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ABSTRACT

This research addresses the problems experienced by the autonomous mobile robot,

Yamabico-1 1, with its ultrasonic sonar system. It explains the basics of acoustic

theory as related to Yamabico-1 1 and explains the sources of limitations imposed

on Yamabico-1 1 by the physical nature of the problem. This paper documents the

basic characteristics of the sonar hardware and examines causes of sonar range

errors Finally, this research leads to improvements of the current sonar system

to provide better directional coverage through a new sonar configuration.
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I. INTRODUCTION

A. SPATIAL REASONING PHILOSOPHY

Good spatial reasoning is critical to the success of any mobile robotics

project; it allows a robot to interpret what it "sees" and to perform intelligent

motions. Spatial reasoning requires the robot to create and maintain a cognitive

map, or knowledge structure, of its world. There are two main schemes

employed by robotics projects to represent this cognitive map: occupancy arrays

and constructive solid geometry.

The implementation of an occupancy array representation in 2-D is similar

to the implementation of a graphic picture. Grids, similar to the pixels of a

computer monitor, divide the world. The labels, occupied, empty or unknown,

similar to the red, green, blue (RGB) designations used in graphics, give the

status of each grid Additionally, each grid has an uncertainty factor between

and 1 , similar to the - 255 value assigned to the RGB colors. This uncertainty

factor arises due to incomplete sensor data and/or partially occupied grids.

Humans can visualize occupancy arrays easily; the occupancy arrays easily

transform into a graphic picture. However, they do have some drawbacks. If an

object moves, the uncertainty of its position increases dramatically.

Furthermore, occupancy arrays require a significant amount of space, depending

on the granularity of the representation. For example, suppose the robot

requires 2-D knowledge of its world to within one centimeter and its world is a

five meter square box. This world is represented by a 1000 x 1000 array

containing one million grids; Each element of the array would need to maintain

information on both the status and uncertainty of the grid. (Davis, 1990, pp. 264-

270) Many robotics projects, such as the Neptune, Terregator and Uranus

robots at Carnegie-Mellon University, use occupancy arrays to describe their

robot's world (Elfes, 1987, p. 255).

The other common implementation of the cognitive map uses

Constructive Solid Geometry (CSG). CSG represents complex objects as a

combination of fundamental shapes. The fundamental shapes used depends on

the domain of the world. Each shape has its own, or local, coordinate system



and this coordinate system has a position relative to the world, or global,

coordinate system. The description of an object consists of the appropriate

dimensions and the location and orientation of the local coordinate system for

each fundamental shape forming the object. This works fine for describing a

known world, but the method breaks down when an unknown obstacle is

encountered. The robot is unable to determine neither the dimensions nor the

location of the local coordinate system of each fundamental shape needed to

compose the object; the robot only knows information about the visible boundary

of the object and can not determine to what shape this boundary belongs. (Davis,

1990, pp. 270-273)

B. SENSORS

Intelligent management of on board sensors is critical to successful robot

navigation. Some of the basic types of sensors used in robotics include sonars,

Charge-Coupled Device (CCD) cameras, laser range finders and tactile sensors.

Each sensor type has its own set of strengths and limitations which needs to be

considered when designing a sensor suite. The sensor suite should use

complementary sensors and should only use those sensors which are

appropriate for the particular application. Correlating data from multiple sensors

is an extremely difficult problem that many organizations and universities,

including this one, are trying to solve. The problem is complicated even further

when different types of sensors provide the data. However, the benefits of this

sensor fusion are tremendous.

Ultrasonic sonars probably are one of the most widely used sensors due

to their low cost and ease of implementation. They provide good range

resolution, but the bearing information is limited. Ultrasonic sonars are excellent

at detecting the presence of an object, but cannot determine object size without

the maneuvering of their platform.

On the other hand, CCD cameras can provide boundary information about

an object. However, image processing is expensive in both dollar cost, Central

Processing Unit (CPU) time, disk storage and power requirements. The lack of

depth perception is a major disadvantage which can be overcome by using

multiple CCD cameras, reference images, or other similar strategies.



Laser range finders use the same basic principles as ultrasonic sonars;

they measure the time of flight to determine distance. However, since laser

range finders use the speed of light (3 x 10® m/s), their response time is much

better than that of ultrasonic sonars which use the speed of sound (343 m/s).

They are not used on smaller robotics projects because they have a higher price

tag and require more power.

Tactile sensors are used mainly with manipulators, but have found uses

with mobile robots. They have been used on the feet of walking robots to

facilitate foot placement and on the periphery of wheeled robots, similar to curb

feelers installed on some cars.

C. YAMABICO-11 PHILOSOPHY

Yamabico-1 1 is a research robot at the Naval Postgraduate School whose

purpose is to implement and validate new theories in robotics, including motion

control and spatial reasoning. Consequently, its configuration, both hardware

and software, is continually evolving.

The Yamabico-1 1 project uses a method similar to CSG to describe its

world; the world and the objects in it are depicted by polygons. Known objects

are fitted to polygons located within the inverted polygon representing

Yamabico-1 1's world. As Yamabico-1 1 moves within its world, it uses a least-

squares fitting algorithm to fit its positional sonar readings to line segments.

Yamabico-1 1 matches these line segments to its known world; if no known object

corresponds to the sonar data, the line segments are stored as a new object.

This method has advantages over occupancy arrays and CSG because it

requires less storage space and does not need to know information about the

location and orientation of the local coordinate system of objects. Fitting sonar

data to line segments reduces the impact of partial and/or erroneous data.

Objects, both known and unknown, are represented by the global position of

each vertex of the polygon or endpoints of the line segment.

Yamabico-1 1 uses and array of twelve ultrasonic sonars as its main

sensor system. Since Yamabico-1 1 operates in a controlled environment, it

does not need a sophisticated, long-range sensor system. Since Yamabico-1

1

also serves as a teaching tool, it includes a CCD camera to provide a means for



image processing research. Since image processing is a CPU intensive

operation, the CCD camera has not been incorporated as an integral part of the

sensor suite. Future plans for Yamabico-1 1 development include the integration

of the CCD camera.

