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ABSTRACT

Much analysis has been done to date on the deformation of helical springs

due to normal loading. The aim of this study is to design a helical spring that will

deform under eccentric loading a desired amount due to a given force. Under the

assumptions of linear stress strain relationships, the spring will be designed in

terms of its material properties and its geometry. The deformation of the spring

will be made possible utilizing a Shape Memory Alloy (SMA) active element that

undergoes phase transformation upon heating above a certain temperature. Two

models for spring deformation have been considered. In the first model we study

the differential compression of a spring using SMA wire actuators, and in the

second model we investigate the bending of an SMA rod placed inside the spring.

Our efforts were a first step towards the development of a structural skeleton for

a minimally invasive surgical manipulator.
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I . INTRODUCTION

The study of the deformation of helical springs has most commonly been

limited to those cases due to normal loading [Ref . 1, 4, 5, 6, 7, 8] . In

normal loading, a force is applied through the center of a spring, and the

displacement of the spring is expressed as a function of the load and the

parameters of the spring involving material properties and geometry. This

thesis investigates the deformation of helical springs due to eccentric

loading, with the aim of designing a helical spring that will deform to a

given shape through the application of known forces. The spring design

will include the material selection and the selection of helical spring

geometry in terms of its length, the diameters of the spring and the

spring coil, and the number of coils.

Chapter II provides the background needed to study the deformation of

the two helical spring models, such as the development of Castigliano'

s

theorem, and a brief introduction of Shape Memory Alloy's (SMA's). The

descriptions of the two kinematic models that have been chosen for this

study are also included in this chapter. Chapter III provides the

analysis for spring deformation based on the first model, and Chapter IV

provides the same for the second model. Chapter V contains computer

programs that will be used for simulation based design of the proper

helical spring.

The motivation of this study is to design a helical spring that will

be used as the primary structural element of a robotic manipulator for

minimally invasive surgical applications. In viewing the spring as a

skeletal element, it is necessary to analyze the deformation of the

skeleton under the action of external forces, so as to control its

deformation or motion. The spring deformation will be produced through

the use of Shape Memory Alloy (SMA) active elements which undergo a phase



transformation upon heating above a certain temperature. When these SMA's

undergo their phase transformation, they change their shape to a

predetermined form. During this process they will deform the spring they

are acting on. By properly selecting the arrangement of the SMA active

elements about the spring, and controlling their phase transformation, a

properly designed spring can be made to deform to a desired shape.



II. PRELIMINARIES

Certain preliminary topics need to be reviewed before an analysis of

the deformation of helical springs due to eccentric loading can be carried

out. This chapter includes the development of Castigliano' s theorem, an

introductory examination of the properties of Shape Memory Alloy's, and

descriptions of the spring models we have chosen for analysis.

A. CASTIGLIANO ' S THEOREM

Castigliano ' s theorem is a very useful mathematical tool that can be

used to study the deformation of elastic bodies under the application of

generalized forces. The deformation of the elastic body is computed from

the strain energy of the body. It is an energy based approach and therein

lies its simplicity.

Castigliano ' s theorem, developed by Alberto Castigliano in 1879, is

a method by which one can determine the deflection of an elastic body at

the point of application of a force. If forces FA and FB are exerted on

an elastic body at two different points, A and B, there are four

associated deflections [Ref 2]

bM=fMFA (2.1)

•«-*«** (2.3)

iBB'tufa (2.4)

where the first subscript implies the point of interest, and the second



implies the force of influence. The f's are constants, and are known as

influence coefficients. They represent the deflection of one point

relative to the other. For example, f^ represents the deflection of point

A relative to point B. These influence coefficients are properties of the

elastic member.

Maxwell's law of reciprocity states [Ref. 2, p. 637]

f„=fM (2.5)

which implies that the deflection at point A due to a unit force applied

at point B is equal to the deflection at point B due to the application of

a unit force at A.

Castigliano developed a method where the deflection due to multiple

forces acting on an elastic body is obtained as the summation of

deflections due to forces applied sequentially, one at a time. The final

result is a set of equations like those found in (2.1) through (2.4). One

must then superimpose these equations to obtain a series of equations for

the displacements, or 8's, at the different points where the forces act on

the elastic body. For two forces FA and FB we obtain

Now one needs to determine the work done by each force at each point

of the elastic body where it acts. The work done by FA at point A is

"JU-T^M < 2 - 8 >

which, after substituting equation (2.1) becomes



^"^^^-T^i (2 - 9)
2
- A-JM- A" 2

Likewise, the work done by FB at point B is

"vrWl < 2 " 10

If force FA continues acting on the body while FB is gradually

applied, we see that there is additional work done on point A due to FB ,

namely

*»=*•**« (2.11)

Similarly, if force FB continues acting on the body as FA is slowly

applied, one can see that there is additional work done on point B due to

FA , namely

Wm'^b (2- 12 )

After substituting equations (2.2) and (2.3) into equations (2.11) and

(2.12), and by invoking Maxwell's law of reciprocity, equation (2.5), one

obtains

"fa-loVa (2.13)

"WmV. < 2 - 14 >

The total work done on the body, or its total strain energy, if FA is

applied before FB is the summation of equations (2.9), (2.13), and (2.10):



If force FB is applied first, and then FA , the order of addition becomes

equations (2.10), (2.14), and (2.9)

tf=U=±ifBBF£*2fMFAFa+fMFfr (2-16)

Thus, the total work done on the body is irrespective of whether FA or FB

is applied first.

From Equation (2.16) one finds that the displacement at point A is

equal to

-§jT
=fA*FA +fABFB^A (2.17)

and the displacement at point B is equal to

^-WV^i (2- 18 )

Castigliano ' s theorem states that for any force Fj acting on an elastic

body, the deformation or deflection at the point of application of the

force F
x
is

«,-» (2.19)

in the direction of Ft , where U is the total strain energy of the elastic

body under the application of forces.

B. SHAPE MEMORY ALLOYS

To cause the deformation of a helical spring one needs to apply an

external force. Shape Memory Alloy (SMA) active elements were chosen to

provide the necessary external forces. An SMA active element has low mass

and a very high force to mass ratio; this attractive feature allows the



miniaturization of the whole structure. A brief introduction of SMA's is

imperative to have a good understanding of how the spring will be

deformed

.

A Shape Memory Alloy (SMA) , is a metallic alloy that is given a

certain predetermined shape at a high temperature. Once the alloy is

cooled, it can be deformed, and will remain deformed until heated. Once

heated above a certain temperature, the alloy "remembers" its undeformed

shape and returns to it

.

There are many alloys that exhibit this shape memory effect. Among

them are Ni-Ti, Ni-Ti-Cu, Cu-Al-Ni-Mn. The alloy is first shaped into its

desired "undeformed" shape at a high temperature, when the microstructure

is in its austenite phase. These "undeformed" shapes can vary greatly,

but the primary shapes we are considering are those of a thin wire of a

given length, or a rod with a given circular curve. Once formed, the

alloy is quenched to allow the microstructure to come into its martensite

phase. It is now ready to be deformed.

