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ABSTRACT

The Navy is considering the feasibility of increasing the patrol aircraft

P-3C zero fuel weight enabling avionics and payload growth. This analysis

examines the consequences to the structural requirements of the center

section wing box. Two solutions to the structures field equations are

investigated: a simplified hand solution for preliminary feasibility

calculations and a more precise solution for design analysis. Together, the

solutions provide a necessary check for the results. The simplified solution

employs the Euler-Bernoulli assumption which generates a set of integrals

expressed in terms of the assumed displacements. These integrals, when

combined with simplified geometric shapes and symmetry, ultimately

produce a decoupled matrix solution. The precise solution uses a PC based

finite element method which simultaneously solves the field equations for

basic elements to be linked together with the appropriate boundary

conditions. For the current 135,000 pound gross weight lg load condition,

the internal stresses calculated by finite element are in accord with those by

simplified hand calculation. Extensions from this modeling will generate

design criterion for the target 95,000 pound zero fuel weight aircraft as

well as alternate flight or taxi conditions.
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I. INTRODUCTION

The Navy is considering the feasibility of increasing the patrol aircraft

P-3C zero fuel weight enabling avionics and payload growth. An 18,000

pounds payload increase from the current zero fuel weight of 77,200

pounds will undoubtably require airframe structural modifications. This

payload increase to the present configuration will accommodate system

upgrades into the next century.

This analysis will provide the tools to determine whether the existing

center section wing box can accommodate the additional loads or if a

modification is required. Modification options ranging from variations of

the existing geometry to materials substitution such as composites will be

discussed.

A structural analysis, which provides a basis for strength and stability

assessment, begins by modeling the geometry and boundary conditions of

the center section wing box for a given flight condition. An idealized

model constructed from rods and sheets replaces the center section wing

box. This model approximates the geometry of the structure while

providing a necessary simplification that facilitates the mathematical

solution to the solid structures field equations. The wing boundary

conditions are provided by a contractor while a component inventory

method (Appendix A) is used to construct the fuselage loads.

Two solutions to the field equations provide a necessary check on the

results. The Euler-Bernoulli assumption uncouples the field equations and

leads to an integral representation of stresses in terms of the boundary

condition resultant loads applied at the centroid. The idealized model

geometry (Figure 1) allows the boundary value problem to be integrable

thereby yielding a closed form of the solution. From this closed form, a

solution to uniformly distributed (centroid) forces and moments is

practical. The second solution uses the Finite Element Method (FEM) to

simultaneously satisfy the field equations for basic elements or geometries.

These elements are combined to form the structure of interest. This

numerically based solution method allows a solution of more realistically

distributed forces and moments as well as refined geometric

configurations. The problem formulation and computational

implementations for the current application are verified for the idealized

1



model using closed-form hand calculated results. The Saint Venant

principle enables the resultant boundary condition loads to be modeled at

the centroid thereby verifying the (lower bound) internal stresses predicted

by the hand calculations for the static case. Upon verification of the hand

calculated results, the finite element model may be used to examine various

realistic inertial loadings within the center section wing box for any given

flight condition in the operational envelope.

FS 571 WS 65L

Figure 1. Idealization of the Center Section Wing Box: rod and

sheet structure replace actual P-3 geometry to facilitate closed form of

mathematical solution.

Validation of the boundary condition stresses generates confidence in

the solution of the center section wing box for various inertial loadings.

New boundary loads for the proposed flight conditions of interest will help



identify critical stress and deformation locations within the structure. The

finite element software lends itself to parametric studies of alternative

structural configurations in addition to exploring the effects of increasing

the load requirements on the airframe from, for example, 3 to 3.5 g's.

Other materials including composites may be examined as replacement

options. New configurations can be readily analyzed by fine tuning the

boundary load conditions. These benefits lead one to the utilities of this

structural analysis. It provides a readily accessible feasibility check of the

existing structure and a means to design alternatives for the center section

wing box. The analytically generated data may form the basis for Request

For Proposals (RFP) which may include innovative designs (ie. composites)

and structural modifications.



n. Problem Definition

The future P-3 version H will accommodate an increase in the zero fuel

weight from 77,200 to 95,000 LBS. The weight added will occur within

the fuselage section of the aircraft. The proposed solutions to this

structural problem include replacing the entire wing, and replacing all or

strengthening weak members of the center section wing box. Each of these

solutions requires an in-depth knowledge of the structural limitations of the

current center section wing box. Specifically, the question remains

whether the modified structure will support the added stress and strain

given the increase in zero fuel weight.

A. BOUNDARY CONDITIONS
The worst case conditions for the center section at maximum gross

weight include a 2g taxi bump on the ground and a sustained 3g turn in the

air. The lift generated by the wings accelerate the 155,000 pound airframe

with a load factor of 3.0. This lift transmits a moment and a shear into the

center section at wing station 65 (refer to Figure 1) The forward and aft

fuselage sections impart moments and shears into the center section

fuselage stations 571 and 695 respectively. The taxi load is generated by

the main landing gear impulses subjecting the inboard nacelles to vertical

accelerations. While this condition delivers a shear, the moment is of

opposite sign to the aerodynamic load yet it still acts on the center section

at wing station 65. For purposes of this study, the lg in-flight loading

condition was analyzed in detail. Other loading conditions were provided

to cover the full spectrum of situations.

B. FUSELAGE LOADS
The fuselage loads for a 135,000 pound aircraft were constructed using

the data provided by the current P-3 version C Specification printed in

1982. The weights of various components (ie. wing, propulsion, body, tail,

electronics etc.) were broken down into fuselage weight and wing weight

both inboard and outboard of wing station 65. The fuselage weight was



then distributed along the airframe based upon the location of the

components. The shear and moments were built up from this weight

distribution and tabulated in Appendix A. The loadings along the center

line of the fuselage were computed from:

m

M=nV wjlj (2.1)

i=l

m

V^n^ wj (2.2)

i=l

Wj = weight of the i^component

lj = moment arm of the i^ component

n = load factor

m = number of components

The moment arms were referenced to F.S. 571 for the forward section and

to F.S. 695 for the aft portion of the fuselage.

C. WING LOADS
The wing loads were provided by Aerostructures, Inc. located in

Arlington, Virginia (Appendix A). Their data was extrapolated from

values given for the eight loading conditions in Lockheed's Structural Life

Extension Program report for the P-3C. The bending moment and shear

were provided for lg and delta lg increments along the entire wing

starting at the center line and continuing out to wing station 584. The load

accuracy was quoted as between five and ten percent. The moment



contribution about the wing My is calculated as the shear multiplied by the

distance between the lift line and mid-chord (approximately 0.2 chord).

A first order method to calculate the wing loads requires the lift to act

through the center of pressure on the mean aerodynamic chord (Figure 2).

This moment and shear felt at wing station 65 is countered by the weight of

the wing and fuel (wet wing). The total moment and shear at W.S. 65 is

determined by dividing the wing up into sections and summing the

incremental shears and moments produced at W.S. 65 by the outboard lift

distribution.

Y WS. 65
?
Z

WS. 254

mac

WS. 571

Figure 2. Two Dimensional Lift Distribution : simplified

resultants (as seen by center section) shown at mean aerodynamic chord

(mac).

D. GROUND TAXI LOADS
The ground taxi loads were provided by Mr Nam Phan

(NAVAIRSYSCOMJ. The maximum gross weight condition occurs when

the plane rolls over a 2g bump and the wing responds in a flexible manner.

The gear through the inboard nacelle accelerate vertically upward while

the fuselage and fuel ladened wing outboard of the nacelle resist the

motion. The bending moment located at wing station 65 during this

condition creates tension on the wing top and compression on the bottom.



E. CONTROL SURFACE LOADS
A rudder kick produces a torque about the fuselage, a moment about

the vertical axis and an insignificant y-direction shear. The vertical

distance from the rudder center of pressure to the longitudinal (x) axis

multiplied by the lift produced by the rudder due to a deflection into the

slipstream adequately describes the torque experienced by the fuselage.

The moment generated by the rudder is a product of the rudder lift times

the longitudinal distance from F.S. 695 to the rudder center of pressure.

