

Team approach to design
(egoless programming)

IMB's structured walk
through for reviewing
detail design and code

Three separate teams
one team design, one
tests one evaluates

Complete set of hierarchy
charts, sequence charts
data maps and narratives,
well commented listings

Detailed test plans for all
test phases

Program maintained by 30%
senior programmers

Only commercial documenta-
tion generated during
development

Strict management
objectives established
to guide development

Method 2

Assembly language

Tight Complex Code

Large blobs of code

Bottom-up design

Tight, efficient, data
structures and work areas
(every bit used, no data
duplicated)

One program - One man
concept

No detailed technical
review of design or code

Original coder tests,
integrates and helps
evaluate his program

Detailed flow charts and
general narratives,
no consistency listing
comments

No formal test plans

Program maintained by
inexperienced programmers
or technicians

Extensive, noncommercial
technical memorandum gener-
ated and placed in library

No management objectives

29

2. DoD Management Policies

Within DoD the need for improving weapon system

software management has been recognized and action has been

initiated. On 3 December 1974 a DoD Software Steering

Committee was established with a charter to identify

critical weapon system software problems and to recommend

policies for their solution.

In support of the first phase, the MITF.E Corporation

in conjuction with The Applied Physics Laboratory of Johns

Hopkins University [24, 25] , conducted a study of weapon

system software management. The study concluded "The major

contributing factor to weapon system problems is the lack of

discipline and engineering rigor applied to the weapons

system acquisition activities."

Incorporating recommendations from this study, the

Software Management Steering Committee formulated a

comprehensive plan comprising policy, practice, procedure

and technology initiatives. This plan was released in March

1976 and is available through the Defense Technical

Information Center [26]. Part III of this plan recommends

management policy with the purpose of supplementing

principles put forth in DoD Directives 5300.1 and 5000.2.

The first management policy listed states, "Ease of

maintenance and modification will be a major consideration

in the initial design."

30

The policies provided in this plan have the effect

of establishing visibility and management control to weapon

system software. Two important techniques used to provide

visibility and management control are design reviews and

configuration management.

a. Design Reviews

MIL-STD-1521 (USAF) prescribes the requirements

for the conduct of the following technical reviews and

audits on computer programs:

Systems Requirements Review (S1E)
System Design Review (SDR)
Preliminary Design Review (PDR)
Critical Design Review (CDR)
Functional Configuration Audit (FCA)
Physical Configuration Audit (PCA)
Formal Qualification Review (FQP.)

For detailed definitions and specific

requirements for these reviews the reader is referred to the

standard. It should be noted that the standard fails to list

requirements to be specifically considered for optimizing

the maintainability of the software. An available software

maintenance guidebook [27] does, however, provide as a

supplement to MIL-STD-1521, checklists of maintenance

considerations for use with the various reviews and audits.

b. Configuration Management

The elements of software configuration

management are configuration identification, configuration

control, configuration status accounting and configuration

auditing. Configuration identification involves specifically

31

identifying and labeling the configuration items at selected

baselines during the software life cycle. Configuration

control provides the means to manage changes to the

(software) configuration items and involves three basic

ingredients :

-Documentation (such as administrative forms and
supporting technical and administrative material) for
formally precipitating and defining a proposed change to
a software system.

-An organizational body for formally evaluating and
approving or disapproving a proposed change to a

software system.

-Procedures for controlling the actual changes to a

software system

Software configuration status accounting provides the

mechanism for maintaining a record of how the software

evolved and where the software is at any current stage of

implementation. Software configuration auditing provides a

means to determine how well the software product matches its

associated documentation.

DoD Directive 5000.29, Management of Computer

Resources in Major Defense Systems, states:

Defense system computer resources, including both
computer hardware and computer software will be
specified and treated as configuration items.

As part of the proposed requirements assigned to

contractors for the development of weapon system software,

MIL-STD-1679, Weapon System Software Development, states:

The contractor shall establish and implement the
disciplines of configuration management; namely
configuration identification, configuration control, and

32

configuration status accounting. The contractor shall be
cognizant of the requirement for long-term life-cycle
support of the weapon system software. The appropriate
degree of configuration management shall he applied to
ensure completely accurate correlation between
descriptive documentation and the program in order to
facilitate pcst-delivery maintenance by software support
personnel

.

MIL-STD-52779(AD) , Software Quality Assurance

Program Requirements, further requires that the contractor

provide audits by independent personnel to ensure that the

objectives of the configuration control program are being

attained .

This need for software configuration management,

as reflected in current standards and directives, has been

only recently recognized in DoD. Fortunately, it is now

accepted as an essential task if software maintenance is to

be successfully performed. In fact, as previously mentiored,

Kline [17] proposes replacing the term "software

maintenance" with the term "software configuration

management." This highlights the central role it plays in

the maintenance of software.

As Bersoff [28] points out, the problem with

configuration management of software in the past has been

that it fell under the umbrella of configuration management

of the entire system (Figure 2-4). Hardware, being more

visible, has been treated in great detail, but software,

being less mature as well as less visible from a total

system viewpoint, has been largely neglected.

33

Published
CM

Directives/
Procedures

Military Systems

Hardware Software

P i
i

Figure 2-4. Configuration Management Umbrella [28]

34

There is probably no aspect more important to

software maintenance than managing change since software

maintenance is really a matter of correctly applying

changes. Clearly, software configuration management must he

applied to discipline this process. A word of caution,

however, is that the same change control procedures do not

apply equally to all software projects; therefore,

configuration management must he properly tailored to the

organization performing maintenance and to the software

product itself.

3 . Software vs Hardware

The theme pervading the evolving initiatives for

managing software is to elevate it from an artistic

enterprise to a true engineering discipline, or— to put it

another way— to treat software more like hardware throughout

its complete life cycle [10, 22, 29]. There are, however,

differences between software and hardware that merit

consideration .

A major difference is in the maintenance

requirements. Eardware is maintained primarily by

replacement of worn or failed components with new ones

meeting the original specification. Software, unlike

hardware, requires that the product specification and design

be changed when maintenance is performed [20]

.

Among the differences Schneidewind [30] has pointed

out are: (1) the passage of time is an important parameter

35

in predicting hardware failure, but has little significance

in predicting software failures and (2
X hardware is usually

assumed to have a constant failure rate luring its

operational phase as compared tc software's variable failure

rate

.

Kline [17] has also identified -ar.y significant

differences "between software ar.d hardware in the area cf

reliability and maintainability. Among nis conclusions are

that there exist well—established statistical relationships

for hardware reliability and maintainability which is cot

yet the case fcr software.

r a c s u

^

a *ocj, s a r — "an"' ii*,

'*'e"
,:= rcr <-

v ?'v a — ** *" a r d v a r e

and software, caution should be applied in using the se~e

techniaues which have been successful fcr develccirg

maintainable nardware tc development of maintainable

software.

Selectively, however, sc-e hardware management

techniaues can be successfully emp1oyed for Improving

software. Significant ei

a

roles are tne use cf iesigr reviews

ar. i configuration management

sections .

"Z £

III. DEVELOPMENT ISSUES FOP. IMPROVED MAINTENANCE

A. GENERAL

As mentioned in chapter II, decisions made during the

development phases of the software life cycle will have a

significant impact on how maintainable the software is

during its operational phase. There is little disagreement

on the observation made by Mills [7] that better development

procedures can reduce the need for maintenance. This chapter

is concerned with briefly discussing those "better

development procedures."

B. STRUCTURED PROGRAMMING

Structured programming is becoming one of the more

promising approaches to reducing the ever increasing cost of

producing and maintaining software. Meyers [5] states that

structured programming will probably be recorded in history

as one of the great steps forward in programming technology.

The Naval Surface Weapons Center [?1] and The Naval Air

Development Center [22] are two Navy R & B centers that have

obtained successful results in producing improved quality

weapon system software by using structured programming

techniques

.

Professor E. W. Dijkstra, of the University of

Eindhoven, Netherlands, is credited with being one of the

3?

first to advocate structured programing principles with his

1965 paper [33]. Since 1965, many boofcs have been published

covering the topic of structured programming [5, 34, 35, 36,

37, 38, 79], A complete review of these works will not be

attempted here, hut the following selected items provide a

general overview.

As with the term "software maintenance", no specific,

widely accepted definition exists for "structured

programming." Jensen [40] surveys many definitions and

concludes that one proposed by Virth [41] is the most

accurate: "Structured programming is the formulation of

programs as hierarchical, nested structures of statements

and objects of computation." Meyers [5] gives his favorite

definition of structured programming as "the attitude of

writing code with the intent of communicating with people

instead of machines."

A goal of structured programming is to organize and

discipline the program design and coding process in order to

reduce logic type errors [8] . Three important

characterisitcs of structured programming will serve as the

framework for further explanation: top-down design, modular

design, and structured coding.

1 . Top-down Design

One characteristic of structured programming is the

use of top-down design. In a very general sense, this

involves first specifying a program in the broadest terms

3S

and in a step-wise fashion gradually refining the structure

to fill in details. At each step, major functions to he

accomplished are identified, a given task is broken into a

number of subtasks until the subtasks are simple enough to

be coded into modules. If a module requires rore than a line

or short paragraph to describe, then the module should be

redefined

.

The rationale behind this approach is that the mind

is capable of comprehending only so much at a time and most

problems are too large to be attacked all at once.

Top-down design is illustrated in Figure 3-1 [27]

where successive levels of design provide additional details

of the eventual solution. This approach will provide

visibility to the design which is an important need of the

maintenance programmer.

Top-down development has been described as perhaps

the least appreciated area of modern software technology

[42] and includes much more than the simplified description

just presented. It is a rich and powerful technique or

project implementation and for system integration.

It is interesting to note that an adaptation of tne

top-down approach, conceived by O'Neill in 1972, was used

for the TRIEENT CCS [42, 43, 44]. This was the first time a

top-down design was specified for use on a Navy weapon

system software development project [25] .

39

IEVU 1

ALLOCATION STUB

ALLOCATE:
• VEHICLE TTPE
• LAJWCH FAR*
• TARGETEO POINT

operating
Sf'jTLI

TRAJ. GENERATION
STUB

TRAJ. TRACC FOR
EACH VEHICLt
ALLOCATEO

THING OF LAUHC.I
ASD TRAJ. POINT
DETERMINATION

PRCCAPILITT OF:
t LAUNC I

• LAUNCH SUCCESS
• NUCET

SIMULATE
OPERATIONAL
SENSC3S

level ;

LEVEL 3 SENIOR
STATUS

SENSOR I

STUB

SENSOR ?

STUB

EPHEMERIS/
LOCATION

SENSOR 3

STUB

FOY
OBJECTS

M BOGGING

I LOCALIZED TO CODE JUST AOOEO

t A SIMPLE LOGIC OR INTERFACE PROBLEM

• NO SIMULTANEOUS INTERFACES TO ADJUST
ano rar AGAIN

LOU LEVEL COOE

Figure 3-1. Top-down Design [27]

40

2. Modular Design

Another characteristic of structured programming is

modular design. A good description of principles and

practices for module design is provided by Meyers [5] . The

first step, Meyers explains, in designing a module is

defining its external characteristics. This is information

needed by interfacing modules, nothing more, and includes:

module name, function, parameter list, inputs, outputs, and

external effects. It is recommended that this information oe

located in comment statements at the beginning of the source

code. Only after defining the module's external

characteristics, is design and coding of the internal logic

accomplished

.

No hard and fast rules exist for what constitutes

the optimum size for a module. Van Tassel [8] states as a

general rule that modules should contain between 10 and 100

high level language instructions. Meyers [5] gives as a

commonly used limit 60 lines of code. The main point is that

a module should be easy to keep in mind and comprehend. It

should be noted, though, that programs can increase in

complexity as the number of modules increases.

A goal in using modules is to reduce complexity,

which improves maintainability. Complexity car arise from

three sources: functional complexity, distributed complexity

and connection complexity. Functional complexity occurs when

a module is made to do too many things. Distributed

41

complexity occurs when a common function has rot "been

properly identified and separated, resulting in its being

accomplished by many different nodules. Connection

complexity occurs when modules interact on common data in

unexpected ways.

Tausworthe [12] describes two important measures for

modularity (originally defined by Meyers [45]): module

coupling and module strength. An optimal design for improved

maintainability minimizes the relationships between modules

(minimal connections) and maximizes relationships among

components within each module (maximum strength).

Table III-l [46] shows the various categories of

both module coupling and module strength and ranks these

categories from the best situation to the worst.

42

MODULE COUPLING

Data: all communications between them is via
arguments that are data elements

Stamp: their communication includes an argurent
that references a data structure (some
of whose fields are not needed)

Control: an argument from one knowingly
influences the f low-of-control of the
other, e.g., flag

External: they reference an externally declared
data element

Common: they reference an externally declared
(i.e., common) data structure (some
of whose fields are not needed)

Content: one references the contents of the other

MODULE STRENGTH

Functional: modules perform a single specific
function — "write a record to outout
file"

Clustered: module is a group o£ functions sharing
a data structure usually to hide its
representation from the rest of the
system.. only one

<t
f unction is performed

per invocation—"symbol table with
insert and look-up function"

Sequential: module action comprises several
functions that pass the data along—
"update and write a record"

Communicational : module action consists of several
logical functions operating on some
data—"print and punch a file"

Procedural: module elements are grouped for
algorithmic reasons— "loop body"

Temporal: module functions are all^related
in time— "initialization"

Table III—1. Module Characteristics [46]

43

3 . Structured Coding

A third characteristic of structured programing is

the use of structured coding. Structured coding is a method

of writing programs which are more easily understood and

maintained. It is based on the fact that arbitrarily large

and complex programs can be written using a small set of

basic programming structures.

Bohm and Jacopini [47] demonstrated that three basic

control structures were sufficient for expressing any

f lowchartable program logic (Figure 3-2): "sequence",

selection ("if then else"), and iteration ("do while").

These three control structures are often expanded to include

"do until" and "case" type constructs (Figure 3-3).

MIL-STD-1679 , for example, limits control structures used in

programming to these five Dasic types.

44

SEQUENCE

PROCESS A

PROCESS B

IFTHENELSE

F <Vi
"ELSE" "THEN"
PROCESS PROCESS

SEQUENCE II THEN ELSE

DOWHILE

EO WHILE

Figure 3-2. Basic Control Structures

45

DOUNTIL

6
"UNTIL"
PROCESS

DO UNTIL

CASE

PROCESS A PROCESS B»»» PROCESS N

CASE

Figure 3-3. Additional Control Structures

46

Meyers [5] provides a list of seven basic elements of a

structured program which should be applied to help reduce

program complexity, promote clarity of thought by the

programmer, and enhance readability of the program:

-The code is constructed from sequences of three basic
elements

.

-Use of the GOTO statement is avoided wherever possible.

-The code is written in an acceptable style (e.g. use
meaningful variable names, avoid statement labels, avoid
language tricks)

-The code is properly indented on the listing so that
breaks in execution sequence can be easily followed
(e.g. a DO statement can be easily matched with the
statement ending the loop)

-There is only one point of entry and one point of exit
in the code for each module.

-The code is physically segmented on the listing to
enhance readability. The executable statements for a

module should fit on a single page of the listing.

-The code represents a simple and straightforward
solution to the problem.

Often, a program is written with a clear structure but

is eventually modified by unstructured constructs. Even if a

bit exaggerated, Van Tassel [8] offers a graphic

illustration showing how a program's original logic can

become completely obscured as the need for changes or

corrections develops (Figure 3-4). Clearly, the maintenance

of such a program would be extremely difficult.

This illustrates the point that not only the initial

source code should be structured but subsequent changes to

47

the code must also follow structured constructs. TRIDENT CCS

software provides an example of a project that followed a

structured development approach out eventually lost some of

the benefits of structured prograrming by application of

non-structured techniques (e.g., use of patches) [111.

48

Uns tructured Structured

label m

label q

label r

label s

label v

label k

label f

label t

label a

label u

label w

label y

IF p GOTO label q
IF v GOTO label m
L function
GOTO label k
M function
GOTO label k

IF q GOTO label t

A function
B function
C function
IF NOT r C-CTO label s

D function
GOTO label r

IF s GOTO label f

E function
IF NOT v GOTO label k

J function
K function
END function
F function
GOTO label v

IF t GOTO label a

A function
B function
GOTO label w

A function
B function
G function
IF NOT u GOTO label w

H function
GOTO label u

IF NOT t GOTO label y
I function
IF NOT v GOTO label k
J function
GOTO label k

IF p THEN
A function
B function

2 IF q THEN
3 IF t THEN

G function
4 DOVjHILE u

H function
4 FN CDC

I function
3 (ELSE)
3 ENDIF

2 ELSE
C function

3 DOWEILE r

T function
3 ENDDO
3 IF s TEEN

F function
3 ELSE

E function
3 ENDIF

2 ENEIF
2 IF v THEN

J fun cti en
2 (ELSE)
2 ENDIF
ELSE
2 IF w THEN

M function
2 ELSE

L function
2 ENDIF
ENDIF
K function
END function

Figure 3-4. Examples of Unstructured and
Structured Coding [8]

49

C. LANGUAGE CONSIDERATIONS

No single development decision affects the

maintainability of a program more than choosing what

language it will be written in. Some aspects that should

influence that choice are discussed in this section.

1 . High Level vs Assembly Level Language

Hopkins [48], in discussing software quality, made

it clear where he stood concerning the use of high level

languages when he stated "The higher level the language used

in programming the better."

Lang [48] provides a brief list pointing out 'the

very grave disadvantages of assembly languages:

-Apart from the few who delight in such intricacies, most
people find assembly language programs harder to write,
read, understand, debug and maintain than high level
language programs.

-It provides the poorest conceptual framework for the
programmer to express the computing operations he wants
performed

.

-It is completely machine dependent, thus requiring any
machine language program to be completely^rewritten when
it is transferred to a different machine."

Glass [49] talks about the enormous benefit of

programming in high order languages both in terms of

productivity and reliability. He points out that high level

language code requires many fewer statements than assembly

language; thus, there are many fewer chances for errors.

Also, the high level language programmer is screened from a

whole class of potential error situations related to

50

hardware intricacy since the compiler accomplishes the task

of making hardware dependent choices.

To illustrate some advantages in using a high level

language vs an assembly level language, a simple algorithm

has been coded in both the high level language Pascal

(Figure 3-5) and the Intel 80S0 assembly language ("Figure

3-6). The program is designed to read an integer from a

console and maintain a running total; when a "0 " is

presented then the program is to print out the total.

Although, most programs are more "complex" than these simple

examples, they are helpful in making comparisons between the

use of high level language and assembly language. No claim

is made concerning the elegance of the solutions or for that

matter the utility of their function.

51

Program ADD;
Var Number, Total : Integer;
Begin

Total :=0J

Repeat
Read (Number);
Total:=Total + Number;

Until Number = 0;

Write ('Total* ', Total)
End.

Figure 3-5. Integer Addition Program. Written In Pascal

52

TOTAL: DB
NUMBER: DB

ORG 100H
INIT: MVI C,60E

MVI B,60E
MVI A,00E
STA TOTAL

START: INR C

CALL POSCUR
CALL READ
ANI 0FE
STA NUMBER
LDA TOTAL
LXI H, NUMBER
ADD M
DAA
STA TOTAL
LDA NUMBER
CPI 00H
JZ DISPLY
JMP START

DISPLT: CALL POSCUR
MVI A, 'S'
CALL PRINT
INR C

CALL POSCUR
MVI A,'U'
CALL PRINT
INR C

CALL POSCUR
MVI A,'M'
CALL PRINT
INR C

CALL POSCUR
MVI A,'='
CALL PRINT
INR C

CALL POSCUR
LDA TOTAL
RRC
RRC
RRC
RRC

ANI 0EE
ORI ?0E
CALL PRINT
INR C

CALL POSCUR
LDA TOTAL
ANI 3EE
ORI 30E
CALL PRINT
RST 0?

POSCUR: MVI A,0CE
CALL PRINT
MOV A,C
CALL PRINT
MOV A,3
CALL PRINT
RET

READ: PUSE B

PUSH D

PUSH E
MVI C.01H
CALL 05E
POP H
POP D
POP B
RET

PRINT: PUSH B

PUSE D
PUSH E

PUSH PSW
MVI C,02H
MOV E,A
CALL 05H
POP PSV
POP H
POP D
POP B

RET
END

Figure 3-6. Integer Addition Program Written
Intel 8080 Assembly Code

In

53

Perhaps the most striking difference is in the

program length. For the high level lan£ua,?e program only 10

statements were used. This compares with 82 statements for

the assembly language program. Another significant

difference is in readability . The high level language

statements are more English-like (e.g., Begin, End, Repeat,

Until, Read, Write) and, hence, more comprehensible, while

the assembly language instructions (e.g., LXI , MVI, INR) are

generally more abbreviated, requiring increased effort for

understanding .