The alloy can now be deformed by stretching it, bending it, or

reshaping it by any one of a number of means. It will stay deformed from

its original shape until it is once again heated up back into the

austenite region, where it will return to its original shape. It is

beyond the scope of this thesis to present the microscopic analysis of

this transformation. It is merely intended to explain what an SMA is and

how it will be used as an actuator for spring deformation.

The next two sections provide two spring models that describe the

positioning of the SMA actuators relative to the spring. The SMA elements

are in their deformed states initially, and they revert back to their

undeformed states once heated above a certain temperature. During this

process the spring is deformed. The undeformed shape or the memory shape

can be given to the alloy by annealing for some time at a fixed

temperature and then by rapid cooling back to room temperature. In the

discussion to follow it will be assumed that the SMA has already been



given its memory shape and attention will be focused on the design of the

helical spring for achieving the design goal.

C. MODEL 1: HELICAL SPRING UNDER ECCENTRIC COMPRESSION

This section considers a spring model consisting of a helical spring

along with its actuators such that the spring can provide two rotational

degrees of freedom besides a single degree of freedom for linear

translation. In this model, shown in Figure 2.1, the helical spring is

fitted with two end caps. Three SMA wire actuators are attached to the

end caps just outside of the spring. All of the SMA wires are to be of

the same length, spaced 120° apart. During the process in which the SMA

wires are placed, the spring is given a small initial bias compression.

This keeps the SMA wires taut and eliminates any slack in the wires.

'igure 2.1 Helical spring under eccentric compression,

As current is applied to heat one of the SMA's, the active element

shrinks back to its original "undeformed" length. During this process the

other two SMA wires remain in their deformed configuration, and the top

plane of the spring bends over by virtue of eccentric compression.



F^ F3# and Fs
are forces exerted on the spring by the SMA wires, and

F 2 , F 4 , and F 6 are dummy forces. The deflection of the points of

application of these forces can be readily obtained using Castigliano '

s

theorem. Position vectors, r/s, from an arbitrary point A to the points

where the forces are applied are constructed. Angle 9 is a measurement

taken from the point where F
x

is applied, around in a counter-clockwise

manner. Using these position vectors, moments and torsions due to forces

F[ through F 6 are summed up at A.

R is the radius of the spring, and L is the length of the spring. E

in the modulus of elasticity of the spring material, and G is the shear

modulus of that material. I is the area moment of inertia of the cross

section of the spring coil, and J is the polar moment of inertia. The

number of spring coils is n.

Using these values, the total stain energy of the spring can be

calculated. Once this has been done, Castigliano' s theorem is invoked,

and the displacement of the spring at any one of the six points of

application of the forces can be found. Knowing the relative

displacements of the different points on the spring coil, the angle of

deflection can be computed.

For the spring design problem, the angle of deflection is

predetermined. When a helical spring is chosen, R, I, J, E, G, and n are

known. From these quantities the force required to deflect the spring is

calculated. If this force is one that the SMA wire can exert on the

spring, the spring has been properly designed. If not, some of the

parameters of the spring, geometry or material, must be changed and the

forces recomputed. When the force required to deflect the spring matches

the force the SMA can exert, the design problem is completed.

D. MODEL 2: HELICAL SPRING UNDER BENDING

In the second spring model, the assumption is that the spring bends

under the action of SMA rods. Three SMA rods are attached to the spring



internally along its length and placed 120° apart. Initially the SMA rods

are in their deformed shape. When one of the SMA rods is heated it

regains its undeformed shape and bends the spring in the process.

Figure 2.2 Helical spring under bending

The SMA rod applies a force to each of the spring coils. Each of

these forces are assumed to have two components, one normal to the coil

directed towards the center of curvature of the spring denoted F, and the

other in the tangential direction denoted f. From Figure 2.2, is an

angular measurement internal to the spring coil measured from the outer

most point on the spring, moving in a counter-clockwise direction. R is

the radius of the spring. The radius of curvature measured to the center

of the spring is P, and p is the radius of curvature to the inside point

of each of the coils as they are bent. Angle <t> is the angle of curvature

of half of the spring. L is the length of the spring, n is the number of

coils, Z is the modulus of elasticity of the spring material, G is the

shear modulus, I is the area moment of inertia, and J is the polar moment

10



of inertia. For an arbitrary point A on the spring, r denotes the

position vectors from A to the points of application of the forces, and a

is the angle subtended by each coil at the center of curvature of the

spring.

Consider now only the top half of the spring, since the spring is

symmetric and the bottom half is identical to the top. When an SMA rod is

bent through the application of current, each coil of the spring is acted

upon by two forces, F and f . Using these forces, and the position vectors

from point A to their point of application, a summation of all of the

bending moments and torsions at A due to the action of these forces can be

obtained. The total strain energy due to these moments and torsions is

calculated, and Castigliano' s theorem is applied to compute the

displacements at each point of application of the forces.

To reiterate, for the helical spring design problem, the spring's

displacement is a given. Knowing the equations for the strain energy, and

the material and geometry of the spring, one can work backwards to find

the force required to bend the spring in this manner. One needs only to

iterate using the spring material and geometry to find a force

commensurate with the given displacement.

11



III. DEFORMATION ANALYSIS OF THE FIRST HELICAL SPRING MODEL

Recalling Che description of the first spring model described in the

preliminaries, one finds that F, , F3 , and F 5 are forces exerted by the SMA

wires on the spring. F2 , F4 , and F 6 are dummy forces on the spring needed

to find the displacements at their points of application. Point A is an

arbitrary point on the spring, and 9 is the angular measurement from F
:

around in a counter-clockwise direction.

Figure 3.1 Helical spring under eccentric compression.

There are six position vectors from the six points on the spring where

the forces are applied to point A.

£1=R (

1

-cos0 ) I-Rs inGj (3.1)

f2
= -R (cos9-cos60° ) i+R(sin60° -sin6)

j

3.2:

f3
= -i? (cos60° +cos6) i+R (sin60° -sin0) j .3



f4 = -J? (l+cos6) 1-RsinBj (3.4)

fs
= -J?(cos60°+cose)i-i?(sin60 o +sine)5 (3.5)

f6
= -i?(cos6-cos60°) f-i?(sine+sin60 o

)5 (3.6)

Summation of moments about point A yields

E MA=^+"yi+g (fiXP^-O (3.7)

where,

F^-Fj 2=1,2,... ,6 (3.8)

and where M^ and My are the x and y components of the reaction moments at

point A.