The quality of the data received depends on the sensor system

characteristics. This research work examines the quality of the data produced

by sonars and shows how to use this data for intelligent obstacle avoidance.



II. PROBLEM STATEMENT AND APPROACH

A. PURPOSE

The purpose of this thesis work was to:

1

.

Determine the acoustic characteristics of the current ultrasonic sensors

and the effects of the current sensor configuration on the capabilities and

limitations of Yamabico-1 1 . It will explain the origin of the observations made so

far and will help to develop corrections to the sensor data processing to adjust

for the physical phenomena.

2. Improve the capability of Yamabico-11 to navigate autonomously

around unknown obstacles.

B. APPROACH

1. Acoustic Characteristics

The approach followed during this research work was to:

a. Determine the theory of the physical phenomena related to the

ultrasonic sensors.

b. Test and verify the theoretical predictions in the laboratory setting.

c. Make recommendations for improvements.

d. Implement improvements.

e. Test the improvements using Yamabico-1 1 as the test bed.

2. Robot Navigation

Intelligent robot navigation requires interfacing the sensor system(s) and

the path planning module to derive a workable algorithm for obstacle avoidance.

This task was accomplished by:



a. Developing a dynamic function to determine a safe path for avoiding

an obstacle, assuming either the vertices of the object are known or

the width can be determined.

b. Testing the ability of Yamabico-1 1 to avoid obstacles autonomously

using this function in a variety of scenarios.



III. YAMABICO-11

A. HISTORY

Yamabico-1 1 is an autonomous mobile robot powered by two 12-volt

batteries and driven on two wheels by DC motors. These motors drive and

steer the wheels while four shock absorbing caster wheels balance the robot. It

uses twelve 40 kHz ultrasonic sensors to sense its environment. Recently, its

master processor was upgraded from the Motorola MC68020 microprocessor to

the SPARC4 microprocessor. This upgrade to the SPARC4 microprocessor

expanded Yamabico-1 1's memory and changed the development environment.

The high-level Model-based Mobile-robot Language (MML) software, written in

ANSI C, is compiled using a "Makefile" and then downloaded to Yamabico-1 1.

An onboard laptop console (Macintosh 145 Powerbook) provides real-time

command level communication between the user and the robot.

The Motorola microprocessor on Yamabico-1 1 uses MML Version 10

(MML 10) and requires compilation using the "gravy6" server in the Computer

Science Department at the Naval Postgraduate School. MML 10 consists of a

kernel and a user program. The kernel contains the compiled code for the

robot's application software. The user program uses the MML functions to

control the robot. Once compiled, these programs are downloaded to the robot

via an RS-232 link at a baud rate of 19,200. Typing the command "lo=dluk" at

the prompt on the laptop downloads both the kernel and the user program to

Yamabico-1 1 ; typing "lo=dlu" downloads just the user program. Once

downloaded, the user types "g 304000" to run the user program.

The SPARC4 microprocessor on Yamabico-1 1 uses MML Version 1

1

(MML 11). Compilation of MML 1 1 uses the GNU 'C Compiler available on the

SPARC workstations and downloading uses an Ethernet cable connected to the

"libra" server in the Computer Science Department at the Naval Postgraduate

School. The "Makefile" in MML 1 1 compiles the kernel files and the user files

into a single executable file called "user" and copies this file into the

"SPARC4/target" directory in the "yamabico" account. The "libra" server

automatically checks this directory every minute to see if the user program has

changed and updates its files accordingly. This step is required to ensure the



security and integrity of the "libra" server. To load the executable program, the

user types "bootp" at the prompt on the laptop. If the user enters "bootp" at the

laptop prompt before the "libra" server has updated its files, the new compiled

program will not be available yet, so the old compiled program will be loaded.

Therefore, it is important that the user wait at least one minute after compiling

the program before downloading the program to Yamabico-1 1 . Once loaded, the

user types "run" to execute the user program.

Navy Lieutenant Scott Book developed MML 11 in March 1994. MML 10

became cumbersome with the addition of new functions. MML 10 relied heavily

upon numerous global variables and did not adhere to standard software

engineering practices. Although MML 1 1 allows Yamabico-1 1 to use the

SPARC4 microprocessor, the main thrust of Lieutenant Book's work was the

restructuring of the MML to eliminate global variables and secondly to develop

guidelines for future programming. Lieutenant Book successfully implemented

and tested the motion control functions in MML 1 1. In September 1994, Navy

Lieutenant Commander Frank Kelbe converted the sonar functions from MML 10

to MML 11.

B. SONAR SYSTEM

1. Hardware System

Yamabico-1 1's sonar system has been evolving since 1980. The original

design consisted of an array of twelve ultrasonic transmitter/receiver pairs,

hereafter referred to as sonar pairs, mounted around the periphery of the robot

as per Figure 1 , approximately a foot from the floor. The self-contained sonar

system ran on a VME motherboard and interfaced with the Yamabico-1 1's

Central Processing Unit (CPU) via the VME bus.

8



a. Sensor Configuration

In the original design, the twelve ultrasonic sonar pairs were

divided into three logic control groups having each of their sensors located at 90

degree angles from each other: group consists of pairs 0, 2, 5 and 7; group 1

consists of pairs 1 , 3, 4 and 6; and group 2 consists of pairs 8, 9, 10 and 1 1

.

This grouping allowed four ultrasonic sonar pairs to operate simultaneously

without interference. (Sherfey, 1991, pp. 10-11) Additionally, the sonar pairs

11 /V S7 \ 10

4 > <

1

5 > Forward ^

V3 VA
8 \ ^ ^/ v

1 2

Figure 1

Ultrasonic Sensor Pair Location

were physically grouped in order to distribute the electrical load over the driver

boards evenly. Sonar pairs 0, 2, 8 and 1 1 were on sonar driver board 1 ; sonar

pairs 4, 6, 7 and 5 run off of sonar driver board 2 while sonar pairs 1 , 3, 9 and 10

work from sonar driver board 3. Figure 2 shows the relationship between the

different sonar pairs, the sonar motherboard and Yamabico-1 1's CPU.