Another notable difference is that the details

associated with the hardware interfaces are hidden from the

high level language programmer. Items such as memory

location of the program, register usage allocation,

conversion of ASCII code to binary coded decimal and back-

again, and cursor control for the terminal display are all

items that have to be considered and accounted for in the

assembly language program. This increased level of

complexity provides significant opportunities for

programming errors, thus increasing the difficulty of

maintaining the program.

Finally, consider the degree of difficulty that

would exist for correcting an error in this simple program

or the amount of effort that would be required to add

enhancements (e.g., to obtain the average value). Clearly,

54

the high level language program is rrore suited to this

"maintenance" type work.

2 . DoD's Use of High Level Language

a. Standard High Level Languages

DoD is taking action to reduce the proliferation

of programming languages in an effort to improve the

maintainability of future weapon system software and to

increase the transfer of available software among new

systems [29]

.

Under DoD Instruction 5000.31, weapon system

development programmers are restricted to the use of one of

the following high level languages: TACPOL, CMS-2, SPL-1,

JOVIAL, FORTRAN, and COBOL.

A continuing effort is underway to standardize

even further, to adopt one common high level language. A set

of technical requirements for the common language was

developed, and during 1976 twenty-three existing languages

were evaluated against these requirements. The findings were

that no language completely satisfied the requirements, that

several languages could he sufficiently modified to produce

an acceptable language, and that it would be possible to

produce a language that would satisfy essentially all the

requi rements [50]

.

b. ADA

DoD has subsequently adopted a common

programming language based on the language PASCAL to use as

55

its future high level language for embedded computer

software [51]. It has been named ADA, after Ada Augusta who

became the first programmer as an assistant to Charles

Babbage

.

On the surface, it appears that one common

programming language for DoD embedded tactical software

would greatly improve maintainability through

standardization and increased familiarity by a larger number

of programmers. Also, a new language could be designed to

incorporate the latest language methodologies for improved

program clarity.

ADA is not, despite these apparent advantages,

universally accepted in its present form. Eijkstra [52] , for

example, has the opinion "that it is neither complete, nor

concise" and expresses concern over its size by pointing out

that ADA's reserve word list amounts to "more than ten

percent of basic English. " Also, he states maintainability

is hampered by the multiple ways that exist for doing the

same thing.

Regardless of this lack cf universal support,

the ADA project is going forward and the Army plans to have

a compiler ready during 1981. The Navy seems somewhat less

aggressive in pursuing this common high level language

effort [51 , 53]

.

56

c. Navy's Use of CMS-2

The Navy is reluctant to accept ADA partially

because it has already standardized to CMS-2 which was

designed primarily for real-tine, command and control

applications. It combines features of FORTRAN, COBOL and

JOVIAL and has had continuous modifications, corrections and

enhancements over several years of actual use. This is

contrasted with ADA which is completely new and has had no

previous use.

3. Patching

Before leaving the subject of programming languages,

the use of patches must be addressed because of their

detrimental effect upon software maintainability.

A patch is a change made to the object program after

it is assembled or compiled. Patching is generally

acknowledged to be a bad programming practice yet it

continues to occur. Its use is encouraged by rigid testing

schedules since it provides expedient solutions [54]

.

Both TADSTAND 9 and MIL-STD-1679 limit the total

number of patch words to less than 0.005 of the total

machine instruction words in the program, but despite such

attempts at limiting its use, patching can quickly get cut

of control. A small sample of the TRIDENT CCS software was

taken and found to have five times the current limits

allowed by the new MIL-STD-1679. This is one reason

57

why the maintainability of this software has become a matter

of concern.

D. AUTOMATED AIDS

There is little disagreement that, in order to produce

maintainable software, the development must proceed in an

orderly, flexible and measurable manner, with all phases

clearly traceable from system requirements to machine

readable code.

This entire process is extremely labor intensive and

subject to errors of commission and omission. It is net a

novel idea to suppose such an effort could benefit from

automation. Many automated tools have, in fact, teen

designed and employed with varying degrees of success.

It is beyond the scope of this thesis to include a

comprehensive study of the strengths and weaknesses of such

tools, but a few methodologies are presented to serve as

examples of this trend because of the significant influence

it might have on the way software is maintained in the

future

.

A problem statement language (PSL) and a problem

statement analyzer (PSA) are two tools developed at the

University of Michigan to aid systems design. PSL and PSA

are used by a number of large commercial organizations.

Chase Manhattan Bank is one example and it feels that by

using these methodologies, its software is now easier to

maintain [55]

.

58

TRW, working for the U.S. Army Ballistic Missile Defense

Advanced Technology Center has developed a software

requirements engineering methodology (SREM) which applies

specifically to large, real-time weapon systems [46] . SREM

is designed to generate clear and complete requirements and

to facilitate their modification. Since incorrect or missing

requirements account for a large portion of errors in large

software projects, the use of SREM should improve

maintainability.

A highly ambitious software development and maintenance

support system (SDMSS) is being designed to automate the

various activities for large scale software. It is comprised

of several subsystems, including requirements engineering,

design, documentation, software error management, and

maintenance. Reference [56] contains a more complete

description of this system.

The source code control system (SCCS) is designed for

controlling changes to files of text such as source code and

software documentation and aids maintenance efforts

considerably. The current version has been operational at

Bell Telephone Laboratories since 1977 [57].

A library control program (SYSM) has been developed by

Magnavox and is currently being used to control a total of

200,000 lines of code. It aids maintenance by controlling

changes in a secure and traceable manner [58]

.

59

PSL/PSA, SREM, SDMSS, SCCS, and SYSM are only a limited

set of automated tools being developed which will support

maintenance activites. DoC must continuously study and

evaluate these and similar methodologies for possible

applications to its weapon system software.

60

IV. DOCUMENTATION FOR MEETING MAINTENANCE REQUIREMENTS

A. GENERAL

The "Documentation Standards," Volume VII, of IBMs

Structured Programming Series [59] states that

"documentation in some form should be acquired for all

software developed in order to support the future needs of

software maintenance." It is obvious that a computer program

stored in machine readable form on a media such as tape is

not adeauate to meet the requirements of the maintenance

programmer. The question becomes what type and how much

documentation is sufficient. This question must be correctly

answered if maintenance activities are going to be

successful

.

In determining what specific documentation should be

produced and maintained concurrently with weapon system

programs, some general guidelines should be kept in mind.

First, documentation must provide for complete

traceability from the user's operational requirements to the

actual lines of code so that if a requirement changes then

the appropriate code can be correctly modified, or,

conversely, if an error is found in a section of cede the

full impact on the user's requirements can be determined.

Second, the documentation must be easily modified. As

requirements or programs are changed then corresponding

61

changes must be made to the documentation. If this is not

done, then the documentation soon becomes outdated. This

need for concurrent maintenance of documentation with the

software makes those documentation forms that can be

computer generated preferred.

Finally, because of the high cost of documentation, the

amount produced should be kept to the absolute minimum

required. Tausworthe [12] provides a graphic example showing

the relationship between program costs av.i. the level of

documentation (Figure 4-1). Note that there is an optimum

level that must be strived for.

t-

O
<J

UJ

<

8

MAINTENANCE
(S/ALTERATION)

? ?

PROGRAM DOCUMENTATION LEVEL (PAGES/LINE OF CODE)

Figure 4-1. Program Costs vs documentation Level [12]

62

In this chapter some examples of formal standards are

identified which have been developed within DoD concerning:

the production of documentation for use in the maintenance

of software. Also, available forms of documentation are

discussed which are specifically used for representing

program design, an important need of the maintenance

programmer

.

B. MAINTENANCE DOCUMENTATION STANDARDS

A limited set of standards have been developed at

various levels within DoD which specify the content and

format of documentation to he used to suDport software

maintenance activities. Examples of these are provided in

order to demonstrate the nature and extent of these

standards .

1 . Program Maintenance Manual

DOD STANDARD 7935. 1-S, "Automated Data Systems

Documentation Standards," 13 September 1977, provides

guidelines for the development of a Program Maintenance

Manual. The purpose of this manual is to provide the

maintenance programmer with the information necessary to

effectively maintain a system. A copy of the format of the

Program Maintenance Manual is given in Appendix A. Note that

it is oriented towards documenting data base systems rather

than weapon systems.

63

2 . C err "bet System Program lescription Documents

SECNAVINST 356£.l is one of the rrcst complete sets

of documentation standards specifically for weapon system

software. Within this Navy standard three documents are

identified which support the maintenance of tactical

software. Categorized under the general heading Ccp'bat

System Program Description Group, they are called: the

Program description Document (FDD), Data £ase resign (DPT),

and Frogran ?&ck&ge (PP). A description of their purpose and

a copy of their format is provided in Appendix P.

C. AITEFNATIVES FOP REPRESENTING PROGRAM STRUCTURE

As the previous section illustrates, there has "beer some

standardization for maintenance documentation to follow. The

remainder of this chapter is devoted to a discussion of

those tools available for representing a program's internal

structure. This is an area that has not "been standardized.

In fact, there is considerable disagreement as to what tools

are the best to use.

1 . Flowcharts

The flowchart is a graphic representation of a

program logic. Its purpose is to mak:« it easy to see the

relationships and flow of control among the various design

elements. It is a technique that has teen so widely used

since it was developed by von Neuman in 1947 that a se + of

national standards exists for flowcharting symbols [60],

64

Many individuals, however, are opposed to the use of

flowcharts. Erooks [61] calls the technique an "obsolete

nuisance," and "a most thoroughly oversold piece of program

documentation." Aron [62] feels that flowcharts are useless

to a programmer when diagnosing errors. Weinberg [63] states

"we find no evidence that the original coding plus flow

diagrams is any easier to understand than the original

codirg itself—except to the original programmer." These

comments bring into question the value flowcharts have for

the maintenance programmer.

Schneiderman , et.al. [64] decribe a series of

controlled experiments which test the utility of flowcharts

as an aid to the full range of programming activities:

composition, debugging and modification. Although their

original intent was to determine when flowcharts were most

helpful, the experimental results led them to conclude that

flowcharts are a redundant presentation of the information

contained in the programming language statements. Their

conjecture is that flowcharts may even be a hindrance

because they are not as complete (omitting declarations,

statement lables and input/output formats).

To provide an example for illustrating some points

to consider when usiner flowcharts as a maintenance tool, a

series of four pages of flowcharts which represent the logic

in a TRIDENT CCS module will be used (Figures 4-2 through

4-5). For simplification, the labels used in the flowcharts

65

have "been changed using the convention: (Ti) for terminals,

(Di) for decision points, (Ci) for connectors, and (Pi) for

processes .

These flowcharts were chosen as examples because

they represent a small, logically clear section of code.

According to the flowcharts, this section of code can be

entered only through Tl , Figure 4-2, and exited only through

T2, Figure 4-4. A stopping condition exists at T3, Figure

4-5.

The first point to he illustrated concerns the use

of connectors. The connectors used in the original TFIETCNT

flowcharts are statement labels and could he used as entry

points from other portions of the program. The use of single

connectors embedded in a sequence of code such as CI, Figure

4-2, is unnecessary since no additional entry noints are

designated. By checking the actual code, through the use of

the cross-reference listings, it was determined that this

label was, however, used by a subsequent branch point. A

modified version of the flowchart in Figure 4-2, which more

accurately represents the programs logic, is provided in

Figure 4-6. The point is that all possible entries to a

program should be clearly designated. If no entry point

exists then labels are not needed and should be eliminated.

Not to do so creates the possiblity for potential errors.

A second point to consider is the ability to trace

through a section of logic. Going from beginning to end is

66

relatively easy, but consider tracing through the reverse

direction. Often, the maintenance programmer is left with a

specific program state, and his job is to determine what

conditions created it. For example, using Figures 4-2

through 4-5, if the maintenance programmer needed to

determine what sequence cf control could have led to the

stopping condition (T3), Figure 4-5, it would be necessary

to trace backwards through all four pages of flowcharts.

This problem is compounded when dealing- with numerous pages

of flowcharts and multiple branch points.

A third point to consider is the difficulty cf

making charges to the documentation. Note that substituting

a decision block (D2A) for a procedure block (P2) in Figure

4-2, in order to more accurately represent the programs

logic, required that a completely new flowchart be

constructed, Figure 4-6.

It should be noted that the Software Acquisition

Management Guidebook, Software Maintenance Volume [27],

recommends that Del not procure flowcharts with delivered

software, and MIL-STD-1679 states that "there is no

requirement that flowcharts be a deliverable item."

In contradiction to this guidance, SFCNAVINST

3560.1, when describing the Program Description Tocument

,

states "a flowchart shall be included for each major

procedure or subroutine that depicts detailed operations

performed by the subprogram."

67

ao
Y

Y

O

Figure 4-2. Exarrple Flowchart, part 1 of 4

68

D3 Y

N

(C3J

Figure 4-3. Example Flowchart, part 2 of 4

69

Y

O

Figure 4-4. Example Flowchart, part 3 of 4

73

(C5J

(C6J

"Figure 4-5. Exarrple Flowchart, part 4 of 4

71

Y

Y

Y

(C2J CC3J

Figure 4-6. Modified Flowchart

72

2. Elerarchy Plus Input-Process-Output (HIPP)

HIPO was developed as a design aid and documentation

technique by IBM and is described in [65]. It attempts to

provide more than just representing the program logic as

flowcharts do. It emphasizes the functional aspect of the

program and its data flow. Maintenance efforts are said to

he facilitated by making it easier to trace a function that

needs to he modified from the documentation to the actual

code

.

A HIPO package consists of three kinds of diagrams:

a visual table of contents, overview diagrams and detail

diagrams. These diagrams provide a graphical description of

the program's function from the general to a detailed level.

Figure 4-7 shows the structure of a typical HIPO

package. Note that the visual table of contents shows the

structure cf the diagram package and relationships of the

functions in a hierarchical fashion. The overview and detail

HIPO diagrams contain the innuts, processes, outputs and

extended descriptions at each stage of the successive

decomposition of a program.

HIPO does not enjoy universal support as a

maintenance tool. In a survey by Anderson and Shumate [66],

conducted to find out what documentation tools were found

useful by maintenance programmers, HIPO was ranked as the

least preferred form when compared to the program listings,

English language narratives, flowcharts, hierarchy diagrams

73

and the data base design documents. The authors felt that

EIPO documentation is an important design tool but seems to

have a lesser value for maintenance activities.

Meyers [5] contends that while HIPO diagrams are

superior to the flowchart because they show data flow as

well as control flow, HIPO diagrams are not needed for the

same reasons that flowcharts are not needed for maintenance

type work. Basically, he feels both merely duplicate

information that is already contained in the program

listings .

74

1 A Vrtual Tibl« o< Connna

1

1.0

1

; 1 i

£

>

2 Overview Oi«qnmi

3 0«t»H 0«9rtmi

"S

-All

i zz^>

JE bJ

o
4

s

—»s

1

—

^

ElMndVd OwCllOlMm

"

"

- —

Figure 4-7. HIPO Documentation [65]

75

3. Decision Tables

Decision tables provide a tabular forir of

representing program design and have been used as a

maintenance tool. Generally, decision tables are made up of

a set of conditions, each of which may be evaluated as true

or false at any given time. The truth or falsity of these

conditions may be combined in various ways, alorg with a

series of actions, to form what is called a decision rule

(i.e., a set of conditions that must be satisfied in order

that a series of actions be taken).

CONDITION STU3 CONDITION ENTRY

ACTION STUE ACTION ENTRY

Table IV-1. Decision Table Structure

As illustrated in Table IV-1, it is divided into

four quadrants. The upper left quadrant, called the

condition stub, contains all the conditions being considered

for a particular decision rule. The condition entry, in the

upper right quadrant, combines with the condition stub to

form • the condtion that is to be tested. The action stub, in

the lower left quadrant, contains actions resulting from the

conditions tested above. Action entries, in the lower right

76

quadrant, serve to indicate responses to the indicated

combination of conditions.

If a condition in the condition stub is true, a
"y"

is entered for that particular rule in the condition entry?

if the condition is false, an "n" would be entered. In a

situation where a particular condition is irrelevant a

don't-care would be indicated by use of a dash, "-". An "x"

specifies actions to be' executed. An example of a decision

table for representing a sirple process of

approving/disapproving loan requests is presented in Table

IV-2.

LOAN TABLE Rl R2 R3 R4

Satisfactory
credit limit Y N N N

Favorable
Payment History - Y N N

Special Clearance
Obtained - - Y N

Approve Loan X X X

Reject Loan X

Table IV-2. Example Decision Table 167]

One advantage of usin^ decision tables is that it is

possible to convert them into compilable source code via a

preprocessor [6?, 681. The additional computer time required

for compilation can be offset by reduced effort for

programming both during the initial programming phase and

77

the maintenance phase. Another big advantage cf decision

tables is that their concept and structure causes the number

of overlooked situations and program inconsistencies to be

reduced

.

The B. P. Goodrich Chemical Company is one proponent

on the use of decision tables. Eeference [16] reports that

Goodrich has used them extensively and finds that complex

logic becomes clearer and there is less chance of

overlooking a logical path. Goodrich estimates that overall

productivity for analysts and programmers in maintaining its

COBOL-based systems has been at least double what it would

have been without decision tables.

Another successful example concerning the use of

decision tables is reported by "Fisher [69]. An extremely

complex file maintenance problem arose at the USA! Automatic

Resupply Logistic System at Norton AF3 . Almost seven

man-years had been spent trying tc define the problem using

narrative descriptions and flowcharts, but to little avail.

A crash program using decision tables was then implemented.

Four analysts spent one week establishing the decision table

format. Three weeks later the problem was solved.

To help determine whether the use of decision tables

is appropriate for documenting programs such as the TRIT1TNT

CCS, a section of logic was translated into a decision table

format (Table IV-3). The logic represented is the same as

that shown in Figures 4-2 through 4-5. Note that identical

78

logic contained in four pages of flowcharts has been reduced

to a clear, concise table taking less that one page. This

points out, also, that revision of decision tables reauires

less work than modifying flowcharts. This is an important

consideration for maintenance activities where revisions are

expected

.

Rl R2 R3 R4 R5

Dl Y N N N N

D2 - Y N N N

D3 - - Y N N

D4 - - - Y N

PI X X X X

P2, P3 X X X

P4, P5 X X

P6-P9 X

RETURN X

P10-P12 X X X X

STOP X X X X

Table IV-3. Example Program Logic

Two disadvantages of decision tables are: (1)

possible ambiguities may arise when "don't care" conditions

are presented and (2) decision tables are of little help

when the program logic involved is not decision-making

oriented .

79

While decision tables may not always be applicable,

the previous discussion illustrates that they serve as an

alternative form of documentati on that should be considered.

Federal Information Processing Standards Publication 38,

"Guidelines for Documentation of Computer Programs and

Automated Data Systems," 15 February 1976, states that

either flowcharts or decision tables, whichever is more

appropriate, can be included or appended to documentation

for software. However, SECNAVINST 3560.1 makes no mention of

their use.

4. Nassl-Shneiderman Charts

With the advent of structured programming technology

a form of structured flowcharts has emerged. Developed by I.

Nassi and B. Shneiderman in 1972, they can serve as a

graphic representation of a modules logic design and provide

a maintenance programmer with a quick reference for finding

the code performing any logical function. The advantages

claimed for these charts include:

-The scope of IF THEN SLSE clauses is well-defined and
visible! moreover, the conditions or process boxes
embedded within comnound conditions can be seen easily
from the diagram.

-The scope of local and global variables is immediately
obvious .

-Arbitrary transfers of control are impossible.

-Complete thought structures can and should fit or. one
page (i.e., no off-page connectors).

80

Yoder [70] provides a thorough description of the

use of N-S charts. Briefly, the charts are constructed "by

combining and nesting the basic structures shown in Figure

4-8. An example showing an extension of the use of the basic

symbols, which illustrates a N-S chart to calculate and

print an FICA report, is shown by Figure 4-9.

N-S charts are strongly linked to structured

programming constructs, thus, it may be difficult to apply

this form of documentation to non-structured portions of

program logic.