After computing the cross products of (r, x FJ, one can set the like

vector components equal to each other and find

MX=J?[- {F^+Ft) sinB + (F2 t-Fj) (sin60°-sin6)

-(F5 +F6 ) (sin60°+sin6) ]

(3.9

My=R[-F1
(l-cos6) +i^(l+cose) + (F

2
+FS ) (cos6-cos60°)

+ (F
3 +F5 ) (cos6+cos60°)

]

(3.10)

To compute the strain energy, one needs to find the bending moment and

torsion, m and t, on the spring coil. These can be obtained from the

13



reaction moments M^ and My through a coordinate transformation in the

following manner:

©-*«(£)
(3.11)

where

r(6)s
cosB sin0

-sin6 cosG
(3.12)

Following the coordinate conversions, the moment and torsion equations

become

m=R [ ( -Fx +F4 + ( -F2 +F3 +F5 -F6 ) cos 6 0° ) sin6

+ (F2 +F3
-F

5
-F6 ) sin60°cos8] en

(3.13)

t=J?[(F
1
+F2 +F3 +F4 +F5 +Fs ) +(-F2 -F3

+F5 +F6 )sin60
o sine

+ (-F1 +F4 +(-F2 +F,+F5 -Fs ) COS6O°)COS0] e t

(3.14)

The shear force at any point of the spring coil can be obtained from

the static equilibrium of forces:

v=(F
1 +F2 +F3

+F4 +F5 +F6 )ic (3.15)

The expression for strain energy due to shear is

14



L 2m
r2 r fi,ZU^flYld^ f IXlRdd (3-16)

v
J 2GA J 2GA

where Uv is the energy due to shear, f is the form factor (10/9 for a solid

circle) , V is the shear force, L is the length of the spring (2n7t) , G is

the shear modulus, A is the cross-sectional area of the spring wire, and

x is the integration variable denoting the length of the spring coil.

After making the substitution of J, the polar moment of inertia, for the

circular area A by the expression

*- 2 J"

and integrating with respect to 9 from to 2n7t, the energy due to shear

becomes

_ 10nnr 2V2R (3.11)
v 18GJ

One can now see that since r is much smaller that R, the r 2 term will

dominate the numerator and make Uv very small. Equation (3.17) will be

compared later with the strain energy due to that of torsion to show this

difference

.

The strain energy due to the bending moment is obtained through the

equation

L Zrm
i2 /• m 2

Um=[J?-dx= f JH-Rdd (3.18)
m

J 2EI J 2EI2EI J 2EI

where Um is the strain energy due to the bending moment, m is the bending

15



moment, L is the length of the spring (2nrt) , and EI is the bending

stiffness of the spring. After integration one obtains

Cr
j,--S^(jf+F1Fa-F1F,-2F1F4-PiFa+FxF€+fJ+FaF3-FaF4

-2F2F5 -F2F6 +F3

2 +F
3
Ft -F3

F5 -2F3F6 +F4
2

( 3 • 19 >

+FtFs -F4FS +F5
2 +F5F6 +F6

2
)

The strain energy due to torsion is obtained through the equation

where Ut is the strain energy due to torsion, t is the torsion, L is the

length of the spring, and JG is the torsional stiffness of the spring.

Through integration the strain energy due to torsion becomes

Ut
=^^-(3F^5F1F2 ^3F1F3+2F1F^3F1

F5+5F1
F6+3Fi

+5F
2
F3 +3F2F4 +2F2

F5 +3F2F6 +3F3 +5F3
F4 +3F3

F5
(3.21)

+2F
3
F6 +3F4 +5F4F5 +3F4F6 +3F

2 +5F5F6 +3F6
2

)

A comparison of the strain energy due to shear and the strain energy

due to the torsional moment U
t
demonstrates how much smaller the strain

energy due to shear is. Assume that their are eight coils, a spring

radius of 5 mm, a spring coil radius of 0.5 mm, that forces F! through F 6

are applied uniformly with a unit magnitude of 1 N, and that stainless

steel is used as the spring's material. The ratio of strain energy due to

torsion, U
t , to the strain energy due to shear, Uv , is

16



U
t _ 9/Jgva OF?+5F

l
F

2
+ ...+3Fl) _iQn (3>22)

Uv 10\l)
( Fi+i72 +

... +F6 )2

Since this ratio is so large, one can see that strain energy due to shear

is very much smaller than the strain energy due to torsion. When the

spring deforms by bending, the same can be shown for the ratio of the

strain energy due to bending to the strain energy due to shear. This

implies that the strain energy due to shear can be neglected.

The total strain energy is simply the addition of equations (3.19) and

(3.21),

0*tra+Vt-^fi-iF?*F1Fa-FlFi-2FlF4-FlFs*F1F,+F2*F2F3

F2FA-2F2F5-2F2FS +Fi+F3FA-F3F5-2F3FS

+fI +f<f5 -f<f6 +f| +f5f6 +f6
2

]

[3F2 +5F1F2
+3F

1
F3 +2F1

F,
1
+3F

1
F5

(3.23
2JG

+5F1F6 +3F
2 +5F

2
F

3
+3F2F4 +2F2F5 +3F2

F6

+3 F? +5F3F4 +3F3F5 +2F3F6
+3F4

2

+5F4F5 +3F4F6 +3F5

2 +5F5F6 +3F6
2

]

By invoking Castigliano' s theorem the six displacements at the points

of application of the forces are obtained as:

17



2g£ [6F
1
+5F2+3F3+2F4+3F5+5Fe ]

« 2 =-^ [F1+2F2 +F3
-F4 -2F5 -2F6 ]2FI

2JG
[5F1 +6F2 +5F3 +3F4 +2F5 +3FS ]

«3 ="f^ [-*i+2"a +2F,+F4-Fs-2*'f ]

+T^ f3Fi +5i;,2 +6F3 +5F4+3F5+2F6 ]

64 =^^ [-2F
T -F2 +F3+2F4+F5 -F6 ]

2EI

nnR 3

2JG
[2F

1 +3F2 +5F3 +6F4 +5F5 +3F6 ]

«
5 =^^ [-F

1 -2F2 -F3+F4+2F5+F6 ]
2EI

nnR 3

2JG
[3F1 +2F2 +3F3 +5F4 +6F5 +5F6 ]

18

3.24!

(3.25;

(3.26;

(3.27)

(3.28:



^ sI
TFF [^i-2F2 -2F3

-F^F5+2F6 ]

*E1
(3.29)

^j^ [5F
1
+3F2 +2F3 +3F4 +5F5 *6FS ]

As stated before, F2 , F
4 , and F

6
are dummy forces, which means that

they do not really exist, they are used merely to compute the

displacements at those points. Setting F
2

= F
4

= F 6
= one obtains:

fi
1
=^^[2F

1
-F

3
-F5 ]

+i^[6F1+3F3+3F5 ]
(3.30)

*2 = i|^[^ +^-2F5]+^^[5F1+5F3+2F5 ]
(3.31)

*
3
= JW i'Fi*2F3 -Fs ] +^ [3F1+6F3+3F5 ]

(3.32)

** = Ij£r
[-2F

i
+F

3
+F5] +i^ [2F1+5F3+5F5 ] (3 .33

«
5
=^^ [-F.-F^F,] +2g£ [3F1+3F3+6F5 ]

(3.34

a« =^^[F
1
-2F3+F5 ]

+i^[5F1+2F3+5F5 ]
(3.35)

Since all of the SMA actuators will be identical, the force they will

19



exert is expected to be the same. Consequently, if all of the three

actuators are activated simultaneously, the deformation at the different

points on the spring will be the same. This implies that the spring will

undergo compression. The interest: here lies in the bending of the top

plane of the spring. Therefore, all of the three SMA actuators will not

be activated simultaneously. Now define P as the angle by which the top

plane of the spring bends through when one or two of the SMA wires are

activated simultaneously.