60
40"
70-
50-

1<

3(

9(

10<

Driver

Board

2

Driver

Board

3

Command

Status

Data 1

Data 2

Data 3

Data 4

Sonar Control

Daughtercard

Bus Interface Module

VME Motherboard

\Busy

Yamabico-1

1

CPU

Figure 2

Sonar Hardware Architecture

b. Clock Counter

A clock counter data register computed the distance to a target.

The first 12 bits of the data register were reserved for the range data. The data

register kept track of the number of clock cycles expired between the transmit

and receive pulses. A clock cycle occurred every 6 microseconds. For TP2*,

the clock counter was enabled one cycle, or 25 microseconds, after the transmit

pulse begins; for TP1*, the clock counter was enabled one-and-a-half cycles, or

37.5 microseconds, after the transmit pulse begins. When a return signal

exceeded a set threshold at the receiver, the last value of the clock was copied

into the appropriate data register and the clock counter continued until ranging

was completed for all sonars in the group.

10



c. Sonar Range Calculation

The minimum range was based on the receiver being disabled

during the transmit pulse. This prevented the receiver from being triggered by

crosstalk from the transmitted signal. The pulse was transmitted for 0.5

milliseconds; at 343 meters per second, sound traveled a total of 17.15

centimeters in this time, but since this represented the two-way travel distance,

the minimum theoretical range was one-half of this number or 8.575 centimeters.

However, additional time was needed to accommodate circuitry switching and

settling; therefore, in practice, firmware set the minimum range at 9.6

centimeters (Sherfey, 1991, p. 12).

The maximum range was a function of the hardware design. The

maximum number that could be represented by 12 bits was 2
12 - 1 = 4095. At 6

microseconds per clock tick, this equated to (6.0X1CT
6
) x (4095) = 0.02457

seconds. In 24.57 milliseconds, a sound wave could travel 8.428 meters. Since

the sound wave must travel both out and back, the maximum one-way distance

was one-half of this distance, or 4.214 meters. Therefore, due to system

configuration constraints, Yamabico-1 1's sensors had an operating range of 9.6

centimeters to 4.214 meters. (Sherfey, 1991, pp. 11-13)

d. Sonar Driver Board

Within each logical group, two sensors were driven by one driver

board while the other two sensors were driven by another driver board. The

driver board produced a 0.5 millisecond transmit signal consisting of 20 cycles of

a 40 kHz, 4.5 V peak-to-peak square wave. The driver board produced two

signals, TP1* and TP2* TP2* lagged TP1* by 180 degrees, allowing the driver

board to power only one of the sensors at a time. The sonar control board

interrupted Yamabico-1 1's central processing unit only when data was available

from the sonar array.

The received signal was considerably weaker than the transmitted

pulse so it was sent through a two-stage amplification circuit and then to a

74LS14 Schmitt Trigger which, given a variable input voltage, produced a

constant output voltage signal. However, the Schmitt Trigger required a

11



minimum of 1 .4 Volts to operate (Michiue, 1994, p. 32). The first stage of the

amplification circuit yielded a voltage gain of 40 dB and the second stage a

12.87 dB gain for a total gain of 52.87 dB or 440 (Michiue, 1994, p. 23).

Therefore, a minimum 6 mV peak-to-peak signal at the receiver was required to

recognize the return signal.

The actual transmitted pulse was a packet of 20 individual pulses

of equal amplitude, separated by 25 microseconds. Because of the finite

bandwidth of the receiver transducer and preamplifier, the output amplitude of

the receiver circuitry increased linearly to reach a maximum according to the

equation

V
V = ma*, *t (Eq. 3-1)

5X10
-4

where t is the time, V is amplitude of the received voltage and Vmax is the

maximum voltage reached. The output reached a maximum at t = 0.5

milliseconds and then fell off according to the equation

V = Vmaxe-t/T (Eq.3-2)

where V is the voltage at the receiver, Vmax is the maximum voltage reached,

x = 0.5 milliseconds and t is the time. Figure 3 gives a representation of the two

pulse packets. The Schmitt Trigger fired once the amplitude of the received

signal after amplification, V, reached 1.4 Volts. The time that this took varied

because the maximum received signal strength, Vmax , was a function of both

the distance to and the reflectance of the object ensonified.

e. Accuracy

The clock counter - distance conversion algorithm should account

for the hardware side effects. At room temperature (20°C) the speed of sound in

air is 343 m/s. Using this value, the delay in starting the clock meant that the

true range was about 0.43 or 0.64 centimeters longer, depending on which

signal, TP1 * or TP2*. was used to drive the transmitter. Since the last clock

counter value was copied to the data register upon the receipt of a return signal,

the value could be as much as one clock cycle, or 6 microseconds, off, causing

12



Pulse Packets

Transmit Receive

Figure 3

Representative Pulse Packets

the true range to be longer yet by up to another 0.1029 centimeters. Normally,

one assumed that the actual object was ensonified by the leading edge of the

transmit pulse. However, when using a detection threshold and the Schmitt

Trigger, detection could occur anywhere within the received pulse. If the

maximum amplitude of the received pulse was not detected, it was unlikely that

any of the remaining received pulses would be detected. The detection could be

delayed for up to 0.5 milliseconds, the transmit pulse width. This detection delay

equated to an addition of up to 8.575 centimeters to the true range. Therefore,

the worst-case accuracy of the sonar was the sum of the delays or about 9.

1

centimeters.

f. Upgrades

Although the maximum theoretical range was set at 4.214 meters

by the register size, in practice, the maximum achievable range was much less

due to the sensitivity of the old sensors and circuitry. The front sensors were

13



upgraded in 1993 in hopes of overcoming the detection problems at long ranges.

The new sensors are the Nicera T40-16 transmitter and the Nicera R40-16

receiver. The physical diameter of these sensors was 16.2 millimeters and they

had an internal aperture diameter of 7.0 millimeters.