Elevator deflection incrementally alters the shear and moment

produced at F.S. 695. The elevator force directly adds to the remainder of

the shear at F.S. 695. The control force was multiplied by the longitudinal

distance measured from the elevator aerodynamic center to F.S. 695 to

produce this moment. The moment was added with all the rest at F.S. 695.

Ailerons generate incremental amounts of lift in comparison to that

produced by the remainder of the wing. As such, they can be readily

incorporated into the calculations. The shear adds directly to that already

calculated at W.S. 65. The moment results from the lifting force on the

aileron acting about the moment arm established by the aileron center of

pressure to W.S. 65.

This summary of load conditions exhausts the list that need be

examined for purposes of structural integrity. These conditions should in

fact be pared down further to a minimum set that can be quickly

incorporated into the model and determine whether or not the structure has

been overloaded. The answer to the overload question will determine the

need for wing box redesign thereby closing the design loop.



HI. GENERAL SOLUTION TO P-3C

The general engineering solution provides a linear analysis to the

question raised regarding the P-3H structural response to an increase in

zero fuel weight. This solution yields an essential comparison for the

output of the finite element program as an accuracy check. This

formulation is based on an assumed general form for the displacements

with the parameters to be determined by the specific boundary conditions.

This formulation reduced the solution of the field equations to algebraic

forms (after the necessary integrations) thus bypassing the necessity of

solving 18 partial differential equations simultaneously.

A. SOLUTION USING EULER-BERNOULLI ASSUMPTION
The assumed displacement method was originally used by Euler and

Bernoulli over a century ago. Essentially, plane sections are assumed to

remain plane during application of bending loads. The limitation to the

theory lies in its application to only small deformations. Strain, defined in

terms of the partial derivatives of displacement, can be calculated for the

structure in terms of the assumed displacements. The constitutive

relationship for a specific material (i.e. aluminum) converts the strain to

internal stress. The internal equilibrium equations establish a set of

equations in terms of integrals for solution in terms of internal stresses.

These internal stresses are then equilibrated to the boundary tractions. A
system of integral stress equations related to the known applied boundary

conditions result. The solution of the integrals in this system of equations

is further simplified through the idealization of the actual structural

configuration by interconnecting bars ( to carry normal stress) and sheets

(to carry shear). The structure in Figure 3 models the center section wing

box of the P-3C. The internal stresses within the individual members are

constant permitting their extraction from the integrand thereby facilitating

the integration, which results in a system of algebraic equations. The

general solution, now represented in matrix form contains many coupling

elements. Decoupling is accomplished through the application of symmetry

8



to the geometry and using the specific loads that apply for a particular

flight condition. We note that this simplification is possible only for the

simplified centroidal (uniformly loaded) boundary conditions.

Nevertheless, this solution provides a useful estimate of the best case

expectations (lower bound stress) and it also provides a bench mark

verification for the finite element method solution which will be used for

examination of the realistic cases in terms of payload distribution,

structural modification and structural material substitution.

REAR

Figure 3 Center Section Wing Box Structure : Each circle

represents a node of the structure. Shear sheets exist on the vertical x-z

and y-z planes of each cell. Rods are represented by the lines which

connect each node.



1. Summary of Field Equations

The five governing field equations are as follows:

Stress Boundary Conditions

"xx^xy^xz

yx yy y2

^zx *-*zy ^zz

(3.1)

Differential Equations of Equilibr n

9o XX

dx

do

X3L + —J± +X =
dy dz

dx

dc

-^ +^+Y = (3.2)

zx +

dy

dc

dz

dx dy
2+<^+Z =

dz

C istitutive Relation

axx

o
yy

°zz

ayx
axz
axy

(l+v)(l-2v)

1-V V V

V 1-V V

V V 1-V

0.5-v

0.5-v

0.5-v

exx

e
yy

^ZZ

eyz

exz

exy

(3.3)
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Strain Displacement

du

d

dy

dx

£yy
ay

(3.4)

9y dx

. au aw
az ax

Strain Compatibility

a/ ae^ ae^ _ aexy

az\ ax ay az

2a
2

e zz

axay

2d\ XX

ayaz

_2
2d e

yy_

axdz

2 2

a_£xx +
a_e

dy

yy - A *y

ax
"

2 2
a £yv a e

az'

zz

3y
2 2

a eg a e

ax
"

XX

dz

dxdy

A yz

aydz

3
2
e xz

axaz

(3.5)

The stress boundary conditions, Equation 3.1, relate the external

traction (B.C.) to the internal stresses in the first internal layer. The

second system of equations (Equation. 3.2) relates the first internal layer to

11



the adjacent layer by balance of internal forces; Hence it is known as the

differential equation of equilibrium. Equations 3.3, the constitutive

relations, convert strain uniquely into stress. Each material exhibits its

own particular constitutive relationship. Aluminum behaves in an

isotropic, Hookean manner. The strain displacement equations (Equations

3.4), relate the strain to the partial differential of the displacement.

Finally, Equation 3.5 ensures that the second derivative of the strain is

continuous or that the material will not separate anywhere within the

interior. Any solution to a solid structural problem must satisfy these five

sets of equations.

One approach to the problem requires the simultaneor soi on of the

eighteen coupled, partial differential equations (PDE) described in

Equations 3.1 through 3.5. Each specific geometry of the structure and

boundary condition requires a different specific solution. This method

requires considerable mathematical complexity, and in fact, is frequently

intractable for realistic structural configurations. The Finite Element

Method (FEM) provides a general solution to a sub-geometry or element.

The computer uses its high speed to solve the general case for each

element. These elements may then be assembled to approximate any

specific configuration of interest.

An approximate approach to this structural problem is based upon the

Euler-Bernoulli assumption. This formulation assumes the functional form

of the displacement, i.e., that plane sections remain plane in the structure

while deforming under normal and bending loads. The assumption

guarantees that the compatibility relations, Equations 3.5, are satisfied.

Deformations of the structure must be small to ensure that the small angle

approximation for the tangent applies (ie. less than 15 degrees of shear

deformation yields an error of less than 3%). When the form of the

displacement function is assumed, the solution of the eighteen PDE's

reduces to a set of algebraic equations of differentials. In this case the

displacement is of an assumed functional form with parameters to be

determined by each specific boundary condition (B.C.) applied to the

model.

This approximate approach begins by differentiating the assumed

displacements using Equation 3.4.

12



v(x,y,z) = vo-e x(y)z +6 z(y)x (3.6)

e
yy
=f^- z^ +x^ (3.7)

73 dy dy dy dy

The unknowns in the displacement relation become parameters to be

determined. The strains are then expressed as internal stress using the

constitutive relationship shown in Equation 3.3. Simplification of the axial

stress expression in the y direction yields Equation 3.8.

o
yy
=Ee

yy
=E(^-z^x+x^) (3.8)

dy dy dy

Substituting these internal stress expressions into Equation 3.2 yields a set

of differential equations. Equilibrating the internal stress to the boundary

tractions, Equation 3.1, for a specific geometry results in a set of integral

equations. The integral contains the unknown stress expressed in terms of

the parameters of the assumed displacement. Equations 3.9-3.1 1 equate the

general B.C.'s applied at wing station 65 that have an axial stress

component.

dv de x
de^

P v
=- E(—--z—- + x—^dA (3.9)

dy dy dy

dv de
x

de
*Mx = - E (— - z—- + x

—

*) z dA (3.10)

dy dy dy

dv de
x

de
*Mz

=- E(—--z—- + x—-^xdA (3.11)

dy dy dy
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From Equations 3.9-3.11, the model geometry was simplified by replacing

all of the structural members by sheets that carry shear and rods that

support axial loads. Through this modeling, the internal parameters

become constant and can be factored outside of the integral expression.

—zdA-E!

