
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1994-09

Creating a real-time three dimensional display for

the Janus combat modeler.

Vaglia, James A.

Monterey, California: U.S. Naval Postgraduate School

http://hdl.handle.net/10945/28086

OUDUEY KWOX LIBRARY

NAVAL I

3CHOOI

MONTEhi-f OA 93943-5101

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-018S

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources

gathering and maintaining the data needed, and completing and reviewing the collection of information Send comments regarding this burden estimate or any other aspect of this

collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204. Arlington, VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington. DC 20503

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE
September 1994

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE

Creating a Real-Time Three Dimensional Display for the Janus Combat

Modeler (U)

6. AUTHOR(S)

Vaglia, James Arthur

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position

of the Department of Defense or the United States Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Several training readiness deficiencies were noted during the mobilization of the National Guard roundout brigades in support

of Desert Shield/ Storm. One of the areas was the brigade and battalion staff battlefield synchronization skills. National Guard

Brigade armories are normally located throughout large geographic areas. Due to the cost and time required to bring all the

units to a common training area, this training is conducted only once a year. The problem addressed in this research is to create

a visualization tool capable of rendering the Janus combat modeler in a three dimensional environment using scripted files and

real time data. The visualization tool must be networked via telephone modems to allow the brigade to conduct unit training

while at their home station.

The approach taken was first to design a directory structure that places the terrain files in unique locations that are accessible

by the terrain conversion programs and the 3D visualization program. The next step was to create programs to convert the Janus

terrain files. Construction of a three dimensional environment capable of displaying real-time information from Janus followed.

The last step was to produce an interface for the modem communications and to display that information in real time in the

virtual environment.

The result is the creation of the Janus-3D Visualizer capable of accurately depicting a Janus scenario running locally or from a

remote site. This tool provides commanders with a three dimensional perspective of the battlefield, emplacement of the weapon

systems and engagements during a batde.

14. SUBJECT TERMS
Virtual Environment, Three-Dimensional, Combat Modeling, Terrain

Generation, Real-Time, JANUS, NPSNET, Networking

15. NUMBER OF PAGES

93
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

Unlimited

VSN 7540-0 1-280-5500 Standard Form 298 (Rev. 2-89)

Presented by ANSI Std. 239-18

Approved for public release: distribution is unlimited

CREATING A REAL-TIME THREE DIMENSIONAL DISPLAY
FOR THE JANUS COMBAT MODELER

James A. Vaglia

Captain, United States Army
B.S., Slippery Rock University of Pennsylvania, 1984

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1994

Department of Computer Science

in

/Lulu

IV

DLEYKKOXLi
- K)STGRADI ;!—

'

ABSTRACT

Several training readiness deficiencies were noted during the mobilization of the

National Guard roundout brigades in support of Desert Shield/ Storm. One of the areas was

the brigade and battalion staff battlefield synchronization skills. National Guard Brigade

armories are normally located throughout large geographic areas. Due to the cost and time

required to bring all the units to a common training area, this training is conducted only

once a year. The problem addressed in this research is to create a visualization tool capable

of rendering the Janus combat modeler in a three dimensional environment using scripted

files and real time data. The visualization tool must be networked via telephone modems to

allow the brigade to conduct unit training while at their home station.

The approach taken was first to design a directory structure that places the terrain files

in unique locations that are accessible by the terrain conversion programs and the 3D

visualization program. The next step was to create programs to convert the Janus terrain

files. Construction of a three dimensional environment capable of displaying real-time

information from Janus followed. The last step was to produce an interface for the modem

communications and to display that information in real time in the virtual environment.

The result is the creation of the Janus-3D Visualizer capable of accurately depicting a

Janus scenario running locally or from a remote site. This tool provides commanders with

a three dimensional perspective of the battlefield, emplacement of the weapon systems and

engagements during a battle.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 1

B. OBJECTIVE 2

C. ORGANIZATION OF THESIS 2

II. OVERVIEW OF JANUS AND NPSNET II 5

A. THE JANUS COMBAT MODELER 5

1. History 5

2. Description 6

3. Hardware 6

4. Software 7

a. Data Base Management 7

b. Scenario Creation / Execution 7

c. Scenario Analysis 8

d. Utility 8

B. NPSNET II 8

C. PREVIOUS WORK 9

1. NPSNET Terrain 9

2. NPSNET/Janus Scripted Files 1

1

3. NPSNET: Janus3D 1

1

4. Summary 12

III. JANUS3-D VISUALIZER OVERVIEW 15

A. INTRODUCTION 15

B. TERRAIN CONVERSION OVERVIEW 15

vn

C. VISUALIZER OVERVIEW 17

D. COMMUNICATIONS OVERVIEW 20

IV. TERRAIN 23

A. JANUS TERRAIN FILES 23

1. MASTERxxx.DAT 23

2. TERAINxxx.DAT 23

3. TSCRNxxx.DAT 23

B. TERAINxxx.DAT File Format 24

C. VISUALIZER TERRAIN FILE FORMATS 26

D. TERRAIN CONVERSION 26

1. Janus Terrain File Breakdown 26

2. Janus to Visualizer Coordinate Conversion 28

3. Two Dimensional Map Generation 29

4. Generating Mesh Terrain 30

5. Generation of Polygonized Terrain 30

6. Generation of City and Tree Canopies 31

V. VISUAL DISPLAY 33

A. SCREEN LAYOUT 33

1. Three Dimensional Window 33

2. Two Dimensional Map Window 33

3. Control Panel 35

B. KEYBOARD 35

C. INITALIZATION OF THE VISUALIZER 37

D. VISUALIZER MAIN APPLICATION LOOP 39

1. Check for User Inputs 40

2. Check Network for PDUs or Read Scripted File 40

vni

a. Movement 40

b. Direct Fire 40

c. Indirect Fire 41

d. Detonation 41

3. Move the Vehicles 41

4. Update the Display 41

VI. CONCLUSIONS AND TOPICS FOR FUTURE RESEARCH 43

A. CONCLUSION 43

B. TOPICS FOR FUTURE RESEARCH 43

APPENDIX A: JANUS-3D VISUAL1ZER USER'S HANDBOOK 45

APPENDIX B: JANUS TERAINxxx.DAT FILE FORMAT 61

APPENDIXCJANUSVEH.DAT 67

LIST OF REFERENCES 77

INITIAL DISTRIBUTION LIST 79

IX

LIST OF TABLES

Table 1.Resolutions and Side Lengths 31

Table 2.Janusveh.dat (sample portion) 38

Table 3.TERRAINxxx.DAT File Format: Header Block 61

Table 4.TERRAINXXX.DAT File Elevation Word Format 64

Table 5.Janusveh.dat 66

XI

LIST OF FIGURES

Figure 1. Multiple Resolution Quadtree 10

Figure 2. Creating Realistic Motion Paths 12

Figure 3.NPSNET/JANUS3D 13

Figure 4.Janus-3D Visualizer Directory Structure 16

Figure 5.Janus (3.17) Screen 19

Figure 6.Janus-3D Visualizer Screen 19

Figure 7.Janus-3D Visualizer Communications Network 21

Figure 8.Elevation and Grid Data Word 25

Figure 9.Terrain Directory Structure 27

Figure 10.Visualizer and Janus Coordinate Systems 29

Figure ll.Tri-Mesh Traversal Pattern 30

Figure 12Janus-3D Visualizer Two Dimensional Map 34

Figure 13.Janus-3D Visualizer Control Panel 36

Figure 14.Keyboard Command Keys 37

Figure 15.Visualizer Main Application Loop 39

xn

I. INTRODUCTION

BACKGROUND

In 1992, Congress mandated the initiation of the Simulation in Training for

Advanced Readiness (SIMITAR) program. The SIMITAR program is a part of the Army

National Guard Combat Readiness Reform Initiative Act of 1992. The purpose of this

program is to correct the training readiness deficiencies noted in the mobilization of the

Army National Guard roundout/roundup brigades during operation Desert Shield/Storm.

The intent of the program is three fold: to demonstrate the potential of using advanced

technologies to train National Guard units, to learn how to incorporate a digital training

environment into future training, and to "establish a model for a Battle Lab." The Advanced

Research Projects Agency's (ARPA) mission, as the project manager, is to stimulate the

research while focusing on dual use applications and improving cost and performance

within the Department of Defense (DOD). [FUNK94][WEST94][ARMY93]

The SIMITAR project was designed to look at the areas noted as training

deficiencies. Once the areas were identified, the next step was to look at a combination of

existing and new technology to correct the training deficiencies. These new systems should

be affordable, realistic, require minimal manpower to operate, and be distributed.

One problem area noted was brigade and battalion staff battlefield synchronization

skills. It is this weakness that the Janus-3D Visualizer attempts to alleviate. Janus, itself, is

an accepted Army combat modeler and can be used to train battalion and brigade

staffs[JANU93c]. However, it is two dimensional and thus limits the realism with which

commanders can view the battle. Also, it is not networked and would require the National

Guard units to travel to a central location to conduct their training. The motivation for this

research, therefore, is to produce a vehicle that will allow the National Guard units to

remain at their home station and fight a Janus simulated battle while viewing that battle in

three dimensions. This three dimensional view verses Janus' traditional two dimensional

view provides a more realistic picture of the terrain. With this added realism, commanders

can emplace and deploy their units to make the most of the cover and concealment more

l

readily seen in three dimensions. In addition, replaying the Janus scenario in three

dimensions gives the commanders an additional, more effective, tool to use when

conducting After Action Reviews (AARs). Finally, the wide area networking capability

allows for more frequent training as scarce dollars will be saved on travel.

B. OBJECTIVE

The ultimate objective of this research was to produce a portable three-dimensional

virtual environment integrated with Janus 3.17 (UNIX) and capable of communicating over

a wide area network via modem and commercial telephone lines. The method used to

accomplish this objective was first to design a directory structure that places the terrain files

in unique locations that are accessible by the terrain conversion programs and the 3D

visualization program. The next step was to create programs to convert the Janus terrain

files. To validate the conversion, we used the replay program [WALT92]. Subsequent to

the validation of the terrain conversion, the construction of a three dimensional

environment capable of displaying real-time and scripted information from Janus was

accomplished. Finally, an interface was produced for the modem communication software

in order to display that information in real time in the virtual environment [UPS094].

The success of this research is measured by the ability of the Janus-3D Visualizer

to accurately depict a Janus 3.17 (UNIX) scenario running on an Hewlett Packard (HP)

workstation and, at the same time, display the scenario on another Janus-3D Visualizer

reading the same data from a modem.

C. ORGANIZATION OF THESIS

This thesis is organized into six chapters. This chapter provides the motivation and

objectives of the work performed. Chapter II describes the Janus combat modeler,

NPSNET II, and previous work related to this research. Chapter EI provides a description

of the Janus-3D Visualizer to include the conversion of terrain, communication

requirements and functionality, and the three dimensional display. The Janus terrain file

formats and conversion into files readable by the Visualizer is detailed in Chapter IV.

Chapter V gives a detailed description of the Janus-3D Visualizer screen layout and

software architecture. Chapter VI consists of the conclusions and recommendations for

future work. There are also two appendices. Appendix A is the user's guide, which provides

instructions on how to install, set up, and use the 3D Visualizer. Finally, Appendix B details

the Janus terrain file format.