However, these sensors still were being driven by a 5 volt peak-to-

peak supply voltage which produced an output voltage of about 4 volts peak-to-

peak. At long ranges, the received signal often fell below the 6 mV required to

fire the Schmitt Trigger, making detection nearly impossible. Consequently, in

June 1994, the supply voltage to the transmitters was increased from 5 to 12

volts peak-to-peak to improve the capability of the new sensor system to detect

obstacles consistently at long ranges. However, at this increased supply

voltage, spillover became a problem. The amplitude of the spillover detected by

the receiver was halved within the first millisecond after transmission and settled

out after 6 milliseconds. To minimize the transmitter spillover effects, the

receiver circuitry was redesigned to decrease the sensitivity during the first

millisecond after transmission. Figure 4 shows this new sonar driver board

configuration. (Michiue, 1994, pp. 10-13)

2. Software System

Yamabico-1 1's sensors can provide information about the surrounding

environment about which it is unaware or can verify conditions that are already

known. Obstacle detection and localization generally refers to gathering

information about unknown objects. Sonar returns from obstacles are unplanned

events. Alternatively, the sonar can be pre-programmed to acquire sonar

returns based on the robot's knowledge of the world provided by its cognitive

map and the robot's desired path. Ideally, it would continually look everywhere

to determine its location within the world, but power requirements and signal

interference patterns prevent this. (Yamabico manual, pp. 22-23).

The sonar system is used to navigate within Yamabico-1
1
's known world.

The sensors can return either the raw range data measured from the sonar pair

face, or return the x - y coordinates of the sonar return in the robot's global

coordinate system. Figure 5 shows the relation between the robot's local

14
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Sonar Driver Board Configuration

coordinate system, represented by the jrand yaxes, and its global coordinate

system denoted by the X and Y axes.

Polygonal vertices in the global coordinate system describe the

boundaries of the world and known objects. Sonar returns are depicted in

Yamabico-11's local coordinate system, then transformed into the global

coordinates. Once transformed, a linear fit to the sonar return allows a

comparison with the objects in the known world to determine and/or verify the

location of Yamabico-1 1 . Additionally, the sonar system detects objects in the

robot's path, but localization of these objects has not yet been accomplished.

The user had to tell the robot how and when to use its sonar through the

user program developed in the MML. The user could enable/disable each of the

twelve sonar pairs individually and could indicate the desired type of sonar
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Global and Local Coordinate Systems Relationship

return data (raw range information or global coordinates) for each sonar pair.

Additionally, the user could instruct Yamabico-1 1 to perform linear fitting of the

sonar data. In 1 993, Navy Lieutenant Patrick Byrne restructured the sonar

system software kernel files to make them more modularized and user-friendly.

In MML1 0, the mnemonics were set up to make it easier for the user to

operate the sonars. Table 1 lists these mnemonics. For example, a user

program using these mnemonics may have contained the following ANSI C code

fragment using MML10:

enable(FRONTR);

enable (FRONTL);

distance = sonar(FRONTR);

point = global(FRONTL);

disable(FRONTR);

/Turn on sonar 3*/

/*Tum on sonar 07

/*Get raw range data from sonar 37

/*Get global coordinates of data from

sonar 07

/*Tum off sonar 37

16



Mnemonic Sonar Group

FRONTL

FRONTR 3 1

LEFTF 4 1

LEFTB 5

RIGHTF 7

RIGHTB 6 1

BACKL 1 1

BACKR 2

BACKLEFT 8 2

BACKRIGHT 9 2

FRONTRIGHT 10 2

FRONTLEFT 11 2

Table 1

Old Sonar Mnemonics

In general, the functionality of the sonar control code remained the same

in MML 1 1 . However, function names differed slightly to adhere to the new

function naming convention. The new convention eliminated the use of the

underscore character
( _ ) to separate words within a function name. Instead

MML 1 1 used a combination of upper- and lower-case letters. Initially, sonar

mnemonics also remained the same. For example, under MML 1 1 , user program

code may have contained the following:

EnableSonar(FRONTR);

DisableSonar(FRONTL);

LogSonar Data(FRONTR);

/* Turn on sonar 3 */

I* Turn off sonar */

/* Begin logging data from sonar 3 7

In addition, Lieutenant Commander Kelbe converted the sonar data logging

functions in MML 1 1 to reuse code from the motion data logging functions

previously implemented.
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3. Acoustic Characteristics

The angular beam pattern of an ultrasonic sensor is a critical parameter.

Sherfey reported that the beam width of the major lobe was determined by using

the accepted far-field approximation of

0=1.22— (Eq. 3-3)
D

where X\s the wavelength, D is the diameter of the uniform circular aperture and

9 is the beam width in radians. Sherfey reported that for a 40 kHz signal and an

ultrasonic sensor diameter of 1 .5 centimeters, the acoustic wave length was 8.5

millimeters and produced a theoretical beam width of 40°. In hopes of reducing

this beam width, the original design placed cones around the transducers as

shown in Figure 6. (Sherfey, 1991, p. 51) From this geometry, Sherfey reported

that the effective beam width at a distance of one meter was 2.6°. (Sherfey, p.

53.)

Additionally, Byrne conducted experiments in 1993 to investigated the

data returned from the sonar system. He determined that Yamabico-1 1 could

map out a straight wall accurately while performing either translational or

rotational movement, but that the data returned from corners or round objects

was sketchy and erroneous. (Byrne, pp. 29-43) In particular, Byrne observed

that Yamabico-1 1 could not map either a concave or a convex 90 degree angle

accurately.