—

z
| —x

dy E,dyj E
2

dyj E
{

dvol e deJ e 2 de 7 | eM x =-Er—- —zdA+E
2
—-I —z dA-Ej—H —xz dA (3J 3)

dyj E! dyj E
Y

dyj Ex

dv | E d9 x | £ d
z | £ 2

Mz =-Er—-I —xdA+E,—- —xzdA-Ej

—

z —x dA (3.14)

dyj Ej dyj E
x

dyj E
x

The resulting equation was integrable since the integrand is solely related

to the geometry of the cross section. The following modulus of elasticity

weighted properties are defined:

A | — d

Ei
AI

J. E
'

x s-L-l —xdA (3.16)

A

r.4-
aV.

e
'

z =— I —zdA (3.17)
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1 I E 2

!» =— I —z dA (3.18)

E,A . A

ll =— I —xzdA

A*'
E

>

1 I E 2

I^-U —x dA (3.20)

Using these definitions, Equations 3.12-3.14 transform into:

dv * de
x
-* de-*

P
y =-Er—^A +Ej—-z -Ej—

-

z
x (3.21)

dy dy dy

dv -* d9
x

* d9
z

*

Mx =-Ej z + E
X

I Xx-E! Ixz (3.22)
dy dy dy

*
zdv

~* d6 x
* d0

zMz =-E,—°x +E
1
-^I XZ -E r

—l
Ia (3.23)

dy dy dy

Solving for the derivatives of the displacement functions and inserting into

Equation 3.8:

E P
y E

r
MJ„+M xIn eMJb+MJh

a™ = + —[ —]x [ -]z (3.24)
yy F * F 2 c? 2

v -^xx ^zz " -^xz / V *xx *zz " *xz /

The differential equations have thus been transformed into a set of coupled

algebraic equations. The shear stresses are solved for in a similar manner

and attached in Appendix B. The general shear term is:
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* *

q(0) (-m z
- V V)I VV + (-m v + V^I^ Q_

°xV = °yx =— + i
1—1 L*_pi (3.25)

t 2 t

Si

q* s ( JLy tds (3.26)

El
I.

Si
* —

: ds (3.27)
E

i

The resulting stresses for the general case are:

a„ =-—
- - —[

r]y ^c r] ( *

A

v^yy-^zz~*yz/ v^yy^H~^yz/

* * * *

E P
y E

r
MJ^ +MJ„ E

r
M

J

B +MJ XZ
aw = L + —

[

_]X [ -]z (3.29)
yy E* P 2 c 2

1 A-«l ** * X-«l ** *

V 'XX *ZZ " *XZ ) V *XX -^2Z " *XZ /

E P 7 E Mxlw+MT v e MJxx+MJxv
oH = -5—i + ±4_LZy y^L]y . _El[_£2 iiL]x (3.30)

xij iij * * * iii ** *

v ^yy *xx " ^xy / V *yy *xx " *xy /

_q(0)
r

(-m
y
+V

a
)Ig +(-m 2 -V y

)Iyz 0,
axz " "zx l J poi;

t * * * t

\ lyy ^zz -^yz /
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*y y*
t 2 fi * * * i

V A
yy A zz ~ A yz /

q(0) (-m^V^+C-m,- V^I^ Q x
azy = °yz = ~

t

J
] ( '

v A zz A xx ~ A xz /

This system of equations can be arranged in matrix form:

[a] = [k] [F] (3.34)

The nine generalized forces consisting of three forces, shears and moments

are weighted by the k matrix to yield nine stresses. The terms that make

up the non-zero elements of the matrix are listed below. The generalized k

matrix follows these terms.
* *

Ml- K52-K93
* ' M8-7H. 2~

J

1 (I I -I )V A
yy

A zz A yz /

* * * *

_ E -ylyy +Zlyz _ -Iyy Q zK19-—-H —J , K25-K45
£-]+** * * * t

v yy^zz" xyz / v A
yy

A zz~ A yz>'

* * * *

x, _ k _ A yz ^<z v. _ t _ x yz Vy
K26~ K46 -T— >

K35~ K 75 Z~-
* * * t * * * I

v A
yy

A zz~ A yz/ v A
yy

A zz~ A yz/
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^36- k 76~
-I zz

v ^yy^zz" ^yz /

2 t

Qy . _E
r

Xl^-Zl^

V ^xx *zz " ^xz /

E r X^xx"z^;
K 59-TT~I- r-J '

K64~ K 84

v ^xx^zz ~ -^xz /

»
' • *

2
t

v ^xx*zz~ ^xz /

^66- ^86-
I zz

* * *

v ^xx^zz" *xz /

Qx v _E
r

ylyy-xl xy

J-<
1 * * *

v ^ yy * xx " * xy /

]

^98-^7-(
E r

yixy-xi^

Ej * * *
2

v^w^xx'^xv^yy-xx *xy

[k]=

k„ k„ k„

k25 k26

3 k35 k36

k45 k46

k52 k57 k59

k64 k 66

k 75 k76

k84 ku
k93 k97 k98
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Further simplification is possible by applying the known loading

conditions for a given boundary. For the y face at wing station 65, the sole

axial load is a moment about the x-axis produced by the lift acting on the

wing. Accordingly, Equation 3.24 reduces to:

E M XI X7 e MJ^
a
yy = "^ ^"H* - -^ L=-t-]z (3.35)

F, 2 F, 2

The profile geometry of the wing box is not quite symmetric but will

be assumed so for the purpose of this calculation. Therefore the cross

product of inertia terms vanish and Equation 3.35 reduces to:

-E M x zOw=— -4- (3-36)
yy

E, ,'
A XX

Similar arguments hold for the other stresses in Equations 3.28-3.33.

These last two simplifications lead to an uncoupling of the algebraic

expressions in the matrix as shown below:

]c - E
r

z
l v -v _ - 1 QzK 18-^-L ;—J >

K 25 _K45-
!

(Cr) IJ
'E,

k36" k76 1
—

»
k57--7T-[-T

-
]

Ei
jx xxIyy

t

•

-1 Qx

A XX
t

^66~ ^86 1
^ X

» ^93

E,A*
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w-

ki8

k25

^36

k 45

k57

k 6 6

k 76

k 86

-a kg*

Each stress relates to an applied boundary condition weighted by a k

factor determined from the geometry of the cross section. The in-flight lg

condition generated the first load condition for the model. Mv represents

the moment generated by the fuselage forward of F.S. 571 and aft of F.S.

695. For reasons of stability and equilibrium, the fore and aft moments

are equal. The Mx moment is produced by the lift acting on the wing

through its center of pressure, the quarter chord position on the mean

aerodynamic chord. Two sets of vertical shear exist. Established by the

lift on the wing, shear passes into the center section at wing station 65

acting in the negative z direction toward the top of the f selage. The

second shear results from the fuselage forward and aft of the nter section

wing box. This shear acts in the positive z direction at F.S. 571 and F.S.

695. Pz accounts for the mass contained in the center section itself.

It should be noted that this solution, even with the Euler-Bernoulli

assumption is tractable only for the hypothetically uniform loading where

the resultant forces and moments act on the centroid of the cross-section.

In fact, there exist no structural component at the centroid to carry the

applied loads. Nevertheless, because of the mathematical tractability of this

hypothetical case, it provides a bench mark for verifying the subsequent

finite element method procedures. This idealized centroidal loading also

provides the estimation of the best case analysis, i.e., the lowest possible

internal structural stress for a given payload.
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IV. HAND CALCULATION

In this chapter, the specific geometric properties of the P-3C aircraft

are reduced to appropriate forms to be consistent with the Euler-Bernoulli

formulation derived in Chapter HI.

A. WING MODELING
Starting with the view from the left wingtip looking toward the

fuselage, the cross sectional properties are modeled from the Structure

Wing Fuselage Intersection diagram found in Lockheed Report No. 13102.

At wing station 65, a double shear splice connects the upper and lower

wing surfaces to the center section wing box. Tension type splices join the

beam caps together [ref 4]. At this wing station, the cross section may be

modeled as a rectangle of thickness t. The outer length runs from Fuselage

Station F.S. 571 to F.S. 695 or 124 inches. The inner length runs an inch

shorter. The outer height and inner height are 18 and 17.5 inches

respectively. The moment of inertia for this geometry is:

The area is:

Ixx = y2 (iW-b^
3

) = 5330in
4

(4.1)

A=4A
i
=b

1
h

1
- b2h 2 =79.5 in

2
(4.2)

The distance from the centroidal axis is:

h3= J^ =8.19 in (4.3)

The cross section transformed into rods and sheets (Figure 4).