II. OVERVIEW OF JANUS AND NPSNET II

A. THE JANUS COMBAT MODELER

The primary purpose of Janus is to train brigade and lower staffs in ground combat

operations through the use of a computer based war-gaming simulation. The program

allows the staffs to plan and conduct combat operations against an opposing force. Janus

displays and adjudicates the engagements of the two forces from the commencement to the

conclusion of the battle. Thus, Janus derives it's name from the two faced Roman god that

guarded the gates of Rome and the patron of beginnings and endings. [FUNK94]

1. History

The original Janus simulation was fielded in 1978. The program was developed at

the Lawrence Livermore National Laboratory (LLNL) to model nuclear effects. This

version later became known as Janus (L). The program gained notoriety for its graphical

interface. U. S. Army Training and Doctrine Command (TRADOC) acquired the prototype

in 19X0 through the Janus Acquisition and Development program. TRADOC Analysis

Command, White Sands Missile Range (TRAC-WSMR) became the proponent agency for

the army and modified Janus (L) to meet Army combat development needs. This model

became known as Janus (T). [WEST94]

Both systems gained popularity with their users and several modified versions were

spread throughout the user community. The Army realized the value of the system for use

in both analysis and training and in 1989 began the Janus (ARMY) Program.The program

was designed the incorporate the best of Janus(L) and Janus (T) into a standardized

multipurpose system. The combination of Janus (L) and Janus (T) became known simply

as Janus. [WEST94]

The original Janus was developed on the Digital VAX suite of computers with the

graphics displayed on Tektronix Model 4225 graphics workstations. In 1992, TRAC ported

the model to run using the UNIX operating system with graphics displayed on X-Window

workstations. For the purpose of this research the UNIX version of Janus 3.17 was used.

[JANU93c]

2. Description

Janus is a monolithic two-sided ground combat simulation designed for conflict up

to brigade versus division levels. However, normally smaller battles are fought. The model

is monolithic in that it runs on one machine with several other systems displaying the

opposing forces. The system is closed in that there are no outside influences. Two-sided

refers to the fact that the operators sitting at the various terminals cannot see the disposition

of the opposing forces until they come in contact with or are detected by their simulated

forces. Janus is interactive, the controllers at each of the workstations monitors, reacts to,

directs, and redirects all actions of the units under their control. The model focuses on the

engagements of individual land based fighting systems. The engagements are stochastic, in

that certain events occur according to the laws of probability. Janus provides the ability to

replay troop movements, artillery fires, and individual engagements. This ability provides

useful information in the conduct of after action reviews (AAR) and analysis of new

weapons systems. [JANU93c]

The Janus battle is displayed on a digitized terrain map developed from digitized

terrain elevation data (DTED) provided by the Defense Mapping Agency (DMA). The

terrain format is similar to the military topological maps, and includes contour lines, roads,

rivers, vegetation, and urban areas. These terrain features affect line of sight for detection

and engagements and vehicle movement similarly to they was they would in the real world.

Janus map symbology includes operational overlays, and military map unit symbols or icon

depicting the actual weapon system. [FUNK94]

3. Hardware

For the purpose of this research, the Janus software runs on a hardware suite

consisting of a Hewlett-Packard Model 715/50 host computer networked via ethernet to

one or more Sun Classic workstations, and a Silicon Graphics lndigo2 Extreme. Each

workstation has a 19-inch color monitor, a keyboard, and a three-button mouse. The Silicon

Graphics Indigo2 Extremes also have modems to establish connections with the Silicon

Graphics Indigo2 Extremes at the other armories.

4. Software

The Janus model is composed of sixteen executable programs written in

FORTRAN. The programs may be divided into four major groups: data base management;

scenario creation/execution; scenario analysis, and utility programs. [JANU93d]

a. Data Base Management

There are five programs used to manage the map, weapon systems, and

graphic symbols data bases. TRNFLTR allows the user to select a smaller section of the

master terrain file and converts the data so that Janus can read the data. The user then uses

the TED to select the contour intervals, levels of urban and vegetation densities, and to

draw rivers and roads. The CSDATA program is used to manage the weapons systems

characteristics and maintains the weather conditions, prior to being read into a scenario.

Once in a scenario, PED used to modify some of the weapons systems data base The last

data base management program is SYMBOLS. This program is used to modify the graphic

symbols displayed on the digitized map. [JANU93d]

b. Scenario Creation I Execution

Six programs compose the scenario creation / execution portion of the

model. FORCE is used to incorporate units into a scenario and to modify the force structure

in existing scenarios. The program MERGE combines the two opposing forces and

produces another scenario. ENTTSCEN initializes the battlefield environments and allows

the user to delete preplanned events. VFYSCEN and GRFVFY will print out system

characteristics and any errors they find in the data base of a scenario. The last program in

this area is JANUS. This executable program is used to conduct initial planning and to

execute the planned scenario. [JANU93d]

c. Scenario Analysis

POSTP and JAAWS are used to display kill sum reports, results of artillery

fire, direct fire, and detection and engagement reports. These can be used in analyzing

previously executed scenarios: the tactics used and the employments of new weapons.

[JANU93d]

d. Utility

There are two utility programs. HELPEDIT is used to create or modify the

janus help files for the user. The last executable program, FORMS, is used to create and

modify the forms that the data is presented to the user. [JANU93d]

B. NPSNET II

NPSNET is a real-time, interactive, distributed, three-dimensional visual

simulation system. It was developed by students at the Computer Science Department of

the Naval Postgraduate School (NPS) in Monterey, California. NPSNET is designed to be

a low-cost simulation system run on Silicon Graphics, Inc. IRIS workstations.

[SGI90][OSBO91][ZYDA92]

NPSNET II is written in Kernighan & Ritchie C. Input and output devices that are

supported include the keyboard, button/dialbox, mouse, Spaceball, and the screen.

NPSNET uses a generic simulator to operate the vehicles on the battle field. This allows

the user to become any ground, sea, or air vehicle in the simulated world that he wishes.

The user can change to another vehicle by simply pressing a button rather than switching

hardware. The system is networked via ethernet using protocol data units (PDUs) to

communicate with other systems on the network. The user has the ability to change the time

of day, turn on and off the textures, and to record or run a scripted files. [OSB091]

Vehicles and objects in NPSNET are modeled using NPS Object File Format

(NPSOFF). This file format was developed at NPS and is an ASCII formatted language

which incorporates many Graphics Library (GL) function calls. This encapsulation enables

the object to easily be transported between various programs and gives the user an abstract

8

manner to reference the objects. Since the objects are stored in ASCII format the user can

easily view and edit the file.[SGI90]

The terrain in NPSNET is displayed using several levels of detail stored in

quadtrees. This is explained in more detail later in this chapter under the previous work of

CPT Randall Mackey.[MACK91]

Current work on NPSNET includes the incorporation of the individual soldier in the

virtual environment, temporal effects, dynamic terrain and the inclusion of semi

autonomous generated from Janus and MODSAF. The group is also working on creating a

system to provide NPSNET with spatialized sound.

C. PREVIOUS WORK

1. NPSNET Terrain

The original version of NPSNET was limited to an eight by eight kilometer area of

terrain due to the amount of memory needed to store the terrain data. CPT Mackey's Thesis

research [MACK91]focused on developing paging algorithms to swap terrain data in and

out of memory to allow the use of the fifty by fifty kilometer data available and a quadtree

data structure to store and access the various resolutions of the terrain. The terrain used is

based on elevation postings every 125 meters.

The fifty by fifty kilometer terrain was converted into one by one kilometer squares.

The smaller files are easier to swap in and out of memory. Then to implement the terrain

paging, a sixteen by sixteen kilometer area of terrain is loaded into memory centered on the

location of the user. As the user moves around the world and approaches the end of the

terrain stored in memory, the program swaps the terrain farthest from the user with new

terrain in the users direction.

The quadtree data structure allows the storage of multiple levels of resolution of the

terrain. It is based on a recursive subdivision of data. Figure 1 shows the structure used.

The root of the tree contains the lowest level of detail and the leaves contain the highest

level of detail. For the highest level of detail every 125 meter elevation posting is used to

form polygons. The second level of resolution is formed by taking the data used to draw

four 125 by 125 meter areas and drawing two triangles to depict a 250 by 250 meter area.

The next level requires the data used to draw sixteen 125 by 125 meter areas to draw two

triangles displaying a 500 by 500 meter area. The lowest level of detail takes all the data

points required to draw sixty-four 125 by 125 meter areas to draw two triangles depicting

the one kilometer grid square.

One Kilometer Square
(only part of full quad-
tree structure shown)

Quadtree Description

1000 Meter Level

NW

500 Meter Level

250 Meter Level

125 Meter Level

Figure 1. Multiple Resolution Quadtree

The next step is to render the terrain on the screen, this occurs in several steps. First,

only the terrain in the field of view (FOV) is rendered. Next the levels of detail is

determined, to 1,500 meters highest level, 1,500 to 3,000 the second level, from 3,000 to

4,500 the third level with the remaining being rendered using the lowest level of detail.

These cut off distances can be varied depending on the desired results. After the levels are

determined fill polygons are drawn to close the gaps in the seams of the different levels of

10

the terrain. Lastly the objects such as, roads, rivers, urban areas, are only drawn on the

terrain with the highest level of detail.

2. NPSNET/Janus Scripted Files

CPT Richard Smith's work involved reading a Janus scripted scenario into

NPSNET to produce more realistic motion paths and better emplacement of weapon

systems. Figure 2 shows the crux of his work. The approach he used was to generate an

NPSNET script file by using Janus scenario files. The binary files used are

SYSTEMXXX.DAT, DPLOYXXX.DAT, FORCXXX.DAT, and JSCRNXXX.DAT.

(The XXX represents the digits of the scenario number.) These four files contain the

weapon system's characteristics, the force composition, unit types, and emplacement and

movement data. With the NPSNET file built, the user could manipulate the vehicles. These

changes in the NPSNET scenario can be recorded and converted back into

DPLOYXXX.DAT. The new scenario could then be run in Janus giving the vehicles better

emplacement and more realistic movements. [SGI90]

3. NPSNET: Janus3D

The previous integration of NPSNET and Janus was accomplished by CPT Pat

Warren and CPT John Walter, Figure 3. Their work involved creating three dimensional

terrain from Janus terrain files. This process requires running the terrain data through

fourteen conversion steps. This produces three types of files readable by NPSNET. Several

of the files require modification prior to translating a different terrain and recompling the

programs with the new variables. Once the terrain conversion is accomplished the terrain

files need to be move to other directories. These new directory paths need to be added

NPSNET paths and then recompile the simulator to be able to display the new

terrain. [WALT92]

They were also able to create NPSNET scripted files from the Janus post processes

files. To visualize and verify their work prior the incorporating it into NPSNET they

constructed a two dimensional tool able to read the terrain and scripted files.

11

NPSNET ^toT writedatafiles

t

writescriptin

iL"*-^^.
w

FORCXXX.DAT

SYSTEMXXX.DAT \ X̂
DPLOYXXX.DAT

JANUSJSCRNXXX.DAT

Figure 2. Creating Realistic Motion Paths

The culmination of CPT Warren and CPT Walter's work was displaying the real

time vehicle movements and engagements in NPSNET. To accomplish this they made used

of existing Janus calls to remote display terminals and wrote algorithms the calculate the

speed and direction of the vehicles.

4. Summary

Janus has been in the Army since 1978 and continues to be improved. The model's

display is two dimensional, the next step logically is to create a three dimensional display.

NPSNET is a viable vehicle to use in creating the new display. NPSNET was developed at

the Naval Postgraduate School as a low cost three dimensional virtual simulator. One of the

goals of the SIMITAR project is to keep the costs minimal. This integration was

accomplished by CPT Warren and CPT Walter. Their previous work in converting Janus

12

JANUS

Replay
NPSNET

Figure 3. NPSNET/JANUS3D

terrain required hard coding the file paths and recompiling the code prior to executing the

conversion programs. The data files and terrain paths for NPSNET were also hard coded

with the program having to be recompiled prior to execution. This single use of the code

requires several copies of the executable to run the various scenarios.