Yamabico-1 1 plots concave right angle walls as a series of short askew

line segments rather than one continuous line segment. The linear-fitting

technique breaks down because of sides lobes which cause improper distances

to be measured. Additionally, Yamabico-1 1 plots a line of sonar returns tangent

to the vertex of the concave right angle. For the convex right angle, Yamabico-

1 1 fails to get usable sonar returns. These problems will be explained in

Chapter IV and are not a failure of Yamabico-1 1 , but a limitation imposed by the

physical nature of the problem.
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IV. ACOUSTIC THEORY

A. BEAM WIDTH

The term "beam width" is used to describe the pressure field radiated by

an energy source. It refers to the extremity of the major lobe of the radiation

pattern. Sound levels received off-axis are weaker than those received on the

centerline of the beam. Beam width can refer to one of several angles; the user

must know which angle is being referenced. The ratio,

4*> (EC 4-1)

ax

where P(0) refers to the off-axis pressure and Pax refers to the centerline or

axial pressure, is used to define the beam width angle. The common angles

used are the half-power beam width, the half-amplitude beam width, and the

nodal beam width. The half-power beam width, also referred to as -3 dB beam

width, is the angle at which this ratio equals 0.707; the half-amplitude, or -6 dB,

beam width occurs when the ratio is 0.5; and the nodal beam width takes place

when the ratio goes to zero. Figure 7 shows the relationship of these different

beam widths for an acoustically simple source with a circular aperture.

Therefore, one must indicate at which point a given beam width was taken.

Determining the beam patterns of acoustic sources is greatly simplified if

they can be treated as simple sources. "A simple source is a closed surface,

vibrating with arbitrary velocity distribution, but of such a size that all dimensions

are much smaller than the wavelength of the emitted sound (Kinsler, 1982, p.

164)." This is not the case for the sensors on Yamabico-1 1 . The wavelength of

the sound and the diameter of the transducer are almost equivalent. Hence, the

transducer is a complex source.

Equation 3-3 represents the Fraunhofer diffraction of light through a

circular aperture and represents the half angle from the central peak to the first

node. It assumes that the angle subtended is small, using the small angle

approximation of 0. If these angles are not small, then the correct expression

sin 0= 1.22— (Eq. 4-2)
D
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must be used. Equation 3-3 is an excellent approximation in optics because the

wavelength of light, X, is usually much smaller than the diameter of the aperture

{X « D). It also assumes that the observation point is at a sufficient distance

from the circular aperture that the light can be approximated by plane waves.

The diffraction pattern produced is a central disk, known as the Airy disk,

surrounded by concentric rings. The half angle subtended by the Airy disk is the

angle in Equation 3-3. This is the half-angle of the first node.

However, in acoustics, X is often of the same order of magnitude as D.

Therefore, the angles are not necessarily small and substituting for sinO is an

invalid approximation; hence, Equation 4-2 is the correct equation. The sensors

under investigation have an aperture diameter, D = 7.0 mm and acoustic

wavelength, X = 8.575 mm. Using the optical approximation, Equation 3-3

indicates that a node occurs at about 85.6 degrees. Equation 4-2 gives a non-

real solution of sin0= 1.4945, indicating that there is no nodal surface.
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The initial assumption is that the source acts like a uniform circular piston

mounted in a rigid baffle. The beam pattern function for this source is given by

2JJkasinff)
p(o) = pJe)

ka sin 6
(Eq. 4-3).

where k is the wave number, a is the radius of the source aperture, J 1
is the

first-order Bessel function and 0\s the angle measured relative to the piston

axis. The wave number k - 2nf/c where f is the frequency and c is the speed of

sound. Figure 8 plots the functional behavior of 2J
1
(x)/x. The sound pressure

goes to zero when the plot in Figure 8 crosses the x-axis. This occurs when

*° sin m =./•,„ (Eq. 4-4)

where m is off-axis angle of the node, andy'„ = 3.83 is the value where the J 1

Bessel function goes to zero. For a frequency of f = 40 kHz, speed of sound in

air of c = 343 m/s and aperture radius a = 3.5 mm, the term, ka, equals 2.565

and the first zero of the Bessel Function occurs at sin0
1
= 1 .4945. Solving for 91

gives a non-real solution, indicating that no nodal surface occurs within the 180

degree span. This result agrees with Olson who stated that a nodal surface will

first appear for plane circular piston sources when the ratio of aperture diameter

to wavelength of sound, D/X, is greater than or equal to 1 .25 (Olson, 1947, p.

39). For the transducer under investigation, D/X = 0.816; therefore, no nodal

surface was expected.

The sound pressure ratio from Equation 4-1 is the same as the ratio

2J
x

(x)lx\ from Figure 8, the ratio 2J
x
(x)lx equals 0.5 when x * 2.2. Since x =

ka sinO, this ratio occurs when 6* 59 degrees, which once again agrees with

Olson. The full beam width is twice this angle or 1 1 8 degrees. Since the

technical data supplied with the transducers lists the half-amplitude beam width

as 50 degrees, the assumption that the source alone acts like a plane piston is

invalid.

A more probable assumption is that the source acts like a spherical

source and the casing acts as a tube to produce a plane wave at the output of

the sensor casing, imitating a circular piston source with radius equal to that of

the case opening. The analytical solution to this problem is very complex due to

the diffraction of the beam around the edges of the tube. In an infinite baffle, the
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sound energy is reflected back into the beam; no energy can escape to the

backside of the radiator. With the circular piston source in the end of a tube, the

energy almost uniformly spreads 360° for a small ka. As the value of ka

increases, the pattern produced has a strong, wide, irregularly-shaped beam in

front of the radiator and a smaller, weaker, and still irregular beam pointing

backward from the radiator.

Since the actual situation is difficult to solve analytically, the infinite baffle

assumption was used with new aperture diameter equal to the inside diameter of

the casing, 1 3.0 mm. Using 1 3.0 mm as the aperture diameter and Equation 4-

2 yields a nodal half-angle of

9= sin

(
1.22— =53.6 degrees

D '

(Eq. 4-5)

Using the new aperture radius of 6.5 mm, the half-amplitude half-angle becomes

9- 27.51 degrees, making the half-amplitude full beam width, 29 = 55 degrees.

This value is only 10% greater than that supplied in the technical data. Figure 9

plots this theoretical beam pattern.
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Figure 9

Theoretical Beam Pattern of Transducer with a = 6.5 mm and k - 8.575 mm

B. HORNS

The main purpose of a horn is to increase the acoustical output of a

piston-like transducer at low frequencies; increased directionality is a by-

product. The horn acts as an acoustical transformer; it matches the impedance

of air to that of the piston. At low frequencies, the acoustical impedance at the

throat of the horn is greater than that which would act on a piston of equal area

vibrating in an infinite baffle, resulting in a greater acoustical output. At high

frequencies, the horn has little effect. At high frequencies the transmitted beam

is much narrower; the horn does not increase the acoustical impedance.