124 in 2h3 = 16.38 in
JAi

~f
O*

Figure 4. Wing Modeling: wing station 65
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Moving towards centerline from W.S. 65, the fuselage must be

accounted for in the geometry. The curved I-beams that form the main

frames constitute the overwhelming majority of the additional resistance to

the bending moment. This addition can be modeled as two rods located

above the wing box cross section already completed and two rods at the

same location as the lower part of the wing box (Figure 5).The area (Aj)

represents one half of the cross sectional area of the seven frames existing

between F.S. 571 and F.S. 695. A; equals 3.5 in^. The vertical distance

(h4) from the top of the wing box to the I-beam varies in the real

structure, but for simplicity will be modeled as 64.4 inches (see frselage

modeling). The distance from the wing box to the lower seven fr ies is

Zj=2.0 inches. The new moment of inertia term is expressed in Equation

4.4.

*1

Oa: ttO
j

x = 3.33 in

Ai *V~ A
i

Ai Ai!

h4 = 64.4 in

2h3 = 16.38 in

2.0 in

J J

Figure 5. Wing Modeling: wing station 54

-structure
_ l
Aboxzbox+ A curve2curve + 2AjZjj

_

vAt>ox + A curve+ ^AJ

,2 ,2 ,2

^xxtotal
=

"beam + Z beanA beam + * xxbox
+ Z box Abox + I xx1qw + Z

iow Aiow

I xx totai= + 32300 + 5330+1730 + 0+ 1160 = 40500 in
4

(4.5)
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From Chapter III, the reduced form of the axial stress along the wing can

be expressed as:

M v z
a
yy=^ (4.6)

The bending moment increases by the shear loads at the W.S. 65 and those

additional loads along the structure:

M x (y) = M x (65)-j;/V z (y)dy (4.7)

The last term in Equation 4.7 which requires an explanation is the z

location determined by the position of the member in question with respect

to the modulus weighted centroid of the cross section.

The shear stress follows from the reduced form of Equation 3.26:

-V Z Q XOy^-j-^ (4-8)

The moment of inertia term was resolved for the axial stresses and will be

reused here. The centroidal term from Equation 3.19:

Q^Xf-ZiAi (4.9)

i
b

i

As with Equation 4.7, the z\ term represents the distance between the

centroid and the ith element in question. Aj represents the area of the ith

element. The shear load Vz(y), increases from the wingtip to W.S. 65 as

the wing generated lift dominates the weight of the structure, ordnance and

fuel. Between W.S. 65 and the centerline, the shear is modified by the

weight of the structure and fuel of the center section. The shears at wing

stations 65 and were provided by a private contractor. The data will be

linearly interpolated between these two points to arrive at a shear value for

a given y location.
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Equation 4.8 assumes a centroidal loading which in the case of a wing

with lift acting through the 30 percent chord line must be modified by the

superposition of the stress due to the torsional loading. For single cell

closed sections such as wing station 65, the stress expression due to torque

is expressed in Equation 4.9. The enclosed area, torque and sheet thickness

are included.

r =*k (4.10)

2At

For the case of multi-cell structures refer to Allen and Haisler s text,

reference 2. The authors provide a method whereby cell deformations in

an n-cell structure are equated to generate n-1 equations. The final

equation comes from the equilibrium expression in which the moments

about the longitudinal axis are summed and equated to zero.

B. FUSELAGE MODELING:
The axial stresses in the x direction contend with the geometry shown

in Figure 6.

Figure 6. Simplified Fuselage Cross Section

Dissecting Figure 6 further into simpler geometries enables a

component build-up approach to the section properties. Viewed from the

nose of the aircraft looking back at F.S. 571, the upper shell and stringers

of the fuselage may be modeled as a thin sheet (Figure 7). The center piece
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may be modeled as a rectangle (Figure 8) and the lower I-beams and

fuselage as two rods.

THIN SHELL MODEL

Figure 7. Upper Shell and Stringers of the Fuselage

r> m ©-7TMS Ol-T 2A=r Rb f rdrd© =4fHR>0 = 71.2 in (4.11)

" 1
z

e = 7n/6

= 1-f zdA =fR
Rb
f (r sin0)r dr d0 = -28.05 i

A a
•'e = -n/6

I
yycurve

^» ©-Trie ^ 2

= J (i-z)
2
dA =j;

Rb
I (z-rsin0) rdrd© (4.13)

1™^ = 1.298 E+05 - 1.120 E+05 + 0.560 E+05 = 7.38 E+04 in (4.14)
yycurve
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18 in

A

^16.5 in 1?fi in"*

V
^

130 in.

Figure 8. Center Piece of the Fuselage

I
yybox

=A(b
i
h

i

3
- b^2

3

)=16.0E+03 (4.15)

Abox^ihj - t>2h 2 = (18 . (130 in) - (16.5in)(126in) = 261 in
2
= 8Ai (4.16)

The moments of inertia are computed for each piece about its respective

center of gravity. At this juncture, the structure converts to rods and

sheets using the computed areas and moments of inertia to calculate the

vertical separation (Figure 9). An A^ of five square inches represents the

area of the I-beams under the wing box and the fuselage shell lumped

together two inches below the center section wing box.

? o

curve

6- 6

box 2b

O \
Figure 9. Idealized Fuselage Cross Section
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'box

••-V?-
12 - 19 in (4.17)

yybox

box

= 7.83 in (4.18)

Solving for the modulus weighted center of gravity for the entire cross

section enables the section moment of inertia to be calculated. Figure 10

shows the dimensions of interest for the complete cross section.

(Aboxzbox+ A curveZ curve+ zAfcZiJ m

-±- = 0.65 m (4.19)-structure

2 in

(,Abox+ A curve + 2A kJ

0.65 in

T
64 .38 in

f 1 15.66 in

Figure 10. Idealized Fuselage Cross Section : with dimensions

Jyytotal'^yycurve

2 ,2 2
+ Z curveA curve+ lyyu^ + Z box AjjqX + l yy . + Z lowAiow (4.20)

I
yytotal

yybox - dox<*dox A
yyiow

= 7.38 E+04 + 7.68 E+04 + 1.60 E+04 + 1.34 E+04 + + 0.29E+04

= 1.83E+05in
4

(4.21)

The simplified x direction axial stress equation follows:

M„z
lyy

(4.22)
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The moment of inertia term has just been solved for the homogeneous case

in Equation 4.21. The location of the bar in question, referenced to the

modulus weighted centroid, determines the value of z. The boundary

conditions at F.S. 571 and 695 were developed in the boundary condition

section and calculated in Appendix A. To determine the moment at a

particular fuselage station between F.S. 571 and 695 requires a similar

calculation based upon this component build up method.

The shear stress for the face at F.S. 571 simplifies from Equation 3.24:

<>xz= ^ (4.23)
iyy tj

The terms in Equation 4.23 follow directly from the explanation for

Equation 4.10 where:

i
E

i

The moment of inertia term was previously solved for in Equation 4.20.

The thickness depends upon the location of interest. The shear force Vz

was calculated for F.S. 571 in Appendix A. All of the Ig boundary

condition loads are shown in Figure 11.
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REAR

Ni/in.

wing

l^
jng

- 5.97E+06 in-lbs

Hear = 331E+06 ir|
- |bs

Hwd = 331E+06 in - |bs

lnertia= 2* V - V

Hvini

Vwing= 24
-
400 lbs

V = 8,700 lbs
rear

Vfwd = 12,600 lbs

- V,wing " rear" fwd = 27500 lbs

Figure 11 Boundary Condition Loads for Center Section Wing

Box : at lg.