CPT Smith succeed in reading in preprocessor files into NPSNET, modifying the

deployment files, creating more realistic movement paths, then running the modified files

in Janus. His work did not address the issues involved in displaying the modified scenario

in NPSNET while the user made changes as the scenario executed.

The desirable program is one that is more robust. The focus of this research is on

developing a program that does not require recompling the code for every scenario or the

hard coding of the terrain and data file paths.

13

14

III. JANUS3-D VISUALIZER OVERVIEW

A. INTRODUCTION

The Janus-3D Visualizer provides a three dimensional perspective of the Janus

combat modeler. The user can fly through the battlefield to watch the battle progress from

any vantage point, or select individual vehicles and view the battle from their vantage point.

The program is written in ANSI C and was designed to run on Silicon Graphics

Incorporated (SGI) graphics workstations operating IRIX 5.2. For this research, the Janus-

3D Visualizer was implemented on a SGI Indigo 2 Extreme graphics workstation.

The program consists of three major components: the terrain conversion programs,

communication software, and the virtual environment display. Figure 4 shows the directory

structure. The programs that make up the visualizer are located in the visualizer directory

with the supporting programs and files in the eight subdirectories. The headers directory

contains header files for the programs in the visualizer directory and the global variables

for the visualizer. The libs, rdobj3, and imagesupport directories contain the programs

needed to manipulate the three dimensional objects (models). The three dimensional

models are in the models directory. The datafiles directory contains files used to initalize

the information panel, 2D icons and 3D models. The programs used to network the

visualizer are located in the src directory. Finally, the terrain conversion programs and the

terrain files are stored in the terrain directory

B. TERRAIN CONVERSION OVERVIEW

Janus produces a two dimensional terrain map displaying rivers, roads, urban areas,

and vegetation with elevation portrayed using contour lines. This information is stored in

the TERAINxxx.DAT file with the xxx denoting the three digit terrain number. We had to

convert this information into formats that are readable by the Janus-3D Visualizer. The

conversion processes requires seventeen steps to produce three types of files. Refer to

Appendix A for more information on the conversion process.

15

visualizer

rdobj3

imagesupport)

—A
datafiles)

Figure 4. Janus-3D Visualizer Directory Structure

The gray scaling of the elevation posts is used to create the two dimensional display.

The gray scaling gives the user a sense of elevation without the use of contour lines. Black

denotes the low lying terrain and white denotes higher elevation.

The three dimensional terrain is created by using one of the two remaining file

formats. The mesh is constructed by using the GL graphics function to draw t-meshes. Each

point for the mesh terrain is stored in a structure that contains the elevation, color, and

normals. [SGI90]

The second format is the most complicated and displays the most detail. For this,

the terrain is divided into 1 Km grid square files. Each file is then stored in a quad tree

16

structure containing four levels of detail. These files are then swapped in and out of

memory according to the users location. A detailed description of the terrain conversion

and file structures is in Chapter IV.

C. VISUALIZER OVERVIEW

The purpose of the visualizer is to display a Janus scenario in real-time or from a

scripted file of a previous scenario. The Visualizer's screen layout was designed to mimic

the Janus combat modeler's screen. The transition from one system to the other is less

confusing with the information being displayed in similar locations. As such, the Visualizer

is composed of three windows: a two dimensional map window, a control window, and the

large viewing window. This window displays a three dimensional view as opposed to the

two dimensional map displayed in Janus. The user can interact with the Visualizer through

the use of a keyboard and a mouse. Figures 5 and 6 show the two screens.

The Visualizer's two dimensional map is in the lower right hand side of the screen.

This gray scale map indicates the locations of the Janus units. The two dimensional icons

are drawn on the map in their respective locations in the Janus battlefield. The circle in the

center of the screen is the user's location. The single line extending from the center of the

circle is the velocity vector and indicates the user's speed and direction. The triangle is the

field of view for the user and represents the area drawn in the three dimensional window.

The blue lines are drawn every kilometer horizontally and vertically. The lines are based

on the upper left hand corner of the map window and not the UTM coordinate system. The

map scale can be varied by using the scale buttons in the control panel. The scaling of the

map allows the user to pick an individual icon more easily. The user can select a vehicle by

placing the courser on the two icon and clicking the left mouse button. This will move the

user to that location and the view presented in the large window will be the view the

selected vehicle is seeing. The user's view point will move with the tethered vehicle. To

untether click the middle mouse button and the user can move around the virtual word.

The control panel is positioned above the two dimensional map. This panel contains

buttons and user information. The information displayed includes the current terrain loaded

17

in the Visualizer and which script file is running, if any. The current location of the user is

displayed and, if tethered, the selected vehicle's data is displayed. By using the buttons the

user can call another location, run a script file, pause the script, or terminate the logging of

scripts. Users can also turn the display of vegetation and urban areas on and off, list the

keyboard and mouse functions with the help button and exit the program.

The last and largest window is the three dimensional display. The user can view the

battle in three dimensions from a selected vehicle or from any desired vantage point around

the battlefield using the stealth mode.

18

Figure 5. Janus (3. 17) Screen

:;\'.;V.
;

:!.. J-f.?-.,.".;... 'J'-i-..
'' :".y';..;;;:-'"..;.••:

':' ;..> >'*>.* X^XXiX XXy .
: \'X:

' : \X'X'XXXX
: Y'X-';:'--;

::-

Figure 6. Janus-3D Visualizer .Screen

19

D. COMMUNICATIONS OVERVIEW

The communications architecture for the Janus-3D Visualizer consists of two

networks. The first is the ethernet local area network (LAN), which connects the Visualizer

to the Janus Combat Modeler. The second is the wide area network (WAN). On this

network, a Janus-3D Visualizer at one location can connect to another Visualizer at a

remote location via commercial telephone lines. The communications networks are

illustrated in Figure 7. [UPS094]

The LAN is composed of the Hewlett Packard workstation running the Janus

scenario, five to twenty Sun Classic workstations used for the controller/player work

stations, and the SGI Indigo 2 Extreme where the Janus-3D Visualizer resides. The HP

broadcasts unit movement, direct fire, indirect fire and detonation PDUs across the ethernet

to the SGI. The Visualizer reads the PDUs off of the network, stores them in a script file

and displays the information on the screen. This allows the user to view the Janus scenario

running in real-time in the three dimensional environment.

The WAN consists of only the SGI workstations. The user at one location, brigade

or battalion, can call another Janus-3D Visualizer at another location and establish a

connection over the telephone line. A SGI workstation can only connect to one other SGI

workstation at a time using the WAN. Once the connection is established, the unit that was

called transmits the same types of PDUs it extracts from its LAN to the calling unit's SGI

workstation. This network allows the user to see the battle's progress from one of its sister

or parent unit's perspective as well as their own view point.

For more detail on the software communications architecture and modifications

made to the Janus code refer to Design and Implementation ofa Software Communication

Architecturefor the JANUS-3D Visualizer written by CPT Upson.[UPS094]

20

=
E

U

Figure 7. Janus-3D Visualizer Communications Network

21

22

IV. TERRAIN

A. JANUS TERRAIN FILES

In order to be able to convert the Janus terrain files, we must first understand how

they are used and how they are stored. There are three types of terrain files in Janus;

MASTERxxx.DAT, TERAINxxx.DAT, and TSCRNxxx.DAT. [JANU93d]

1. MASTERxxx.DAT

The MASTERxxx.DAT file is created by TRAC from DTED data. It contains the

elevation points, river and road networks, vegetation, and urban data for large tracts of land.

This file is too large to be displayed in Janus. TRNFLTR is used to create smaller pieces of

terrain. To do this, the user inputs the lower left hand X and Y UTM coordinates and the

dimensions of the terrain desired. Then the program constructs the file TERAINxxx.DAT.

2. TERAINxxx.DAT

This file is created by TRNFLTR. It contains the elevation points, river and road

networks, vegetation, and urban data for a small area. TERAINxxx.DAT is used by Janus

when creating a scenario. The file can be modified in TED to add new terrain features, or

change existing features.

3. TSCRNxxx.DAT

TSCRNxxx.DAT is created by TED, which reads in the TERAINxxx.DAT file.

The user can then modify the river and road networks, the vegetation and urban densities

and the interval distance for the contour lines. This file contains bridge, city, road, river,

and tree information for the same area contained in TERAINxxx.DAT.

For the purpose of this research, the TERAINxxx.DAT file is manipulated since it

is used to display the map for the Janus scenarios. With the information stored in

TERAINxxx.DAT, we can create three dimensional terrain, road and river networks. We

can also build urban and tree canopies.

23

B. TERAINxxx.DAT File Format

TERAINxxx.DAT is stored as a binary file in two blocks. The first, and smaller, of

the blocks contains the header information. This record is made up of 48,120 bytes. The

second block contains the elevation and point data. The size of this block varies with the

size of the map and the spacing of the elevation postings. The first and last four bytes of the

two blocks contain the number of bytes in the record and can be discarded when retrieving

the information. For a complete description ofTERAINxxx.DAT, see Appendix B.

The specific information in the header block, in order, is:

1

.

The lower left X and Y Universal Transverse Mercator (UTM) grid coordinates.

2. The width and height of the map in kilometers.

3. The number of grids wide and height of the map.

4. Movement factors for wheeled vehicles, tracked vehicles, and personnel on foot,

first in urban areas and then in areas of vegetation.

5. Height factors for vegetation and urban areas.

6. Probability of lines of sight for vegetation and urban areas.

The last section of the header block is the river and road arrays. They consist of two

three dimensional arrays. The first and second fields are the X and Y UTM coordinates of

the river or road. The last field contains a zero if the coordinate is the end point of a river

or road, a one if it is a continuation of the previous node, and a negative one if it is the last

coordinate in the array.

The second block contains the elevation and grid information which includes: the

elevation, concealment, density, trafficability, terrain roughness, and flags to indicate

rivers, obstacles, fire, chemicals, smoke, and high explosives. Figure 8 shows the

breakdown of the word into bits and what information they represent.

24

1 l
—1— ^-^- Elevation

10 J
11
J

12 \
13 f -^- Concealment

14 J
15

16 1
17 X -^- Citv / Tree Height

18 J
19 1
20 V -^- Trafficabilitv

21 J
22 l
23 > -^- Micro Terrain Roughness

24 J
25 ~< River Present

26 ^^^^~^^— l yllgilK l I nil; vJUsUIClL l II..SCIH

27 -^ Grid Blown Down

28 -^ Grid on Fire

29 ^ Chemical/Radiation Present

30

31

"^~~ OIIIUKL 1 1 lallll

^ Minefield Present

Figure 8. Elevation and Grid Data Word

25

C. VISUALIZER TERRAIN FILE FORMATS

The terrain displayed in the Visualizer is based on previous work conducted at the

Naval Postgraduate School. Three types of terrain are used in NPSNET. The first gray scale

elevation, is used for the two dimensional map. Three dimensional map can be shown in

either mesh format or polygonal format stored in a quadtree structure in order to allow for

several levels of detail. The terrain file paths were hard coded into the program. In order to

change the terrain the user had to change the paths and recompile the program. One of the

goals of this research was to produce a robust system that could display any terrain the user

wanted. To accomplish this, we had to come up with a directory structure that would place

the converted files into a terrain unique location in order for them to be displayed in the

Visualizer based on a command line option.[MACK91][WALT92]

The terrain directory structure we designed centralized all of the terrain related files

and programs into the terrain directory as shown in Figure 9. The janusfiles directory

contains the TERAINxxx.DAT files to be converted. All the terrain conversion programs

are located in the makeground directory. The coverfiles, elevfiles, roadrivfiles,

textcoverfiles, textobjectfiles, and textquadfiles directories store the temporary files needed

while converting the terrain into formats readable by the Visualizer. Once the conversion

has been completed and it is verified that the new terrain can be displayed, these files can

be removed. The remaining directories contain the converted terrain. They are named

according to the name of the terrain files they store. The subdirectories in these directories

contain the terrain files, vegetation coverage files, script files and the terrain parameters.