Figure 3.2 Deflection angle of the top plane of the spring, P

The two possible cases to cause the bending of the top plane of the

spring are the application of one force, and the application of two

forces. In the first case one force, F 1# is applied. This single force

will cause displacements to occur at all six points on the spring. Of

interest are the deflections at points 1 and 4 to determine the bending

angle of the top plane of the spring. The deflections at points 2, 3, 5,

and 6 will be such that the bending will not take place at in any other

direction. By knowing the displacements at points 1 and 4, one can

calculate p. With F
L
applied one finds
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H EI JGJ
(3.35)

4
H ft jg/

3.37)

From Figure 3.3 one can see thatsimple geometry one can see that

Figure 3 . 3 Angle of deflection, jTT

tanP = v»«
222

(3.38)

which means

P=tan" 1 m:R 2F,l— +—
£T JG

3.39

When any one force, say F, , is applied on the spring, the angle [3 is

given by
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p=tan -1:—'*(£&)] (3.40)

The other important case is when two forces are applied

simultaneously, say F
l
and F3 . In this case the important displacements

are at points 2 and 5, where

2 x 3 \2EI 2JGJ
(3.41)

d s -imR
3 {F^Fy) -1.+. 3

2EI 2JG
(3.42)

This implies that for the application of the two forces F
:
and F

3

p=tan-1[-|n7Ti? 2 (F1+F3 ) (-
EI JG}\

(3.43)

Since each of the SMA wire actuators will be identical, the force that

each will exert on the spring will be equal in magnitude. This means,

then, if two SMA wires are actuated the resultant angle of deflection will

be

p=tan_1
irnR

\ EI JGf
(3.44)

From these results one finds that if one SMA wire is actuated, or two

are, the angle of deflection is the same. The difference is the direction

in which the helical spring bends over. It is now clear that by

activating one or two actuators it will be possible to bend the top coil

of the spring in three separate directions by a positive or a negative

angle p. The case of actuating all three wires has not been investigated
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since this would produce the same result as that of applying a single

axial force through the center of the spring, or applying a normal load.

Now that the effects of helical spring geometry and material

properties are known in computing the deflection angle p, use of these

relationships will be instrumental in designing the proper helical spring.

SMA wires deform by a constant amount of almost 5% of their original

length in the presence or absence of external forces. However, for this

property of the SMA to be exhibited repeatedly, the opposing stresses in

the SMA wires should not exceed a certain value. The design of the

helical spring will be computed from a known value of P that will give the

force required to produce that deflection. If these forces produce

stresses that are below the stress limit of the SMA wires, then the design

is feasible. However, one should try to increase the stresses in the wire

as high as possible, within limits, such that the spring to be designed is

not too soft. A spring that is too soft will not be strong enough to act

as a manipulator for surgical applications.
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IV. DEFORMATION ANALYSIS OP THE SECOND HELICAL SPRING MODEL

The second helical spring model considered is one where the spring is

bent over directly by an SMA rod. Three rods will actually be placed

inside the spring 120° apart to give the spring a full range of motion.

Here, consideration is given to only one SMA rod for the development of

the model

.

Figure 4.1 Helical spring under bending

The only major assumption made is that the length of the spring is the

same in the bent over configuration as in the undeformed configuration.

With this in mind, certain quantities are defined. Let R be the radius of

the spring and L be the length of che undeformed spring. In the deformed

configuration, it is desired that the spring bends into the shape of a

circular arc. Let P be the radius of curvacure of the central axis of the
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spring, and p the radius of curvature of the inner part of the spring.

Let 4> be the angle between the top coil of the spring and the central

coil, $ be the angular change of spring coils, 9 be the angular

measurement along the length of the coils of the spring, a be the angle

subtended by two adjacent spring coils, and n be the total number of

coils. From these definitions, one sees from Figure 4.1 that the

following identities hold:

* =^ (4.1)
2P

« = -2* (4.2)
n

Hi) (4.3)

p=P-U (4-4)

In this model there are three different coordinate frames that are

used. The traditional t, J, and R frame is fixed on the top coil of the

spring. The 1
' , J' , and k' frame is relative to each succeeding coil.

The e n and E t frame is a normal and tangential transformation of the 1, },

and R frame

.

Suppose that as the SMA bends over, it exerts two forces on each

spring coil it touches, F in the normal direction, and f in the tangential

direction. The line of action of the normal forces passes through the

center of curvature. For the ease of computation, it is helpful to

translate the point of application of the normal force along its line of

action to the center of curvature of the spring. Point A, at the top

center of the spring, is the point where position vectors from all other

25



points on the spring will be constructed to. In considering only the

first coil, there are two position vectors from each point on that coil,

one corresponding to the normal force F, and one to the tangential force

f. These position vectors have been defined this way so that they will

apply to each coil for these forces. They are

fx= (P-Rcosd) 1 ' -RsinBj ' (4.5)

f1
'={P-Rcose)l ,-RsinBj'-pl (4.6)

The primes on the i and j vectors indicate that they are in the spring

coil's frame of reference, where the unprimed vectors are in the fixed

frame of the top coil. These vectors will give the position from any

point on the first coil relative to point A. After recognizing that

F
y
= F^ = FiCOS^f '-FjSin^Jc' (4.7)

f
a
= £

X
R = fjSin^f '+f

T
cos<l>Jc' (4.8)

the total moment about point A caused by these forces can be calculated by

V^i^'*'^'^ 1 (4 - 9)

For the second coil the position vectors remain the same, but the

forces acting on this coil are Flt f1# F2 , and f
2
where

Fj-Fji^cosU+^jf'-^sin («+)£' (4.10)

f
1
=f

1
Jc=f

1 sin(a+4>)i
> '

+Acos ( a+4>)£' (4.11)
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F2 =F2cos<t>f'-F2
sin4>£' (4.12)

?2=f2sinQi'+f2coBt£' (4.13)

Now the total moment about point A is

M
Ai

= (f^xFj + (fx 'xfa ) + (f^Fj) + (f\ 'xf2 ) (4.14)

By proceding in a like manner, one arrives at the k-th coil, where

this coil is acted upon by the forces F
: , F 2 , ..., F„, and f 1( f 2 , ..., f k .