The method of N-S charts has not been fully

exploited in actual practice and little information exists

in the technical literature advocating their use. They are,

nevertheless, an alternative form of documentation that may

be considered for use as a maintenance tool.

The section of logic previously represented by

Figures 4-2 through 4-5 and by Table IV-3 has been

represented using N-S charts (Figure 4-10). This illustrates

the potential of using N-S charts as a maintenance tool for

software such as the TRIDENT CCS.

81

PROCESS
STATEMENT

Process Symbol Decision Symbol

DO WHILE CONDITION

WHILE
PROCESS

UNTIL
PROCESS

DO UNTIL CONDITION

DO WHILE Symbol DO UNTIL Symbol

1-1
PROCESS

1-2
PROCESS

l = n

PROCESS

CASE Symbol

Figure 4-8. Five Basic Structures of N-S Charts [70]

82

READ THE FIRST PAYROLL RECORD

DO WHILE THERE IS MORE DATA TO PROCESS

"""""""""'"--.^^^ YEAR -TO -DATE FICA LESS THAN *

^-^^^^ MAXIMUM ? ^--
^—"""'

NO ^""-~"---^^^ YES

SET FICA
DEDUCTION
TO ZERO

CALCULATE FICA
DEDUCTION

^\YEAR -TO- DATE FICA PLUS ^^"
^v^DEDUCTION > ^s^
NO ^^^MAXIMUM ->^^ YES

SET DEDUCTION
SO YEAR - TO - DATE
WILL NOT EXCEED
MAXIMUM

ADD DEDUCTION TO
YEAR -TO -DATE FICA

SET NET PAY TO GROSS PAY MINUS FICA DEDUCTION

PRINT NAME. GROSS PAY, FICA DEDUCTION, YEAR - TO - DATE
FICA, NET PAY

READ NEXT PAYROLL RECORD

Figure 4-9. Example N-S Chart [?0]

83

y^/n
PI

Y^2A
P2

yxXn
P3

P4

Y^
P5

P10 P6

P11 P7

P12 P8

STOP RTN

Figure 4-10. Nassi-Shneiderman Chart For THIEENT

84

5 . Program Listings

It would be highly desirable if programs could be

made self-documenting, thereby, eliminating the necessity of

maintaining multiple forms of documentation representing the

same logic. Many authors advocate such an approach through

structuring program listings. Meyers [5], for example,

states:

Since we already have the code, why not let it serve as
the logic documentation? . . . additional documentation
such as a flowchart would be undesirable because it

would be redundant with the code. Redundancy in any type
of documentation should be avoided because it increases
the chances of conflicts. Furthermore, unless care is
taken to update the documentation (which is more
difficult if the lo^ic documentation is physically
separated from the code), redundant documentation often
becomes totally useless after the code is modified a few
times .

In his 1974 ACM Turing Award Lecture, Knuth [71]

addressed the importance of program listings when he stated:

There are many senses in which a program can be "good"
of course. In the first place, it's especially good to
have a program that works correctly. Secondly it is

often good to have a program that won't be hard to
change, when the time for adaptation arises. Eoth of
these goals are achieved when the program is easily
readable and understandable to a person who knows the
appropriate language.

Anderson's study [66], discussed previously, has

illustrated the importance of program listings as compared

to other forms of documentation for maintenance work. Again,

this study found listings were the maintenance programmer's

"most useful tool."

85

What constitutes a self-documen tine; program?

SECNAVINST 3560.1 states that the listing will be an exact

duplicate of the delivered card decks cr magnetic tape. It

further states that each compiler source statement will be

annotated with comments, or, if the source is assembly-

level, then a comment shall be listed for each assembly

level line or function group of lines with not less than an

average of one comment per five statements. No mention is

made of the tyne or form of comments .

MIL-STD 1679 provides much more explicit direction.

It states, in part, that:

A narrative description shall describe the
history and identify the functions of each hierarchical
component of the weapon system software.

Each component shall include at the beginning of

the executable coding a textual description of its

v V u _>_,*_, « uU11 >.i j^unviius, y ».._w.i.-i<_ i.v.x_iwn^>__> ww >,.in-

appropriate statement labels and data-names shall be
included in each module, procedure and routine
descriptive abstract. The descriptive abstract shall
define the allowed and tolerable range of values for all
inputs and shall define the allowed and expected range
of values for all outputs. A history of the original and
updating programmer names, the activity or commercial
company name and the activity or company division code
or billet identifier with dates completed shall be
included. ,

In order to facilitate program comprehension,
comment statements shall be used throughout the program
code. Comment statements are non-executable (i.e., they
have no effect on program executions) and are used to
provide documentation and clarification of the logic,
data, variables, and algorithms. Each source statement
shall be self-defined or defined by a comment phrase to
a level understandable by a person not associated with

86

the original development effort. Logical groups of
comrrent phrases may be included in a single comment
statement. General comments on grouns of source
statements performing logical functions shall he
included on separate comment statements.

The Tactical System Programming Support Branch of

the Marine Corps Tactical System Support Activity,

responsible for maintaining the Marine Corps' tactical

software, considers the computer program listing to be "the

single most important tool for software maintenance." It has

developed a set of standards to ensure listings are properly

designed and coded. This standard serves as a possible

example for other maintenance organizations to follow. See

Appendix C

.

Both MIL-STD-1569 and SECNAVINST 3560.1 address the

use of cross-reference listings which are included here as a

portion of self-documentation since they can be

automatically generated from the program listings. Tney are

considered a necessary maintenance tool since they identify

every place an item (e.g., variables or subroutines) appears

in the program, so when the item is changed or modified the

impact on the remaining portions of the program can be

quickly determined.

6. Summary

This section has illustrated a variety of techniques

used for representing program design to the maintenance

programmer. Clearly, no one form completely represents all

87

aspects of program design. As programming methodologies

become more structured, the trend towards increased emphasis

on the use of program listings should continue, reducing the

need for supplemental forms of program documentation.

Although, it seems unlikely the need for some type of

graphic representation will be totally eliminated. There is

an important psychological aspect of conveying meaning

through pictures that cannot be duplicated with narratives.

No doubt, a variety of documentation tools will always be

necessary.

86

V. SOFTWARE MAINTENANCE POLICIES WITHIN TOD

A. BACKGROUND

This chapter provides an overview of policies and

methodologies existing in DoD which affect weapon system

software maintenance. First, the publications that contain

applicable policy guidance are reviewed. Next, the results

from a limited survey of agencies involved with weapon

system software maintenance are presented. Finally, there is

a discussion of pertinent research and development work.

It is important to realize that the policies and

methodologies for procuring weapon system software have been

different than that used for procuring automatic data

processing equipment (ADPE). The distinction made between

these two categories of automated systems is a result of the

1965 ""Brooks Act" (Public Law 39-306, 40, U.S.C. 759).

The Office of Management and Budget fOMP) and the

General Services Administration (G-SA) administer the Brooks

Act guidelines. ADPE is controlled by this act and falls

under the purview of the Assistant Secretary of Defense

(Controller). Weapon system software, however, is excluded

from the provisions of this Act and fall under the

jurisdiction of the Office of the Undersecretary of Defense

for Research and Engineering.

89

B. CURRENT POLICIES

There has been no centralized source of guidance with

respect to weapon system software maintenance for DoD

organizations to follow. Many directives, regulations,

specifications, and standards have, however, influenced

weapon system software maintenance to varying degrees. The

most significant of these are listed in this section. Even

though most of these have been introduced in previous

chapters, they are consolidated here for ease of reference.

1. MIL-STD-463 (USA?)

MIL-STD-483 (USAF) "Configuration Management

Practices for Systems, Equipment, Munitions, and Computer

Programs," 1 June 1971, defines the entire spectrum of

activities associated with controlling changes (a critical

need for maintenance worlc) to computer programs.

2. MIL-S-52779 (AD)

MI L-S -52779 (AD), "Software Quality Assurance Program

Requirements," 5 April 1974, requires that a Quality

Assurance Program (OA?) he implemented specifically for the

development of computer programs and related documentation.

Even though this standard is concerned with the development

phase, it is important to software maintenance because it

directly affects the quality of the software.

90

3. SgCjUYINST 3560.

1

SECNAVINST 3560.1, "Department of the Navy Tactical

Digital Systems Documentation Standards," 8 August 1974,

identifies, names, and describes that set of documents

necessary to support both the development and maintenance of

tactical software.

4. DODDIR 5000.29

DODDIR 5000.29, Management of Computer Resources in

Major Defense Systems," 26 April 1976, establishes DoD

policy for the management and control of computer resources

during system acquisition. Maintainability of software is

called out as a major consideration during initial design.

It also directs that support items required for cost

effective maintenance be specfied as deliverable items.

5. MII-STD-1521 (USAF)

MIL-STD-1521 (USA?), "Technical Reviews and Audits

for System, Equipment, and Computer Programs," 1 June 1976,

prescribes the requirements for the conduct of technical

reviews and audits in conjunction with the documents defined

in MIL-STD-483. Direction is provided concerning the review

and audit of computer program configuration items ard their

associated documentation. Each type of review or audit is

described in an appendix to the standard and can serve as a

basis for checking compliance with maintainability

requirements. i

91

6. DQDINST 5000.31

DODINST 5000.31, "interim List of DoD Approved Hi^h

Order Programming Languages (EOL)," 24 November 1976,

specifies the HOLs which are approved for use in conjunction

with DOEDIR 5000.29. Although this instruction allows for

certain exceptions, it attempts to reduce proliferation and

ensure control of HOLs in defense systems by limiting new

development to six approved languages: CMS-2, SPL-1, TACPOL,

JOVIAL, COBOL, and FORTRAN.

7. MIL-STL-1679 (NAVY)

MIL-STD-1679 (NAVY), "Weapon System Software

Development," 1 December 1978, establishes uniform

requirements for the development of weapon system software

within DoD. Strict adherence to the provisions of this

standard will help ensure that the tactical software so

developed will be improved over current versions of tactical

software .

C. SURVEY OF DOD MAINTENANCE ORGANIZATIONS

An informal survey was taken of personnel from five

different DoD organizations involved with the maintenance of

weapon system software. While not providing official policy,

the results can be used to derive a general understanding of

the environment in which they have operated, such as what

problems have been experienced and what methodologies were

used in performing maintenance activities.

92

1. Pacific Missile Test Center

The Weapons Control and Software Systerrs Division of

the Pacific Missile Test Center is involved with Fleet

support of tactical software for selected weapon systerrs

such as the F-14.

The software, developed largely under contract, was

being maintained "by in-house resources. Maintenance

functions performed included configuration accounting,

problem validation, training, analysis, design, change

implementation, documentation, verification and tape

generation. The greatest amount of worfc has been

necessitated by software enhancements which required varying

degrees of redesign. New tape versions were released

approximately every 18 months.

Competing with private industry for recruiting

professional personnel has been a significant problem.

Another problem has been inadequate software documentation

from contractors. Concern was expressed that documentation

has historically been one of the first items to be cut from

software development budgets, a decision that has seriously

degraded the subsequent maintainability of software.

/ large effort has been made to correct the problem

of inadequate documentation. Guidance was being formulated

which goes beyond the requirements defined in SICNAVINST

356?. 1 and MIL-STD-1679 by improving the traceability from

one level of system description to another.

93

The importance of using actual operational equipment

for program debugging and verification after maintenance

changes were made was stressed.

An effort to keep methodologies current is evident,

but this effort is being strained by increased work loads

and personnel shortages.

2. Naval Ocean Systems Center

The Software Quality Control Organization at Naval

Ocean Systems Center is not directly responsible for

maintaining tactical software. It did, however, perform a

critical function that greatly improves software

maintainability. Activities include document inspection,

configuration management and test and evaluation during all

phases of the acquisition cycle in order to assist procuring

organizations in acquiring higher quality and more

maintainable software.

One of the biggest problems encountered has been

convincing managers that software requires the same degree

of engineering controls as hardware.

3

.

Naval Surface Weapons Center

The Fleet Ballistic Missile Geoballisti cs Division

of Naval Surface Weapons Center is responsible for both

development and maintenance of Fleet ballistic missile type

software such as the TRICFNT-I *ire Control System. Most of

its work is accomplished in-house with very little

94

contracting. There is no separate organizational group

dedicated solely to the maintenance of software. Maintenance

activities are integrated with development activities.

As expected, when software products were initially

released to the fleet the vast majority of maintenance was

accomplished in order to correct errors, hut the ratio of

improvements to error corrections increased as the time from

initial release increased. One software product which had

been released for two years was experiencing maintenance cf

approximately 50 percent for improvements and 50 percent for

error corrections.

Changes to software are made according to a

formalized configuration control plan. Releases of new

versions have been made on the average of once per year.

Patches were discouraged hut used under restricted and

tightly controlled circumstances such as to correct critical

errors between major program releases.

Actual field eauipment is used to test program

changes with the capability of using some real inputs. Most

inputs, however, are simulated.

A hardware monitor is used and found very useful for

analyzing the performance of software. Another useful tool

used is the ability to take core dumps which are analyzed

via computer whenever program crashes occurred.

A specially designed HOL called Trident Eigh Level

Language (TFLL), said to be even more structured than CMS-2,

95

was being used. Program listings are maintained in a

structured form, and a program design language (?DL), a

pseudo high level language, is used to help document

programs

.

The actual process of making changes to software has

posed no significant problems, but understanding and

verifying reported software errors from the Fleet did, at

times, present difficulties.

4. Naval Air Development Center

The Software and Computer Directorate of the Naval

Air Development Center functions as the software support

agency for selected avionics software such as that in the

P-3C Orion.

The maintenance of the F-3C software is complicated

by the fact that it is being converted from a tape

configuration system to a drum configuration system. While

the functional requirements remained the same, the details

of implementation differed. Eoth configurations must be

simultaneously maintained.

The importance of defining to a fine detail

maintenance requirements early in the development of

software was stressed. The concepts of structured

programming was advocated, but trying to implement the

constructs of MIL-STD-1679 on existing software that

96

was originally unstructured presented many difficulties and

was not recommended.

New program versions were being released on the

average of every 18 to 24 months and patches were being

used. It was stated that patches will always be required to

some extent because of constraints such as delivery

schedules

.

'•'hile the program listing was the cheapest form of

program documentation, detailed flowcharts were considered

useful as a maintenance tool. It was suggested that the

automated process of producing and updating flowcharts would

be helpful .

One of the biggest problems being experienced was

the large personnel turnover rate that exists in the

services. Maintenance of software would be an easier task if

there were greater stability of personnel.

5. TACFIRE Software Support Group

The TACFIRE Software Support Group is responsible

for maintaining the software for the Army's automated

Artillery Tactical Fire Direction System (TACFIR3), a system

whose software was developed under contract. Maintenance of

the software is still using contractor support.

The group uses configuration control procedures much

like the other organizations contacted with a configuration

control board setting priorities for approved software

97

changes. Approximately 75 percent of the changes experienced

were the result of program enhancements and 25 percent

necessitated by program errors. New program versions were

being released about every 12 months. Patches were

discouraged hut practically every release had contained a

limited number.

Both a programming support system (PTP 11/35) and

actual TACFIRE hardware were used for program debugging and

testing procedures.

The code for the software is written in the EOL

TACPCL. Some code in the programs is assembly level. Tne

ratio of EOL lines of code to assembly level lines of code

averaged roughly nine to one.

The support group is beginning to do software

development work for a multiple rocket system. The software

for this system is being designed to fit an existing set of

hardware. The language used for this new software is

assembly level, called Symoolic Interpreter Routine (SIR).

The use of an assembly level language is necessitated by

both hardware contraints and a desire to share previously

written software modules.

The only general problem mentioned in maintaining

weapon system software concerned the difficulty of

interpreting software trouble reports submitted by using

units in the field.

98

6 . Marine Corps Tactical System Support Activity

The Marine Corps tactical software is developed

largely by contractors. Software maintenance of fielded

systems, however, is centralized and accomplished in-house

"by the Tactical Systems Programming Supnort Branch of the

Marine Corps Tactical System Support Activity.

The software is written in CMS-2 and kept highly

structured using the conventions outlined in Appendix C.

Listings provided documentation for the program's logic

eliminating the need for detailed flowcharts. The software

is refined to the point that no major operational errors are

observed. The majority of maintenance was beins necessitated

by program enhancements not error corrections.

Software configuration management is strictly

applied to all changes. New tape versions have been released

about every 9 months. Patches had not been used in over two

years and are considered contrary to good maintenance

practices .

Two tools found useful to support maintenance

activities are the CMS-2 librarian to control coding changes

and a hardware monitor to measure system performance.

Actual field systems are available for program

testing and debugging with the capability of using both

actual and simulated real-time inputs.

99

Personnel were in favor of adopting the programming

language ADA and have been involved with the Department of

Defense Eign Order Language Commonality Program since 1977.

Problems mentioned included attracting and retaining

qualified personnel and educating top level managers about

the nature of software. The technical aspects of maintaining

software presented no significant problem.

D. RESEARCH TO IMPROVE SOFTWARE MAINTENANCE

Wegner [72] states:

Software maintenance has only recently been recognized
as a key area for software research. Research needs
include the development of tools to allow understanding
(readability) of software, modif lability of software and
revalidation of modified software.

Not listed in the previous statement is the reed for

validating claims that new software engineering

methodologies significantly improve the maintainability of

large, complex, real-time weapon system software. Since

claims have not been demonstrated, there has been reluctance

from some system developers to incorporate their use on

actual system projects.

An ambitious, exploratory research project has been

initiated by the Naval Research Laboratory and the Naval

Weapons Center in order to correct this situation. The

project involves completely redesigning and implementing the

operational flight program (OFP) for the A-7 aircraft using

many of the new software engineering principles. The

100

redesigned program will "be functionally identical to the

existing A -7 OTP so a direct conparision between the two can

be made in areas such as software maintainability.

If successful, the final product could serve as a useful

engineering model for subsequent weapon system software

developments. For further information the reader is referred

to the program summary, Appendix E.

131

VI. CONCLUSIONS AND RECOMMENDATIONS

DoD organizations are becoming more aware of the

significance that maintenance plays in the overall life

cycle of weapon system software. Even as this software

becomes more error-free, the relative importance of

maintenance activities will continue because of frequent

enhancements made to existing systems and increasing

complexity of applications.

To ensure that future weapon system software can be

easily and accurately modified to correct errors or

accommodate changes in user requirements, maintainability

must be considered as a primary design objective.

The organization which will eventually be responsible

for maintaining the software of a weapon system must be

allowed to participate in the development process, including

the formulation of specifications and subsequent technical

design reviews.

The importance of programming standardization must be

stressed because of the lone: life of weapon system software

and the relatively high rate of personnel turn-over within

EoD software maintenance organizations. Although software

standards have not yet reached the refinement or level of

detail that exist for hardware, MIL-STD-1679 represents a

good starting point. If complied with, this standard should

102

significantly improve the maintainability cf weapon system

software

.

How much and what kind of documentation will be

delivered with weapon system software are among the most

important management decisions affecting the software's

maintainability. Decisions must be based on the size and

complexity of software produced and what techniques are used

by the organization performing the maintenance. This thesis

has illustrated a small portior of available types.

Institutions such as the Naval Postgraduate School are

in a position to improve the education of future computer

scientists on the nature of software maintenance. This could

be done by establishing computer science program libraries

consisting of student developed computer programs. Programs

in these libraries would then be available for projects

emphasizing program maintenance in addition to the

traditional approach of emphasizing only program

development. Grades based on how easily a student's program

is understood and correctly modified by other students would

provide an incentive for improving software maintenance

skills.

As a final thought, consider the findings of a study on

software maintenance by Lientz and Swanson [73] . Their study

"supports the proposition that an increase in the ase of a

system tends to lead to an increase in the level of effort

in maintenance." This indicates that DoE must continually

103

face a difficult question: when is it more economical to

dispose of and redesign an existing system than to go on

maintaining it?

104

APPENDIX A - Program Maintenance Manual

from: DOD STANDARD 7935. IS, "Automated Data Systems
Document at ion Standards," 13 September 1977

SECTION 1.

1.1
1.2
1.3

SECTION 2.

2.1
2.2
2.3
2.4

SECTION 3.

3.1
3.2
3.3
3.3.
3.3.