D. TERRAIN CONVERSION

1. Janus Terrain File Breakdown

The first step in converting the Janus terrain file is to break it down into usable

sections and create the directory architecture to store the terrain. The program readtrrn.c

performs this task. It takes as inputs the three digit Janus terrain number and the name of

the new directory to be created and produces the terrain specific files directory as pictured

26

roadrivfiles

elevfiles

janusfiles

janus TERAINxxx.Dat

textcoverfiles

coverflles

textobjectfiles

makeground

conversion

programs

textquadfiles

temporary storage

for conversion
files

Figure 9. Terrain Directory Structure

in Figure 9. The program splits the data into four files: globals.dat, xxx.riv, xxx.road, and

xxx. ele. Globals.dat contains the map information to include the lower left coordinates, size

of the map, number of elevation points, multiplication factors for urban and vegetation

27

areas, and the spacing of the points. This file is read by all the subsequent conversion

programs to initialize the global variables. The xxx.riv and xxx.road files contain the

coordinates of the map's rivers and roads. The Elevation and Grid Data Word, Figure 8, is

dissected and stored in this file.

2. Janus to Visualizer Coordinate Conversion

The Visualizer and Janus use different local coordinate systems to display the

terrain. Figure 10 visually depicts these differences. Janus stores the elevations in a

sequential file with the first point representing the lower left hand corner of the map. The

remaining points are stored from left to right and from the bottom to the top of the map.

The last point in the sequential file is the elevation of the upper right hand corner of the

map. This sequential storage allows the points to be referenced by a two dimensional array

with (0,0) as is the index to the first point. Janus uses the X axis to traverse the map

horizontally and Y to traverse the map vertically. The distance between the points is

determined by the "GAP" which is stored in the header file. This also gives us the number

of points in each horizontal row and vertical column of the array. Janus then uses Equation

1 and Equation 2 to translate the UTM coordinates of the map location for the terrain and

vehicles to a local coordinate system based on the array indexes.

(

X

—X
Y I JanusLocation UTMLowerLeft i

AJanusLocal ~ \ GAP '

(Y -Y
y I UTMLowerLcfl JanusLocalion i

Y JanusLocal ~ \ GAP '
^

The Visualizer uses the upper left hand corner of the map for its index to the array

and traverses the array from left to right and from top to bottom. The Visualizer also uses

the Z index to traverse the map from top to bottom. The Y axis is used to indicate elevation.

To read the map elevation points into the Visualizer we use Equation 3.

Z
VisualizerLocai = MapHeight - YJanusLocai Eq 3

28

Janus IMapHeight, 0}

Visualizer (0.0)

o

10,0]

(MapHeight, 0)

(JAI

r*

(OMapWidthJ

(MapHeight. MapWidth]

Figure 10. Visualizer and Janus Coordinate Systems

3. Two Dimensional Map Generation

To create the iwo dimensional map. we first write the terrain elevation points from

the file xxx.elc to the file elev.bin.dat. The points are stored in this file using the

Visulai/er's coordinate system. Figure 10. They are stored as binary to save on memory.

When we display the map. we use a gray-scale. To create the various shades of grey, we

use Equation 4 |PRATO()|. This gives us an accurate representation of the elevations with

the shade of grey getting lighter as the elevation increases.

/
EI. EVA TION - EEEVA TION.

COLON ELEVATIONMlN + 255 x
ELEVATIONmx - ELEVATIONMw>

Eq 4

29

4. Generating Mesh Terrain

The mesh terrain is simple to store and display. However we cannot display the

roads and rivers on the terrain without significant tearing |MACK91|. As mentioned in

Chapter HI, we use the GL t-mesh function to build the mesh I.SGI90]. Each point in the

array is used to create one of the vertices in the mesh triangle. The algorithm Lraverscs the

points from left to right and from the bottom to the top of the map filling in the mesh

triangles. When the last coordinate of the row is reached, the algorithm moves to the next

row and starts the process over. Figure 11 is a graphical representation of this process.

Start

Dm

*f2

23

Left to Right

Figure 11. Tri-Mesh Traversal Pattern

5. Generation of Polygonized Terrain

The polygonized terrain is drawn by using two triangles to represent a grid node.

The data for each grid node is stored in a quadtree giving us four levels of resolution. The

resolution of the terrain to be drawn is based on the distance from the viewer. The highest

resolution being drawn close to the viewer and the lowest resolution being drawn farthest

from the viewer. This reduces the number of polygons required to render a scene and

increases the frame rate. The storage of the points is based on the length of the side of the

triangle. The lengths of the sides are shown in Table 1

.

30

Level of nettfl length <>fSide

HIGH GAP

HIGH-MEDIUM GAP* 2

LOW-MEDIUM GAP* 4

LOW GAP* 8

Table 1. Resolutions and Side Lengths

To draw the terrain using the lowest level of detail we need eight GAP lengths (nine

elevation points) to define a side of the triangle, therefor each quadtree will consist of eight-

one elevation points (nine by nine). When we convert the terrain using readtrrn.c, if

Equation 5 is not satisfied for the terrain length and width we create the extra points giving

them the elevation of the lower left corner of the map and store them in the quadtree.

INTEGER =
[

^-^
j

Eq5

The quadtrees are built using the program genblockcov.c while

conv_blockcov_2bin.c stores them as binary values. The grid nodes are stored in individual

files coverXXXXZZZZ.bin.dat. The Xs and Zs are used by the Visualizer to index the

quadtree when rendering that piece of the terrain to the screen.

The last step is to add the rivers and roads. As discussed previously, Janus stores

them as a collection of points. We first create polygons with a width of 10 meters from these

points, using the program makeroads.c. The rivers and roads are then stored in the

appropriate quadtree file. They will only be rendered when the highest level of detail for

that piece of terrain is drawn. To see the rivers and roads on the three dimensional terrain

requires the terrain to be drawn twice with the river or road decaled on top of the terrain.

This requires extra CPU time and slows down the frame rate. [MACK91]

6. Generation of City and Tree Canopies

The information required to draw the city and tree canopies is located in the file

xxx. ele. To draw a canopy we use the t-mesh function again based on the elevation points.

31

This allows us to use two triangles to draw the canopy for a grid node. The height of the

canopy is determined by the height factor specified by each elevation point. [WALT92]

If a river or a road is located in the grid node, then a simple canopy can not be drawn

since it would hide the feature and would not look realistic. In this case, the trees or houses

are placed on the grid randomly. The number is determined by the height factor assigned

to the grid. Once they are placed, they are checked to see if they intersect a river or road. If

they do, they are moved to another location. These verification algorithms were written by

CPT Warren and CPT Walter. [WALT92]

32

V. VISUAL DISPLAY

In this chapter, we discuss the design of the Visualizer's display screens and the

functioning of the buttons and keyboard. We describe the work performed to initialize the

Janus-3D visualizer and how we display the Janus scenario.

A. SCREEN LAYOUT

As discussed in Chapter III the Janus-3D Visualizer uses three windows to render

the Janus scenario. The design of the windows was to allow smooth transition from the

Janus program running on the HP 715/50 to the Janus-3D Visualizer running on the SGI

Indigo 2 Extreme. The user can determine what vehicle or area they wish to see in three

dimensions while looking at the Janus scenario on the HP and quickly look at that vehicle/

area on the Visualizer's two dimensional map. With simple mouse and keyboard strokes it

will be displayed on the three dimensional screen.

1. Three Dimensional Window

The three dimensional window is the largest of the three windows. This window

displays a fourty-five degree field of view (FOV) from the user's location. The user can see

the layout of the terrain in three dimensions to include the vegetation and urban areas. The

vehicles, rivers and roads in the user's FOV are also displayed on the window.

2. Two Dimensional Map Window

The map is rendered on the screen using grey scaling described in Chapter IV. The

horizontal and vertical lines are drawn to indicate one kilometer grid squares. Upon

initialization of the Visualizer the entire map data base is displayed in the window. Due to

the number of two dimensional icons that can be drawn and the proximity of the icons, we

have given the user the ability to change the scale of the map. This feature is similar to the

zoom function in Janus. The user can display the entire map, a quarter of the map, one eight

of the map, and one-twentyfifth of the map. In selecting the latter three scales the area of

33

the display is centered on the users location. As the user moves around the battlefield, the

map drawn will shift to keep the users location in the middle of the screen.

Indirect Fire

Impact

Opposing Force

Vehicle

H~~ User's field

of view

Friendly

Vehicle

User's

Location

Velocity

Vector

Destroyed

Vehicle

Figure 12. Janus-3D Visual izer Two Dimensional Map

Figure 12 is and example of what the user sees in the two dimensional map window.

The user is indicated by a yellow circle. The green triangle is the user's FOV, this is the

area displayed in the three dimensional window. The green line extending from the center

of the circle is the velocity vector and indicates the direction and speed of the user. The two

dimensional icons on the map are rendered blue for friendly forces, red for opposing forces,

and green for destroyed vehicles. The two dimensional icon can be pictures similar to the

34

weapon system they represent or numeric. The numbers range from one to six hundred in

red and blue. The numbers are based on the index number from the Janus scenario. The last

information displayed on this map is the location of the indirect fire impacts. This is done

by flashing a yellow star on the coordinates of the impact.

3. Control Panel

The control Panel is pictured in Figure 13. This window provides the user visually

the status of the program configuration and a graphical interface to change the status. We

used GL calls to draw the buttons. The default/off color is light blue; when selected the

color is changed to green. To select a button the user places the cursor in the box and

presses the left mouse button. The Visualizer determines the X and Y pixel locations. If it

is with in the bounds of a button, the program executes the indicated command. The buttons

are used to call other units, a connection can only be established if there is another Janus-

3D Visualizer running at that location. The buttons are also used to change the two

dimensional map scale, read script files, display objects, and exit the program. The text

information displayed in the panel is the terrain data base displayed, the script file running

and the position and vehicle information of the vehicle selected.

B. KEYBOARD

The keys to control the user's motions in the three dimensional environment are

located on the right side of the keyboard, Figure 14. These keys were selected to keep the

keys in one location. This location allowed us make three groups: Vehicle movement, view

direction, and elevation. We used the most logical set key for each of the groups. The arrow

keys are used to change the direction and speed of the stealth vehicle. The end key stops

the vehicle. The elevation is controlled by the page up and page down keys. The user's view

direction is changed by using the pad arrow keys to look left, right, up, or down. The pad

5 key resets the view offset to the stealth vehicle or tethered vehicles direction of travel.

35

JANUS 3D
VISUALIZER

Terrain Qattibnsa ! NTC

Script Running : NONE

Telephone Modem
Interface

Vehicle/Stealth

Information

Map Scale

Xpos: 22963,1

Gnd Elou: 999,9
Direct ion : 90.9

Speed j 0,9

Uen Sides friend
No; 11?

20 Map

Scale

Vposf 47063,5

flboi'c Gnds 23,0
Uien Oir: 90,0

Type!: fl- 10

Unoiint ; 1

Figure 13. Janus-3D Visualizer Control Panel

36

Elevation Keys View Direction Keys

Inscrl Horn*

Delrte ImicI

Dov.ii

BUB

Nuiti

Lock / jr_
Home

[4

PM Pa Up

TT"

1'
1

1

t |

3

[PgDn

Ins bd

Enlcr

t
Vehicle Movement Keys

Figure 14. Keyboard Command Keys

C. INITALIZATION OF THE VISUALIZER

In order for the Visualizer to display a Janus scenario we must read in the terrain,

setup the vehicles, and initalize the ethernet and modem communication. To start the

Visualizer, the user enters the name of the terrain file to be displayed. The program uses

that name to build the paths to the terrain files, object files, script files, and the global

variables associated with that particular terrain. We used the directory structure created by

the terrain conversion process to access these files. By building the paths in this way we

have eliminated the need for hard coding the scenario specific information. Once the terrain

paths are created we can load the terrain, vegetation and urban files into the system.