These forces take the form

F^F.cos [ (Jc-1) o+$] f '-FjSin [ (£-1) a+4>] £' (4.15)

F2=F2cos[(ic-2)a+<t)]i'-F2sin[(ic-2)o+<j)]ie' (4.16)

F^F.cos^f '-F*sin4>£

'

(4.17

f^f.sin [ (ir-l) o+*] f 'fjcos [ (Jt-1) a+4>] £' (4 . 18

f2 =f2sin [ (le-2) a+<J>] f '+f2cos [ (Jc-2) a+<(>] £' (4 . 19)

Bk=fySin^l'*fkcos^' (4.20)

Now the total moment about point A becomes
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*^-g(*i**i>+g(V**i> (4.21)

or, after computing the cross products

MA=T iRsinO (FfBin [ (Ar-i) a+<|>] -r^cos [ (k-i) a+4>] ) f '

+ [(P-J?cos6) (Fisin[(lr-i)a+$] (4.22)

-fiCos [ ( ic-i) a+<|>] ) +Jfip] j
'

+J?sin6(Ficos[(ic-i)a+4>] +fisin[ (k-i) a+4>] )£'}

The easiest way to work with this moment is to break it into parts as

follows

« r,»=y*{F1 (-J?sin8sin[(lc-i)a+$]

)

T=i (4.23)

+fd (JJsinOcos [ (k-i) a+4>] )

}

My^'ViFii-W-RcosQ) sin [ (k-i) «+4>]

)

+ft ( (V-Rsiifi) cos [ (k-i) a+4>] -p)}

(4.24)

Mz-
=
Y, te"i ( -i?sin6cos [ (£-i) a+<t>] )

+fi
( -.RsinOsin [ (ic-i)a+4>] )}
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A coordinate transformation is now in order to transform the moments

from the coil fixed frame to a normal-tangential frame. The

transformation matrix T(0), from equation (3.16), will be used such that

cosB sin6

-sin8 cos6 (?
;

)

The moment equations (4.23) through (4.25) become

*t-«V(F1 ( (-R-Pcos8)sin[(ic-i)a+<t>] )

^(-(J^-Pcosejcos [ (ic-i)a+4>] -psin6)}

(4.26)

^n=E {F
i (

-Psinesin [ (iC-i)0+* ]) ,a o-7
i=i (4.27

+fd (PsinBcos [ {k-i) a+4>] -psin0)}

(4.28)

Mr-=V {Ft ( -i?sin6cos [ {k-i) a+4>] )

I=i (4.29.

+f±
( -l?sinesin [ (ic-i)a+4>] ))

With each of these moments in the proper frame of reference, the

strain energy due to each of them must be calculated. With the subscript

k on each of the energies to remind one that this is the strain energy of

the k-th coil, the strain energy due to each of these moments is given by
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271 2
Ml

u
».*=\ik

R<* (4 - 30)

u^:14gr<* (4 - 3i)

<V.*=/

n &
2EI

o

'A. 32)

Since each of the moment terms are expressed as a sum of k quantities,

the integrals involving the square of the moments becomes quite

cumbersome. To simplify the computation, one needs to use matrix algebra.

First define the incremental force vector as follows
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Then define

AF,

AF=
AF,

a"a
Af,

£ R 2Jr (4.33)

Af*-/

^ =

' -Psin6[(A:-l)o+4>]
\

Psin6sin[ (ic-2)a+4>]

-Psin8sin4>

e R* .4.34)

^2 =

PsinBcos [ (Jc-l)a+A] -psin0'
PsinBcos [ (ie-2) o+4>] -psinB

Psin8cos4>-psin8

e R* 4.35:

It can now be shown that
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M=F'
/* \

,

A
2t

Likewise for the torsional moment, define

(4.36)

( (J2-Pcos6) sin [ (k-1) a+4>] \

(R-PcosB) sin [ (k-2) a+4>]

Bx*

(J?-Pcos6) sin4>

(4.37)

r

-(J?-Pcos6)cos[(A:-l)o+4>] -pcosB'
- (J?-Pcos0) cos [ (k-2) o+4>] -pcosG

B*~

- (R-FcosB) cos4>-pcos6

(4.38)

Then,

M
C=F

T
w
&}

(4.39)

For the moment in the z' direction, define
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'-RsinOcos [ (Jc-l)a+<{>n
-i?sin6cos [ (£-2) a+<

Ci-

-.Rsin0cos<t>

(4.40

f-RsinBsin[(k-l)a+&])
-i?sin6sin[ (ic-2) a+4>]

C2
=

-RsinQs in4>

(4.41

Then,

MZ .=F
T

V
C2/

(4.42)

With the moments defined by Equations (4.36), (4.39), and (4.42), one

can obtain their squares as follows:

Wn=AF T ' •(^i^J-AF (4.43)

m{=Af t '

<b^

\
B
2J

'(fl^fljl'AF (4.44)
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M^=AF T-

Hi

v

C
2/

•(qic2)-AF
(4.45)

Now define

A=
W
li

(^:A2 )
=

All : "*12

™21 : ""22

e |J2Jcx2Jc (4.46)

one arrives at

M„=AF t--A-AF (4.47)

where the elements of An are of the form

A11 (i,j)=P
2 sin26 sirl[(ic-i)o-Hj)]sin[(ic-j)o+4>] (4.48)

the elements of A12 are of the form

A12 (i,j)=-F sin26 sin[(/c-i)a+4>]cos[(A:-j)a+4>]

+Ppsin28 sin[ (ir-i) o+4>]

(4.49)

A21 (i,j)=A12 (i,j)
r (4.50

and the elements of A,, are of the form
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^22 (l,j) =Fsin26cos [ (k-i)a++] cos [ (k-j) cc+4>]

-Ppsin 28(cos [ (k-i) a+4>] +cos [ (k-j) a+4>] )

+p 2sin 26

(4.51.

Similarly, by defining

B=

rs;
'(Bl = B2 )

=

'•BA ! B^
-
*n '

fl12

B
2, B2B\

: -B2-B2 ^21 ' 5
22.

(4.52

one can see that

M2=AF T-B-AF (4.53

where elements of Bn take the form

B„ (i, j) = (J?-Pcos8) 2sin [ {k-i) o+4>] sin[ (/c-j) a-^)] (4.54

the elements of B 12 take the form

B12 (i,j) =- (J?-Pcos8) 2sin [ (Jc-i)u+*] cos [ (ic-j) o+4>]

- (i?-Pcos6) pcosBsin [ (k-i) <x+<J>]

(4.55)

B21 (i, j) =B12 (i, J) (4.56)

and the elements of B-, take the form
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B22 d,j) = (J?-Pcos6) 2cos [ (k-i) o+4>] cos [ (k-j) o+4»]

+ (J?-Pcos8) pcosB (cos [ (k-i) a+$] +cos [ {k-j) o+4>] )

+p 2cos 2

(4.57)