In this chapter, the actual P-3C aircraft geometry is reduced to

idealized rods and rectangular sheets which are statically equivalent to the

actual load and moment carrying capacity of the aircraft. The actual load

and moments are reduced to centroidal boundary conditions as shown in

Figure 1 1 for the 1 g condition. Stresses calculated from the 1 g condition

can be simply scaled to any multiple for feasibility studies.
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V. FINITE ELEMENT METHOD

The finite element method provides a direct solution to the field

equations (as described in Chapter II) without the simplification of Euler-

Bernoulli hypothesis. For the center section wing box it can provide

improved accuracy over the hand calculated solution for centroidal loading

as well as for other more realistic cases which are beyond hand

calculations. Small or finite elements are solved in the general sense to

simultaneously satisfy the eighteen field equations. These building blocks

are subsequently combined and matched to form the structure or geometry

of interest. Equilibrium must be satisfied at each node where the elements

connect. The external displacement and force boundary conditions are

applied to the structure. The solution to this combination of elements and

boundary conditions satisfies the minimum energy principle. This

principle guarantees a unique solution which minimizes the strain energy

preserved in the structure as it deforms under loading. Model One was

constructed to compare this method of calculation to that accomplished by

hand calculations with centroidal boundary conditions. (See Appendix D
for FEM examples)

Upon verification, subsequent load conditions can be constructed to

model a flight condition of interest (i.e. 3g, 3.5 g . . . etc.). The resulting

internal stresses will identify locations which require redesign. Modified

configurations (i.e. fuel/payload) cause a redistribution of the inertial loads

within the center section. This model provides the tool from which to

explore these modifications to determine their effect on the internal stresses

of the wing box structure. If critical stresses are identified, the model

lends itself to study the replacement options for the structure. Redesign

options include additional area/mass added to a component or, on the other

hand, part replacement with an alternative material (i.e. different

composites). Both of these options require assessable software

modifications to the model definition.

The model to be constructed for finite element analysis is not

geometrically identical to the actual structure of the P-3C aircraft. A
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geometrically exact model would be too complex to implement and too

time consuming to execute; it is appropriate only for the actual design

stage. A geometrically simplified model retaining the pertinent structural

features is constructed herein; its application is intended for problem

identification and assessment of different options of payload, distribution

structural enhancement and modifications.

The finite element software used in this investigation is the PAL2 V 4.0

by MacNeil Swindler Corp. This software can be run on PC class of

computers, it has provisions for analysis of composite materials and can be

executed under NASTRAN on mini and mainframe class of computers.

This chapter describes the geometric definition of the model and the

software related procedures to assure the appropriateness of the finite

element method implementations.

A. PROCEDURES
1. Geometric Definition

The nodal points that describe the structure of interest are defined

using a rectangular coordinate system (polar and spherical are available).

Once the nodes are in place and the material specified (i.e. 2014 T-4

aluminum), the elements that make up the structure are connected to the

nodal lattice. Rods join two nodes together while quadrilateral plates

connect four nodes. The circular rods are defined by inner and outer

diameter. The shear area is nothing more than a correction term for the

parabolic shear distribution across the beam face. The square bar shear

area equals the cross-sectional area divided by 1.2. Their lengths are

prescribed by the lattice. The shear plate thickness is specified, while the

node locations determine the planer dimensions. The relation of this model

to the actual structure is shown in Figure 1 and Figure 12 below.

2. Boundary Conditions

The PAL2 software accepts forces, pressure loads, line loads, and

concentrated moments. This software limitation requires the boundary

condition moments and shears to be distributed by means of a hand

calculation. The calculated shear and moment loads apply indirectly to the

31



nodes on the boundary of interest via a dummy structure that when coupled

with the Saint-Venant principle generates the centroidal load conditions on

the center section boundaries. This last procedure is necessitated by the

need to generate centroidal loads to validate the hand calculations. Once

the model has been validated, non-centroidal loads may be applied to

develop a complete structural response envelope given a variety of inertial

load conditions. Once an inertial load is specified for a given flight

condition, the structure is equilibrated; Displacements and rotations

specified as zero at one node will prevent it from flying off into space.

3. Model One
The first model built contains the rod i :id she^ structure used in

the hand calculation (see Figure 12). The model sizing comes directly

from the hand calculation with one exception. The wing box thickness was

modified to accommodate the lattice structure. A compromise height of

sixteen inches required a slight adjustment (less than 1 part in 40) to the

rod cross sectional areas. This adjustment maintained constant moment of

inertia terms Ixx and Ivv . The node locations/model dimensions are listed

in Appendix C. The bar diameters were taken directly from the hand

calculation Aj and A; terms except where they are altered to account for

the change in wing box thickness. For simplicity, the shear plate thickness

was uniformly chosen as 0.25 inches.
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FWD

n
Figure 12. Center Section Wing Box Structure

and sheets)

model one (bars

Modeling the hand calculated centroidal load requires a dummy
structure built from the face of the center section on each of its four

boundaries. This dummy structure enables the centroidal loads to be

applied at the boundary by means of the Saint-Venant principle in which

only the nonequilibrated loads are transmitted through the structure. These

nonequilibrated loads transform to the centroidal loads as they propagate

away from the boundaries.

At wing station 65 for example, the rectangular cross section consists

of four nodes. This plane is repeated two times in both the positive and

negative y-direction as depicted in Figure 13. There are a total of four

sheets on the y faces and eight each on the x and z faces of the dummy
structure. Rods connect each pair of adjacent nodes. The hand calculation

sizes the rod diameter. The loads applied outboard of wing station 65 are

such that at the boundary of interest they become the centroidal loads

identical to those used in the hand calculation. The four nodes on the

positive y face of the resulting structure have their displacements set to

zero to ensure equilibrium throughout the structure.
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V

WING STATION 65

Figure 13. Wing Station 65 Boundary : modeled for comparison

with hand calculations

The remaining three boundaries are modeler in a parallel manner

using the dummy structure to achieve a centroidal loading on the boundary

of interest for direct comparison to the hand results.

The verifications of model formulation and implementations are made

against a hand calculated bench mark model for the simplified centroidal

loading conditions (described in Chapter II). The results are described in

Appendix D. They are well within the theoretical expectations and the

model presented herein can be considered as fully verified; it can be used

for feasibility studies, operational envelope definition and structural design

tradeoffs.
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VI. ALTERNATIVE SOLUTIONS (PROBLEM EXTENSION)

This chapter discusses the limitations of verifying the finite element

solution with the hand calculated results to the boundaries of the structure

for a lg centroidally distributed load. Extensions from these verified

boundary results explore the full range of the finite element solutions and

their applicability to the existing center section wing box problem. The

solution range encompasses all of the loads discussed in Chapter II.

A. BENEFITS OF THE DUAL APPROACH
The usefulness of the combined solution method falls into two

categories. The first lies in the verification of the centroidal boundary

condition (or lower bound) stresses for the finite element method. It

should be pointed out that the results of the hand calculation are valid only

for the boundaries of the model. This limitation lies in the generation of

the boundary condition loads. The loads are generated external to the wing

box and do not account for any distribution of inertia loads within the

center section itself. Secondly, completion of the finite element modeling

enables a rapid solution to the altered boundary conditions associated with a

3g load for a 95,000 pound zero fuel weight P-3 with 60,000 pounds of

fuel (the original configuration of interest). Since the solution varies

within the center section as the inertial loads are redistributed, several may

be applied simulating any of a number of configuration options. The most

straightforward is an equitable distribution throughout the center section.

From this original problem, design options are explored which will satisfy

the structural requirements associated with the proposed payload growth.

1. Configuration Change

A configuration change to the P-3H short of a structural

modification requires that a solution to the altered boundary condition

loads be applied to the existing finite element model. The internal stresses

are solved using the available software. The new fuselage boundary

condition loads are calculated in the same manner as those calculated in
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Appendix A. For the case of incre ng the zero fuel weight, additional lift

must be generated by the wings to astain this extra mass at the 3g flight

condition. The second solution found in Chapter II under wing boundary

condition loads, provides a component build up method to calculate the new

moments and shears at wing station 65.

a. Example 1

Suppose a new ESM suite at SS3 adds 100 pounds to the work

station 100 inches forward of F.S. 571. The 3g flight condition requires an

additional 300 pounds of lift out of the wings distributed along the span.