We then look at displaying the correct two dimensional and three dimensional

model for the Janus entities in the scenario. To accomplish this we use the system type table

37

extracted from the National Guard master data base. This database contains the system

names, graphics symbol number, and vehicle parameters. The vehicle parameters include

the range, speed, weapon type, and detectability. This database is managed by the system

administrator. The Janus combat modeler uses this database to determine system

capabilities and the graphic symbol for every entity in each scenario. From this database,

we extracted the system name and graphic symbol from this database to build our Janus to

Visualizer vehicle database, janusveh.dat. Table 2 shows an extract from janusveh.dat.

Refer to Appendix C for the complete file. Janusveh.dat consists of six fields. The first

determines the side: one is friendly vehicles, two is opposing vehicles. The second field is

the sequence number. Field three is the Janus name of the vehicle. This name is displayed

on the control panel when the vehicle is selected. The fourth field is the Janus graphic

symbol number. The fifth and sixth fields are the indices into the visualizer' s vehtypearrays

which indicate the three dimensional model and two dimensional icon that must be drawn.

Upon initialization, janusveh.dat is read into two arrays; friendyvehtypearray for the

friendly vehicles and enemyvehtypearray for the hostile vehicles. Thejanusveh.dat file has

to be updated whenever the system type table is modified. Otherwise, the vehicles in the

Janus scenario will not be portrayed correctly in the Visualizer.

Side Sequence Janus
Name

Janus
Symbol

2I>

Icons

3D
Model

1 1 AH64/HEL 1 33 26

1 95 AVENGER 16 97 10

2 131 T-72/MIS 76 8 51

Table 2. Janusveh.dat (sample portion)

The last step in the initialization of the visualizer is to set up the network and

modem communications. A function call is made that sets up a shared arena and establishes

a connection with the local ethemet. Within this function, a subprocess is spawned to read

the PDUs sent by the Janus combat modeler. Next, the modem is configured and another

subprocess is spawned that listens for a connection from a remote caller. Both of these

processes run concurrently with the main Visualizer process. [UPS094]

38

D. VISUALIZER MAIN APPLICATION LOOP

The Visualizer's main application loop continuously executes until it is terminated

by the user. Figure 15 shows the flow of execution through the loop. This is how we display

the Janus scenario in the Visualizer.

Exit Visualizer

Check for User Inputs

Get Network or

Script File Data

Move Vehicles

Refresh Screens

Figure 15. Visualizer Main Application Loop

39

1. Check for User Inputs

After the initialization is complete the Visualizer checks the event queue to see if

the user has input a key or mouse command. These commands can be; from the keyboard

to move the user's vehicle or change the view direction, from the two dimensional map, to

switch vehicles, or from the control panel to execute one of the button commands. If there

is something in the queue the program will process that event then continue down the loop.

2. Check Network for PDUs or Read Scripted File

The Visualizer can receive input from one of the following sources; ethernet,

modem connection, or scripted file. Limiting the input to one source eliminates the

possibility of displaying a vehicle in several locations because the sources may be running

the scenario at different times or may be executing different scenarios.

The format for the PDUs and script file events are the same. There are four type of

events that we execute: movement, direct fire, indirect fire, and detonation.

a. Movement

The movement message gives us the Janus vehicle number, direction of

travel, view direction, speed, the janus graphics symbol, the number of weapon systems this

entity represents, and the local Janus X and Y map location. We take this information and

store it in the Visualizer' s vehicle array. The Janus vehicle number is the index into the

array. If the number is greater than six hundred; the vehicle is hostile. We use the Janus

graphics symbol number to index the enemyvehtypearray. This gives us the Janus name,

three dimensional model, and two dimensional icon. Janus vehicle numbers less than six

hundred we use the friendlyvehtyparray to obtain this information. We load this

information and the remaining information into the vehicle array.

b. Direct Fire

The direct fire message gives us the Janus vehicle number or the firer and

the target. We use these numbers to index the Visualizer vehicle array to get the X and Z

40

locations of both vehicles. Using the arctan function we can determine the direction to turn

the firers weapon. We also put this information into the shotarray so that is will drawn in

the three dimensional window.

c. Indirect Fire

The indirect fire gives us the firer and the Janus X and Y location that they

are firing toward. With this information we can determine the direction to turn the firer's

weapon and show a muzzle flash for that system in the three dimensional terrain.

d. Detonation

The detnotation message gives us the firer and the Janus X and Y location

where the round hit the ground. We show the information on the two dimensional map with

a star and in the three dimensional terrain with an explosion.

3. Move the Vehicles

To move the vehicles in the Visualizer, we use two functions: movethejeep for the

user's vehicle and movetheundrivenveh for the Janus vehicles. Both functions use first

order dead reckoning to determine the vehicle's new position. This is done by calculating

the change in time since we last updated the vehicle's position. Next, using the vehicle's

direction of travel, speed, and current position, we calculate the new position. Since we use

the user's vehicle position to determine what is displayed in the three dimensional window,

in movethejeep we also construct the viewing point. This allows the three dimensional

display to move with the user.

4. Update the Display

The last step in the main loop is to redraw the screens. We determine the terrain to

draw in the three dimensional window based on the user's location and viewing point. Next

we determine which vehicles are dead. This is done by looking at the amount of entities the

Janus vehicle represents, if that amount is zero and we have not already destroyed that

vehicle, we kill it. We then place all the vehicles in the user's field of view on the terrain.

41

With this done we now draw the indirect fire, detonation and direct fire information. As

mentioned earlier for the direct fire we show a muzzle flash from the firer and for the

detonation we display and explosion at the detonation's location. To display a direct fire

we draw a line from the firer to the target vehicle. If the firer is a friendly vehicle we color

the line blue, the line is red if the firer is hostile. This completes the three dimensional

window. We then update the information for the control panel and draw that window. For

the two dimensional map we determine the scale and area of the map to draw, then draw it

and place the two dimensional icons on the map. With all the windows updated we start the

main application loop over again.

42

VI. CONCLUSIONS AND TOPICS FOR FUTURE RESEARCH

A. CONCLUSION

The objective of this research was to create a three dimensional tool to give a

commander another view of the battlefield for use in training their staff and subordinate

commanders. The tool had to be networked to allow the respective units to remain at their

home station and conduct the training. The previous work in this area showed that it was

possible to create a three dimensional display for Janus. However, the system was not

robust and required several copies of the executable code to run the various scenarios.

Through this research we were able to create a directory structure and programs to

convert the Janus terrain so that the files were placed in unique locations. This removed the

necessity of hard coding the file paths allowing the terrain conversion programs and the

virtual environment to operate independently. The Janus terrain file can be converted at one

unit. The files and other Janus files can be distributed to all the units in the Brigade. After

placing the terrain files in the appropriate location in the terrain directory, the brigade could

run a Janus scenario using a common terrain. We were also able to design a way to display

the Janus scenarios without having to convert the preprocessor files before executing them

using the Janus-3D Visualizer to view them in three dimensions. Here again we eliminated

the requirement for hard coding the file paths. We were also able to produce a user friendly

interface to the modem communications and to the program itself. As a result of this

research the Janus-3D Visualizer is currently being fielded in the Army National Guard.

B. TOPICS FOR FUTURE RESEARCH

Several topics for further study can be derived from this investigation. All of them

are related to either improving the visual display or to add more functionality to the Janus-

3D Visualizer. These modifications will further enhance the realism of the simulation.

The Janus combat modeler allows the user to display operations overlays. The

addition of this feature to the three dimensional environment will allow the user to see the

boundaries and control measures and use this to help plan offensive and defensive

43

operations. The commander and staff can fly around the terrain and determine the choke

points for movement and the dead space for weapon systems prior to deploying their forces.

The addition of temporal effects would add to the realism of the Visualized s

display. The commander could see the battle as it progressed during the night or during a

snow storm. All battles are not fought during the day with good visibility as currently

portrayed by the program.

Currently the user is only an observer, the next step is to allow the user to interact

with Janus, thus becoming a player. The insights gained in weapon's deployment by

viewing the battle in three dimensions could quickly be changed in the Visualizer. The

effects of the change could be seen in Janus and used by analysis and war-fighters to test

new weapons systems and tactics.

44

APPENDIX A: JANUS-3D VISUALIZER USERS HANDBOOK

JANUS 3D

VISUALIZER

(USER'S HANDBOOK)

Naval Postgraduate School

Advisor: Dr. David Pratt

Written by: Chris Upson and Jim Vaglia

45

Directory Structure and Program Files

DATAFILES VISUALIZER HEADERS

immagesupport' DOCS

LIBSMODELS

SRC TERRAIN RDOBJ3

JANUSFILES MAKEGROUND

NTC

(terrain tiles)

Figure A-l. Directory Structure

The program is broken down into the following directories and files.

Figure A-l shows the directory structure of the Janus-3D Visualizer.

visualizer

datafiles

headers

The main program files are located here.

This directory contains the input files.

The header files for all the programs are located in this direc-

tory.

46

imagesupport

libs

models

rdobj3

src

terrain

docs

This directory contains the imaging programs.

The header files for the manipulation of 'off objects.

The three dimensional models are located in this directory.

The files to manipulate the 'off objects are in this directory.

The communication programs are in this directory.

The terrain files, script, and terrain conversion programs are

located in this directory.

Contains Frame Maker postscript and text versions of the user's

handbook and briefing slides.

The following programs are located in the visualizer directory.

acds.font

checkintersect.c

cover.c

dogsncats.c

drawcover3d.c

drawobjs.c

fontdef.c

infopannel.c

janus3d

jeep.c

jeepmot.c

This contains the fonts used to produce the icons for the vehi-

cles on the two dimensional map.

This file contains the routines for terrain intersections.

This file contains the routines to open terrain files.

This file contains the functions used to switch from one vehicle

to another and define the cursor.

This file contains the routines to draw the 3d terrain.

This file contains the routines to draw the 3d objects.

This file is used to manipulate the fonts.

This file contains the display routines for the information panel

This is the executable code for the visualizer.

This is the main program. It creates the display window and ties

all of the other programs together.

This contains the procedures to move the vehicles.

47

map.c

menus.c

modem.c

network.c

readfiles.c

readobjs.c

util.c

viewbounds.c

This draws the two dimensional map and the icons that are dis-

played on it.

This file contains the information that is displayed when the

popup menus are selected.

This file contains the routines for modem communications.

This file contains the routines to read the communication pack-

ets.

This file contains the procedures to read in the terrain and vehi-

cle data files.

This file contains the routines to read the objects.

This file contains functions to fill in the polygons and place

vehicles on the ground.

This file contains the procedures to display the three dimen-

sional objects and terrain on the screen.

Installation Procedures

To install the Janus-3d Visualizer, load the file visualizer.tar.Z in the directory

you want to install the program. Once loaded, uncompress the file by typing uncompress

visualizer.tar.Z [enter]. When this is finished, untar the files. This will separate the

program into the individual files and subdirectories. The command to do this is tar -xvof

visualizer.tar[enter]. You are now ready to run the program in the default mode.