By defining

\
C
2J

•(q:C2 )
=

C^C-l • Cj^Cj

C2 Ca
: C2C2

^11 : *-12

^22 : ^"22

(4.58)

one can show that

M^-=AF r-C-AF (4.59)

where elements of Cn take the form

C^(i,j) =R 2sin28cos [ (k-i) o+4>] cos [ {k-j)a+$] (4.60)

the elements of C 12 take the form

C12 (i,j)=J?
2sin2esin[(ie-i)a+<t>]cos[(Jc-j)a+<|>] (4.61)

C21 (i, j)=C12 (i,j) (4.62)

and the elements of C-.-, take the form

C22 (i, j) =R 2sin26sin [ (k-i) o+4>] sin [ (k-j) a+4>] (4 . 63

Now that the squared moments are in compact form, the integrals can
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be evaluated for the computation of the strain energies. The strain

energy in the k-th coil due to the bending moment M,, is

"*/Th**"^
7 dd AF (4.64)

where one must evaluate the integral of A term by term. This means that

if one defines

2k

A"' (i ' J
'U/(2flh l(i ' J

'

)dB

R
271

2 EI
J*Fsin2esin[ (k-i) ct+4>] sin [ (k-j) o+4>] dO

4—)\2EI)

o

27l 3

sinocos [a (2Jc-i-j'+l) ] +— cos [a (i-j)
a(a 2 -4n 2

)
2

(4.65)

Ai2
'
(i ' j

'u/(2fjh
2(i,j

'

) de

Uej)
22 \/ 2tt 3F

0(0 2 -47l 2
)

sinosin [o (2£-i-j+l) ]

-^sinla(i-j)]

3f3p
P

?
sin/-g|sin[a(/c-i^]

a(a 2 -l67t 2
) \2/ 2

(4.66
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A21 '(i,j) AA12 '(i,j) .4.67)

and

2*

l"' ll,j,4
/(25)

l» |i 'j,dB

l2El)
{--

27l 3P
a(o 2 -47i 2

)

uP2

sinacos [a (2^-i-j+l) ]

+ -^=-cos [a (i-j) ] +7ip"

+—r¥¥h^ s:LT{%)coa [T (2*-i-i+l) ] cos [f (i-j) ]

o(a 2 -l67i z
) \2/ 2 2

then, the energy in the k-th coil due to the moment M„ is

(4.68)

C7n>Jc=AF r-il'-AF=AF T-

•"ll '"12

"21 : "^22

AF (4.69)

The energy in the k-th coil due to the torsional moment M,. takes the

form
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u
'-'J-S35*"-*

Ft
-'itik)**

Af (4.70)

where a term by term integration, as before, yields Equation (4.75), where

the elements of Bn ', B 12
', B21

'
, and B22

' are defined as follows:

B^ {i^i^) {n
(
R2+T]cos[aU

-j)]
(4.71)

tiR 2
_ 2naHP 1

7tP2 (a 2 -27t 2
)

>

o a 2 -n 2 o(o 2 -47i 2
) ,

sinocos [a (2/c-i-j+l) ]

}

and

(

-^- 27tgja> .
7lP2(gZ - 27t2) lslnasin[a(2Jc-i-j.l)]

a a 2 -* 2 a(a 2 -4* 2
) J

J 47T (« 2 -8* 2 )Pp _ 4*a*p \
±

i a\3±n { {k_i+1) ] ,

I o(a 2 -167i 2
) a 2 -4ir 2

J \2j 2

(4.72)

B21 '(i.j)=B12 '(i,j)
r (4.73
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B22 '(i.j)
=: *\J R

2JG) { 2 )

{¥

2JG;

R z 27raJ2P^7iF(a 2 -27i 2
)

,2.,2

4

cos [a (i-j) ] + np 2

sinocos [a (2ie-i-j+l) ]

(a 2 -4* 2
)

n (a»-8tt a )Pp .j^a^U/ a\CQS [a {k_i+1) ]

o(o 2 -16ti 2
) a 2 -4* 2

J ^2J 2

_ 4* <a 2 -8i»')Pp.jaLji^ [a (W+i,
3 ,

I a(a 2 -l67i 2
) a 2 -47i 2

J \2

(4.74)

Thus the strain energy of the k-th coil due to the torsional moment Mt
is

Utik=AF
T-B'*F=AF T -

flii
'

•
fl12

fl21
'

' BZ2
'

AF (4.75)

The strain energy of the k-th coil due to the moment Mz
. is

2* hi
2

Uz . k= [ -^-Rdd=AF T '

z '

* J 2EI J ( 2JG)
Cdd AF (4.76)

where the elements of the submatricies Cn '
, C 12

', C 21
', and C 22

' are defined

in the following manner:
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and

C.1 '(i,j) =(— )<- 27t3
,
sinacos [a {2k-i-j+D ]11 '" U^-r/ a(a 2 -4ir 2

) (4.77

+— cos [o(i-j)])

c-' (i ^' )^) {-7T^^ sinasin[a(2^i -J
'

+1,]

+-|sin[a(i-j)])

(4.78)

C21 '(i,j)=C12 '(i,j) r (4-79)

J?
3

I, 271"
C22 'U,j)=\^-\{

™ sinacos [a (2Je-i-j+l) ]

2£^jy o(o 2 -47t 2
) (4.80)

+^cos[a(i-j)]}

Thus the energy of the k-th coil due to the moment Mz . is
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U2 ^ k=AF T-C'AF=AF T-

c ' • c
'-ll "-12

-21 ' u2

AF (4.81)

The total energy of the k-th coil of the helical spring is the

summation of the energies due to the three moments, or

Uk=Untk+Uttk*Ut%k=AF
T-W+B'+C')'AF (4.82)

If one defines

DaA'+B'+C (4.83)

the incremental energy of the helical spring up through the k-th coil now

becomes

AU^TU^T (AF T-DAF) 1
(4.84)

Castigliano' s theorem is now invoked to determine the incremental

displacements of each of the coils in the normal and tangential

directions

.
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^4^)=D"AF1
+2^AF2

+2Z^AF
3
+

- • •
+2£,i*AF*

(4.85)

*A-£r)
=2D^F

l
+D*2AF*

+2D^Fl+- •+2D2>*Fk 4.86)

8^^]=2DkIAF1+ 2iPwAF2 +2£>WAF3 + . . . +0*^ (4.87)

which simplifies to

8,

V«*/

U2J 2C22 2D2J

2D2i I?„ 2Z32J

2DW 2£>^ 2^

2£>

2D
Ik

2k

Jkk\

(4.88)

Now define

Aa

^21 2i)12 2Z>„

2D2I I>22 2ZJ2J

2DW 2D^ 2JV,

2D

2D
ik

2k

Jkk

(4.89

then the final important relationship becomes
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Ai^A^fi (4.90)

With this relationship, knowing the physical geometry and material

properties of the helical spring, and specif ing a desired displacement,

one can determine the force required by the SMA active element to bend the

spring. The matrix A contains a conglomeration of information based on

all of these known quantities. Once these given quantities have been

specified, it is a simple matter to determine the required force matrix F.