SECTION 4.
4.1
4.2
4.3
4.4
4.5
4.6

PROGRAM MAINTENANCE MANUAL
TABLE OF CONTENTS

GENERAL DESCRIPTION
Purpose of the Program Maintenance Manual
Project References
Terms and Abbreviations

SYSTEM DESCRIPTION
System Application
Security and Privacy
General Description
Program Description

ENVIRONMENT
Equipment Environment
Support Software
Data Base

General Characteristics
Organization and Detailed Description

PROGRAM MAINTENANCE PROCEDURES
Conventions
Verification Procedures
Error Conditions
Special Maintenance Procedures
Special Maintenance Programs
Listings

105

SECTION 1. GENERAL DESCRIPTION

1.1 Purpose of the Program Maintenance Manual . This paragraph
shall describe the purpose of the MM (Program Maintenance Manual)
in the following words or appropriate modifications thereto:

The objective for writing this Program Maintenance
Manual for (Project Name) (Project Number) is to provide
the maintenance programmer personnel with the information
necessary to effectively maintain the system.

1.2 Project References . This paragraph shall provide a brief
summary of the references applicable- to the history and develop-
ment of the project. The general nature of the system (tactical,
inventory control, war-gaming, management information, etc.)
developed shall be specified. A brief description of this sys-
tem shall include its purpose and uses. Also indicated shall
be the project sponsor and user as well as the operating center (s)
that will run the completed computer programs. A list of appli-
cable documents shall be included. At least the following shall
be specified, when applicable, by author or source, reference
number, title and security classification:

a. Users Manual.

b. Computer Operation Manual.

c. Other pertinent documentation on the project.

1.3 Terms and Abbreviations . This paragraph shall provide a
list or include in an appendix any terms, definitions or
acronyms unique to this document and subject to interpretation
by the user of the document. This list will not include item
names or data codes.

106

SECTION 2. SYSTEM DESCRIPTION

2.1 System Application . The purpose of the system and the
functions it performs shall be explained. A particular appli-
cation system, for example, might serve to control mission
activities by accepting specific inouts (status reports, emer-
gency conditions) , extracting items of data, and deriving other
items of data in order to produce both information about a
specific mission and information for summary reports. These
functions shall be related to paragraphs 3.1, Specific Per-
formance Requirements, and 3.2, System Functions, of the FD
(Functional Description)

.

2.2 Security and Privacy . This paraaraph shall describe the
classTf ied components of the system, including inputs, outputs,
data bases, and conputer programs. It will also prescribe any
privacy restrictions associated with the use of the data.

2.3 General Description. This paragraph will provide a com-
prehensive description o'f the system, subsystem, jobs, etc.
in terms of their overall functions. This description will
by accompanied by a chart showing the interrelationships of
the major components of the system.

2.4 Program Description . The purpose of this paragraph is
to supply details and characteristics of each program and sub-
routine that would be of value to a maintenance programmer in
understanding the program and its relationship to other pro-
grams. (Special maintenance programs related to the specific
system being documented will be discussed under paragraph 4.4,
Special Maintenance Procedures.) This paragraph will initially
contain a list of all oroarams to be discussed, followed by
a narrative description of each program and its respective
subroutines under separate paragraphs starting with 2.4.1
through 2.4.n. Information to be included in the narrative
description is represented by the following items:

a. Identification - program title or tag, including
a designation of the version number of the program.

b. Functions - description of program functions and the
method used in the program to accomplish the function.

c. Input - description of the input. Descriptions used
here must include all information pertinent to
maintenance programming, including:

(1) Data records used by the program during opera-
tion.

(2) Input data type and location (s) used by the
program when its operation begins.

(3) Entry requirements concerning the initiation
of the program.

2

107

Processing - description of the processing performed by
the program, including:

(1) Major operations - the major operations of the
program will be described. The description
may reference chart (s) which may be included
in an appendix. This chart will show the general
logical flow of operations, such as read an input,
access a data record, major decision, and print
an output which would be represented by segments
or subprograms within the program. P.eference
may be made to included charts that present each
major operation in more detail.

(2) Major branching conditions provided in the program.

(3) Restrictions that have been designed into the
system with respect to the operation of this
program, or any limitations on the use of the
program.

(4) Exit requirements concerning termination of the
operation of the program.

(5) Communications or linkage to the next logical
program (operational, control).

(6) Output data type and location (s) produced by
the program for use by related processing
segments of the system.

(7) Storage - Specify the amount and type of stor-
age required to use the program and the broad
parameters of the storage locations needed.

Output - description of the outputs produced by the
program. While this description may reference out-
put described in the Users Manual, any intermediate
output, working files, etc. should be described for
the benefit of the maintenance programmer.

Interfaces - description of the interfaces to and
from this program

Tables and Items - provide details and characteristics
of the tables and items within each program. Items
not part of a table must be listed separately. Items
contained within a table may be referenced from the
table descriptions. If the data description of the
program provides sufficient information, the program
listing may be referenced to provide some of the

10S

necessary information. At least the following will
be included for each table:

(1) Table tag, label or symbolic name.

(2) Full name and purpose of the table.

(3) Other programs that use this table.

(4) Logical divisions within the table (internal
table blocks or parts - not entries)

.

(5) Basic table structure (fixed or variable
length, fixed or variable entry structure)

.

(6) Table layout (a graphic presentation should
be used) . Included in supporting description
should be table control information, details
of the structure of each type of entry, unique
or significant characteristics of the use of
the table, and information about the names and
locations of items within the table.

(7) Items - the term "item" refers to a specific
category of detailed information that is coded
for direct and immediate manipulation by a
program. Used in this sense, the definition of
an item is machine- and program-oriented rather
than operationally oriented. Of primary impor-
tance is an explanation of the use of each item.
At least the following will be included for each
item:

(a) Item tag or label and full name.

(b) Purpose of the item.

(c) Item coding, depending upon the item type,
such as integer, symbolic, status, etc.

h. Unique Run Features - description of any unique features
of the running of this program that are not included
in the Computer Operation Manual.

129

SECTION 3- ENVIRONMENT

3.1 Equipment Environment . This paragraph shall discuss the
equipment configuration and its general characteristics as

they apply to the system.

3.2 Support Software . This paragraph shall list the various
support software used by the system and identify the version
or release number under which the system was developed.

3.3 Data Base . Information in this paragraph shall include
a complete description of the nature and content of each data
base used by the system.

3.3.1 General Characteristics . Provide a general description
of the characteristics of the data base, including:

a. Identification - name and mnemonic reference of the
component (e.g., data base>. List the programs
utilizing the component and explain the use of the
component in the system.

b. Permanency - note whether the component contains static
data that a program can reference, but may not change,
or dynamic data that can be changed or updated during
system operation. Indicate whether the change is
periodic or random as a function of input data.

c. Storage - specify the storage media for the data base
(e.g., tape, disk, internal storage) and the amount
of storage required.

d. Restrictions - explain any limitations on the use of
this component by the programs in the system.

3.3.2 Organization and Detailed Description . This paragraph
will serve to define the internal structure of the data base.
A layout will be shown and its composition, such as records
and tables, will be explained. If available, computer-generated
or other listings of this detail information may be referenced
or included, herein. The following items indicate the type of
information desired:

a. Layout - show the structure of the data base including
record and items.

b. Sections - note whether th-^ physical record is a
logical record or one of several that constitute a
logical record. Identify the record parts, such
as header or control segments and the body of the
record.

110

Fields - identify each field in the record structure
and, if necessary, explain its purpose. Include for
each field the following items:

(1) Tags/labels - indicate the tag or label assigned
to reference each field.

(2) Size - indicate the length and number of bits/
characters that make up each data field.

(3) Range - indicate the range of acceptable values
for the field entry.

Expansion - note provisions, if any, for adding
additional data fields to the record.

Ill

SECTION 4. PROGRAM MAINTENANCE PROCEDURES

Section 4 of the manual shall provide information on the specific
procedures necessary for the programmer to maintain the programs
that make up the system.

4.1 Conventions . This paragraph will explain all rules, schemes,
and conventions that have been used within the system. Informa-
tion of this nature could include the following items.

a. Design of mnemonic identifiers and their application
to the tagging or labeling of programs, subroutines,
records, data fields, storage areas, etc.

b. Procedures and standards for charts, listings, seriali-
zation of cards, abbreviations used in statements and
remarks, and symbols appearing in charts and listings.

c. The appropriate standards, fully identified, may be
referenced in lieu of a detailed outline of conventions.

d. Standard data elements and related features.

4.2 Verification Procedures . This paragraph will include those
requirements and procedures necessary to check the performance
of a program section following its modification. Included may
also be procedures for periodic verification of the program.

4.3 Error Conditions . A description of error conditions, not
previously documented , nay also be included. This description
shall include an explanation of the source of the error and
recommended methods to correct it.

4.4 Special Maintenance Procedures . This paragraph shall
contain any special procedures required which have not been
delineated elsewhere in this section. Specific information
that ir.dj' be appropriate for presentation would include:

a. Requirements, procedures, and verification which may
be necessary to maintain the system input-output com-
ponents, such as the data base.

b. Requirements, procedures, and verification methods
necessary to perform a Library Maintenance System
run.

4.5 Special Maintenance Programs . This paragraph shall contain
an inventory and description of any special programs (such as
file restoration, purging history files) used to maintain the system.
These programs should be described in the same manner as those de-
scribed in the paragraphs 2.3 and 2.4 of the MM.

112

a. Input-Output Requirements - included in this paragraph
shall be the requirements concerning the eouipment and
materials needed to support the necessary maintenance tasks.
Materials nay, for example, include card decks for loading a
maintenance program and the inputs which represent the changes
to be made. When a support system is being used, this para-
graph should reference the appropriate manual.

b. Procedures - the procedures, presented in a step-by-
step manner, shall detail the method of preparing the inputs,
such as structuring and sequencing of inputs. The operations
or steps to be followed in setting up, running, and terminating
the maintenance task on the equipment shall be given.

4.6 Listings . This paragraph will contain or provide a reference to
the location of the program listing. Comments appropriate to parti-
cular instructions shall be made if necessary to understand and
follow the listing.

113

APPENDIX B - Combat System Program Description Grout)

from: SECNAYINST 3560.1, "Tactical Digital Systems
Documentation Standards," 8 August 1974

C. COMBAT SYSTEM PROGRAM DESCRIPTION GROUP

1. PDO - PROGRAM DESCRIPTION DOCUMENT

2. DBD - DATA BASE DESIGN

3. PP - PROGRAM PACKAGE

114

PROGRAM DESCRIPTION

DOCUMENT

1.0 Purpose

.

The Program Description document shall pro-

vide a complete technical description of all digital processor!

subprogram functions, structures, operation environments,

operating constaints, data base organization, source and

object code listing, and diagrammatic/narrative flows. Each

subprogram or function shall be described in its own volume

with referenced appendixes as digital processor printout

listings. Each Program Description document shall be

directly responsive to the Program Design Specification and

to any appropriate software and/or program specification.

The Program Description document shall be specifically

oriented to programming logic and programmer's language. The

aim should be to describe and completely define the basic

subprogram logic and program procedures for each application

subprogram and for each system control subroutine. As a

detailed compendium of the subprogram structure, the Program

Description document will serve as the essential instrument

for subsequent use by operational , maintenance , and contractor
personnel diagnosing troubles, making adaption changes,

designing and implementing modifications to the system,

and in introducing or adding new subprogram functions to

the completed program.

Figure 2-8. Program Description Document (Page 1 of 16)

115

NOTE

System subroutines are to be con-
sidered in the same light as
subprograms and require complete
documentation as described for
subprograms. However, in the
interest of ease of handling, it
may be convenient to group related
subroutine descriptions into one
volume of the Program Description
document, e.g., executive program.
This should be dorie only when
separation of the subroutines
into different volumes severely
hinders understanding due to the
interdependence of the subroutines

2.0 Requirements

.

The Program Description document shall

be structured according to the format and description which

is contained in figure 2-8 (pages 3 of 16 through 15 of 16)

and are mandatory for use as a minimum.

Figure 2-8. Program Description Document (Page 2 of 16)

116

TABLE OF CONTENTS

Page

SECTION 1. SCOPE 1

1.1 Purpose 1

1.2 Scope 1

1.2 1 Identification 1

1.2 2 Subprogram Tasks 1

SECTION 2. ' APPLICABLE DOCUMENTS 1

SECTION 3. REQUIREMENTS 2

3.1 Subprogram Detailed
Description

2

3.2 Subprogram Flow Diagrams 3

3.3 Subprogram Data Design 4

3.3. 1 Tables 4

3.3. 2 Variables 5

3.3. 3 Flags 5

3.3. 4 Indexes 5

3.3. 5 Common Data Base Reference 6

3.4 Input/Output Formats 6

3.5 Required System Library
Subroutines

8

3.6 Conditions For Initiation 8

3.7 Subprogram Limitations 8

3.8 Interface Description 9

SECTION 4. QUALITY ASSURANCE PROVISIONS 9

SECTION 5. PREPARATION FOR DELIVERY

iii

9

Figure 2-8. Program Description Document (Page 3 of 16)

11?

TABLE OF CONTENTS (Continued)

Page

SECTION 6. NOTES 9

APPENDIXES 11

LIST OF FIGURES

Figure

3-1 Sample Input/Output Word 7

Format Description

3-2 Sample Block Diagram of Sub- 10
program D Interface Relation-
ship

IV

Figure ?-8. Program Description Document (Pa^e 4 of 16)

118

SECTION 1. SCOPE

This section shall contain a summary description of the

structure and functioning of the subprogram in total. All

major functions described in the Program Design Specification

must be presented and briefly annotated. This section shall

include, but not be limited to, the following paragraphs.

1.1 Purpose. This paragraph shall describe the purpose,

background, and intent of the Program Description document.

1.2 Scope. This paragraph shall describe the scope and

objectives that are intended by this document. Included

herein shall be identification and subprogram tasks.

1.2.1 Identification. This subparagraph shall contain the

subprogram nomenclature, including its abbreviations and

assigned designator.

1.2.2 Subprogram Tasks. This subparagraph shall consist of

a detailed list with accompanying narrative of each function

(e.g., the responsibilities) to be performed by the sub-

program.

SECTION 2. APPLICABLE DOCUMENTS

This section shall list those tactical publications,

instructions, specifications, standards, and other documents

applicable to the preparation of the Program Description

document. All cited documents shall list title, identifi-

cation or serial number, exact date of issue, and publisher.

1

Figure 2-8. Program Description Document (Page 5 of 16)

119

The list of applicable documents may also be appendix A, and

referenced as such within this section. In addition, if

required, a glossary may be employed to list abbreviations

and/or terms with definitions and shall be contained in

appendix B.

SECTION 3. REQUIREMENTS

This section shall contain a comprehensive description

of the structure and functioning of the digital processor

subprogram in total. All major functions described in sub-

paragraph 1.2.2 "Subprogram Tasks", must be presented and

fully amplified. This document shall completely describe

all program logic. The minimum content shall consist of

detailed information as follows.

3.1 Subprogram Detailed Description. This paragraph shall

describe the detailed design of each subprogram. It shall

describe completely the processing capability of the sub-

program. When combined with a program listing, flow chart,

and data base description, this portion of the Program

Description document shall fulfill the requirements of

individuals whose responsibilities include program production,

maintenance, and modification. This paragraph of the Program

Description document shall con- ist of a textual development

of the operations performed by the subprogram. It shall be

organized by subprogram tags (mnemonic labels) and shall

completely describe each section of code as it appears in

the subprogram listing. This, in essence, will describe

the processing operations performed at each branch of the

subprogram and the results obtained by following each branch.

2

Figure 2-8. Prograr Description Docurrent (Page 6 of 16)

120

Those subprogram tags that are common branch points from

several sections of code (or text) need only be described

once, and thereafter need only be referenced.

During the discussion of subprogram segments, if common

system subroutines are used, they shall be identified by

their function and mnemonic label with a reference to the

document where they are described in detail.

The level of detail for this portion of the Program

Description document amplifies the information provided in

the subprogram flow diagrams described in section 4. Since

the usual flow diagram presents a limited amount of infor-

mation, flow diagrams are useful only as pictorial adjuncts

to the required text description. The same subprogram tags

specified in the text description shall be shown in the

appropriate blocks of the related flow diagrams.

5.2 Subprogram Flow Diagrams. A flow chart shall be included

for each major procedure or subroutine that depicts detailed

operations performed by the subprogram. The flow chart shall

specify all operations performed and include all equations

used in mathematical computations . Comments in the program

printout listing shall be used in conjunction with this

section to relate the text, flow charts, and code. Flow

diagrams shall show annotated logic flow among and between

each program subdivision level down to, but not including,

each compiler source statement, or to that source level

containing comments if a compiler is not used. Source listing

comments shall be brief narrative phrases, one for each com-

piler source statement; or, if a compiler is not used, then

3

Figure 2-8. Program Description Tocument (Page 7 of ie)

121

a comment for every logical switch or branch statement, and

for an average of at least every 10 assembly level language

statements

.

3.3 Subprogram Data Design. This paragraph shall contain a

general summary description of the subprogram data base. The

overall format selected for this section shall be designed to

facilitate the rapid retrieval of data base information.

Throughout the Program Description document references shall

be made to subroutines, constants and control -registers , input

buffers and tables, output buffers and tables, priority/

interrupt tables, etc. Since many of these tables and

control-registers contain data that are referenced by more

than one subprogram, it is sufficient that the detailed

description of this common data base be a part of the Data

Base Design document, which is used as a central source of

reference for subprogram data. The following subparagraphs

specify the level of detail that is required for this

Program Description document section.

3.3.1 Tables

.

This Program Description document subparagraph

shall contain the detailed description of each table used

only in the subprogram data base. Each table shall be

described individually, where the descriptions are presented

according to the alphabetical ordering mnemonic table name.

.

The content of the subprogram table descriptions shall be as

defined for describing common data base tables in the Data

Base Design document. The minimum content of the subprogram

table descriptions shall be:

a. Table Name

b. Purpose and Type

4

Figure 2-8. Program Description Document (Page 8 of 16)

122

c. Size and Indexing Procedure

d. Structure and Bit Layout.

3.3.2 Variables. This Program Description document sub-

paragraph shall contain the detailed description of each pro-

gram included only in the subprogram data base. Each variable

shall be described individually where the descriptions are

presented according to the alphabetical ordering of the

mnemonic names of the variables. The content of the subpro-

gram variable descriptions shall be as defined for the Data

Base Design document. The minimum content of this Program

Description document subparagraph shall be:

a. Constant Name

b. Purpose

c. Structure and Bit Layout.

3.3.3 Flags

.

This Program Description document subparagraph

shall contain the detailed description of each flag included

only in the subprogram data base. Each flag shall be

described individually, where the descriptions are presented

according to the alphabetical ordering of the mnemonic names

of the flags. The content of the subprogram flag descriptions

shall be as defined for common flags in the Data Base Design

document. The minimum content of this subparagraph shall be:

a. Flag Name

b. Purpose and Status

c. Structure and Bit Layout.

3.3.4 Indexes. This subparagraph shall contain the technical

description of each index included only in the subprogram data

base. Each index shall be described individually, where the

5

Figure 2-8. Prograr Description Document (Page 9 of 16)

123

descriptions are presented according to the alphabetical

ordering of the mnemonic names of the indexes. The content of

the subprogram index descriptions shall be as defined for

common indexes in the Data Base Design document. The minimum

content for this Program Description document subparagraph

shall be:

a. Index Name

b. Purpose.

5.5.5 Common Data Base Reference. This Program Description

document subparagraph shall provide a complete list of all

references to local and common data base items and the loca-

tion of each reference. The list also provides a cross

reference to the Data Base Design document which provides

the technical description of the common data base items.

If a Navy approved compiler is used, a cross reference

obtained from the compiler may be substituted with written

Navy approval by the procuring activity.

5.4 Input/Output Formats. This Program Description document

paragraph shall contain a brief description and graphic

(sample) representation of each input and output message,

card format, tape format, etc., processed by the subprogram.

If the Program Description document volume concerns a common

system subroutine, a detailed explanation and graphic repre-

sentation of the input and output registers to and from the

subroutine shall be provided. This shall include scaling and

bit-position information (see figure 5-1).

Figure 2-8. Program Description Document (Page 10 of 16)

124

31 30 79 11 17 16 15 14 13 i? 11 10 9 1 7 4 5 4 3 : 1

- I

T

EUVAMON (SS) S

1

3 1 A H S M
?

M
3

G
1

T

1

1

2

1

E

f

A
- G

1

f

r »

HELD DESCRIPTION UNI'S SCALING

TT Tett Jorge* - Interpret os a r»on-toctieol »roek

U£VATlON<SS) A voio* ewpretfinq the elevation angle ot which the rodor I*

to conduct <ts Sector Search. Minimum value it 1 degree

.