This addition alters the moment and shears at wing star a 65. Fuselage

station 571 would experience an additional 300 pounds ol hear and 30,000

in-pounds of bending moment. These new loads are added to the existing

boundary condition loads and a solution generated. The internal stresses

may then be examined for failure determination. In the case where no

overstress has occurred then the inertia loads within the center section may

be redistributed until the limiting stresses are reached.

2. Changing Material Properties

There exist three solutions to the problem load which exceeds the

yield stress of a given structure given constant center section inertia forces.

The first two alternatives increase the moment of inertia terms

(denominator of Equations 3.21-3.26) the y reducing the internal stress.

Either additional material may be used ti icrease the cross section (i.e.

fortify existing sections) or the dimensions of the wing box and/or

fuselage must be increased. The more appealing third option from the

weight viewpoint involves the use of a material with a greater specific

strength.

Replacing the entire aluminum structure with a single material (i.e.

composite) fails to alter the internal stresses. Rather, the yield stress of the

structure increases enabling greater loads to be safely carried. The partial

use of stronger materials in high stress locations of the wing box would

solve the structural problem for the case in which only portions of the

structure exceeded the yield stress.
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a. Example 2

Changing the load requirements from 3.0 to 3.5 g's provides another

opportunity to observe the structural limits. The problem requires that the

3.5 g boundary load conditions for the wing and fuselage stations be

calculated. As a rudimentary approach, the 3 g loads are multiplied by the

ratio (3.5/3.0). The new loads are applied to the boundaries of the

computer model and the stresses checked. Exceeding the yield stress

anywhere in the structure requires a redesign by one of the three methods

mentioned above. Assuming that only the stress in the axial bars between

wing station 65 and the fuselage are excessive they will be targeted with

composite replacement. The aluminum will be replaced by a composite

material with a simple software modification. The new model will be run

against the 3.5g boundary condition loads to complete the process. The

new internal stresses within the member can now be analyzed, and further

modifications made if necessary.

Two extensions from the original verified finite element solution are

explored. The first discusses the problems associated with payload increase

consisting of a single piece of equipment, while the latter confronts the

issues surrounding an increase in the flight envelope of the aircraft. Both

extensions demonstrate design benefits of the verified finite element

solution for the purpose of answering the structural integrity question

associated with the payload increase.
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VH. RESULTS

This chapter examines the internal stresses of the P-3C center section

wing box for the two calculation methods that were employed in the

analysis. The hand calculations are based upon the Euler-Bernoulli

assumption that plane sections remain plane. The finite element method

simultaneously satisfies the field equations for a given element from which

the internal stresses are determined. The results compare a lg centroidal

boundary load condition (ie. lower bound).

Comparison of the stresses is limited to wing str* ^n 65L and fuselage

station 571. Similar results are expected for the er two bounc es.

The right wing boundary condition is symmetric to the left. Fuselage

Station 695 has a scaled down shear force while its cross-section is identical

to the forward section. .

The results are presented graphically (Figures 16 and 17) and followed

in tabular form (Tables 7.1 through 7.4). Figures 14 and 15 depict the

internal stress locations for F.S.571 (X-face) and W.S.65L (Y-face).

Wing Station

65

Fuselage Station

571

Figure 14. Stress Locations
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il

Figure 15. Stress Identification : X face(top) Y face(bottom)
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TABLE 7.1. X Face Axial Stress

Axial Stress FEM (psi) Hand Calc (psi)

A
B
C
D
E

F

1159

-5.5

-294

-333

-4.9

-294

1176

11.8

-278

-314

11.8

-278

TAB, 7.2. X Face Shear Stress

Shear Stress FEM (psi) Hand Calc (psi)

G
H
I

J

K
L
M
N
O
P

313

108

12.5

28

12

315

24

16

15

95

165

100

21

23

TABLE 73. Y Face Axial Stress

Axial Stress FEM (psi) Hand Calc (psi)

Q
R

8932

-8932

9355

-9355
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TABLE 7.4. Y Face Shear Stress

Shear Stress FEM (psi) Hand Calc (psi)

S 3361 3568

T -569 -518.5

U 569 518.5

V 2369 2531

The stresses on the X-face of the model result from an application of a

12,566 pound shear force 260 inches from the boundary of interest. This

load results in the correct shear and moment at F.S.571 due to the Saint-

Venant effect. With this centroidal loading of the fuselage, the stresses in

the horizontal sheets are expected to be zero. The hand calculation leaves

small finite stresses due mainly to round off in the five by five matrix

solution. The finite element method predicts the stress as zero. The finite

element axial stress in member A tends toward the high side, while the

remaining rod stresses tend toward the low. This phenomenon results

from the centroidal axis of the finite element model shifting towards the

top of the fuselage since the area of the shear sheets are included.

The shear load applied at thirty-three percent chord combined with the

force couple realistically models the aerodynamic loads on the wing. The

finite element stresses on this face are all within ten percent of the hand

calculated results.

The finite element stresses agree favorably with the hand results, well

within twenty percent. Axial stresses tended to be closer to the predicted

hand results than did the shear stresses. The Euler-Bernoulli assumption

explains the difference between the two sets of results.

These results verify the finite element model. The extension from this

problem remains to run the model using a realistic 3g load condition for a

95,000 pound zero fuel weight aircraft with 60,000 pounds of fuel. Since

the fuel and internal loadout are never constant, the inertia loads within the

center section must be varied to develop a full range of solutions for the

center section wing box.
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Vm. SUMMARY, CONCLUSIONS AND
RECOMMENDATIONS

The Navy is considering the feasibility of increasing the patrol aircraft

P-3C zero fuel weight enabling avionics and payload growth. This analysis

examines the consequences to the structural requirements of the center

section wing box. Specifically, the investigation provides an analytical

means with which to explore the structure given a payload increase of

18,000 pounds.

Two solutions to the structures field equations are investigated: a

simplified hand solution for preliminary feasibility calculations and a more

precise solution for design analysis. Together, the solutions provide a

necessary check for the results. The hand calculations calibrate the finite

element solution on the boundary of interest. These calculations are valid

only for the extremely simplified centroidal loading. This loading gives

rise to uniformly distributed forces and moments and hence, the best case

(lower bound stress) condition. The primary purpose of the hand

calculation is to identify the existence of any structural problems on the

wing box boundary and to assure the correctness of the finite element

method model. This assurance is especially important wher the computer

generated model is used to explore different option.* of payload

redistribution feasibility studies, operation envelope definition and

structural design tradeoffs.

The extension remains to utilize the finite element model for various

load conditions combining the boundary shears and moments together with

several inertial distributions representative of the limiting flight envelope.

The critical center section components are to be identified and redesigned

from the wing box feasibility studies which, in turn, will lead to an

optimized solution. The options will include structural fortification,

composite reinforcement, substitution, and inertial distribution limitations

within the center section.
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At this stage, finite element output is limited to stress and deformation

data. Software options are also available to generate dynamic responses

which are needed for flutter characterization.

This analytical package facilitates the generation of design points for

the replacement center section wing box. Successful implementation of the

product will provide the technical basis for RFP generation.
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APPENDIX A. BOUNDARY CONDITIONS

A. P-3C FUSELAGE WEIGHT BREAKDOWN
(Weights from P-3C specification 1983)

COMPONENT WEIGHTfLBS)

TAIL 1965

WING 9095

WING 7595

C.S. 1500

PROPULSION 15041

NACELLE 4877

LANDING GEAR 3666

MAIN 3055

NOSE 611

AIR COND./ANTI-ICE 2022

WING 800

NOSE 322

C.S. 800

REAR 100

FLIGHT CONTROLS 1509

WING 750

C.S. 600

REAR 159

ELECTRICAL 1813

WING 500

INSTRUMENTS
C.S.