If the force required cannot be achieved by the SMA, iteration is required

for the spring's geometry or material properties. A program is enclosed

that will aid in the design of a helical spring under these conditions.
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V. SUMMARY AND RECOMMENDATIONS

This thesis investigated the deformation of helical springs under

eccentric loading using two different models. The goal was to develop an

algorithm for computing the deflection of a helical spring under a known

force. The desired final shape of the spring was that of a spring bent

over in a circular fashion. The two models used achieved this by two

different methods, both utilizing SMA active elements in two different

configurations

.

The development of this study was to obtain relationships between

force and displacement so that one could predict or control the

deformation of the spring. A spring under normal loading is governed by

an equation such as

F=*8 (5.D

where force F is proportional to displacement 8. This proportionality

constant, k, is based on the spring geometry and material properties. In

the development of this study, similar relationships were obtained, but

with a more complex form of proportionality factor. This factor is

dependent on the spring configuration, and is not a constant. The

proportionality factor is also a function of the geometry and material

properties

.

This study has been a first step in the design of a robotic

manipulator to be composed of a series of helical springs that utilize SMA

actuators to control the manipulator. In the course of future research,

SMA actuator design is needed, and in assembling the helical spring with

the actuators. Once the actuators are designed, the results acquire by

this study can be employed to match a spring's geometry and material to
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the force that can be generated by the SMA to bend the spring in a desired

manner

.

When the design process is completed, a helical spring and actuator

system will be realized, and can be implemented in a minimally invasive

surgical manipulator. The conclusions of this study can also be used in

any other situation where an eccentric load is placed on a helical spring

causing it to bend over.
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PROGRAMS AND PLOTS

The first algorithm delevoped was for the first model, where the

spring was deformed by applying an eccentric load axially on the spring.

It is a FORTRAN program where material properties, spring geometry, and

desired deflection angle are required as inputs, and the force required to

deform the spring is the output

.

PROGRAM THESIS

*

* This program is for the spring design used in the manipulator skelton

* for minimally invasive surgical applications. Given the physical

* dimensions and material properties of the spring, and the desired

* deflection where the force will be applied, it will solve for

* the deflection of the spring on the opposite side of where the force

* is applied, the force required, and for the angle of deflection.

*

* Inputs: Bending stiffness of coil EI, torsional stiffness of the coil

* JG, number of coils n, radius of the spring R, radius of the spring

* coil re, length of spring, and deflection d where the force will be

* applied.

* Outputs: deflections d, deflection angle B, and force F.

*

REAL F, E, I, J, G, R, re, L, pi, c, EI, JG, dF, dOPPF, B, Z

INTEGER n, m, k

CHARACTER* 20 MATL

*

PRINT*

PRINT*, 'THIS PROGRAM WILL AID IN THE DESIGN OF A SPRING FOR USE'
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PRINT*, ' IN THE SKELTON FOR MINIMALLY INVASIVE SURGICAL'

PRINT*, ' APPLICATIONS.

'

*

pi = 3.1415926

*

5 PRINT*

PRINT*, 'SELECT AND ENTER THE TYPE OF MATERIAL YOU WISH TO USE'

PRINT*,' (i.e. STAINLESS STEEL): '

READ*,MATL

PRINT*

PRINT*, 'ENTER MODULUS OF ELASTICITY (E) , IN ENGLISH UNITS'

PRINT*, ' (i.e. 28.0e6) :
'

READ*, E

PRINT*, 'ENTER SHEAR MODULUS (G) , IN ENGLISH UNITS'

PRINT*, ' (i.e. 10.6e6) :
'

READ*, G

PRINT*

PRINT*, 'ENTER "1" IF YOU HAVE DIMENSIONS IN ENGLISH UNITS (in),'

PRINT*,' OR "2" IF YOU HAVE DIMENSIONS IN SI UNITS (mm): '

READ*, k

PRINT*, 'ENTER RADIUS OF SPRING: '

READ* , R

PRINT*, 'ENTER RADIUS OF SPRING COIL: '

READ*, re

PRINT* ,' ENTER LENGTH OF SPRING: '

READ*, L

PRINT*, 'ENTER DESIRED DEFLECTION: '

READ* , dF

10 IF (k.EQ.2) THEN

R = R* (0.001) *39.37

re = rc*(0.001) *39.37
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L = L* (0.001) *39.37

dF = dF*(0.001) *39.37

ENDIF

PRINT*

PRINT*, 'ENTER NUMBER OF SPRING COILS: '

READ* , n

PRINT*

PRINT*, 'ENTER "1" IF ONE FORCE IS APPLIED,'

PRINT*, ' OR "2" IF TWO FORCES ARE APPLIED: '

READ*, m

I = 0.25*pi*(rc**4)

J = 0.5*pi* (rc**4)

c = n*pi*(R**3)

EI = E*I

JG = J*G

IF (m.EQ.l) THEN

F = dF/(c*(l/(EI) + 3/(JG) )

)

dOPPF = c*F*(-l/(EI) + 1/(JG))

B = (ATAN((dF - dOPPF) / (2*R) )

)

* ( 180/pi

)

ELSE

F = dF/(2*c*(l/(2*EI) + 5/(2*JG)))

dOPPF = 2*c*F*(-l/ (2*EI) + 3/(2*JG))

B = (ATAN((dF - dOPPF) / (2*R) ))*( 180/pi

)

ENDIF

PRINT*

PRINT*, 'FOR MATERIAL ' , MATL

PRINT*

PRINT*, 'DEFLECTION AT POINT OF APPLICATION (in) :
'

, dF

dF = dF/(0. 001*39. 37)
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PRINT*, 'DEFLECTION AT POINT OF APPLICATION (mm): ' , dF

PRINT*

PRINT*, 'DEFLECTION AT POINT OPPOSITE APPLICATION (in): ' , dOPPF

dOPPF = dOPPF/ (0.001*39.37)

PRINT*, 'DEFLECTION AT POINT OPPOSITE APPLICATION (mm): ' , dOPFF

PRINT*

PRINT*, 'DEFLECTION ANGLE (degrees): ',B

PRINT*, 'FORCE NECESSARY (lbs): ',F

PRINT*

PRINT*, 'IF YOU WISH TO BEGIN AGAIN, TYPE ANY NUMBER AND HIT'

PRINT*, ' RETURN. ELSE ENTER "99" TO QUIT. '

READ*, Z

IF (Z.NE.99) GO TO 5

END

The second algorithm developed was for the second model, that of a

spring bent over directly by an SMA active element. It is a MATLAB

program where one must input the geometry and material properties of the

helical spring, as well as the final desired deflection angle of the

spring. It generates a proportionality matrix whose size is based on the

number of coils of the spring, and computes the force required to bend the

spring. It plots force versus angle deflection to obtain a relationship

between the magnitude of the force required and the amount of deflection.

% thesis.

m

%

% This program is for the spring design used in the manipulator skeleton

% for minimally invasive surgical applications. Given the physical

% dimensions and material properties of the spring, and the desired
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% deflection of the spring, it will solve for the force required to bend

% the spring using an SMA rod inside the spring.