If the wavelength of sound is greater than the diameter of the horn mouth,

then the directional characteristics will be determined by the mouth; otherwise, it

is the flare of the horn which determines its directional characteristics. At high

frequencies, the wavelength is small so flare is important. The most effective

horn is one in which the rate of flare increases from throat to mouth.
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Hyperbolas, catenaries and exponential functions have all been used to

determine the flare rate. The most commonly used horn employs the

exponential function

Sx
= S e

m
(Eq.4-6)

where Sx is the cross-sectional area at any given position x, S is the cross-

sectional area of the throat given by S = to
2 where r is the physical radius of the

transducer element, and m is the flare constant. (Kinsler, 1982, p.373)

However, the horns used on Yamabico-1 1 are of the simpler conical shape

where

Sx = S x
2

(Eq. 4-7)

The size of the conical horn is important in determining the beam

characteristics it will produce. At low frequencies, where the wavelength of

sound is greater than the diameter of the horn mouth, the pattern is the same as

that produced by a piston of the same size as the mouth of the horn. The

acoustic waves exiting the mouth are essentially planar. At higher frequencies,

the pattern becomes narrower until it crosses over a threshold, at which point the

exiting acoustic waves are no longer planar. At even higher frequencies, the

circular conical horn acts the same as a spherical surface source whose radius

is equal to the distance as measured along the side of the horn from the

imaginary apex to the mouth opening. The exiting acoustic waves are now

spherical. As the frequency continues to increase, the pattern begins to broaden

out again. (Olson, pp. 42-43)

Yamabico-1 1 uses two different sized conical cones with the ultrasonic

transducers mounted inside. Both cones have a radius of 9.25 mm at the point

where the transducers are mounted; this is the throat radius. The small cone on

the transmitter has an angle of opening, S, of 23.7°, with a mouth radius of

13.25 millimeters or about 1 .56/1, and overall length of 63.20 millimeters or about

7.4 wavelengths from the transducer. The larger cone on the receiver has a S

of 28°, a mouth radius of 23.75 millimeters which is about 2.8A and overall length

of 95.26 millimeters or about 1 1 .2 wavelengths from the transducer.
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As has been stated previously, the acoustic waves exiting the bare

transducer are planar; therefore, the bare transducer is already producing the

desired beam pattern. The addition of a cone introduces impedance

mismatches at both the throat and mouth of the cone. These mismatches cause

a reflected wave back towards the transducer, setting up interference. Hence,

the cones do not enhance the acoustical properties of the transducers.

C. REFLECTION

Using only a sonar system, a robot is unable to map convex and concave

right angles accurately. The explanation for this can be found in basic physics

principles. Detecting a convex right angle is virtually impossible given the

configuration in Figure 10. The transmitted sound is reflected off the wall, away

Acoustic Signal
/N

> >
Robot's path

Figure 10

Convex Right Angle Detection and Mapping

from the robot. The angle of reflection,
r , equals the angle of incidence, 9r In

Figure 5, 9
{

= 45°; therefore, the signal will be reflected off of the wall at 45°.

When the robot is directly abreast of the corner as in Figure 10, some of the

signal will be reflected from the very tip of the corner, but this reflected signal is

very weak. Only a very small percentage, less than one percent, of the

transmitted beam impinges on the corner tip in a manner so it may reflect back
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to the robot. Since the percentage of signal returned is so low, it is then lost in

the circuit noise.

The concave right angle is easier to detect although the physical nature

of the problem makes it difficult to map the concave right angle accurately. The

distances measured in the vicinity of the angle are longer than they actually are.

Figure 1 1 shows a line segment extracted from the sonar return in the vicinity of

the concave right angle. As expected, the line segment is tangent to the vertex.

Acoustic Signal

> >
Robot's path

Legend: Distances as mapped
by Yamabico-11

Figure 1

1

Concave Right Angle Detection and Mapping

A concave right angle acts as a retro-reflector; the reflected signal is parallel to

the transmitted signal. The path length (time) measured by the sonar system is

longer than the actual distance. Figure 12 blows up the corner and shows what

is happening. The distance plotted is based on the total path length vice the

actual distance to the wall. The distance plotted is

x = -(d\ + d2+d3) (Eq. 4-8)
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As long as the receiver is within the reflected beam, it will measure this distance

The size of the beam when it reaches the wall depends on the beam width and

distance to the wall. The beam radius is

r = dtan$ (Eq. 4-9)

where d is the distance to the wall and #is the half-amplitude beam width. Using

the half-amplitude beam width of 27.51° calculated for the sensors used on

Yamabico-1 1 in Section A above, the diameter of the reflected signal is about

equal to the distance to the wall. For all practical purposes, the receiver will be

within the reflected beam.

di

Transmitter

d3

r_) Receiver

Legend: Distances as mapped
by Yamabico-1

1

Figure 12

Reflection Plotted by Yamabico-1

1

Although the convex right angle can not be mapped given the situation depicted

in Figure 10, the concave right angle can be mapped accurately under the

situation in Figure 11. Although Figure 12 shows 01 = 02 = 45°, the same line
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would occur for 01 * 62. However, the corrections needed rely on the fact that

the robot knows that it is encountering a concave right angle. This type of

knowledge would only exist if the robot already has a map of its world and is just

verifying its position within that map. The corrections could not be applied to

sonar returns resulting from the detection of an unknown object.
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V. ANECHOIC CHAMBER EXPERIMENTS

A. BEAM PATTERNS

The first experiment conducted was to verify the beam pattern of the

Nicera transducer elements. Figure 13 shows the experiment setup used to

verify the beam width. The technical data indicates that this sensor operates at

a frequency of 40 kHz, has a -6dB half-amplitude beam width of 50°, and can

CONTROL ROOM
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Function
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Figure 13

Beam Pattern Experiment Setup
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handle inputs up to 20 Vrms. The transmitter and receiver were mounted in a

manner to ensure that they were operating in the far-field. Figure 14 shows the

actual setup in the anechoic chamber used for this first experiment.