Minimum value >i 85 degree*. MS8 = X, LSB Y,

SAMS 1?

at Sector 1 Stonking - Interpret os first lector in which the radar

• f blanked during Hori«on Search Mode.

17 Sector ? Blanking - Interpret a* tecond lector in -hieh the

rrde* <» blanked during Horiton SeorcK Mode .

AT Alternate Air Target - Interpret ot order to select alternate

air fuzing for 'he oppropriote missile type *Kei HSe LS ii

assigned to in* appropriate MR.

HI Horiton Search Reojueit • Interpret at order to alert the console

attoci"ted with rh« oDpropriate MR to a Horizon Search

Request

.

SO Sector search Order * Interpret a* "»lace 'Jt/opnoff MR in

Sector Seorch Mode. Associated with Elevation (SS).

M2 Mluile Radar ? - Interpret at o modifier

.

M3 Mttsil« Radar 3 * Interpret at o modifier.

Gl Gun Radar I - Interpret « a «»odifier

.

Tl T0T-1 - Interpret at a modifier to any doto associated to indl-

ore tource of doto.

T? TOT-? • Interpret at o modifier to any do*o attocJoted to Indi-

cate tource of doto.

Tl Terminate Engagement - (nterpntt at Break Track on attociated

MR/GR and proceed to any subsequent engagement recfU»re-

m*nn Subject to legality checks.

FA Fire Again - Fire again an appropriate frock. Subject H>

legality checks.

OT Gun Target - Interpret ot GR-1 function nd route ttotut to

Gft-I.

FT fait Target - lnv«rpr«r <n auociatod wirh fl.td HR wlrK appro-

pHo'« MR . Do«t nor apoi r * GR-1

.

M «.l»ov» MR/GR - lftr«rp««r m Ir.ak Trocfc wlrti no furtKw

ngoa««rtf r«ajuir*m«mt and rvrum MR/GR to Air r.ob r

Mad*.

Figure 3-1 Sample Input/Output Word Format Description

7

Figure 2-8. Program Description Document (Page 11 of 16)

125

1

3.5 Required System Library Subroutines. Tms Program

Description document paragraph shall list, in alphabetical

order, all system library subroutines used by the digital

processor subprogram. It shall describe the area of the

functional description where use is made of the system

library subroutine and the document number where the sub-

routine can be located. For example:

System Subroutine Name Used Document Reference
RTN CArc Tangent) 3.2.3 Computer Subprogram

Design Document
Volume 10

SQS (Square Root) 3.2.1 Computer Subprogram
Design Document

3.2.3 Volume 10

3.6 Conditions for Initiation. This Program Description

document paragraph shall identify system conditions that must

be met for this subprogram to be initiated for processing.

For those subprograms that are always initiated for processing

regardless of system conditions, the word UNCONDITIONAL shall

be shown. For those subprograms that are initiated due to one

or more unique conditions, each possible condition or set of

conditions shall be described. If the conditions are based

on the setting of certain items of information, each item, its

required value, and a definition (or reference) of that value

shall be shown.

3.7 Subprogram Limitations. This Program Description docu-

ment paragraph shall summarize any known or anticipated limi-

tations of the subprogram. A list of all restrictions and

constraints that apply to the subprogram shall be provided

including timing requirements, limitations of algorithms and

Figure 2-8. Prograrr Description Document (Page 12 of 16)

126

formulas used, design limits of input and output data,

associated error condition sensing provided, and the error or

reasonableness checks that are programmed into the various

routines

.

3.8 Interface Description. This Program Description document

paragraph and an associated block diagram shall show the

sequential and functional relationship of the subprogram with

the other subprograms and system subroutines or executive

.

with which it interfaces. Figure 3-2 illustrates the block

diagram showing the relationship between subprograms.

SECTION 4. QUALITY ASSURANCE PROVISIONS

This Program Description document section shall reference

all applicable test plans and test procedures that have been

used for verification of this digital processor subprogram.

SECTION 5. PREPARATION FOR DELIVERY

This section is not applicable- to this document.

SECTION 6. NOTES

This Program Description document section shall contain

supplementary information. The information shall include

but is not limited to:

a. Information of particular importance to the procuring

agency in using these documents.

b. Administrative and background information.

Figure 2-8. Program Description document (Page 12 of 16)

127

Figure 2-8. Program Description Document (Page 14 of 16)

128

c. Ordering instructions for technical data pertaining

to the digital processor subprogram.

This Program Description document section shall also
I

list any documents necessary for use or understanding of this

subprogram but not contained within the document.

APPENDIXES

The following appendixes may be included:

a. Appendix A. See section 2.

b. Appendix B. See section 2.

In addition, the Program Description document appendixes

shall include separate sections for information and data which

are required for completeness in describing a variety of

aspects of the structure and functioning of the subprogram.

This data may be bound separately for convenience or may be

published after the other sections have been issued in initial

form.

11

Figure 2-8. Program Description Document (Page 15 of 16)

129

Content Check List

Instructions with annotations, listings

(1) Binary (tape, cards)

(2) Machine, Assembly, Compile

(3) Comments

Procedures /Subroutines

(1) Procedure Diagrams - Logic

(2) Procedure Data Design*

(3) Subroutine Flow Charts

(4) Narrative, Index to Procedures, Subroutines

Program Data Map

(1) Common

(2) Unique - Function

(3) Index to Data

Checkout (Validation)

(1) Component Tests - I/O

(2) Subprogram Tests

(3) Diagnostics Specification and Description

Technical Program Checkout Operation

(1) Check Point Entry, Exit

(2) Test Data Standards

(3) Program Preset for Checkout

Program Deviations from Technical Program Design

(1) Subprograms

(2) Equipment Utility

(3) Operator Actions

(4) Allocations, with Deviations from Planned Budget

(5) Timing Revisions - Priority Deviations

Addendum to Tech. Program Designs

(1) System Program

(2) Operator and Equipment Support Subprograms

(3) Technical Subprograms.
12

Figure 2-8. Prograrr, Description Document (Page 16 of 16)

130

DATA BASE DESIGN

DOCUMENT

1.0 Purpose

.

The Data Base Design document shall provide a

complete detailed description of all common data items

necessary to carry out the functions of the digital processor

program. Common data is that data required by two or more

subprograms. Examples of common data include constants,

indexes, flags, variables, and tables. The Data Base Design

document shall be based on the Program Performance Specifi-

cation. It shall be developed in accordance with the Program

Design Specification and concurrently with the Subprogram

Description document. The terminology employed in the Data

Base Design document shall conform to the programming guide-

lines in the Program Design Specification and the programming

language employed for production of the digital processor

program.

2.0 Requirements

.

For convenience in describing the minimum

essential content, figure 2-9 (pages 3 of 11 through 11 of 11)

shows a normal format for presentation of the material. How-

ever, the paragraph headings and numbers indicate the general

nature of the topic, and are mandatory for use as a minimum.

Figure 2-9. Lata Base Design (Page 1 of 11)

131

TABLE OF CONTENTS

SECTION 1.

1.1

1.2

INTRODUCTION

Purpose

Scope

Page

1

1

1

SECTION 2. APPLICABLE DOCUMENTS 1

SECTION 3. TABLES 2

SECTION 4. VARIABLES 3

SECTION 5. CONSTANTS 5

SECTION 6. FLAGS 5

SECTION 7. INDEXES 6

SECTION 8. SUBPROGRAM REFERENCE (SET/USED) 6

SECTION 9. NOTES 7

APPENDIXES

iii

7

Figure 2-9. Data Base Design (Pase 2 of 11)

132

. LIST OF FIGURES

Figure Page

3-1 Sample Structure and Bit 4

Layout Diagram

LIST OF TABLES

Table

8-1 Sample Subprogram Reference 11

List (Set/Used)

IV

Figure 2-9. Data Base Design (Page 3 of 11)

133

SECTION 1. INTRODUCTION.

This section shall introduce the document and summarize

the labeling conventions observed in the formation of mnemo-

nics that identify data items for this program as defined in

the Program Design Specification.

1.1 Purpose. This paragraph shall describe the purpose and

intent of the Data Base Design document.

1.2 Scope. This paragraph shall describe the scope and

objectives that are intended by the document.

SECTION 2. APPLICABLE DOCUMENTS

This section shall list all documents which apply to

the preparation of this document and to the utilization of

the digital processor system to which this document pertains.

This section shall include, but not be limited to, references

to the appropriate Program Performance Specification, Program

Design Specification, and any additional documents that apply

to the design or use of the Data Base Design document. All

cited documents shall list title, identification or serial

number, date of issue, and publisher. The list of applicable

documents may also be appendix A and referenced as such within

this section. Further, if required, a glossary may be employed

to list 'abbreviations and/or terms with definitions and shall

be contained in appendix B.

Figure 2-9. rata Base Design (Page 4 of 11)

134

SECTION 3. TABLES

This section shall contain the detailed description of

each table used in the common data base. Each table shall be

described individually where the descriptions are presented

according to the alphabetical ordering of the mnemonic name

of the table. The minimum content of this section shall be:

a. Table Name. The title of the table with the assigned

mnemonic label in parenthesis, e.g., Common Track Table

(CDTRK)

.

b. Purpose and Type. The table type (e.g., fixed or

variable length, table structure) and the explicit use of the

table.

c. Size and Indexing Procedure. The number of items in

the table and the number of digital processor words required

by each item. It shall also define, in precise terms, the

method used to index through the various items of the table

and any special conditions pertaining to the referencing of

an included item.

Following the description of the table, the subitems

(fields) making up each item shall be defined. The minimum

content of these descriptions shall be:

a. Field Name. The title of the field with the assigned

mnemonic in parenthesis.

b. Purpose and Type. An explicit description of the use

of the field that indicates its type (e.g., alphanumeric

integer, fixed point, or floating point).

Figure 2-9. Data Base Design (Paee 5 of 11)

135

c. Size

.

The size of the field in words or bits (if

numeric) or number of characters (if alphabetic).

d. Binary Point. This information shall be included

for all numeric type fields except floating point, and shall

indicate the bit position of the binary point (scaling) of

the variable.

e. Range of Values and Initial Condition. The minimum

and maximum values that are valid for the field, and the

initial condition of the field if it is preset. For alpha-

numeric types the data code (e.g., ASCII, BCD) shall also

be given.

f. Static/Dynamic

.

The changeability nature of the

field (e.g., unchanging value is static, changing field

values are dynamic) .

g. Structure and Bit Layout. A diagram for each digital

processor word required by the field, as shown in figure 3-1.

SECTION 4. VARIABLES

This section shall contain the detailed description of

each variable included in the common data base. Each variable

shall be described individually where the descriptions are

presented according to the alphabetical ordering of the

mnemonic names of the variables. The minimum content of this

paragraph shall be the following information and shall be in

accordance with the requirements defined in section 3 of this

document

:

a. Variable Name

b. Purpose and Type

3

Figure 2-9. rata Base Design (Page 6 of 11)

136

o

z
3 2 "•

5
»^

re
z I 1uu 3

a Mo
z
2

w

Q

:k to

condui

um

value

which

the

in

which

236.00

3

n
2 -

= I £ S S -

i
| * '• si ii

-4

<o

4J

•H

2

m

<N
•3
c
«

^

1 Hi ~ § ii *-
3

3
4-1

v?

Ui

8
" :a £* si]»

S Ui .rl 11 in
T I* * 1-2 Ij h-5

3 JjS A U lit
i * if!
i. < vt vt <

1—

1

c

CO

1—

1

1

m

Sh

3
Mi

SO
•^ ^ •H

(tl

S o
-i

z 2£
fi -- u. > 1
r

1

1 E- iai ea aa «

4

Figure 2-9. Data Ease Design (Page 7 of 11)

137

c

.

Size - number of bits and sign (if numeric) or

number o f characters (if alphanumeric)

d. Binary Point (not applicable to floating point

numeric or alphanumeric types)

e. Range of Values and Initial Condition

f. Static/Dynamic

g- Structure and Bit Layout

SECTION 5. CONSTANTS

This section shall contain the detailed description of

each constant included in the common data base. Each constant

shall be described individually where the descrip tions are

presented according to the alphabetical ordering of the

mnemonic names of the constants. The minimum content of this

paragraph shall be the following information and shall be in

accordance with the requirements defined for sect ion 5 of this

document :

a. Constant Name

b. Purpose

c. Initial Condition

d. Structure and Bit Layout

SECTION 6. FLAGS

This section shall contain the detailed description of

each fla g included in the common data base. Each flag shall

be described individually where the descriptions

5

are presented

Figure 2-9. Data Base Design (Page 8 of 11

)

138

according to the alphabetical ordering of the mnemonic names

of the flags. The minimum content of this paragraph shall be

the following information and shall be in accordance with the

requirements defined for section 3 of this document:

a. Flag Name

b. Purpose

c. Initial Condition

d. Structure and Bit Layout

SECTION 7. INDEXES

This paragraph shall contain the detailed description

of each index included in the common data base. Each index

shall be described individually, where the descriptions are

presented according to the alphabetical ordering of the mnemo-

nic names of the index. The minimum content of this paragraph

shall include the following information and shall be in

accordance with the requirements defined for section 3 of this

document

:

a. Index Name

b. Purpose

SECTION 8. SUBPROGRAM REFERENCE (SET/USED)

This section shall include a complete list of all common

data base items with a cross reference which includes all

referencing subprograms. The list shall be presented in the

form of a matrix, where the rows are used for names of the

items and the columns used for names of the subprograms. To

6

Figure 2-9. Eata Ease Design (Page 9 of 11)

139

facilitate its use, the items and subprograms shall be listed

alphabetically with S, U, or B utilized to indicate Set,

Used, or Both (Set and Used) , respectively. An example of a

subprogram reference matrix with Set/Used is shown in table

8-1.

SECTION 9. NOTES

This section shall include a list of all subprograms by

text name and mnemonic. The order of the list shall be in an

alphabetical arrangement based upon the identifying subpro-

gram mnemonic labels. Further information such as Subprogram

Description document reference for each listed subprogram

shall be included as required to facilitate the use of the

Data Base Design document.

APPENDIXES

The following appendixes may be included:

a. Appendix A. See section 2.

b. Appendix B. See section 2.

In addition, any information which is too bulky to be

placed in the body of the document, such as further data

description material or applicable support system listings

from the assembler or compiler, (e.g., a common data or pro-

gram data summary) shall be included as an appendix.

Figure 2-9. Data Base Design (Page 10 of 11)

140

COMMON
DATA ITEM

SUBPROGRAMS

SPGMA SPGMB SPGMC SPGMO SPGME SPGMF SPGMG SPGMH

(TABLES)

TABI(FLOt) S 8 - 8 S -- S —

TAB1(FLD2) s -- s, B - s s 8

TAB1(FLD3) B U B B u u — 8

(VARIABLES)

VRBLt U u B -- s 8 s --

VRBL2 u -- B S " s 5 -

VRBL3 B B S U u u S 8

(CONSTANTS)

CONST1 U ~ u u u -- - U

CONST2 u U ~ " u u — U

(FLAGS)

FLG1 s 8 s - u u 8 s

FLG2 s B u s u — 8 8

(INDEXES)

IND1 u S 8 u s " B -

IN02 u u s 8 s B 8 --

. .

Figure 8-1 Sample Subprogram Reference List (Set/Used)

Figure 2-9. Tata Ease Design (Page 11 of 11)

14:1

PROGRAM PACKAGE
1

DOCUMENT

1.0 Purpose

.

The Program Package document shall consist o £

all the program material items necessary for the procuring

agency to produce, maintain, and update the digital processor

program. These items shall include, but not be limited to,

the digital processor program source card deck listing, an

error-free source/object listing produced by an assembly or

compilation of the source decks, a complete cross-

reference listing produced by a compilation of the source

decks, and any data which are necessary to cause programs

to run properly (e.g. adaptation data, data file contents,

set up data, program parameter values.)

2.0 Requirements

.

The Program Package document shall be

structured according to the format and description contained

in figure 2-10 (pages 2 of 10 through 10 of 10). However,

the paragraph headings and numbers indicate the general

nature of the topic and are mandatory for use as a minimum,

with the exception of cross-reference and miscellaneous

listings when not provided by the supporting compiler or

assembler system.

Figure 2-10. Program Package (Page 1 of 10)

142

TABLE OF CONTENTS

SECTION 1.

1.1

1.2

INTRODUCTION

Purpose

Scope

Page

1

1

1

SECTION 2. APPLICABLE DOCUMENTS 1

SECTION 3. SOURCE DIGITAL PROCESSOR PROGRAM 1

SECTION 4. OBJECT PROGRAM TAPE 2

SECTION 5. SOURCE PROGRAM LISTING 2

SECTION 6. SOURCE/OBJECT LISTING 3

SECTION 7. CROSS-REFERENCE LISTING 3

SECTION 8. MISCELLANEOUS LISTINGS 3

APPENDIXES

iii

6

Figure 2-20. Program Package (Page 2 of 10)

143

Fi ?ure

6 -1

7 •1

8 -1

LIST OF FIGURES

Page

Sample Source/Object Listing 4

Sample Cross -Reference Listing 5

Sample Procedure Summary Data 7

Listing

IV

Figure 2-20. Program Package (Page 3 of 10)

144

SECTION 1. INTRODUCTION

This section shall briefly define each of the required

items in the digital processor program package. Within these

definitions, general terminology is used to describe those

items, and the requirements herein should not be construed

to mean that each assembler or compiler system used for pro-

gram generation must provide the explicit items called for

in this section.

1.1 Purpose. This paragraph shall describe the purpose,

background, and intent of the Program Package document.

1 .

2

Scope

.

This paragraph shall describe the scope and

objective intended by this document.

SECTION 2. APPLICABLE DOCUMENTS

This section shall list those tactical publications,

instructions, specifications, standards, and other documents

applicable to the preparation of the Program Package document.

All cited documents shall list title, identification or serial

number, exact date of issue, and publisher. The list of

applicable documents may also be appendix A and referenced as

such within this section. In addition, if required, a glos-

sary may be employed to list abbreviations and/or terms with

definitions and shall be contained in appendix B.

SECTION 3. SOURCE DIGITAL PROCESSOR PROGRAM

This Program Package item shall be the complete source

form of the digital processor program, suitable for assembly

or compilation. The physical form of the source program may
1

Figure 2-2Z. Program Package (Page 4 of 12)

145

be card decks , or equivalent magne tic tapes. In either case

the form of the source program sha 11 be compatible with the

production facility to which the p rogram is delivered. For

example

,

card readers may differ in their interpretation of

the physical punches on a card for certain alphanumeric

symbols . If this is the case, it is the contractor's respon-

sibility to conform to production facility formats.

SECTION 4. OBJECT PROGRAM TAPE

This Program Package item shall be the complete object

form of the digital processor program, suitable for loading

and execution in the operational digital processor. The

object program shall be obtained from an assembly or compile

of the source digital processor program containing no fatal

errors and be completely free of patches. The physical form

of the object program shall be on either magnetic or paper

tape. In either instance, the object program tapes shall

be compatible with the production facility to which the

program is delivered.

SECTION 5. SOURCE PROGRAM LISTING

This Program Package item shall be a listing of the

source digital processor program as delivered. The listing

shall be an exact duplication of the delivered card decks

or magnetic tape. Each compiler source statement will be

annotated with comments or if the source is assembly level,

then a comment shall be listed for each assembly level line

or function group of lines with not less than an average of

one comment per five (5) statements.

2

Figure 2-22. Program Package (Page 5 of 10)

146

SECTION 6. SOURCE/OBJECT LISTING

This Program Package item shall be a listing of the com-

bined source statements and resulting object machine instruc-

tions generated during an assembly or compile of the delivered

source programs. Figure 6-1 illustrates a typical source/

object listing. The source/object listing shall be free from

fatal errors and be an exact presentation of the delivered

source and object program. If the supporting compiler or

assembler system does provide source/object listing, then the

minimum requirement is the object listing.

SECTION 7. CROSS-REFERENCE LISTING

This Program Package item shall be a listing showing a

cross-reference table of each mnemonically labeled statement in

the digital processor program and each statement in the digital

processor program that references the labeled item. The table

shall be ordered alphabetically according to the mnemonic labels

and shall be generated as the result of an assembly or compile

of the delivered source digital processor program. Figure 7-1

illustrates a cross-reference listing where the labels are

alphabetically listed on the left side of the page and the

address of each reference to the label is listed across the

remainder of the page.