%

% Inputs: Spring length (L) , radius (R) , coil radius (r), Modulus of

% Elasticity (E) , Shear Modulus (G) , number of coils (n)

,

% desired angle of deflection (phi).

% Outputs: Force required to bend spring (F)

.

%

clear

%

L = input (' Length of spring in millimeters '
)

;

R = input (' Radius of spring in millimeters ');

r = input ( 'Radius of spring coil in millimeters ');

E = input ( 'Modulus of elasticity in GPa '
)

;

G = input (' Shear modulus in GPa ');

n = input ( 'Number of spring coils (must be even number) ');

phifinal = input ('Final desired deflection angle in degrees ');

%

L = L/1000,

R = R/1000

r = r/1000

E = E*le9;

G = G*le9;

phifinal = phif inal*pi/180

;

%

I = 0.25*pi*r"4;

J = 0.5*pi*r"4;

mom = R/ (2*E*I)

;

tor = R/ (2*J*G)

;

%

for i = l:n
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initf(i) = 0;

end

f = initf '

;

%

count = ;

dradius = ;

radius (1) = 50;

for z = 1:200

anglephi = L/ (2*radius ( z) )

;

if anglephi <= phifinal, count = count + 1; end

dradius = -0 . 05*radius (z)

;

radius (z+1) = radius (z) + dradius

;

end

%

dP = 0;

P(l) = 50;

for q = 1: count

%

for i = l:n

for j = l:n

D(i,j) = 0;

end

end

%

ro = P(q) -R;

phi(q) = L/(2*P(q))

;

a = (2*phi(q) )/n;

cl = (2*pi"3)/(a*(a~2-4*pi"2) )

;

c2 = pi/2;

c3 = P(q)"2;

c4 = (8*pi"2)/(a"2-4*pi~2)

;

52



c5 = (64*pi"3) / (a*(a~2-16*pi"2) )

;

c6 = pi*(R~2+(P(q)~2/2) )

;

c7 = ((R"2*pi)/a - (2*pi*a*R*P(q) ) / (a /v 2-pi /v

2) ...

+ pi* (a"2-2*pi~2) *P(q) /s 2/ (a* (a"2-4*pi"2 ) ) )

;

c8 = ( (4*pi*(a~2-8*pi A
2) *P(q) *ro) / (a* (a"2-16*pi"2 ) )

- (4*pi*a*R*ro) / (a~2-4*pi"2) )

;

c9 = (32*pi"3) / (a*(a"2-16*pi"2) )

;

clO = sin (a)

;

ell = sin (a/2 )

;

cl2 = mom*R~2;

cl3 = cl*c3*cl0;

cl4 = c2*c3;

Cl5 = P(q)*ro*c9*cll;

cl6 = c7*clO;

ell = cl*clO;

cl8 = P(q)*ro*c5;

%

for k = l:n/2

for j = l:k

for i = l:k

%

cl9 = cos(a*(2*k-i-j+l) )

;

c20 = sin(a*(2*k-i-j+l) )

;

c21 = cos (a* ( i- j ) ) ;

c22 = sin (a* ( i- j ) )

;

c23 = sin(a*(k-i+0.5) )

;

c24 = sin(a*(k-j+0.5) )

;

%

All(i,j) = mom*(cl3*cl9 + cl4*c21);

A12(i,j) = mom*(cl3*c20 - cl4*c22 - cl5*c23);

A21(i,j) = mom*(cl3*c20 + cl4*c22 - cl5*c24);
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A22(i,j) = mom* (-cl3*cl9 + cl4*c21 + pi*ro /v 2...

+ cl8*cll*cos( (a/ 2) * (2*k-i- j+1) ) *cos ( (a/2) * ( i- j ) ) )

;

Bll(i,j) = tor*(c6*c21 - cl6*cl9);

B12(i,j) = tor*(c6*c22 - cl6*c20 + c8*cll*c23);

B21(i,j) = tor*(-c6*c22 - cl6*c20 + c8*cll*c24)

;

B22(i,j) = tor*(c6*c21 + cl6*cl9 - c8*cll* (cos (a* (k-i+0 . 5) )

.

+ cos (a* (k-j+0 .5) ) ) + pi*ro A 2);

Cll(i,j) = Cl2*(c2*c21-cl7*cl9)

;

C12(i,j) = Cl2*(c2*c22-cl7*c20)

;

C21(i,j) = Cl2*(-c2*c22-cl7*c20)

;

C22(i,j) = Cl2*(c2*c21+cl7*cl9)

;

end

end

dll = A11+B11+C11,

dl2 = A12+B12+C12,

d21 = A21+B21+C21,

d22 = A22+B22+C22,

for i = l:k

for j = l:k

D(i,j) = D(i, j) + dll(i, j)

;

D(i+k,j) = D(i+k,j) + d21(i,j);

D(i,j+k) = D(i,j+k) + dl2(i,j);

D(i+k,j+k) = D(i+k,j+k) + d22(i,j);

end

end

end

D = 2.*D;
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for i = l:n

D(i,i) = 0.5*D(i,i) ;

end

%

for i = 1 :n/2

theta(i) = (n/2 - (i-l))*a;

deltan(i) = (1 - cos (theta ( i ))) *dP;

deltat(i) = (sin (theta ( i ) ) - theta ( i )) *dP;

end

%

delta = [deltan' ;deltat
' ]

;

F = inv(D) *delta;

for i = 1 :n/2

fx(i) = F(i) *cos(theta(i) ) - F (n/2 + i) *sin (theta ( i )) ;

fy(i) = F(i) *sin(theta(i) ) + F (n/2+i) *cos (theta ( i ))

;

end

fxy = [ fx ' ; fy '
] ;

f = f + fxy;

force ( : ,q) = f

;

PHI(q) = phi(q)*(180/pi)

;

dP = -0.05*P(q)

;

P(q+1) = P(q) + dP;

end

%

clg

for j = l:n/2

plot (PHI, force
( j, : )

)

title ( 'X-Force vs Radius Angle Phi, for Coil #')

xlabeK'Phi (degrees)')

ylabel ( 'Force (N) '

)

meta thesplot
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end

for j = n/2+l:n

plot (PHI, force( j, : )

)

title ( 'Y-Force vs Radius Angle Phi, for Coil #')

xlabel('Phi (degrees)')

ylabeK 'Force (N) '
)

meta thesplot

end

The final element is a set of plots using the previous program. They

are force versus deflection angle graphs generated by the program using

the inputs of a 20 mm long spring, with a radius of 5 mm, coil radius of

0.5 mm, and eight coils. The material chosen was stainless steel with a

modulus of elasticity of 190 GPa, and shear modulus of 73 GPa . The final

desired deflection angle was 30°. The eight plots are for the top half of

the spring. The forces in the bottom half are going to be identical as

the spring is symmetrical. Of the eight force/deformation plots, four are

for normal forces, and four are for tangential forces.
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