Communications Setup

1. Ethernet Network Setup

The interface with the local area ethernet network is set up and maintained by the

network library in the visualizer/src directory. The net_open call just prior to the

beginning of the main application loop in jeep.c establishes this interface. Ensure the value

of BCAST_INTERF as defined in headers/jeep.h is correct for your network. You can

check for your system's network interfaces by using the "netstat -rn" command. Also check

48

the port definitions for the send and receive ports that are listed as UDP_SEND_PORT and

UDP_RECV_PORT. If you change any definitions in jeep.h, ensure you recompile both

the src and visualizer directories.

2. Modem Setup

These modem setup procedures apply to the US Robotics Sportster 9600 modem

that was used in the design of the Janus-3D Visualizer prototype. If you have a different

model modem, please consult its user's guide where appropriate to ensure these procedures

will result in proper setup.

All modem processes, to include opening, transferring data and closing, are

contained in the file modem.c in the visualizer directory. Its header file, modem.h is in the

headers directory. The modem interface is established with the modem_open call

immediately following net_open in the Visualizer initialization process.

Once you have connected your modem to the system, determine what serial port it

is connected to. Then check this with the MODEM_PORT definition in modem.h. Our

default is port "2". If yours is different, change the MODEM_PORT definition and

recompile the visualizer directory. Also, even though default settings are loaded into the

modem upon its initialization within the Visualizer, check the dip switches on the back of

the modem to ensure that 1, 2, 5 and 6 are up and 3, 4, 7 and 8 are down. Pages B-4 and B-

5 in the user's guide contain more detailed informations on the dip switch settings. Finally,

once the Visualizer has completed its initialization process and is ready to run, the Auto

Answer (AA), Data Terminal Ready (DTR) and Clear to Send (CS) lights on the front panel

should be illuminated.

Terrain Conversion

To convert the Janus TERRAINxxx.DAT into files that are readable by the Visualizer

follow these instructions. There are seventeen steps in the process. These steps need to be

executed in the order presented. The conversion process takes awhile, suggest you run the

49

programs running in the back ground. To run a program in the background type & after the

command and prior the pressing enter.

The janus TERAINxxx.DAT needs to be placed in the janusfiles directory. You need

to ensure that the temporary storage directories in the terrain directory are empty, some of

the conversion files append to existing files, this will cause erroneous data to be stored in

the files. Then execute the following steps to convert the terrain:

1. readtrrn <terrain #><terrain name>

This program reads the TERAINxxx.DAT located in the janusfiles directory.First

the program uses the terrain name to create the root directory for the header files, terrain

files and script files needed in the conversion process and the Janus-3D visualizer. The

subdirectories created in the terrain directory are: elevfiles, objectfiles, quadfiles,

scriptfiles and textobjectfiles. Readtrrn creates five files. The files globals.dat and

janus.text are placed in the terrain directory. Globals.dat contains the map parameters and

is used by the other conversion programs and Janus-3D Visualizer to initiate the global

variables. Janus.text contains the same information but with the text names of the variables.

The other three files are placed in the janusfiles directory. The file xxx.ele contains the map

elevation and grid information. The remaining files; xxx.riv and xxx.road, contain the

coordinates of the rivers and roads respectively.

2. gen_binary_elev <terrain #><terrain name>

The program reads in globals.dat and xxx.ele. Next the program creates the file

elev.bin.dat which contains only elevation data and places them in the sub-terrain directory

elevfiles.

3. make_tri_mesh <terrain #><terrain name>

The program reads in globals.dat and the elev.bin.dat file that was created in step

three. Elev.mesh.bin is created containing the terrain mesh information and is placed in the

same directory as elev.bin.dat.

50

4. conv_elev2block_bin <terrain #><terrain name>

Conv_elev2block_bin reads in globals.dat and elev.bin.dat and creates one

kilometer grid square files. For a 50 Km by 50 Km map the program creates 2500 files and

stores them in the elevfiles directory.

5. janus2nps <terrain #><terrain name>

Janus2nps reads globals.dat and xxx.ele files. The program then creates and places

the file cover.dat in directory textcoverfiles. Cover.dat contains the elevation, normal, and

colors of the points.

6. reverseroads <terrain #><terrain name>

Janus reads the map information from the lower left hand corner. NPSNET bases

the location of objects on the upper left hand corner. This program modifies the coordinates

of xxx.riv and xxx.road so they can be read into NPSNET terrain. The location of the files

is in the roadrivfiles.

7. makeroadfile <terrain #><terrain name>

Makeroadfile reads the globals.dat, xxx.road and xxx.riv files. The program then

creates the file roads.dat. This file contains the information and points needed to draw the

rivers and roads as polygons.

8. makeroads <terrain #><terrain name>

Makeroads reads globals.dat and xxx.ele files. The program then creates and places

the file roadcover.dat in directory roadrivfiles. Roadcover.dat contains the elevation,

normal, and colors of the points.

51

9. makenewtrees <terrain #><terrain name>

This program extracts the density, city or tree, road, and river information from the

xxx. ele file. The files treecover.dat and citycover.dat are created and stored in the directory

textobjectfiles.

10. maketrees <terrain #><terrain name>

Maketrees reads in the treecorver and citycover files, compares them with xxx.ele

to insure that the trees and cities are not on the roads. Then the program creates seven city

and seven tree files to store the modified information.

11. genblockcov <terrain #><terrain name>

This program creates one kilometer by one kilometer grid square text files

containing polygon descriptions. These files are stored in the directory textcoverfiles.

12. conv_blockcov2bin <terrain #><terrain name>

Conv_blockcov2bin converts the text files created by genblockcov and converts

then to binary format. The new files are stored in the coverfiles directory.

13. genquadcov <terrain #><terrain name>

This program reads in the files created by conv_block2bin and places then into a

quadtree structure. This files are then stored in the textquadfiles directory.

14. conv_quadcov2bin <terrain #><terrain name>

The textquadfiles are converted into binary format by this program and then are

stored in the quadfiles directory located in the terrain specific directory.

52

15. genblockobj <terrain #><terrain name>

Genblockobj creates the tree and city canopies for the terrain. This files are in text

form and placed in the textobject directory.

16. conv_block_obj_to_bin <terrain #><terrain name>

The textobjectfiles created by the program genblockobj are converted into binary

format by this program and then are stored in the objectfiles directory located in the terrain

specific directory.

How to Use the 3D Visualizer

Getting Started

Prior to running the program for the first time you need to change the file

units.dat located in the datafiles directory. This file contains the names and telephone

numbers of the units that can be called via the modem. There can be a maximum of nine

units and phone numbers in the file. The names can be a maximum of six characters or

letters on a line by itself. The telephone number associated with that unit should be on the

following line. The telephone number can consist of a maximum of twenty numbers, e.g.:

199INF

17032212935

To execute the program, you need to be in the visualizer directory on a Silicon

Graphics machine. At your unix prompt, type janus3d NTC [enter]. (The terrain name

can be substituted by any of the terrains you have in the terrain directory).The initial screen

will be displayed with the credits. Note that at the lower center of the screen, information

will be displayed as the different data files are read into the program. Once the program is

finished loading, the working screen will appear. (See Figure A-2) With the main screen

up, start Janus(A) 3.17 running. By starting the visualizer running first, when Janus

initializes it's screens all the initial positions of the janus units will be transferred and

53

displayed. Prior to beginning a scenario, remove all script files from the terrain directory.

Otherwise, the new files will be appended to the old files.

There are three main sections to the display: the 3D view, 2D map and the

vehicle information panel. The largest area is the 3D view. At initalization you are in the

stealth mode. Through the use of the keyboard you can move freely throughout the

battlefield. This area will display the world from your reference point. The other option is

to be tethered to a vehicle. In this case, the 3D view will be from the vehicle's position.

The blue rectangle is the information panel. The panel contains the buttons to

call other units, change the two dimensional map display, read scripted files, and stealth /

janus vehicle information. This gives the user a numerical reference to where you are on or

above the battlefield, the directions of travel and view, speed, and vehicle orientation, ID

number and type. Direction is based on degrees equates to North.

The lower right hand corner is the 2D map. The vehicles are iconized and color

coded to make identification easy. The location of the icon is it's location on the battlefield.

The line originating from each of the icons is the direction of travel with the length

signifying the speed. (Longer lines indicate higher speeds). The yellow circle is your

current location, while the green 'V is the area of the map shown on the 3D display; the

field of vision.

Moving in the Visualizer

There are two modes: tethered and stealth. While in the tethered mode, the user

can change the viewing direction to the left or right and up or down. The direction and

speed of the vehicle are determined by Janus(A) 3. 17 running on the Hewlett Packard or a

script of a previously run battle scenario. The stealth mode allows the user to move freely

throughout the battlefield with all movements determined by the user through the keyboard.

54

iiwif>*> liiiiuliH.-ii: i mc
' .1 II. ,1.1.1... ; rf„l,.l 1 I,. Ill

,
'

..
";.':

Figure A-2. Main Screen

Using the mouse

Left Mouse Button: Select a vehicle to tether on - Place the mouse cursor on a

vehicle's icon or number in the 2D map area and click the left mouse button. The 3D screen

will display what the selected vehicle can see in it's current direction of travel.

Middle Mouse Button: Untether- To untether from a vehicle, click the middle

mouse button and the user will be in the stealth mode with the same view as from the

vehicle that was deselected.

55

Right Mouse Button: Select Menu - Press the right mouse button while anywhere

on the screen and the popup menu will appear. From this menu, you can take a picture of

the screen.The image will be stored in the visualizer directory as snapshot#. The # will

increase for each image stored during a session.

Using the keyboard

Tethered mode.

The pad left arrow key will move the field of view to the left.

The pad right arrow key will move the field of view to the right.

The pad up arrow key will allow the user to look up.

The pad down arrow key will allow the user to look down.

The pad 5 key will reset the view to the direction of travel of the tethered vehicle.

Stealth mode.

The left arrow key will change the direction of travel to the left.

The right arrow key will change the direction of travel to the right.

The up arrow key will increase the speed of the stealth vehicle.

The down arrow key will decrease the speed of the stealth vehicle.

The end key will stop the stealth vehicle.

The pad left arrow key will move the field of view to the left.

The pad right arrow key will move the field of view to the right.

The pad up arrow key will allow the user to look up.

The pad down arrow key will allow the user to look down.

The pad 5 key will reset the view to the direction of travel of the stealth vehicle.

The page up key will increase the elevation of the stealth vehicle.

The page down key will decrease the elevation of the stealth vehicle.

Information panel (Figure A-3)

The information panel contains the buttons to interact with the program and

displays pertinent information about what is currently occurring in the program. The two

lines under the title let the user know what terrain was loaded and, if they are running, a

script and which script is running. The other non-interactive section of the panel is the

vehicle information. The user is given the x and y grid coordinates of the vehicle, the

ground elevation and elevation above ground of the stealth or tethered vehicle above the

ground, the direction of travel, direction that the vehicle is looking and the speed of the

vehicle are displayed. The last information displayed is the side (Friend or Hostile), the

56

Janus vehicle number, the Janus name from the master list located in datafiles/janusveh.dat

(Type), and the number of systems that the icon and 3d model represent (Amount).

Calling another unit.

To call a unit place the mouse cursor in the box containing the name of the unit

you wish to call, then press the left mouse button. The box will turn green and the program

will try to establish a connection with that unit. Once a connection is established, current

PDUs will immediately be transferred to the calling unit from the remote unit.To terminate

the connection, place the mouse cursor in the Hang Up box, press the left mouse button.

The Hung Up button will turn green and a box will appear asking if you really want to hang

up. Select the OK button to terminate the connection or the No button to hide the box. If

the OK button is selected, the box will automatically disappear once the connection has

been terminated.

Logging

The logging button default is on (green). This will cause the program to create and

store script files in the terrain directory. The program will not create a script file for the

script files you are running or for the information displayed from another unit. If you do not

want to create script files, move the cursor into the logging box and press the left mouse

button. The box wiD turn blue to indicate that the script files are not being stored.