SECTION 8. MISCELLANEOUS LISTINGS

These Program Package items shall be included, as avail-,

able, from the assembler or compiler system used in the

digital processor program production. The Program Package

3

Figure 2-20. Program Package (Page 6 of 10)

147

!

1

1

'

1

1

* 1

[h-
,(*

•
•

t
•

i ;

• 1

m •

** 1 i

,
i

3

|

i

i 6
•«
» w

'
• i is i

1

'

i -s 1

1 ««
|»•>

X «•
jw w i 1

« • M
¥? HJM U '

m « — • 3
S •- <* — *4

|» « * • tt M
fc> •- a•

- K
i

2 !^ — • ~ • *~

X M • <~f» —
i
>

1V
IBS

m * K 1 W
• • u . • «#

l» « • 9 e •
k «a « V* U • at — — Of

3
u w w m a « M •

1 m
r 1

• •
- 3 IT*

1

M J 5 a .o 9 M «l t o , u
Uf • m —. ,— t* w »- — -* U X or- m U o
• no • • • ? «j o * Wt • a o m - a • • X» HI - 3 * X X « I « 1 « s (ft• •- • Hi Ml X ? a o w k hi — E •-

ij • a
« M *- •• -J - * • X u* - o M X • c • • X• 5 * »> • V MO

k o • i I

«M * — —

•

X X
«

- - . 3 • , <J ^ • ft. o
f s:,

** «3 9 M - O * O « 4f VI ^
«<* - — - * > w < *. M O U • O * M o • • w — • *
u • * H M - X » OS 4. X o o * -i O Uj ^ M * 3 • a «

»- » (X 3 • « *- ft. dl « • 3 • a • ft. HI • * X W O J -^ v»
HI V I X C I - 3 «A OU »-

1 o in a • X o vt X X Oft ft, uj a a aOuiU u L> U O C _ ^u JJ 3 J IU1 u m mu x X « — *- — «

—

x ai c ~ - w * « C i S • « » X M X — 3 3 O «•4X9 • • *

'

HI — U X O W kUM J X HI ft. UI 31 — k* *-
I ta I X X x o -- •. - ^ _t *- »- HI Oo r x o yj w\u»> •» Uf M .* •*uuu *-» L» V M U IM OWU3 CJ 3 4 V. ae * « Mm UI M UJ u w

m u
ft. ft ft. o

t- »- X h *- Ui ^*- X -J »- •> l»
UUttf iu J, ^ _ u u w o : u u UUlUk u uiui u ui Ut UUlM UI out _> o
it lb m p /» N ,* «

- t- !

a p o

M MM

Ma
«
M
HI

i .

. ** w - ^

ft* «
W«tflOO
««
M V*

M bk *
1

1

1

i

m *- • Mtp»of»ir>o*tf''**'»« r. ^ P* «f»' *»«Ar.^.^(* m r» «> «r> »% f» a a -c ^ fs ts. |p p«, <r r-• • (»00mom.>0*>000'» n *t- MPOOOID m mo MM O O * r»* 1 M 1

s K _ 1 Ml
1 M O M O o1» t» ooooOctO"- o o » rs *- «% r*>r «>r ^ *n r- «r\ rip e o n MO M M M

1

ft)** • O <« -a • • • * • ->
I

• • « O O 9 3 » o v e OO (ft • 9 O ol » -ftMj O ft> O* o e r*»r*oo«-.o«« — — «i ri — -> i w o. --. o a — u ~ -O -J « * — o n. -4 r». ti in •• ~* O
• » • «»«0 i3oad.no> 0<* a O * OOVKOD B o^ OO K O 3 O -O 1 OO O (ft O
- • ' • r* • »« r* o »-. ** o *- « r* r» p* « « «s ^ <-*00«c* ««• no p» r »»•

j
3 — O C *M * -* -•— *(*.-.*•.-* — t*. — — ** -* -n •« #*| -4 C* « ^ -1 •> *4 — «

1

r * P

X

ca i 5 O — N *"» » M <* »* O .* #v M » M « »• a — IN -> * IT * K » **n M • > -,N M • M
««*«««ft«t*«tN.tt*.r<« s K ^ r>. - ^ - --

» MM M M
s r*. »*. fc. (K

3 OO O O
M

• • < • oooooooooo.* o «» o « e o » a o OO o o a o ok
p " •> rrr *rr n r> r> tr% «r» at r m M * «- ^ r> * *- r* r- n tn MIT MM km nt i* MM M, M Ml

* 25 n • ' K • 1 • f4 N M
fw K ^. ^

» M « «N O •?** M * M «• *~- o -
1

-((S

s K
•»

, m m -«•
-f

-* - j -• ^ »s *. ^ O OO • O O o o •*>* •*
M MM « t » n MM M * » «» * * ^ •» •* ^ » ^m « * 1 m « t « r» nnn^ MM M M M MM M M M -n M mM m mm ki my

V » • •
I

> *> • • t» • O »» B
N

• o • • «ft OO o <ft OO O O O > O (»
1

> O

• •- •
J

j

i

V
*

! «

!

• •

1 1

*TV 1 1

i

00
c

u
J

"~\

o—
u
(h

3
O
CO

a
E

i-

3
60

Figure 2-20. Program Package (Page ? of 10)

148

o
i

^

SSL

222 = *
IOOCIZ o»o-PQO <

.1
<Vi <\j -^ •"» -.

o oo ej o c

^1 1/1 w^ ^/"

33j33fC
-- «4* ot©
eio at o

Nd^^NdsH- -* — •< * J j -» .«*

oaoaoooqoaocloaoclo

00
c

1)

u
a

u

u
OS

I

ui

</>

o
In

u

e

CO

•1)

Si

3
OO
•iH

-

Figure 2-20. Program Package (Page 8 of 10)

149

items may include such listings as automatically generated

subprogram flow charts, data base summary listings, and pro-

gram summary data listings. Each of these items may be

generated as a result of an assembly or compilation of the

delivered source program. Figure 8-1 illustrates a procedure

summary data base listing which describes the environment and

parameters of each routine in the digital processor program.

APPENDIXES

The following appendixes may be included:

a. Appendix A. See section 2.

b. Appendix B. See section 2.

Figure 2-20. Program Package (Page 9 of 10)

150

s

|

i
«
m

•

*
u
It

, t

c

. 1
i

i

00
c
•H
J

s
* •-

j

1

1 1

1
I

'

C
-J

e
1

i

!

09

If i»
O

!

I

a
cd

Q
* £ i [

«dm i^ v/l

C. c 1

I. X
J <

s

<

5 i
i i

CO
u Ke O
X 2 i

• g
J < ', 3
9 u. 10

|
e a

a X
a

£
o Ow X hi L^

c > >« 1 IB

I
H-

1

•- a 3
7 J

1

a C o
* T3

i

0)

o
Jheu

a 1
Ik
E 1

a.

« o 1 1 o
5
X

u I w « Ve
VI

C
2 i

i

3: u t-H

>
£

i £
KO cd

1 3 CO
*

o
u.o

!

! c .-H

1
i

au
IW

! i i
c ao

|

i
i

»

5 i
&

u 11 £1
B
hi
X U

3
M 00
W •H
d a

U,

e o V* c l/l

h. w u c o
<

3

o
Ml | I

5 - 5

|

s 3

s

1
z »- u •J *

IIX c
o

i

Ik o V c
£ ^ 5 5 I! \

*

< n G u. 3
Z w»

3
y

* 1/

ft o * y * V i
1/

w
k ac

I

w
s

h
4
Mil

u hi

Si

I 3
<

s V

1H 3 !
S

>

I
1

3
7

Figure 2-20. Program Package (Page 10 of 10)

151

APPENDIX C - Standards and Conventions for Use of
the CMS-2 Language

Developed by: Tactical System Programming Support Branch,
Marine Corps Tactical System Support Activity,

Camp Pendleton, California 9205*

I. Background . While CMS-2 is not the most modern, state-of-the-art

computer language in existence, it is nevertheless a powerful High Order

Programming Language (HCL) which permits the development of well-designed,

structured computer programs. When properly designed and coded, CMS-2

programs can be readily maintained. The purpose of this document is to

provide guidance for the design and coding (programming) of CMS-2

programs. 3ECNAVINST 3560.1 (Tactical Digital Systems Documentation

Standards) and MIL-STD-1679 (NAVY) (Weapon System Software Development),

although excellent in many respects, provide little specific guidance with

regard to the computer program itself. The computer program listing is

the single most important tool for software maintenance. Since guidance

for computer programs is highly language-dependent at the coding (or

listing) level, thi3 document provides guidance in terms of the CMS-2

language. These standards must be complied with. Use of the words

"shall" and "must" mean strict adherence is required. Section II defines

terms which are used throughout the document. Section III provides

guidance on the design and structuring of CMS-2 programs. Section 17

gives specific guidance on the standards and conventions for coding CMS-2

programs

.

II. Definition of T?r~a . The purpose of this section is to define sev-

eral programming terms in relation to specific CMS-2 constructs. This

will serve to eliminate much of the semantical confusion which ha3 pre-

vailed. A module, as used in SECIATINST 3560.1 and in this standard,

152

shall *oe a SYS-PRCC or collection of functionally related SYS-PRCC's.

Where possible , one module as defined in the Program Design Specification

(PDS) shall be mapped into one SYS-PROC in the CMS-2 program. However,

where size becomes large, a collection of functionally related SYS-PRCC's

may constitute a module. A routine, as used in SECNAVTNST 3560.1 and in

this standard, is a CMS-2 PROCEDURE or CMS-2 FUNCTION. All routines shall

be PROCEDURES or FUNCTIONS; there shall be a one-to-one correspondence

between them. The use of non-called, "in-line 1* routines is prohibited. A

prologue is defined as the lengthy 3et of comments found at the beginning

of each PROCEDURE or FUNCTION. Section IV. D provides extensive guidance

on prologues.

III. Deaijn and Structure of CVS-2 "r^gr^a.

A. From PPS to Program . The performance functional requirements

described in the Program Performance Specification (PPS) shall be mapped

into program modules which are documented in the Program Design

Specification (PDS). The modules of the PDS are then mapped into

SYS-PRCC's (or logical groups of SYS-PRCC's) of the OJS-2 program. These

SYS-PRGC's are further refined into individual PROCEDURE'S er FUNCTION'S

using the top-down method. The SYS-PRCC's and their subordinate

PROCEDURES or FUNCTION'S must then be documented in the Program

Description Document (PDD). It is important that the PDD contain the

English name as well as the CMS-2 mnemonic (or code name) of every

SYS-PROC (module), PROCEDURE, and FUNCTION. Once this ha3 been done, the

computer program may be coded. The entire process is characterized as a

number of successive refinements; moving from higher to lower (more

153

detailed) levels of abstraction; going fraa the general to the specific;

progressing from functional requirements to the modules to the

manifestation of the requirements in SYS-PRCC's, PROCEDURES and

FUNCTION'S.

B. Data Design Considerations. The global data base requirements

of the computer program should reside in one SYS-DD. One SYS-DD should

be used. However, if more than one SYS-DD is used, it must be for a

logical design consideration such as regional data pools (for large

programs) or COMFCOL's for efficient compilation reasons. Under no

circumstances • will SYS-DD' s be allowed to proliferate as desired by indi-

vidual programmers. Computer programs having n SYS-DD 's for n programmers

is prohibited. In an analogous manner, each SYS-PRCC shall have only one

LOC-DD to describe its regional (local) data. The documentation of data

base information shall be done in the computer program listing. A Data

Base Design document (DBD) is neither desired nor required. Guidance on

how data base information is to be implemented in the program listing is

given in Section 17.

c Bissacahigsl sjaasSaESL.

Hierarchical structure is important in a program. This struc-

ture must be documented by means of a hierarchy diagram which shows the

structural relationship between parts of the program. The ?DD shall show

program structure within a module by means of a complete hierarchy

diagram. The PDS shall show part of this structure by means of a

hierarchy diagram which describes the program down to the module

(SYS-PROC) level diagram. Figure E-1 is an example hierarchy diagram

which illustrates a number of desirable attributes of CMS-2 program

154

en
cj
OS
3 •<
a H
Cd < • •

CJ a en
c 3J Cd » Gt. f-» 2 H-l

ES ;• as a. 3 S JH Uu u a. o 3 CJ 03 <S O 03 COo o u a a J 'J i. -!<
CS OS 2 jj — 3 J -J ^- CJ 2
a- a. o a cj a. en r^ M O X CO w

1 jr
I
a o s: o CO b a. < < 03

en 2 i CS O u U CJ CJ CJ CJ CJx o o a a. cj
CO u u c

«>:

H ••

< CO
CJ a Cd =3 ao o CJ OS a a 2
as cj Cd 3 cu = ^ «c
a. u -j X a «t ^ «C CJ

™ =-.

1 X S3 CU Cd a. CO = a ^ —4
CO cd =» CJ CJ •a; a -j 2 ^
X Cd 2 o Cd S-« N4 CJ >— r-»

en _: Q
l

CJ
a

ou
X
Cd

CJ Cd Cd Ed Cd

_j

o
«> Cd
a

cd a
=» a
Cd I

-5 OOJ

» cj
a. o= — H

cj cj
-J Cd
a co
a* cd

r- 3 O
. CS r" CO t-t 3 CO8cda.cd«s-<OcnoOV1USUJUUJU

cd cj cj a aa

ao
_j2 aM CS

CO «S
CJ 6-

CJ

<
e-> ••

< CO tf H
CJ »- a cd » 5- =3 0- J aso o CJ — a. 3 3 j] a O <
as a jh a u OL _J 2: r- a. a
a. cs cd co a o 3 _J -i 2 r- _J

i a. > Cd CS hH h-• j-> i—i as O
CO C2 Cd Q CJ a. cj Ct. O o <s a.X M _j a o cj M CJ M « u CJ
CO CO i as —

.

cj a. coo
CO CO CO

-J

J
'-

-

a
<a
c
ed
O
'-

au

i

aa

Cd
as

a

<H •• Oh
«* CO 3 Cb hi

CJ -QEda #-* a cj a.O 3= T S fli a f- 03 en 3 2:
as u JZ3 = TT -H a -J «c O <c
a. «= cd a cj ^* CJ O _j 3 H „j

I 2 >3 a < — co H H H H a
CO 2 cd a o s: as «s as cc a a t*;x <e -J 1 O 3 CJ CJ cj a cj a 1—

t

CO Z cj as «*
O a. s z z 2: £
_J

CO
c
3
o
CO

a
o
-

4)

6

a.

a
<u
_i

o
c
eg

a

155

design. There are five SYS-PRCC T s (EXEC, MANMACH, SIGPRCC, GECGRAPH, and

CQMMPRGC) which comprise the major modules of the system. The hierarchi-

cal structure of the program is shown by physical location on the chart

and by the designation of levels. In this example, the executive

SYS-PROC, EXEC, is at the highest level of control and is at level 0.

Only one module (SYS-PRCC) , the executive, should be at level 0. Only one

SYS-PRCC should provide overall control. All other modules (applications

modules) are subordinate and are at level 1 or below. Where standard

executives such as SDEX-7 or SDEX-20 are used, they will be at level 0.

The SYS-PROC s shown at level 1 are the applications modules of the CMS-2

program. MANMACH provides the man-machine interface and consists of the

PROCEDURES MANMACHP (which is the prime PRCCEDURE), MCRTIN, MCRTCOT,

MBUTTGN, and MINDLAMP. Katies that, within each SYS-PROC, the calling

hierarchy is shown by indentation. For example, each prime PROCEDURE is

to the left of all others; and in SYS-PRCC GEOGRAPH, for example,

PROCEDURE CAflTPCL is to the right of GRESECT. This shows that CARTPCL is

subordinate to GRESECT. The following walkthrough is given for further

clarification: SYS-PROC EXEC is at hierarchy level 0, SYS-PRCC GECGRAPH

is at level 1, (PRIME) PROCEDURE GECGRAPH? is at level 2, PROCEDURE

GRESECT is at level 3, and PROCEDURE CARTFOL is at level 4. In a large

program there would be even more levels. SYS-PRCC s (modules) are at

levels and 1; PRCCSDURES (and FUNCTION'S) are at levels 2 or more.

Although the CMS-2 language permits only two levels of hierarchy frcm an

administrative or syntactical view, it is possible to achieve many

structural levels as dictated by the program design by the use of a

calling hierarchy.

156

Common PROCEDURES from the common SYS-PROC, CCMMPROC, are called from

MANMACH and are thus shown in the hierarchy diagram where they are called

even though they actually exist in SYS-PRCC CCMMPROC. Using this conven-

tion, a common PROCEDURE may appear in several application SYS-PRCC s

where invoked. For example, CFILLBUF is shown in SYS-PRCC HANMACH and

SYS-PROC SIGPROC since it is invoked from both places. The actual loca-

tion of CFILL3UF and all other common PROCEDURES is in SYS-PROC CCMMPROC,

which serves to administratively group the common PROCEDURES. From the

total system viewpoint, CCMMPROC can be considered to be part of the

executive program, although functionally separate. Note that figure 3—1

also shows the global data design, SYS-DD GLCBDATA, which contains all

global data items in one place.

There shall be no direct calls between SYS-PROC s. Control between

SYS-PROC s shall be passed through the executive module. PROCEDURES

within a SYS-PRCC shall not call PROCEDURES in another SYS-PROC except in

the case of common PROCEDURES which shall be grouped in oce SYS-PROC.

PROCEDURES within the same SYS-PROC shall call only those PROCEDURES which

are subordinate, e.g., a PROCEDURE at level 3 shall call only PROCEDURES

at level 4, 5, 6 ... n.

17. EgggESmifig Standards ar.d Convpnticns

A. Ger.eri\ . The computer program listing is the mo3t important

tool for the maintenance programmer. The importance of this Section

cannot be overemphasized. The primary purpose of this Section is to

maximize the maintainability of CMS-2 program listings. Since main-

tainability is paramount, it is crucial to realise that clarity takes pre-

157

cedence over efficiency; readability takes precedence over writeabiiity.

The life-cycle of tactical computer program will see a large fraction of

total system cost3 devoted to software maintenance. It i3 important that

CMS-2 programs be clear, concise, structured, well-designed, acdularized,

and straightforward — even at the expense of a few words of computer

memory.

• ^- ttOtm —m * a 1—— '

Figure B-2 illustrates the physical organization of a well-

designed CMS-2 program. A3 required by the compiler, the MAJOR HEADER

comes first. When onl7 one MAJOR HEADER is required, all compile-time

controls shall be located in this MAJOR HEADER. However, there are times

when a program should be compiled several different ways to generate

object code for different target computers. When this is required, MINOR

HEADERS shall be used with each one containing different C-SWUCEES,

MEANS, and EQUALS statements to generate different object programs. Then

by use of the librarian, the desired object program may be generated at

compile time. The next program element after the various headers is the

SIS-DD. Where practicable, all global data items should be declared in

one SIS-DD. The restrictions of paragraph III. 5 of this Enclosure apply.

Next, the various SYS-PROC 's of the CMS-2 program appear, and, of course,

there will normally be aany aore than shown in Figure B-2. Each SYS-PROC

should contain a LOC-DD (if required) which is physically located at the

beginning of the SYS-PROC. After the LOC-DD, the various PROCEDURES of

the SYS-PROC will appear, and each PROCEDURE shall contain LCC-EIDEX'es

(as required) at the physical beginning of the PROCEDURE, immediately

after the prologue. Where prime PROCEDURES are used (and their use is

158

EXAMPLE SYSTEM
MAJOR HEADER

MINOR HEADER 1

MINOR HEADER 2

MINOR HEADER DOCUMENTATION

SXS-DD

STS-PROC 1

LOC-DD

PROCEDURE 1A

LOC-INDEX

PROCEDURE 1B

LOC-INDEX

SIS-PROC 2

LOC-DD

PROCEDURE 2A

LOC-INDEX

PROCEDURE 2B

LOC-INDEX

END-SXSTEM EXAMPLE

•This MINOR HEADER contains the overall program description and prologue.