477

1313

HYDRAULIC
BODY

433

9973

NOSE 4773

C.S. 1200

REAR 4000
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APU 514

ELECTRONICS GROUP 10376

NOSE 3376

C.S. 6000

REAR 1000

ARMAMENT 1404

FURNISHINGS 3830

NOSE 2000

C.S. 330

PHOTO
REAR

89

1500

67,084

B. SHEAR AND MOMENTS BY SECTION
1. Nose -- Loads at F.S. 571

COMPONENT WEIGHT MOMENT-ARM MOMENT
(LBS) (IN) (105 IN-LB)

INSTRUMENTS 477 350 1.66

BODY 4773 275 13.10

APU 514 283 1.45

ELECTRONICS GP 3376 200 6.75

ARMAMENT 404 100 0.40

FURNISHINGS 2000 300 6.00

AIR COND. /ANTI-ICE 322 470 1.51

PHOTO 89 470 0.42

NOSE GEAR 611 300 1.83

SHEAR = 12566 LBS MOMENT = 3.31 * 106 EM-LBS @ lg

SHEAR = 37698 LBS MOMENT = 9.93 * 106 IN-LBS @ 3g
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2. Rear -- Loa<is at F.S. <S95

COMPONENT , WEIGHT MOMENT-ARM MOMENT
(LBS) (IN) (105 IN-LB)

TAIL GP 1965 505 9.92

BODY 4000 250 10.00

FURNISHING 1500 200 3.00

FLIGHT CONTROLS 159 300 0.48

ELECTRONICS 1000 100 1.00

AIR COND. /ANT1-ICE 100 400 0.40

SHEA- = 8724 LBS iOMENT = 2.48 * 106 IN-LBs @ lg

SHEAR = 26172 LBS MOMENT = 7.44 * 106 IN-LBS @ 3g

EQUILIBRIUM REQUIRES NOSE & AFT MOMENT EQUAL
THEREFORE ASSUME DIFFERENCE IN MOMENTS COMES FROM
ELEVATOR FORCE .

ELEVATOR MOMENT = 0.83 * 106 IN-LBS

3. C -nter Section

COMPONENT WEIGHT (L.iS)

HYDRAULIC 433

ELECTRICAL 1313

FLIGHT CONTROLS 600

BODY 1200

ELECTRONICS GP 6000

ARMAMENT 1000

FURNISHINGS 330

AIR COND. /ANTI-ICE 800

WING 1500

CENTER SECTION WEIGHT = 13176 LBS @ lg, 39528 LBS @ 3g
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C. WING LOADS
(Provided by Aerostructures Inc.)
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Figure 18. P-3C Wing Shear : 135,000 pounds gross weight.
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Figure 19. P-3C Wing Moment : 135,000 pounds gross weight.
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APPENDIX B. GENERAL SHEAR SOLUTION

The following argument follows directly from Reference 1

_ a
xs

q(x,s. )

q(x,sl)+A q (x)
s

Solving for the shear begins with summing the forces in the x

direction:

£F
X
= (B.l)

0=1 oH t(xo,s) ds -

J

(a xx-Aa xx)[t(xo,s)- At x(s)] ds +

q(x,Si) +Aqs) dx - I q( x, s^ dx (B.2)

xO-A*
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Cancelling like terms and dividing by AsAx Equation B.2 simplifies to:

Ac xx x
-t(x ,s)ds +

i r At x(s) i f
=— a xx^— ds +—
As I Ax As I

kx I As As I

» «n.A» ** •.

Ax

xO

At
x
(s)

dx- Aaxx
——ds (B.3)XX

Ax I As As ]
A
Ax

xO-Ax

Since the thickness does not vary along the length i \ the sheet those ter

fall out of the expression leaving:

dq 9a XX-^ = -t(x ,s)—— (B.4)
ds 9x

Integrating both sides of of Equation B.4 yields:

'3a
q(s,) = q(s=0)- t—^ds (B.5)

Substituting the general expression for axial stress (<JXX ) developed in the

earlier solution into Equation B.5 produces:

s
i

q(s
1
) = q(s=0)- | —{-—

[ ~T"]y H—[— Hzjtds (B.6)
3y F 2 F 2

(Vzz-Iyz) ayy
I„-I

yi )

Applying symmetr to the geometry removes the cross product of inertia

terms. Taking the tial derivative with respect to x yields:
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9M 7 p i dM p i

q(s,) = q(s=0)- {

z—{—]y + y—{—]z}tds (B.7)

3x Ej * 9x Ej _

zz yy

dM 7 9M V
-H-m

z
(x)-V

v
(x) (B.8), U-mW+V/x) (B.9)

dx dx

Substituting the definitions from Equation B.8 &9 into B.7 and neglecting

the distributed moments for the given 3g loading condition results in:

F -V (x) p VJx)
{ [—f-]y +—[-^—]z }t ds (B.10)

^1 I IT
zz yy

For a given location of x the shears are constant and may be removed from

the integral along with the moments of inertia. Employing the definitions

from Equation B.11&12, Equation B.10 reduces to:

r
Si

E r—y tds (B.ll), Q
y
s

•^ ft W n

Qz= I f^y tds (B.ll), Qv
= 1 —ztds (B.12)

V
y
(x) * V

z
(x) *

q(s
t
)= q(s=0) \—Qz

- -^—

Q

y
(B . 1 3)

zz yy

Assuming the shear (Vy) produced by a rudder deflection and experienced

at F.S. 695 is negligible, equation B.13 reduces to:

V
z
(x) *

q(Sl)=q(s=0) --i—

Q

y
(B.14)

yy
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APPENDIX C. NODAL POINT LOCATIONS FOR FEM

A. FEM OF FUSELAGE BOUNDARY CONDITION
1. Fuselage Boundary Modeling

nodal point locations 1

1,0, 54, -72 through 5,527, 54,-72

6, 0, -54, -72 through 10, 527, -54, -72

11,0, 54, -8 through 15, 527, 54, -8

16, 0, -54, -8 through 20, 527, -54, -8

21,0, 54, 8 through 25, 527, 54, 8

26, 0, -54, 8 through 30, 527, -54, 8

31,0, 54, 10 through 35, 527, 54, 10

36,0,-54, 10 through 40, 527, -54, 10

41, 0, -63, -8 through 45, 527, -63, -8

46, 0, -63, 8 through 50, 527, -63, 8

51,0, 63, -8 through 55, 527, 63, -8

56,0, 63, 8 through 60, 527, 63, 8

blank line

c bars are all circular cross-sections

c quad plates are all shear members 1/4 inch thick

c 2024-T4 aluminum material

material properties 10.5E6, 0, 2.59E-4, 0.33,40E3

c X dir rods

beam type 3 4.76

element generate 21

1 5 10 1 5

blank line

beam type 3 6.31

element generate 21

5155 45 1 10

56 60 50 1 10

21 25 30 1 5

blank line

beam type 3 7.90
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element generate 21

11 15 20 1 50
blank line

beam type 3 2.52

element generate 21

31 35 40 1 50
blank line

c Y dir rods

beam type 3 2.12

element generate 21

1 5 10 1 5 1

31 35 4015 1

blank line

beam type 3 5.15

element generate 21

45 20 16 25 1

20 15 11 5 1

15 55 51 40 1

50 30 26 20 1

30 25 21 5 1

25 60 56 35 1

blank line

c Z dir rods

beam type 3 2.12

element generate 3

1

1 5 10 40 1 5 10 2

blank line

beam type 3 1.78

element generate 31

41 45 55 60 1 10 5 2

blank line

quad plate element 3 0.25

element generate 3

1

1 5 10 40 1 5 10

1 5 10 40 1 5 10 1
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1 5 10 40 1 5 10 2

41 45 55 60 1 10 5 1

blank line

do connect 26 46 41 16 through 30 50 45 20 step 1111
do connect 21 56 51 11 through 25 60 55 15 step 1111
element generate 21