Anechoic Chamber

Bare

Transmitter

1.99 meters

Bare

Receiver

Transducer

Height off Deck: 85 cm

Figure 14

Experiment 1 Setup in the Anechoic Chamber

The voltage used to conduct these experiments was 4.5 Volts peak-to-peak as

this was the effective voltage used by Yamabico-1 1 . This preliminary

experiment was necessary to validate the experimental procedures which would

be used later on. Ideally, the experiment would have been conducted using an

omnidirectional transmitter and receiver to measure the response of the subject

receiver and transmitter, respectively. However, an omnidirectional receiver or

transmitter which operated at 40 kHz was not available. Therefore, the

experiment would have to be conducted using an "identical" transmitter and

receiver.

Figure 15 shows the linear data extracted during this experiment. Figure 16

depicts this information in polar form. The theory presented in Chapter IV had

predicted that the node would occur at 52.9°. Experimentally, the node was

measured at about 58°; a difference of less than 10%. The -6dB value for the

half-amplitude comes from the equation
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20 log
P(0)

PM = -6 (Eq.5-1)

v«

where the quantity P(9)/Pax(9) = 0.5, the half-amplitude. At half amplitude, 9'

was 29° ± 1°. A theoretical 9' of 27.51° calculated in Chapter IV. Therefore the

-6dB beam width was 2 x 9' or 58° which is 5.4% greater than the theoretical

half-amplitude beam width and 16% more than that reported in the technical

data accompanying the sensors. All comparisons hence forth will use the half-

amplitude as the threshold of an acceptable return. The actual data extracted

during the experiment is located in Appendix A.

Next, the effects of the transmitter and receiver cones were examined.

The transmitter and cone combination was attached to the rotator and the bare

receiver was placed approximately two meters away as per Figure 17.

Small Cone
Transmitter

Anechoic Chamber

1.98 meters

Bare

Receiver

Transducer

Height off Deck: 85 cm

Figure 1

7

Experiment 2 Setup in the Anechoic Chamber

The results plotted in Figures 18a and 18b indicate that the small transmitter

cone was detrimental to the signal. Although the beam width of the major lobe

was reduced, adding the small transmitter cone created side lobes.
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Polar Plot of Beam Pattern Produced by Small Transmitter Cone
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These side lobes are undesirable because they can lead to false readings.

Appendix A contains the analog graphs obtained during this experiment.

The experiment was then reversed; the bare transmitter was fixed at a

distance of about two meters and the receiver and cone combination was rotated

as per Figure 19.

Large Cone
Receiver

Anechoic Chamber

1.86 meters

Bare

Transmitter

Transducer

Height off Deck: 85 cm

Figure 19

Experiment 3 Setup in Anechoic Chamber

Figures 20a and 20b shows the affects of the larger cone on the receiver.

As before, the reduction in the major lobe beam width came at the expense of

more side lobes. The analog graphs recorded during the experiment are

contained in Appendix A.

B. DETECTION CHARACTERISTICS OF SONAR PAIR

Sherfey concluded that the current sonar configuration was sensitive to

the orientation of the reflecting surface. He stated that the sonars had to be

within a few degrees of perpendicular to the surface in order to get a return,

thereby giving good bearing resolution. (Sherfey, 1991, p. 53) To investigate the

characteristics of the sonar pair, a wall was built in the anechoic chamber. This
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wall was not a perfect reflector; however, any sound energy that was transmitted

through the wall material or absorbed by the wall material could be ignored since

the experiment was concerned with relative, vice absolute, measurements of

amplitude and the sound loss was a constant. The wall was placed within the

far-field, but close enough to the sensor pairs to allow almost the entire

transmitted beam to ensonify the wall. The series of experiments tested both

the current coned sonar configuration and for the bare sonar configuration. For

both configurations, the experiments collected data with the sonar pair in both

the horizontal and vertical positions and rotated the sonar pair in both the

clockwise and counter-clockwise directions. Neither the sensor orientation

plane nor rotation direction affected the outcome. Figures 21 a and 21 b show

the experimental setup and the polar graph of the received signal for the current

cone configuration. Figures 22a and 22b show the experimental setup and the

polar graph of the received signal for the bare transducer configuration.

Anechoic Chamber

Transmitter

Receiver

76 cm
Transducer

Height off Deck: 81 cm

w
A
L

L

Wall Height 124 cm

Figure 21a

Experiment 4 Setup in the Anechoic Chamber
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Cone Configuration Angular Sensitivity
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Experiment 5 Setup in the Anechoic Chamber
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As expected, in both cases, the beam pattern produced resulted from the

multiplication of the individual transmitter and receiver patterns. Sensor

orientation, horizontal vs. vertical, did not affect the resultant pattern; however,

the cones had a dramatic affect. Using the half-amplitude beam width for

comparison, the current cone configuration requires that the sensor pair be

within about 5° of normal in order to detect an object. If a bare sonar pair is

used, a usable return up to 25° off normal is possible, as can be seen in Figure

22b. The actual analog data recorded during these experiments are contained

in Appendix A.
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VI. YAMABICO-11 EXPERIMENTS

A. DISTANCE MEASUREMENTS

1. MML10

Since MML 1 1 was still under development when this research began,

MML 10 and the Motorola microprocessor were used to verify the sonar

system's distance calculation using both the old, coned sonar pair configuration

and the new, bare sonar pair configuration. For these experiments, a sonar pair

without cones replaced the front left sonar pair, Sonar 0, on Yamabico-1 1 . The

bare sonar pair mounted its transmitter and receiver flush, keeping the

separation distance as before at 45 millimeters. The 5th floor of Spanagel Hall

at the Naval Postgraduate School served as the experimental laboratory. Marks

on the floor indicated distances from the wall; these marks occurred at 10

centimeter increments up to one meter, then at 50 centimeter increments

thereafter up to 400 centimeters, then at 410, 415 and 420 centimeters. These

marks had an accuracy of ± 0.1 centimeters. Despite great care, aligning

Yamabico-1 1 on the marks introduced another ±0.1 centimeter error.