Freeze

The Freeze button only works when running a script file. This will stop the

scripted vehicles from moving while allowing the stealth vehicle to travel around the frozen

battlefield. To freeze the scripted file, move the mouse cursor into the Freeze box and press

the left mouse button. The box will turn green indicating the script is frozen. To unfreeze,

repeat the above procedure and the button will turn blue.

Help

When selected, the help button will display the keyboard inputs to move around

the battlefield. To select the help menu, move the mouse cursor into the help box and press

S7

JAMJS3D
VISlfAOZER

tf»rr«irir B«t!Wb«i«i» : NIC
Script Kwmlnw : NUNE

BDt'Hq IUNIT1 IUNITZ I UN1T3 I UNIT-1

gUp I UN t T5 I UN I T6 I UN I T? I UN I T8

Freeze

Script

Xp«S| 40UYU .

2

Vpcms: 20230. u

Grid Clow. 1>£IU. 7 Mlmi'ir Wi.tl: 23,

UJrei;t ion! 211,3 Uiow tlir: ?i I. 3

Spn*d; 360*0
Uefn SlcW: V rJtorwT Tgpo: fi-Ul

Nut 116 RMUurit ; 1

20 Map
Sea 1 1»

Figure A-3. Control Panel

the left mouse button. This will cause a large box containing the help information to appear

in the information panel. When you are done looking at the help information, select the OK

button and the box will disappear.

Objects

The Objects button default is on (green). With the objects selected, the trees and

urban areas will be displayed. To remove the trees and urban areas move the mouse courser

58

into the objects box and press the left mouse button. To redisplay the objects, repeat the

above procedure and the box will turn green.

Script

To run a script, move the mouse cursor into the script box and press the left mouse

button. A box containing a maximum of twenty script files will appear. Move the mouse

cursor to the script file you want to run and press the left mouse button. The box will

disappear and the name of the script file will appear at the top of the information panel.

Each of the script files are twenty minutes long. Before each session, remove the old script

file. This will keep the number of files to a minimum.

Exit

To exit the visualizer, move the mouse cursor into the Exit box and press the left

mouse button. An exit box will appear and ask if you want to exit the program. Select the

appropriate button to terminate the program.

Map Scale

The 2d map is initially set to xl. This displays the entire terrain file. x4,x8, x25

displays one fourth, one-eight, and one-twentyfifth of the map respectively (centered on

your location). To change the map scale move the mouse courser into the box containing

the desired scale and press the left mouse button.

Icon/Num

This changes the 2d icon display. To change from the default icon setting to the

Janus number move the mouse cursor into the icon/numeric box and press the left mouse

button. By repeating this process you can toggle between number and icon in the 2dmap.

2D Display

The map gives the user a gray scale elevation representation of the terrain. Black

is the low ground and white is the high ground. The grid squares on the map represent one

kilometer grid squares, Figure A-4.

59

The vehicles can be depicted as numerics or as icons. The numbers range from

one to six hundred for both forces. The icons / numerics for the friendly forces are blue, the

enemy forces are red, and the dead vehicles are green. The user's location is indicated by a

yellow circle. The green triangle extending from the circle is the field of view that is

displayed in the 3D window.

It Friendly

'^IIkHI Icons

ield of

view

Speed and

Direction

User

Location

Figure A-4. 2D Map Display

60

APPENDIX B: JANUS TERAINxxx.DAT FILE FORMAT

This appendix details the file format of the Janus file terrainxxx.dat file. We used

this file to create the two and three dimensional terrains in the Janus-3D Visualizer. The file

is stored in two blocks. The first block contains the header information. The second

contains the elevation posts. The information listed is compiled form the file

GLOBTRRN.FOR.

HEADER BLOCK

SIZE TYPE VAHUBLE Meaning

four bytes N/A N/A size of block

four bytes float XLL Lower Left X UTM
four bytes float YLL Lower Left Y UTM

four bytes float XWIDE # Km Wide

four bytes float YTALL # Km Tall

four bytes int IDIMX # cells in X direction

four bytes int IDIMY # cells in Y direction

one byte int KURMBU wheeled

one byte int KURMBL2 trafficability

one byte int KURMB1,3 levels

one byte int KURMB1,4 1 thru 7

one byte int KURMB1,5

one byte int KURMB1,6

one byte int KURMB1/7

one byte int KURMB2,1 tracked

one byte int KURMB2,2 trafficability

one byte int KURMB23 levels

one byte int KURMB2,4 1 thru 7

Table 3. TERRAINxxx.DAT File Format: Header Block

61

SVZM TYPE • VARIABLE % Meaning

one byte int KURMB2,5

one byte int KURMB2,6

one byte int KURMB2,7

one byte int KURMB3,1 Footed

one byte int KURMB3,2 trafficability

one byte int KURMB3,3 levels

one byte int KURMB3,4 1 thru 7

one byte int KURMB3,5

one byte int KURMB3,6

one byte int KURMB3/7

one byte int KVEGMU Wheeled

one byte int KVEGM1,2 trafficability

one byte int KVEGMU levels

one byte int KVEGM1,4 1 thru 7

one byte int KVEGM1,5

one byte int KVEGM1,6

one byte int KVEGM1/7

one byte int KVEGM2,1 Tracked

one byte int KVEGM2,2 trafficability

one byte int KVEGM2,3 levels

one byte int KVEGM2,4 1 thru 7

one byte int KVEGM2,5

one byte int KVEGM2,6

one byte int KVEGM2J

one byte int KVEGM3,1 Footed

one byte int KVEGM3,2 trafficability

one byte int KVEGM3,3 levels

one byte int KVEGM3,4 1 thru 7

Table 3. TERRAINxxx.DAT File Format: Header Block

62

;jiz*?.;:
:

TYPE VARIABLE Meaaing

one byte int KVEGM3.5

one byte int KVEGM3,6

one byte int KVEGM3,7

ten bytes N/A N/A Empty bytes

one byte int KHGTSU Vegetation

one byte int KHGTSL2 Heights

one byte int KHGTSU levels

one byte int KHGTSU 1 thru 7

one byte int KHGTS1,5

one byte int KHGTS1.6

one byte int KHGTSU

one byte int KHGTS2J Urban

one byte int KHGTS2,2 Heights

one byte int KHGTS2,3 levels

one byte int KHGTS2,4 1 thru 7

one byte int KHGTS2,5

one byte int KHGTS2.6

one byte int KHGTS2J

one byte int KPLOSU Probability

one byte int KPLOSl,2 LOS

one byte int KPLOSU Vegetation

one byte int KPLOSU
one byte int KPLOSU
one byte int KPLOSU
one byte int KPLOSU

one byte int KPLOS2,l Probability

one byte int KPLOS2,2 LOS

one byte int KPLOS2,3 Urban

Table 3. TERRAINxxx.DAT File Format: Header Block

63

SIZE TYPE V4R?ARyy Meaning

one byte int KPLOS2,4

one byte int KPLOS2,5

one byte int KPLOS2,6

one byte int KPLOS2J

sixteen bytes N/A N/A empty bytes.

Table 3. TERRAINxxx.DAT File Format: Header Block

The next section contains the river information. The rivers are composed of three

four byte float arrays. The first array contains the X coordinate, the second the Y
coordinate. The last array contains a negative one, zero, or one. The space reserved for them

in the file is 12000 bytes. This is the total derived from 3 arrays 1000 entries and each entry

is four bytes. This is the number of bytes you need to read and/or skip before reaching the

road array.

The road array is similar to the rivers with the exception that the arrays are 3000

entries long. This therefor is 27000 bytes long. After reading the roads we reach the end of

the block. The last four bytes should have the same value as the first four bytes. This is a

check to ensure that you are reading the correct number of bytes.

ELEVATION POST BLOCK

The next four bytes contain the number of bytes that we will be reading in the

elevation post block. We get this number by adding one to IMIDX and one to IMIDY then

multiplying the two numbers. Each of the words are four bytes long. To access the

information stored in the words we use the masks in the following table.

U\[location in Word .Data Contained Natnber-of Bits
:

;

: Ma$k
'"

0-11 Elevation 12 00000FFF

12-14 Concealment 3 00007000

15 City or Tree 1 00008000

16-18 City/Tree Height 3

19-21 Trafficability 3 00380000

22-24 Micro Terrain Rough-

ness

3 01C00000

25 River Present 1 02000000

Table 4. TERRAINXXX.DAT File Elevation Word Format

64

Bit footfion in Word Data Contained.... 3Sami>er of Bits Ma*k -...

26 Engineering Obs Present 04000000

27 Grid Blown Down OSIK HHHK)

28 Grid on Fire 1()()()()()()()

29 Chemical/Radiation 20000000

30 Smoke Present 40000000

31 High Explosive 80000000

Table 4. TERRAINXXX.DAT File Elevation Word Format

65

66

APPENDIX C: JANUSVEH.DAT

Side
1
Sequence Janus

"''-'.illume
Janus
Syntbol

2D
Icons

3D
Models

1 AH64/HEL 1 55 26

2 AH64/LB 62 33 26

3 LH/HELLF 59 33 75

4 LH/LB 59 33 75

5 OH58D 17 29 27

6 NONE

7 NONE

8 105H/TOW 43 4 4

9 155H/SP 3 4 4

10 155H/TOW 60 4 4

11 155_HIP 3 4 4

12 AFAS 45 4 4

13 NONE

14 NONE

15 60MM_MRT 27 1 103

16 81MM_MRT 27 1 103

17 120_MRT 2 1 103

18 4.2"_MRT 2 1 103

19 81MMIMRT 27 1 103

20 NONE

21 NONE

22 NONE

23 S'HOW/SP 4 4 4

24 MLRS 5 13 11

25 NONE

26 NONE

27 M548 100 10

28 TRK/AMMO 30 79 106

29 HEMT/AMO 31 79 106

Table 5. Janusveh.dat

67

Side Sequent* farms

Name
farm's

Symbol
m

Icons

3D
Models

30 TRK-8X8 69 10

31 SEMI-TRL 55 10

32 NONE

33 NONE

34 NONE

35 NONE

36 NONE

27 NONE

28 NONE

39 NONE

40 NONE

41 NONE

42 NONE

43 NONE
44 NONE

45 NONE

46 NONE

47 NONE

48 WRECK 59 33 26

49 NONE

50 ASP/IF 31 79 106

51 Ml 6 9

52 M1A1 6 9

53 M1A2 6 9

54 M1A1_HY 6 9

55 AGS/105 39 9

56 NONE

57 NONE

58 FIFI 8 4 2

59 M2A2 8 4 2

60 M3A2 29 4 2

Table 5. Janusveh.dat

68

Side JSecjuene* Janus
Niirat*

Janus
Symbol

21>

Icons Models

61 M3A1 29 4 2

62 NONE

63 NONE

64 M113/GLD 57 3

65 M113/TOW 46 3

66 M113/ENG 7 3

67 Ml 13/50 7 3

68 M113/M19 7 3

69 M113/AMB 45 3

70 NONE

71 NONE

72 HMMWV 64 97 10

73 HMMV/50 38 97 10

74 HMMV/
TOW

33 97 10

75 HMMV/M19 44 97 10

76 HMMV/M16 64 97 10

77 MOTOCYCL 52 10 10

78 LAV/TOW 50 4 2

79 LAV/25 49 4 2

80 HMMV/
AMB

62 97 10

81 NONE

82 M9_ACE 9 9 1

83 AVLB 19 21 1

84 CEV 20 9 1

85 M88 37 4 4

86 NONE

87 NONE
88 NONE

89 NONE

Table 5. Janusveh.dat

69

Side .Sequent Mtms
Name .-.^

-;:.