Figure B-2 CMS-2 Program Physical Organization

159

encouraged) , they shall be the first PROCEDURE in the STS-PROC. The use

of LOCREF to preclude the necessity for forward referencing requirements

at compile time is encouraged. The LOCREF operator permits PROCEDURES to

be physically laid out in the listing in a top-down order which

corresponds to the program calling hierarchy. When CMS-2 FUNCTIONS are

used, they should appear in a location analogous to PROCEDURES.

c csyitcftea and '^atisrs

CSWITCHES are used to selectively vary object code generated at

compile time. They are particularly useful when it is desirable to gener-

ate different object programs for different (but similar) target computer

configurations. When this is done, the C-SWITCH control statements that

control the turning on and off of CSWITCHES will be located in a separate

MINOR HEADER, and all of these MINOR HEADERS will be included on the

library tape. Of course, at compile time, those required will be selected

by the librarian to generate object code for a desired target configura-

tion. Eowever, by placing all MINOR HEADERS on the library tape, all

C-SWITCH settings will be available for inspection by naintenance program-

mers. Each CSWITCH setting in each MINOR HEADER will be well documented

with a clear, detailed comment explaining the purpose of the switch, the

conditions when it should be used, and all unique aspects of the target

configuration it is used for. Then, in the body of the program, CSWITCH

brackets will be highlighted by use of a blank line , a line of asterisks

,

a comment containing the CSWITCH title, another line of asterisks, and

another blank line . For example

:

160

It *** ' l

M CSWITCH TAOC IS USED TO GENERATE TARGET CODE FOR THE TACTICAL "
1 • AIR OPERATIONS CENTER CONFIGURATION '

»

1 1 ** 1

1

CSWITCH TAOC $

* • • «

.... (program code)

• » • .

• » ** * »

'» END TACTICAL AIR OPERATIONS CENTER CONFIGURATION CODE "
i t ***+**»*************** < i

END-CSWITCH TACC $

The use of nested (SWITCHES, while not prohibited, is discouraged. When

MEANS and EQUALS are used for parameterization and to achieve different

target computer configurations, they will be included in separate MINOR

HEADERS as appropriate. They will be physically grouped together within

each header, not mixed with CSWITCH controls and other compiler options.

Furthermore, every MEANS and EQUALS declaration will contain a comment

which describes the purpose and use of the statement. For example:

'» IN THE TACC CONFIGURATION, THE MAG TAPE DRIVE IS CAELED TO •

»

M CHANNEL ». THIS EQUALS STATEMENT IS USED IN CONJUNCTION WITH •'»
..:

•
• CSWITCH TACC. CHANGING THIS ONE STATEMENT WILL PERMIT THE "

•» PROGRAM TO INTERFACE WITH MAG TAPE DRIVES ON OTHER CHANNELS »''
.

'

MTCHAN EQUALS 4 $

Finally, headers should be logically organized so that compiler controls,

CSWITCHES, MEANS statements, EQUAL statements, and other items are

physically grouped together.

.
D. Prologues

Prologues , or narratives as they are sometimes called , are one

of the mo3t important aspects of computer program documentation. Good-

prologues are essential to the understanding of a program by maintenance

161

programmers . They are defined as the lengthy set of comments found at the

beginning of each PROCEDURE in a well-documented program. Prologues are

required at the beginning of every element of a CMS-2 program. Every

prologue shall be clearly delimited, frcm executable code by use of lines

of asteri3k3. A prologue is required at the beginning of the MAJOR

HEADER, every MINOR HEADER, every SIS-OD, every SYS-PRCC, every LCC-DD,

every PROCEDURE, and every FUNCTION in a CMS-2 program. The larger and

more complex the program element, the more extensive the prologue 3hould

be. In addition, there shall be a large MINOR HEADER which contains a

prologue describing the purpose and function of the entire program located

before the first SIS-DD (refer to Figure B-2) . The program prologue shall

describe the overall purpose and functioning of the program, the computer

used for compilation, the target computer (or computers), the name of the

chief programmer, the company responsible for the program's development,

the date the program was delivered to the government, the nomenclature of

the tactical system in which the program executes, applicable references

and standards (such as the Program Performance Specification and standards

which deal with data links, for example), and other pertinent data. In

addition, each module of the program will be listed, a brief description

of each module will be given and the functional relationships of the

modules will be briefly stated. The order of execution, to include the

sequence in which the modules are invoked, will be explained in general

terms.

The MAJOR HEADER and each MINOR HEADER shall contain a prologue

.

Wherever different headers are used to generate different object code, the

prologue will describe the purpose of the header and specifically identify

the target computer and equipment configuration.

162

The STS-DD (or STS-DD* 3) of the program shall contain a prologue

which describes the global data design to include a description of bow the

STS-DD is organized. Specifically, MEMS and EQUALS declarations, TABLE

declarations, and VRBL declarations 3hall be segregated and grouped

according to type. This shall be explained in the STS-DD prologue. As

much as possible, the STS-DD prologue shall function as an index to the

STS-DD . Special naming conventions beyond those described in this stand-

ard shall be explained in the prologue.

Each STS-PROC in the computer program shall have an extensive

prologue. If a program module consists of acre than one STS-PRCC, then

there will be a prologue at the nodule level as well as one for each

STS-PROC within the nodule. Thi3 nodule level prologue shall describe how

the module functions, shall be physically located at the top of the

module, and shall list all STS-PRCC s which belong to the nodule. When a

module is equivalent to a STS-PROC, the module prologue requirement in

satisfied by the STS-PRCC prologue. In either case, module name,

prcgramaer(s) , contractor, and delivery date shall be given first. The

STS-PRCC prologue shall contain an extensive, detailed description of the

STS-PROC s purpose and function. The sequence of processing shall be

described in chronological order to include the calling sequence of

control. The hierarchical structure of the STS-PRCC shall be described,

with the name of every PROCEDURE and FUNCTION given. Finally, all input3

and outputs should be listed. The following example illustrates the

structure of a good STS-DD prologue:

163

MSMODULE SYS- PROC $

COMMENT ***»**»»*******»*******»*»*****•»

MSMODULE - M-SERIES MESSAGE PROCESSING MODULE

PROGRAMMERS: I.M. CODER, U. R. 5ACSER

CONTRACTOR: SOFTWARE UNLIMITED, INC.

DELIVER! DATE: 30 MARCH 1980

PURPOSE: TO PROVIDE TEE JOINT SERVICE INTERAGENCY MESSAGE PROTOCOL
REQUIRED OF THIS COMPUTER PROGRAM BY RESPONDING TO RECEIVED
M-SERIES MESSAGES AND TRANSMITTING APPROPRIATE M-SERIES MESSAGES
AS REQUIRED BY TEE TECHNICAL INTERFACE DESIGN PLAN (TLDP)

.

LEVEL: LEVEL ONE MODULE.

DETAILED DESCRIPTION: (Thi3 portion of the prologue shall contain all of
the items discussed in the paragraph above. In the case of large, complex
modules, it may extend for five or six pages, or sore. Processing should
be discussed in chronological order.)

SUPERORDINATE SYS-PRCCS:
(etc.)

SUBORDINATE PROCEDURES:
(etc.)

FUNCTIONS:
(etc.)

INPUTS:
(etc.)

OUTPUTS:
(etc.)

The prologue for each PROCEDURE and FUNCTION shall be similar to

that for each SYS-PROC except that these prologues will deal with the par-

ticular PROCEDURE or FUNCTION.

Each LOC-DD and LCC-INDEX in the program shall have a brief pro-

logue describing the purpose and organization (if necessary) of these data

design elements. The use of asterisks and single cuote marks to highlight

key comments is encouraged.

164

E. Data Deol?.r*.ticr.a.

As specified in this standard, the Data Base Design (DBD)

requirements of SECNA7INST 3560.1 and MIL-S7D- 1679 are to be met in the

computer program listing. Consequently, it is very important that the

data design elements of a CMS-2 program, the SIS-DD' s, LCC-DD's, and

LOC-INDEX's, contain the information found in the DBD.

Where possible, all global data elements should be contained in

one SIS-DD. The use of EXTHE? and EXTDEF for variables and tables should

be avoided. If these elements are global, they should be in the SIS-DD.

If the SIS-DD becomes too large, in terms of CMS-2 symbol table capacity,

then seme use of CCMPOCLS nay be required. Local data elements belong in

a LCC-DD, and not in a SIS-DD. The SIS-DD should be organized to contain

first the prologue described in paragraph III.D, then all MEANS and EQUALS

declarations (logically grouped), all VREL declarations (logically

grouped), all TABLE (and array) declarations (logically grouped), and all

P-SWITCH declarations.

All MEANS and EQUALS declarations should be contained in the

SIS-DD unless it is necessary to place seme of them in MUTCH HEADERS so

that the program may be compiled differently for different equipment

configurations. The use of MEANS and EQUALS declarations in locations

other than MBJCH EEADEHS or SIS-DD 's is prohibited. The use of the

EXCHANGE primitive is forbidden. The use of MEANS and EQUALS declarations

to increase readability of the program is encouraged. For example, the

statements

THUE MEANS 1 $

FALSE MEANS $

165

increase the readability of the program. The use of MEANS and EQUALS

primitives to reduce typing work, such as

PROC MEANS PROCEDURE $

is forbidden. The use of MEANS and EQUALS primitives to corrupt the CMS-2

language such as,

REPEAT MEANS GOTO $

is forbidden. The purpose of each MEANS or EQUALS declaration shall be

documented with a meaningful comment as 3hcwn In paragraph 17 C:

VRBL declarations shall contain neaningful comments which

describe the purpose, initial value, range, and related data structures of

the VRBL. The use of short, cryptic comments is forbidden. Every VRBL,

no matter how simple, must have the above attributes explained. An exam-

ple of a good 7REL declaration is

:

MSGQPTR IS THE MESSAGE QUEUE POINTER WHICH ALWAYS POINTS TO

THE LAST MESSAGE WHICH HAS BEEN INSERTED INTO TABLE MSGQUEUE.
IT IS INITIALIZED TO ZERO (WEEN THE MESSAGE QUEUE IS EMPTY)
AND ITS RANGE IS FRCM TO 25 (WHEN THE MESSAGE QUEUE IS
FULL). IF IT IS E7ER GREATER THAN 25, AN ERROR CONDITION
(QUEUE OVERFLOW) WILL RESULT, AND THE QUEUE WILL BE FLUSHED
WITH MSGQPTR RESET TO 0.

VRBL MSGQPTR I 16 U P $

TABLE declarations are similar to VRBL declarations when it

comes to documentation requirements. Because TA3LSS can be very complex

data structures, they must be explained in detail. Each TABLE, SUB-TABLE,

LIKE-TABLE, and FIELD will be described as to purpose, initial value,

range, and related data structures, if any. The following example illus-

trates these concepts:

166

COMMENT
TABLS ACCOUNTS IS USED TO STORE INFORMATION CN 400 BANS ACCOUNTS.
EACH ITEM (OR ACCOUNT) CONTAINS AN ACCOUNT NAME (FIELD ACCTNAME) WHICH
CAN CONTAIN UP TO 40 ASCII CHARACTERS, AN ACCOUNT NUMBER (FIELD
ACCTNR) WHICH CAN RANGE FRCM ZERO TO 9999, A BALANCE WHICH CAN RANGE
FROM -9999.99 DOLLARS TO +9999.99 DOLLARS, AND AN ACTIVE/NON-ACTIVE
FUG (BOOLEAN FIELD ACTIVE) WHICH WHEN TRUE (= 1) MEANS ACTIVE AND
NON-ACTIVE WHEN FALSE (=0). AT PROGRAM INITIALIZATION TIME, THE
ENTIRE TABLE IS FLUSHED (SET TO ZEROES). INDICES (OR POINTERS)
RELATED TO THIS TAELS ARE VRBLS LASTACCT, NEXTACCT, AND NEWACCT. $

TABLE ACCOUNTS V DENSE 400 $

FIELD ACCTNAME H 20 $

FIELD ACCTNR I 14 $

FIELD BALANCE A 22 S 7 $

FIELD ACTIVE B $

END-TABLE ACCOUNTS $

Note that the FIELD declarations are indented two columns in from the

TABLE declaration to show subordination. Also, that H, I, A, and B and

20, 14 and 22 are vertically aligned. Where possible, TABLES and VRELS

shall be declared in alphabetical order.

Local data items found in LCC-DD's and LCC-INDEY's shall be

grouped and commented as shown above for SYS-DD' s. The importance of

placing data elements which are required by only one SYS-PROC into the

LOC-DD cannot be overemphasised. This practice promotes information hid-

ing and permits different programmers to work on different SYS-PROC 's

without concerning themselves with the names and details of other

SYS-PROC's.

P-SWITCH's shall be declared in the SYS-DD if the PROCEDURE'S

used are global in scope. P-SWITCH's shall be declared in a LOC-DD if the

PROCEDURE'S U3ed are of local scope. The declaration of a P-SWITCH

outside a SYS-DD or LCC-DD is forbidden. They shall be well-ccmmented as

shown in the example below:

16?

COMMENT
BASED ON THE VALUE CF GLOBAL VARIABLE TRIGINDX (HANGS: 0-5), THIS
P-SWITCH WILL CALL THE APPROPRIATE PROCEDURE WHICH WILL RETURN THE
VALUE FOR ONE CF THE SIX TRIGONOMETRIC FUNCTIONS: SINE, CCSI2IE,

TANGENT; COTANGENT, COSECANT, OR SECANT. THE DJPCT ANGLE MUST EE AN

ANGLE ESTWEEN PLUS OR MINUS 360 DEGREES, AN A-TTPE VRBL (A 24 S 14)

WITH FRACTIONAL ACCURACY TO ONE PAET IN 16,384. OUTPUT TRIGANS
RETURNS AN ARITHMETIC VALUE IN THE RANGE PLUS OR MINUS 262,144 WITH
FRACTIONAL ACCURACY TO ONE PART IN 3,192 (A 32 S 13). CERTAIN
TRIGONOMETRIC FUNCTIONS, SUCH AS TANGENT (90 DEGREES) HAVE INFINITE
VALUE. IN THESE CASES, A VALUE OF 262,144 IS RETURNED.

P-SWITCH TRIGFUNC INPUT ANGLE CUTPUT TRIGANS $

SINE » • CASE » *

COSINE » » CASE 1 » $

TANGENT » ' CASE 2 ' *

COTANGNT ' • CASE 3 ' t

COSECANT • • CASE 4 • $
SECANT ' • CASS 5 ' *

END-SWITCH TRIGFUNC $

The use of the P-SWITCH operator for multipath branching is preferred over

the use of the FOR operator in most case3. However, there are instances

when the FOR operator is preferable; for example, when two or nore values

cause branching to the same procedure or when the range of values is not

sequential. In the latter case, the FOR statement avoids the need for

dummy procedures. In other computer languages, FOR is used for iterative

looping. Only in CMS-2 is it used for multipath branching. Since

P-SWITCH declarations are physically separated from their invocation, a

meaningful comment at the point of invocation shall be provided for

clarity.

f. si?g of siflsanta..

There is no limit (other than these imposed by the compiler) to

the size of a SYS-DD or LCC-DD. PROCEDURE'S and FUNCTIONS' s are limited

to 100 lines of CMS-2 source code, exclusive of comments. This is an

absolute limit which may be exceeded only upon prior approval by the

168

government on a case-by-case basis. Where PROCEDURE'S and FUNCTION'S

contain direct cede, they are limited to 50 lines of code, exclusive of

consents. The average size of all PROCEDURE'S shall be 50 lines.

Exceptions to these size restrictions are not permitted. Programs with

overly large PROCEDURE'S indicate poor design and a lacic of partitioning

the program into functionally independent parts of manageable, maintain-

able size. The use of "in-line routines" is expressly forbidden.

Every procedure shall have one and only one entry point. This

is an absolute restriction. Every procedure should have only one RETURN

or exit point, although this is not an absolute requirement.

G. Waning Conventions.

In the naming of program elements such SYS-PRCC's, VRSL's,

TABLE'S, and PROCEDURE'3, the CMS-2 language leaves much to be desired.

Names are limited to eight characters and the underscore character i3 not

permitted. This inhibits the readability of names. However, within the

constraints of the compiler, much can be done to enhance readability and

maintainability, which is the subject of this section.

Every module, or SYS-PRCC, in a CMS-2 program shall have a

unique prefix consisting of one or two characters. If less than 26 mod-

ules comprise the program, then one letter will suffice a3 the module

prefix. If more than 26 modules are used, or if the program designer

believes that it will enhance maintainability, then two characters shall

be used.. These two characters shall be two letters or a letter followed

by a number. Examples of one-letter prefixes are U for UTILMCD, a utili-

ties module and M for MMIMCD, a man-machine interface module. Examples of

two-letter prefixes are M3 for M3MGDULE and 10 for IOMCDULS.

169

Once a prefix has been established for each SYS-PROC (module),

then every subordinate element of that module shall use the module prefix

as the first one or two characters of every name. For example, ICMCDULE

might have as subordinates PROCEDURE'S IOiMTAPS (a magnetic tape handler),

IOTTY (the teletype handler), and ICCRT (the computer-CRT interface).

Every PROCEDURE, VRBL, FUNCTION, TABLE, etc. of a module shall contain its

prefix as an identifying marie. Common (global) data elements are not

subject to these restrictions, but will be named with a prefix starting

with the letter C.

All names within a CMS-2 program shall be descriptive. They

shall attempt to describe the item they represent. Names such as

IOBUFFER, USINE, and MSGFLAG have inherent meaning and are easier for a

maintenance programmer to remember while tracing through a program. Names

such as A, X, N, or BX are meaningless, and their use is forbidden. Rela-

ted data elements should have related names which 3how their interrela-

tionship. For example, a TABLE called IOBUFFER might logically have an

index or pointer which is called ICEUFPTR. Applying the above rules and

common sense will increase the maintainability of a CMS-2 program.

H. Conmentirg.

Without good commenting, even a well-designed program can be

extremely difficult to maintain. The use of meaningful cements to

increase the understandability of a program cannot be overemphasised.

Additionally, it is almost impossible to overcccment. It is better to

overcomment than to undercocment . This section deal3 with in-line com-

ments which serve to explain and supplement source code ratber than

PROCEDURE and module prologues which are discussed in section D. There

170

are three kinds of comments: stand alone, which are on a separate line

from any source code; terminating, which follows source code on the same

line; and embedded, which are embedded within a source code line. More

will be said about these three types later. For consistency, all stand

alone comments shall precede the code they explain.

Comments should e*nlain
r
amplify, and supplement source code

rather than echo the code. For example the statement and comment

SET N TO N * 1 " INCREMENT N • • $

does nothing to explain wire N is being incremented. It is al30 an example

of a terminating comment. Terminating comments are prohibited, except

with direct code and to amplify data declarations. A better method of

commenting would be:

•• A MESSAGE HAS JUST BEEN INSERTED IN MSGQUSUE. INCREMENT "
" MSGQPTR SO THAT IT POINTS TO THE LOCATION WHERE THE NEXT MSG "
•

» MAI BE INSERTED

.

•

SET MSGQPTR TO MSGQPTR «-1 $

Another example of an illuminating comment is

:

•»' THE MESSAGE QUEUE CAN CNLI HOLD 25 MSGS. THUS, I? MSGQPTR GT -". ' /'

'» 25 OVERFLOW HAS RESULTED—FLUSH THE MESSAGE QUEUE. ' "
IF MSGQPTR GT 25 THEN FLUSHQ $

.......

In CMS-2, there should be, en the average, no less than one line of

commenting for every two lin«s of source code. In direct code, there

should be , on the average , no less than one comment for every line of

direct code. These averages pertain to amplifying cocments, exclusive of

prologue comments. These averages are minimum requirements. The use of

more comments is encouraged.

The following example illustrates good terminating comments for direct

code:

171

L R3,CQPTR .CQPTH POINTS TO ITEMS IN

L£ R4,6 .A CIRCULAR QUEUE OF SIZE 7
.AND SHOULD RANGE FRCM TO 6

.IN VALUE - SO INCREMENT IT OR

.ZERO IT DEPENDING ON ITS VALUE

.COMPARED TO 6

CR R3, R4 .IF CQPTR LESS THAN 6 THEN
JLS INCRMT .GO TO INCREMENT
LL R3, .ELSE SET CQPTR TO ZERO
S R3, CQPTR .AND SAVE IT

J BYPASS .BTPASS INCREMENT CCDE
INCRMT. IROR R .SET CQPTR=CGPTR-i.l

S R3, CQPTR .AND SAVE IT
BYPASS. .CONTINUE

The above comments do not echo _ the code , they explain it . The comments

,

in effect, translate the assembly language into high level code. Contrast

this with the following comments that merely echo the code:

L 83, CQPTR .PUT CQPTR IN REG 3

LK R4, 6 .PUT 6 IN REG U

CR R3, R4 .COMPARE REGS 3 AND 4

These comments are worse than none at all, for they insult the maintenance

programmer by insinuating that he does not know the assembly language

instruction set.