16 20 45 1 25

26 30 50 1 20

51 55 15 1 40

56 60 25 1 35

blank line

end definition

2. Fuselage Load Conditions

c load condition for fuselage station 571-lg St Venant

forces and moments applied 1

fz 2094 5 10 15 20 25 30

blank line

displacements applied 1

ta 0.0 16

tx 0.0 16 112126 3136 4146 5156

tz 0.0 16 112126 3136 4146 5156

blank line

solve

quit

B. FEM OF WING BOUNDARY CONDITIONS
1. Wing Boundary Modeling

c wing station 65 shear loads located at 33% chord

nodal point locations 1

1 -60

2 80 -60

3 0-60 16

4 80 -60 16
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17 -70

18 80-70

19 -70 16

20 80-70 16

blank line

nodal point locations 3

1

1 2 4 20 1 2 4

blank line

c all beams have circular cross section

c quad plates are all shear members 1/4 inch thick

c 2024-T4 aluminum material

material properties 10.5E+06, 0, 2.59E-4, 0.33, 40E+03

beam type 3 5.04

element generate 3

1

1 2 4 20 1 2 4 2

blank line

beam type 3 1.38

element generate 3

1

1 2 4 20 1 2 4

1 2 4 20 1 2 4 1

blank line

quad plate element 3 0.25

element generate 3

1

1 2 4 20 1 2 4

1 2 4 20 1 2 4 1

1 2 4 20 1 2 4 2

blank line

end definition

2. Wing Load Conditions

c wing box centroidal loading lift line at 33% chord

forces and moments applied 1

fy 1.828E+05 19 20

fy -1.828E+05 17 18

fz -5064 17 19
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fz 7136 18 20

fx 5184 17 18

fx -5184 19 20

blank line

displacements applied 1

ta 0.0 1 2 3 4

blank line

solve

quit
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APPENDIX D. FINITE ELEMENT IMPLEMENTATIONS

Appendix D outlines the procedures necessary to correctly model a

structure using the finite element method. The first portion discusses the

modeling elements and is followed by an explanation of displacement and

equilibrium force boundary conditions. Application of the Saint-Venant

Principle to modeling centroidal force distributions completes the topic.

Examples which highlight these issues are supported with numerical results

and summarized.

The first decision that one must make when modeling a structure lies in

choosing the correct elements. Rods and sheets constitute the model for the

hand calculation. The PAL2 software provides four beam type elements

and two quadrilateral plate elements from which to select. The first sheet

element provides resistance to bending, axial and shear loads. In resisting

bending and axial loads, this element impedes relative displacement motion

between the nodes that surround it. Another way to state this behavior is

that the element stiffens the k matrix. The second sheet type resists only

shear loads. Since the plate elements do not resist relative motion between

the surrounding nodes, this plate must be surrounded by beam elements as

a picture is surrounded on its four sides by a frame. Beam 4 models an

anti-symmetric cross sectional element. Beam 3 models a rod with circular

cross section. The user defines the inner and outer rod diameter. The

program automatically calculates the remaining geometric properties from

this information including the shear area. The shear area represents a

fictitious area that corrects for the parabolic shear distribution across the

face of an element. For a circular rod, the shear area equals the cross

sectional area divided by 1.185. Beam 2 creates a rectangular cross section

which varies in height and width along its length. Beam 1 generates a

constant area cross section member. In addition to the area, the user must

specify the torsional moment of inertia, the moments of inertia, the shear

area, and the distance from centroid to the most distant point on the cross

sectional area. The shear area correction factor for a square cross section

beam is 1 .20. Curved beam elements are also available but not used since
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the hand model was constructed from straight rods to facilitate calculation.

The second area of interest lies in displacement boundary conditions;

how to tie the structure down in space to prevent that unequilibrated shear

of 10"
' pounds from driving the structure into the computer abyss. If six

degrees of freedom were eliminated from one location on the structure,

would the tie down affect the internal stresses? To illustrate this point,

four circular rods of one square inch cross section (beam type 3) surround

a 100 square inch shear plate of the second type discussed above. The left

two nodes have their x, y and z translations set to zero while a shear force

of unity in the negative z direction is applied to the upper right hand node.

The reaction forces are calculated at the left end by the software, "hese

reaction forces are applied to the left end with the same shear load hile

the displacement boundary conditions are eliminated from the left end and

three translations and rotations are set to zero on the lower right hand node

of the structure. The reaction forces calculated at the lower right hand

node for this second case are eleven orders of magnitude less than the

applied load while the internal stresses are unchanged in all five elements.

Similar results are obtained for an example extended into the third

dimension. The results from this exercise enable the center section wing

box to be tied down at one node since it too is in static equilibrium. With

confidence one knows that there will be insignificant stresses generated

within the modeled structure due to the displacement boundary condition.

Finally, the St. Venan principle must i addressed when applying

boundary condition loads and displacements. Unequilibrated loads are

transmitted through the body while equilibrated loads dissipate quickly as

they extend through the structure. From the modeling aspect this affects

the manner in which one exerts forces on the structure. If large single

point forces are applied at a few nodes around the structure, this practice

may lead to the finite element solution being driven to an alternate form.

Consider a hollow square beam forty inches in length (figure 20).

The beam consists of four cubes of eight nodes each whose faces in the

longitudinal direction are absent while the remaining four faces are made

from shear plates (type 2) 1/10 inch thick. Circular rods of five square

inch cross sections connect the longitudinal edges of the forty inc* earn.

Square beams of 1/100 square inch cross sections surround the rer ..ming

60



sides of the quadrilateral plate elements. The small dimension of the

secondary beams enable a blending with the sheets. The four left end nodes

of the long beam are attached with three translational degrees of freedom

set to zero. The right end has a shear load of unity applied to the upper

node nearest the observer. The manner in which one applies the load

determines the form of the solution taken by the finite element method. If

the load is applied as described above, the right end panel nearest the

observer will display a shear of 0.984 psi. Observation of the output

stresses five inches from the right end of the long beam reveals that the

beam is in static equilibrium. Results from the hand calculation predict a

value of 0.750 psi.(see Allen and Haisler p221). However, if the shear load

above is redistributed to the centroid as a shear and moment with one

quarter of each divided among the four end nodes, the expected solution of

0.742 psi results or one percent variation from the hand calculated

solution. Static equilibrium is satisfied by this solution at the same location

described above. In practice, loads should be distributed as evenly about

the structure as possible.

U i

i

or

Figure 20. Square Beam Model
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For the case in which the boundary condition loads are not perfectly

matched to the internal stresses, Saint-Venant points out that the structure

requires space to enable the equilibrated forces to dissipate. As an

extension of the previous problem, consider a similar beam consisting of

twelve cubes of which five are shown in Figure 21. The first plane of

interest lies 1/8 th of the distance from the loaded end to the wall. The end

cube of the beam is subdivided from one to two sheets per face (case a),

from two to four (case b), and from four to six (case c). The increased

number of end nodes facilitates the application of a more evenly distributed

superposition of shear and moment loads to the beam in comparison to the

previous example. The results of the three plar are compared ; ) the

hand calculations for each of the three conditions shown in Figure 21.

Figure 22 shows the loading for cases a and b. Case c distributes the load

in a similar fashion among sixteen nodes.

case a

case b

case c

ipl

plane 2

^plane 3

Figure 21. Twelve Cube Beam

'plane 1
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t

shear = 1/8
moment = 1/12

m
Figure 22. Load Conditions : superposition of shear and torsion loads

as seen from end view of case a and case b.

A. SUMMARY
In Figure 23 the observer is viewed from the negative z axis from the

wall. In Figures 24, 25, and 26, x^ is located in the upper right-hand

corner, -T2 = T4 is in the lower left corner, and T3 is in the center.

The stresses in plane 1 (Figure 24) vary by as much as forty percent

from the hand results while by plane 2 (Figure.25) the variation drops

dramatically to 5.6 percent. The stress difference in plane 3 (Figure.26)

reduces further to 3.2 percent. As the distance from the boundary

condition increases from plane 1 to plane 3, the finite element stresses

approach the hand calculations thereby validating the Saint-Venant

principle.
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Figure 23. Axial View of Example Beams
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As an extension of these example problems to the center section wing

box, dummy structural area must be located between the boundaries of the

structure and the applied loading conditions. This area will ensure that the

proper shear stresses are retrieved from the structure as occurred in

moving from plane 1 to plane 2 above. The moments of the applied

loading condition must be modified to account for the added distance

through which they must act.

These results which compare hand calculations (using the Euler-

Bernoulli assumption) to those of the finite element method illustrate the

importance of correctly modeling the boundary conditions to minimize

their effect on the results. In addition, "dummy extended space" facilitates

the location of centroidally distributed loads through the Saint-Venant

Principle.
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