Janus
Symbol icons

;

Models

90 NONE

91 NONE

92 NLOS/LGT 53 97 10

93 NLOS/HVY 65 1 11

94 PIVAD 42 97 10

95 AVENGER 16 97 10

96 HAWK 61 105 11

97 ADATS 55 97 107

98 CHAPERAL 40 22 11

99 STIG_GNR 25 25 12

100 NONE

101 NONE

102 NONE

103 NONE

104 NONE

105 RIFLEMAN 21 27 12

106 MK19_GNR 63 27 12

107 SAW_GNR 22 27 12

108 M60_GNR 24 27 12

109 M203_GNR 36 27 12

110 TOWJTEAM 47 27 12

111 AAWS-M 23 27 12

112 CASUALTY 41 27 12

113 NONE
114 NONE

115 AH- IS 14 31 28

116 OH-58C 32 29 27

117 RPV 28 44

118 A-10 18 93 25

119 NONE
120 FOGM_MIS 13

Table 5. Janusveh.dat

70

SMe Sequent^ Janus
Name

Janus
Symbol

m
Icons

3D
Models

121 F4 41 52 30

122 UH-60 26 31 28

123 CH-47C 53 31 28

124 NONE

125 NONE

126 NONE

127 SMK_GEN 10 1 3

128 M577 11 18 8

129 ITV 34 1 3

130 LOSAT 54 1 2

131 NONE

132 NONE

133 ASP/AIR 56 36 106

134 ASP/DF 31 36 106

135 NONE

136 NONE

137 NONE

138 NONE

139 TRK/CARG 30 36 105

140 TRK/AMMO 30 36 105

141 TRK/FUEL 54 36 105

142 GAM_GOAT 31

143 HEMT/POL 48 36 105

144 HEMT/CAR 31 36 105

145 TRK/WATR 58 36 105

146 NONE

147 MNT_YARD 113

148 AID_STN 39

149 HOLE 51

150 POW_CMPD 35

151 NONE

Table 5. Janusveh.dat

71

Side Sequence
Name

Janus

Symbol
21>

Icons

3D
Models

1 152 WRECKER 65

2 1 60/MORT 118 65 103

2 2 82/MORT 118 65 103

2 3 VASELIK 119 65 103

2 4 120/MORT 119 65 103

2 5 NONE

2 6 NONE

2 7 76MM/GUN 109 66 4

2 8 122HW/SP 97 66 4

2 9 152HW/SP 106 66 4

2 10 152G/TOW 109 66 4

2 11 120GN/SP 97 66 4

2 12 210HW/SP 120 100 4

2 13 NONE

2 14 NONE
2 15 122_MRL 98 58 11

2 16 18CLMRL 95 56 11

2 17 220_MRL 95 56 11

2 18 300_MRL 95 56 11

2 19 NONE
2 20 NONE

2 21 NONE

2 22 NONE

2 23 NONE

2 24 NONE

2 25 NONE

2 26 NONE

2 27 NONE

2 28 NONE

2 29 NONE

2 30 NONE

Table 5. Janusveh.dat

72

Side Sequence Janus

Name
Janus
Symbol

2D
Icons

3I>

Models

2 31 NONE

2 32 HIND-F 71 33 77

2 33 HAVOC 77 33 75

2 34 HOKUM 87 33 75

2 35 HIP 96 99 75

2 36 NONE

2 37 NONE o

2 38 NONE

2 39 NONE

2 40 NONE (1

2 41 NONE

2 42 NONE

2 43 NONE

2 44 NONE
2 45 NONE

2 46 NONE

2 47 NONE

2 48 NONE
2 49 NONE
2 50 ASP/IF 79 36 105

2 51 NONE

2 52 NONE
2 53 BMP1/AT3 111 45 52

2 54 BMP-2 105 45 52

2 55 FBMP-2 121 45 52

2 56 BMP2/FLR 105 -15 52

2 57 NONE
2 58 NONE
2 59 BRDM-2 101 117 61

2 60 FBRDM-2 102 117 61

2 61 FBRDM/AT 117 117 61

Table 5. Janusveh.dat

73

Side Se<|u<e»es

:
; Name

Janus

Symbol Icons

3D
Models

9 62 NONE

2 63 NONE

2 64 BTR-60 99 46 61

2 65 BTR70/80 112 46 61

2 66 FBTR 123 67 61

2 67 FBRM 124 96 61

2 68 NONE

2 69 ACRV 94 96

2 70 MTLB 78 96

2 71 MTLB/AT 91 96 52

2 72 SCORPION 116 118 60

2 73 CASCAVEL 116 118 60

2 74 MOTRCYCL 86 10

2 75 NONE

2 76 ZSU_23-4 74 57 53

2 77 256 115 60 53

2 78 SA-8 103 47 61

2 79 FBMP/AD 122 45 52

2 80 SA-4 89 65 61

2 81 SA-13 75 17 52

2 82 SA18_GNR 67 31 12

2 83 SA-12 90 21 61

2 84 SA14_GNR 67 31 12

2 85 SA-15 84 95 53

2 86 SA-17 88 65 53

2 87 100MM/AD 125 100

2 88 ZSU_23-2 83 57 53

2 89 NONE
2 90 NONE
2 91 RIFLEMAN 66 27 12

2 92 AUTORIFL 108 27 12

Table 5. Janusveh.dat

74

Side Sequence Janus

Name
Janus
Symbol

21> 3D
Models

93 AT4_GNR 107 27 12

2 94 RPG16_GN 68 27 12

2 95 AGS17_GN 104 27 12

2 96 AAWS_GNR 107 27 12

2 97 SNIPER 66 27 12

2 98 AT5_GNR 107 27 12

2 99 RPG7_GNR 68 27 12

2 100 RPK_GNR 108 27 12

2 101 NONE

2 102 NONE

2 103 NONE

2 104 NONE

2 105 NONE

2 106 NONE

2 107 NONE

2 108 NONE

2 109 TRK/CARG 92 36 105

2 110 TRUK/POL 93 36 105

2 111 TRK/AMMO 79 36 105

2 112 NONE

2 113 NONE

2 114 NONE

2 115 NONE

2 116 ASP/DF 79 36 105

2 117 ASP/AIR 82 83 105

2 118 NONE

2 119 NONE

2 120 AVLB 80 21

2 121 NONE

2 122 NONE

2 123 NONE

Table 5. Janusveh.dat

75

Side Sequence Janus

Name
Janus

Symbol Icons

3D
Models

->
124 FLOGGER 70 26 76

2 125 FROGFOOT 114 26 76

2 126 RPV 72 44

2 127 NONE

2 128 NONE

2 129 NONE

2 130 T-62A 73 8 60

2 131 T-72/MIS 76 8 51

2 132 T72+/MIS 76 8 51

2 133 T72/NMIS 76 8 51

2 134 FST-I 110 8 51

2 135 FST-II 110 8 51

2 136 FST-III 110 8 51

2 137 125-SPAT 85 100

Table 5. Janusveh.dat

76

LIST OF REFERENCES

[ARMY93] Department of the Army, Army Focus 1993, US Army Publication and

Printing Command, The Pentagon, Washington, DC, September 1993

[FUNK94] Funk, Steven, Information Paper ARPAIARNG Advanced Technology

Demonstration #2 Project SIMITAR, Ft. Leavenworth, KS

[JANU93] Department of Army, The Janus 3XIUNIX Model User's Manual,

Headquarters TRADOC Analysis Center, ATRC-ZD, Ft. Leavenworth, KS,

May 1993

[JANU93a] Department of Army, The Janus 3XIUNIX Model Data Manager's Manual,

Headquarters TRADOC Analysis Center, ATRC-ZD, Ft. Leavenworth, KS,

May 1993

[JANU93b] Department of Army, The Janus 3XIUNIX Model Computer System

Operator's Manual, Headquarters TRADOC Analysis Center, ATRC-ZD, Ft.

Leavenworth, KS, May 1993

[JANU93c] Department of Army, The Janus 3X/UNIX Model System Design Manual,

Headquarters TRADOC Analysis Center, ATRC-ZD, Ft. Leavenworth, KS,

May 1993

[JANU93d] Department of Army, The Janus 3XIUNIX Model Software Design Manual,

Headquarters TRADOC Analysis Center, ATRC-ZD, Ft. Leavenworth, KS,

May 1993

[JANU93e] Department of Army, The Janus 3XIUNTX Model Software Programer's

Manual, Headquarters TRADOC Analysis Center, ATRC-ZD, Ft.

Leavenworth, KS, May 1993

[MACK91] Macky, Randall L., NPSNET: Hierarchical Data Structures for Real-Time

Three Dimensional Visual Simulations, Master's Thesis, Naval Postgraduate

School, Monterey,CA, September 1991

[OSB09 1] Osborne, William D., NPSNET: An Accurate Low-Cost Technique for Real-

Time Display ofTransient Events: Vehicle Collisions, Explosions and Terrain

Modifications, Master's Thesis, Naval Postgraduate School, Monterey,CA,

September 1991

[PRAT90] Pratt David R., "showelev.c" , computer programl990

[PRAT93] Pratt David R., A Software Architecture for the Construction and

Management of Real-Time Virtual Worlds, Dissertation, Naval Postgraduate

School, Monterey,CA, June 1993

77

[SGI90] Silicon Graphics Inc., Graphics Library Reference Manual C Edition Version

4.0, Silicon Graphics Inc., Mountain View,CA, April 1990

[SMIT93] Smith, Richard Samuel, NPSNET: Scripting of the Three-Dimensional

Interactive Systems for use in the JANUS Combat Simulation, Naval

Postgraduate School, Monterey,CA, September 1993

[UPS094] Upson, Christopher S., Design and Implementation of a Software

Communication Architecture for the JANUS-3D Visualize); Naval

Postgraduate School, Monterey,CA, September 1994

[WALT92] Walter, Jon C, and Warren, Patrick T., NPSNET: Master's Thesis in

Computer Science, JANUS-3D Providing Three-Dimensional Displays for a

Traditional Combat Model, Naval Postgraduate School, Monterey,CA,

September 1992

[WEST94] West, Togo D. Jr., and Sullivan, Gordon R., A Statement on the Posture of the

United States Army Fiscal Year 1995, Office of the Chief of Staff, United

States Army, Congressional Activities Division (DACS-CAD), Washington

DC, Feburary 1994

[ZYDA92] Zyda, Michael J, Pratt, David R, Monahan, Gregory, and Wilson, Kalin P.,

NPSNET: Constructing a 3D Virtual World, Symposium on 3D Graphics, '92

Proceedings, April 1992, pp. 147-156

78

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2

Cameron Station

Alexandria, VA 22304-6145

2. Dudley Knox Library 2

Code 052

Naval Postgraduate School

Monterey, CA 93943

3. Chairman, Code CS/Lt 2

Computer Science Department

Naval Postgraduate School

Monterey, CA 93943

4. Professor D. R. Pratt, Code CS/Pr 5

Computer Science Department

Naval Postgraduate School

Monterey, CA 93943-5000

5. Professor G.M. Lundy, Code CS/Ln 1

Computer Science Department

Naval Postgraduate School

Monterey, CA 93943-5000

6. MAJ Tom Allen 1

ARPA-SIMITAR
Fort Leavenworth, KS 66027

7. Mr. Don Bennett 1

Cubic Applic Inc.

P. O. Box 13548

Fort Carson, CO 80913

8. Mrs. Meg Champion 1

LTSI

Box 1825

Richmond Hill, GA 31324

79

9. Mr. Jeffrey K. Skilling

BDM Federal Inc.

P. O. Box 908

Fort Knox, KY 40121

10. Director

U.S. Army Research Laboratory

ATTN: AMSRL-CI (CPT Vaglia)

APG, MD 21005-5067

80

put: • ^"fn;
i

:

: choos