In addition to echoing the code , there are several other pit-

fall3 that seme cemmenters fall into. One of these is the "80 column

mentality" where the programrer crowds terminating comments into the same

line as the code at the expense of abbreviating the comment into an incom-

prehensible line of garble. For example the statement and comment

SET MSGQPTR TO MSGQPTR* 1
»

» INCR MSGQPTR PT NXT MSG » $

would have been better as

,

" INCREMENT MSGQPTR TO POINT TO THE NEXT MESSAGE IN TEE QUEUE "
SET MSGQPTR TO MSGQPTR +1 $

172

Another common pitfall la the embedded comment. For example the statement

IF ,f THE MSG GPTR " MSGQPTR GT 25
»

• MAX SIZE CF THE QUEUE ' » THEN
•» FLUSH THE QUEUE " FLUSHQ 5

embeds so many comments into the code, it is difficult to distinguish

between the code and the comments. Embedded comments are prohibited. The

preferred method is to place comments on separate lines, and, where

appropriate, separate them from the code by indenting, using blank lines,

and blocking comments with asterisks.

I. Physical Layout

Good physical layout is defined as that property of a computer

program listing which makes it capable of being read and understood by a

programmer not familiar with the program. Good physical layout implies

ease of understanding and gocd readibility. Good readability may be

achieved by a variety of techniques , some of which are separation of

logical elements of code, separation of comments and cede, blocking (by

using lines of asterisks) lengthy comments or prologues, the appropriate

use of blank lines, logical indentation, and the lining up of EEGIN-END

and IF-ELSE pairs.

Separation of logical elements and the use of blank lines go

hand in hand. The practice of beginning PROCEDURES on a new page serves

to separate these logical elements and promote readability. The use of

blank lines to separate prologues and lengthy comments frcm executable

code also promotes readability. Prologues and lengthy comments should be

boxed by asterisks to make them stand out and be separated frcm the code.

Blank lines should be used freely to prevent crowding and to separate

logical entities.

173

Indentation is a key part of physical layout. Indentation is

defined as the physical indenting of logically subordinate and nested pro-

grain constructs- A truly structured program is structured in two ways.

First, it is structured with regard to the flow of control of the program.

Second, it is physically structured by the use of indentation.

Indentation shall be used so that program logical pairs are lined up and

stand out. Every BEGIN shall be physically indented to line up with its

corresponding END. The nested level of the BEGIN-END block shall be

denoted by a number in a terminating comment. The following example

illustrates the good use of indentation to achieve readability.

BEGIN " 1 »• $

IF TEEN
BEGIN ? i 9 • •

V

I?
BEGIN f 1

,
TEEN

1311 $

END "3" $

ELSE
BEGIN "4" $

END *
'
U '

• $

END •«2 , » $

END "1" $

In the above example, it is clear which EEGIN belongs with which END. The

practice of "hiding" BEGIN 's as follows

IF THEN BEGIN $

is prohibited.

174:

CMS-2 has two drawbacks which sake indenting difficult. First,

the code oust begin in column 11 or later; Columns 1-10 are not available

for indenting. Second, the fact (in OiS-21 at least) that side-by-side

object code begins in column 28 complicates the problem. If the

programmer indents too much, the source CMS-2 code gets mixed up with the

generated object code. The situation calls for case-by-case judgements on

the part of the programmer. As a rule, two columns per indentation level

is preferred when there are eight or less levels of indentation. When

more than eight levels of indentation or nesting occur, the programmer

should use one column of indentation per level to avoid mixing the source

and object code.

A final note on readability: All PROCEDURES shall begin at the top of a

new page by use of the page eject function. (SYS-PRCC's and SYS-DD's are

placed at the top of the page automatically by the compiler.)

Direct code should be used only to achieve input or output , work

around compiler problems, or to optimize frequently executed code.

Optimization will be done only after testing of the fully loaded running

system proves that optimization is required. The latter reason for using

direct code is permitted only when prior approval is given by the

cognizant government agency. This will be done on a case-by-case basis.

Direct code shall be used to work around compiler problems only when it is

not possible to work around them in high-level code. Whenever direct code

is used, it shall be clearly separated from the high level code by the use

of blank lines, lines of asterisks, and a prologue, similar to the pro-

logue required at the beginning of each procedure. This prologue shall

175

describe the reason for the section of direct code. Within the section of

direct code, the use of comments is important (see Section H on commenting

direct code)

.

K. IF Clauses

The use of complex IF clauses can cause logical problems with

the flow of control of a CMS-2 program. IF clauses should be simple, such

as

IF IOFLAG EQ 10 THEN ...

Complex IF clauses are difficult to understand and lead to logic flaws.

The use of more than one AND or one OR per IF clause is discouraged.

Where complex IF statements are used, they shall be generously commented.

The use of the CCMP operator is forbidden.

176

APPENDIX D - Program Planning Summary

Available from: Defense Technical Information Center

UtilhMO* AMO OtVtLdfMCHT PV.AHXIW6 (UMMAlT
!<!•« >(CIU>

MAY 79
**"0*r cnrax irwao.

D-CHANCE TASK AREA

l ba«n i
4 MM**a*

N/A

62721N ZF21-242-001

M< /•••«• #•••» nuKi'

RF21-242-401

ttCT'HH "f« •«_•«•

mu jBCSB *•» I > 55555555 C 55

(U) SOFTWARE COST REDUCTION
>• SimSSaCi mm

NAVAL RESEARCH LABORATORY
WASHINGTON, DC 20375

—».-* DR. BRUCE WALD CODE 7500
*«w<—m.« 202-767-2903

'• »l»»f MTV

1 OCT 78

cct

TT
&T

1 OCT 82

7So~
31 TTT

> Co*f»*C

TT
To

-

14 »— fiCJP***— 004200 Computers; 019700 Compucera and reUced
programming (Control, guidance, and navigation)

17. (0) OBJECTIVE AND APPROACH: Reduce the life cycle coat of Naval aoftware
by conducting a critical experiment to aaseaa the value of aoftware
engineering (SE) innovation* to aasure that a) technology base fund* are apent
only on potentially useful techniques, and b) software acquisition managers
are made aware of the value of these techniques. In the experiment, an
existing flight software package for the A-7 aircraft ia being redesigned in
accordance with new SE principles and the efficiency, real-time performance
and flexibility of the new aoftware will be compared with the performance of
software produced by more conventional methods.

18. (U) PLANS. FY 80 : Initiate redevelopment of A7 Onboard Flight Program
(OF?) in accordance with the following software engineering techniques:
Information Hiding Modules, Abstract Interfacea, Cooperating Sequential
'Processes, Process Synchronization Primitives, Uses Hierarchy, Resource
Monitor Modules, Formal Specifications, Disciplined Programming and Program
Verification.
FY80: Continue redevelopment and begin to assess advantages and coses of

these techniques. FY8 1 milestones: Complete design documentation, Dec 79;

complete implementation of a kernel of aoftware to perform a aelected subset
of functions, June 80.

19. (U) PROCRESS AND ACCOMPLISHMENTS. This project waa initiated with NRL
Technology Baae funding; a Software Requirements document was produced under

Chat project. The document has been reviewed by NWC personnel for accuracy
and aufficiency. It describes the principal interfaces between the software
and the other system components and all the functions to be performed by the

software. This document will serve ** a reference for the remainder of the

project, and is being used by KWC for other purposes. A paper has been
published about the techniques developed to document software requirementa.

The major aoftware modules and patterna of interaction have been identified

and described.

177

LIST OF REFERENCES

1 Computer Snafu Falsely Signals Soviet Attack > Monterey
Herald ; Nov 10, 1979.

2 Oreve, F. "Pentagon Calls Its Computer 'A Disaster'"; S

.

F. Sunday Examiner S. Cnronicle ? Nov 4, 1979.

3 Defense Science Board; Report of the Task Force on
Technology Rase Strategy ? v~. 4TJ October 1976.
(DLSIS Accession No.: LD 2S154A)

4 Coppola, A. and Sukert, A. N.J Reliability and
Maintainability Management Manual ; Rome Air
Development Center Report RADC-TR-79-200;
pp. 127-151J July 1979.

5 Myers, G. J.; Software Reliability Principles and
Practices ? John Wiley S, Sons; 1976.

6 De Roze, E ,C.; Special Presentation, Proceedings of the
"
Managing the Development of Weapons System

Software Conference ? pp. 4-2 - 4-12; May 1976.

7 Mills, H. D.J "Software Development"; IEEE Transactions
on Software Engineering ? December 1976.

8 Van Tassel, D.J Program Style. Design, Efficiency ,

Debugging and Testing ; Prentice-Hall ; 1979.

9 Doehm, B.J "Software Engineering Education, Seme
Industry Needs", Software Engineering Education ?

Wasserman, A. and Freeman, P. (Editors);
Springer-VerlagJ New York, 1967.

10—Daly, E. B.J "Management of Software Development"; IEEE
Transactions on Software Engineering ; po . 229-242;
May 1977.

11—Oxman, S. W.J "The Testing of the TRIDENT Command and
Control System"; Digest for tne Workshop on Software
Testing and Test Documentation ; pp. 28^-295;
December 1978.

178

12—Tausworthe, R. C.J Standardized Development of Computer
Software (Part I, Metnods; Part II f

'

Standards) ; Jet
Propulsion Laboratory, California Institute cf
Technology; Part I, 1976: Part II 1976.

13—McCall, J. A.; "The Utility of Software Quality Retries
in Large-Scale Software System Developments." Second
Software Life Cycle Management Workshop ; pp.
191-194J August 21-22, 197S.

14

—

Stewart, S. L. (Editor); Concepts in Quality Software
Design ; N?S Technical FJoTe 642; U.S. Government
Printing Office; 1974.

15

—

Swanson, E. 3.; "The Dimensions of Maintenance";
Proceedings 2nd International Conference on Software
Engineering ; pp. 492-497; 1976.

16—Canning, R. G., (Editor); "That Maintenance 'Iceberg'";
EDP Analyzer ; October 1972.

17—Kline, M. 3. "Software & Hardware R&M.: What are the
Differences?"; Proceedings Annual Reliability and
Maintainability Symposium ; IEEE; pp. 179-185; 1980.

18—Manley, J.
tt
H.j "Software Life Cycle Management: Dynamics

Theory"; Second Software Life Cycle Management
Workshop ; pp. 7-20; August 21-22, 1978.

19—Brown, J. R.; "Modeling, Measuring and Managing Software
Cost"? Second Software Life Cycle Management
Workshop ; pp. 47-51; August 21-22, 1978.

20—McHenry, R. C. and Walston, C. E.J "Software Life Cycle
Management: Weapons Process Developer"; IEEF
Transactions on Software Engineering ; po . 334-344;
July 1978.

*

21—U.S. General Accounting Office; Report to the Congress;
Problems In Developing the Advanced Logistics
System . Report Number LCD-75-101,* 17 June 1976.

22— Cave, W. C. and Salisbury, A. B . : "Controlling the
Software Life Cycle - The Project Management Task";
IEEE Transactions on Software Engineering ; pp.
326-334; July 1978.

23

—

Cooper, J. D.J "Corporate Level Software Management";
IEEE Transactions on Software Engineering ; pp.
319-3255,* July 1978.

179

24—MITRE Corporation. DoD Weapons Systems Software
Acquisition and Management Study ; MTR-6908? Vo. 1;

June 1975. (DLSIE Accession No.: LD 38652A)

25

—

Kossiakoff, A., etal.J Dor Weapon System Software
Management Study ; Applied Physics LaDoratory, The
Johns Hopkins University; Report SR-75-3; June 1975.
(DTIC Accession Number: AD-A022160)

26

—

Assistant Secretary of Defense; Defense System Software
Management Plan ; Mar 1976. (DTIC Accession No.: AD
A022558)

27

—

Stanfield, J. R. and Skrukrud , A. M.J Software
Acquisit lor. M anagement Guidebook

,
Software

Maintenance Volume ; Systems Development Corp.;
TM-5772/004/02J Nov 77. (DTIC Accession Number:
AD-A053040)

28—Bersoff, E. H.; Henderson, V. D.; and Siegel, S. G.J
"Software Configuration Management: A Tutorial";
Computer ? pp. 6-14; January 1979.

29—De Roze, B. C. and Nyman, T. E.; '"The Software Life
Cycle: A Management and Technological Challenge in
the Department of Defense"; IEEE Transactions on
Software Engineering ? Vol SE-4, No. 4; pp. 309-318;
July 1978.

ii

30—Schneidevind, N. F.; The Applica Dili ty of Hardware
Reliability Principles to Computer Software";
Software Quality Management ; Petrocelli Pooks; pp.
171-181 ; 1979.

31—Fein, R.; Survey of Software Development Technology at
the Naval Surface Weapons ' Center "; Dahlgren
Laboratory, Dahlgren, Va.; July 1976. (DTIC
Accession No.: AD A327451

)

32—Pariseau, R. J.; Improved Software Productivity for
Military Computer Systems Through Structured
Programming > Report NADC-760^t4-b0; Naval Air
Development Center; 12 March 1976.

33

—

Dijkstra, E.^W.J "Programming Considered as a Human
Activity"; Proceedings of the IEIP Congress ; pp.
213-217*; 1965.

34

—

Dijkstra, E. W.J A Discipline of Programming ?

Prentice-Hall; 1976.

180

7C,

36-

37-

38-

39-

40-

41-

42-

43-

44-

45-

46-

47-

48-

—Warnier, J. D.» Logical Construction of Programs
(L.C.P.

)

; Van Nostrand Reichcld Co.; 1974.

—Jackson, M. A.; Principles of Program Design ; Academic
Press; 1975.

—Yourdon, E.J Techniques of Program Structure ana resign ;

Prentice-Hall; 1975.

—Eahl, C. J., Eijistra, E. V., and Eoare, C. A. R.;
Structured Programming; Academic Press; 1972.

—McGcwan, C I. and Kelley, J. R.J To^-Down Structured
Programming Techniques ; Fetrocelli/Charter; 1975.

—Jensen, P. VI. and Tonies, C. C.; Software Engineering ;

Prentice-Hall, 1979.

-Wirth, N.; "On the Composition of Well-Structured
Programs"; ACM Computing Surveys ; receiver 1974.

-McEenry, R. C. and Rand,
it
J. A.; "Software Technology and

System Integration"; 2nd Software Life Cycle
Management Workshop; pp. 77-90; 20-22 August 1973.

-McEenry, P. C. and
Engineering: An

Rand, J. A.; Integration
Approach to RapTH System

Deployment J FSD 77-0179; IBM.; 1977.

-McEenry, R. C. and Rand, J. A.; Software Technology and
Integration Engineering ; FSD 78-0^34; IBM! 1977.

-Meyers, C- . J.; Composite Design: The Design of Modular
Programs ; Technical Report TR00.2406; IBM; January
29, 1973.

—McGowan, C. L.J and McEenry, R. C.J "Software
Management"; Research Directions In Software
Technology ? MIT Press; pp. 207-253; 1979.

-Bohm, D. and Jacopini , G.; "Flow Diagrams, Turing
Machines and Languages With Only Two Formation
Rules"; Communications of the ACM ; May 1966.

-Buxton, J. N. and Randel 3. (Editors); Software
Engineering Techniques ? Report on a Conference
Sponsored "by the Nato Science Committee, Rome,
Italy; 27-31 October 1969.

49—Glass, R. L.; Software Reliability Guidebook;
Prentice-Hall; 1979.

181

51-

52-

53-

54-

55-

56-

50—Fisher, D. A.; "The Interaction Between the Preliminary
Designs and the Technical Requirements for the DoD
Common High Order Language"; Proceedings of 3rd
International Conference on Software Engineering ?

pp. 92-83J 10-12 Kay 1979.

-Glass, R. L.; "From Pascal to Pebbleman and Beyond";
Datamation ; pp. 146-150; July 1979.

—Dijkstra, F. V.J "On the Green Language Submitted to the
Dor"; SIGPLAN NOTICES ? pp.l6-2l: October 1979.

—Hurwitz, J. and Xlnucan, P.; "ADA"; Mini-Micro Systems ?

Lecember 1979.

-Bower., J. B.; "a Survey of Standards and Proposed
Metrics for Software Quality Testing"; Computer ; np.
37-42; August 1979.

-Canning, R. G. , (Editor); "The Production of Better
Software"; EDP Analyzer ? February 1979.

-Miyamoto, I.; "Reliability Evaluation and Management for
an Entire Software Life Cycle"; Second Software Life
Cycle Management Workshop ? pp. 195-209; August
21-22, 1978.

57—Glasser, A. L.; "The Evolution of a Source Code Control
System"; Proceedings of the Software Quality and
Assurance Workshop ; ACM; pp. 122-125? 1978.

58

—

Josephs, W. H.? "A Mini-Computer Eased Library Control
System"? Proceedings of the Software Quality and
Assurance Workshop ? ACM? pp. 126-132? 1978. '

59— IBM Federal Systems Center? "Documentation Standards"?
Structured Programming Series ; Vol. VII ? USAF RADC?
July 1975. (ETIC Accession Numbers: AI-A00S639 and
AD -A 01 64 14)

60

—

Chapin? "Flow Charting with the ANSI Standard: A

Tutorial," ACM Computing Surveys ; June 1970.

61—Brooks, F. P. Jr; The Mythical Man-Month ;

Addison-Vesley; 1975.

62—Aron, J.; The Program Development Process. The
Individual Programmer? Addison-Vesley? 1974.

63—V/einberg, G. M.J The Psychology of Computer Programming ?

Van Nostrand Reinhold Co.? 1971

.

182

64—Schneiderman , Mayer, McKay and Heller; "Experimental
Investigation of the Utility of Detailed Flow Charts
in Programming"; Communications of the ACM ; June
1977.

65— IBM Corp.; HIPP - A Design Aid and Documentat i on
Technique ; GC20-1851-1J 1974.

66—Anderson, G- . E. and Shumate, K. C.; "Documentation Study
Proves Utility of Program Listings"; Computerworld ;

May 21, 1979.

67—Pooch, U. W.; "Translation of Decision Tables"; ACM
Computing Surveys ; pp. 125-151; June 1974.

68—Seller, J. F. and Roesch, R. *., Jr.; A Decision Logic
Table Preprocessor ; Masters Thesi s, Naval
Postgraduate School, Monterey California; June 1977.

69—Fisher, D. L.; "Data Documentation and Decision Tables";
Communications of the ACM ? pp. 26-31; January 1966.

70

—

Yoder, C. M. and Schrag, M. L.; "Nassi-Shneiderman
Charts - An Alternative to Flowcharts for Design";
Proceedings of the Softwa re Quality and Assurance
Workshop ; ACM; pp. 79-56; l9?g.

71—Knuth, D. E.J "Computer Programming As an Art";
Communications of the ACM ; pp. 667-673; December
1974.

72—Wegner, P.; "introduction and Overview"; Research
Directions in Software Technology ; MIT Press; pp.
1-36; 1979.

73

—

Lientz, B . P. and Swanson, E. B. > Software Maintenance
Management; Addison-Wesley ; 1980.

193

V

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22314

2. library, Code 0142
Naval Postgraduate School
M onterey, California 9394e

3. Eepartment Chairman, Code 52
Computer Science Department
Naval Postgraduate School
Monterey, California 93940

4. Professor Norman F. Schneidewind , Code 54Ss
Computer Science Department
Naval Postgraduate School
Monterey, California 93940

5. Professor Melvin E. Kline, Code 54Kx
Administrative Sciences Department
Naval Postgraduate School
Monterey, California 93940

6. Associate Professor P. J. Carey, Code 52Ck
Computer Science Department
Naval Postgraduate School
Monterey, California 9394?

7. Assistant Professor I. Cox, Code 52C1
Computer Science Department
Naval Postgraduate School
Monterey, California 93940

8. Major Russell D. Pilcher, USMC
129 South 2nd East
Kaysville , Utah £403?

9. lieutenant Mark ^oranville, USN
Naval Electronics Systems Engineering Center
San Dies-o, California 92101

184

Thes i

s

P5kl6

c.l

Pi lcher
1893W

Techniques available
for improving the main-
tainability of DOD weap-
on system software.

27 J UN 83

274 1 7
2 7 7 4 8

=8677

Thesi s

P5416

c.l

1893'* it

Pi lcher

Techniques available
for improving the main-

tainability of DOD weap-
on system software.

S^s available for i^infl^:

1 9768 001 92406 1

DUDLEY KNOXLIBRARY

Man

irad|:"' :•

una

I
'SHRZ

HEasr