Positioning Yamabico-1 1's sonar beam perpendicular to the wall introduced an

error which depended on the distance from the wall; at 400 centimeters, being 2

degrees off of perpendicular introduced a +0.24 centimeter error. Using both the

new bare sonar pair configuration, Sonar 0, and the old coned sonar pair

configuration, Sonar 3, the experiments recorded the distances measured by the

sonar system. Each experimental run used the average of twenty-one readings

Comparison of the averaged raw range data points and the actual marked

distance produced a difference, called "Delta," calculated by subtracting the

distance determined by the sonar from the actual marked distance.

Figures 23 and 24 show the results of these experiments using the

original circuitry. The slopes of the best fitting line to the data are within less

than 0.5% of each other and the y-intercepts are within less than 4% of each

other. There was less error in the distances as measured by Sonar 0; the

standard error for Sonar was 0.52 centimeters whereas Sonar 3 had a

standard error of 0.77 centimeters. In both cases, zero error occurred at
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Error in Bare Sonar Pair Distance Measurement Using Old Circuitry
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Equation of "Best Fit" Line: Y = 0.016653 X - 3.38523

42



approximately half the maximum distance. Although Sonar 3 was able to get a

return at 4.053 meters, it failed to get a return at 4.153 meters. Sonar failed to

get a return at distances beyond 4 meters. The theoretical maximum range in

both cases was 4.214 meters. Based on this information, it appeared that the

sensor configurations had no affect on the effectiveness of the current distance

calculation algorithm and that neither configuration was able to achieve the

maximum theoretical range even under the ideal circumstances of this

experiment.

Subsequently, similar experiments took data measurements at 50

centimeter increments using the new circuitry designed by Michiue. Figures 25

and 26 show the results of these experiments. With the new circuitry, the slope

of the best fitting line to the data increased while the y-intercept remained about

the same. But most importantly, with the new circuitry, both sonars were able to

get consistent returns at over 4 meters. These experiments showed that the

new circuit design had increased the range for expected returns. However,

these experiments also demonstrated the inaccuracy of the current distance

calculation algorithm.

Distance Error Bare Sonar Pair (New Circuit)
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Figure 25

Error in Bare Sonar Pair Distance Measurement Using New Circuitry

Equation of "Best Fit" Line: Y = 0.020333 X - 3.07433
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Distance Error Coned Sonar Pair (New Circuit)

10
j

8 -

? 6 -

u

ffl ->Q 2 -

-2 1
54 100 150 200 250 300 350 400 450

Distance (cm)

Data Points Best Fit

Figure 26

Error in Coned Sonar Pair Distance Measurement Using New Circuitry

Equation of "Best Fit" Line: Y = 0.028235 X - 3.16069

Ideally, the best fitting line to the data should have zero slope and fall on

the x-axis. Investigation revealed that the slope and offset in the data results

from hardware timing constraints. The function "serve_sonar" contained in the

file "sonarcard.c" in MML 10 calculates the distance measured by the sonars.

To determine the distance, a register records the number of clock ticks between

the transmission of the pulse and the reception of the return pulse. The function

reads this number from the register and divides it by ten, calling this the raw

range. However, the distance traveled is

d = t*C (Eq.6-1)

where t is the time of one clock cycle and c is the nominal speed of sound in air.

In 6 microseconds, sound travels 0.2058 centimeters at 343 m/s. Therefore, for

two-way travel, the linear distance represented by one clock tick is one-half this

value or 0.1029 centimeters vice 1/10 centimeter as previously coded.
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2. MML11

Implementation of the sonar functions into MML 1 1 completed

concurrently with the above experiments in September 1994. Therefore,

implementation of the correct clock-distance conversion factor occurred in MML
1 1 in the file "sonar.c" under the function "SonarSysControl." All subsequent

experimentation used MML 1 1 and the SPARC4 microprocessor.

Although it seemed like a minor point, dividing the number of clock ticks

by ten versus multiplying them by 0.1029 greatly affected the distance error.

The previous experiments were repeated using the new clock-distance

conversion factor; Figures 27 and 28 plot the results. In both cases, the slope

went from positive to negative. Since "Delta" is the actual measured distance

minus the sonar distance, this means that the sonar system is recording a longer

distance which is consistent with the received pulse shape limitations discussed

in Chapter III.

Distance Error of Bare Sonar Pair using MML 11 and

Clock-Distance Conversion Factor of 0.1029
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Figure 27

Bare Sonar Pair Distance Error

(Clock-Distance Conversion Factor of 0.1029)

Equation of "Best Fit" Une: Y = -0.01214X - 1.817
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Distance Error of Coned Sonar Pair using MML 1 1 and
Clock-Distance Conversion Factor of 0.1029
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Figure 28

Coned Sonar Pair Distance Error

(Clock-Distance Conversion Factor of 0.1029)

Equation of "Best Fit" Line: Y = - 0.00815 X - 2.771

There are both static and dynamic causes of the error. The static causes

related to the clock counter are minor; the main cause of error is dynamic and

related to the strength of the reflected signal and the firing of the Schmitt

Trigger. As previously stated, the strength of the received signal is a function of

both the distance to and the reflectance of an object.

Additional experiments examined the amount of error introduced by both

distance and object composition. Adjustment of the oscilloscope to show the

individual cycles of the received signal and the firing of the Schmitt Trigger while

the sonar pinged continually allowed counting of the number of cycles received

before the Schmitt Trigger fired. For the bare sonar pair, Sonar 0, it took three

cycles at 50 centimeters before the Schmitt Trigger fired; at 400 centimeters, it

took about 1 3 cycles. For Sonar 3, the coned sonar pair, it took two cycles at 50

centimeters and eight cycles at 400 centimeters. Between these ranges, the

number of cycles needed to fire the Schmitt Trigger rose linearly. Each cycle

caused the sonar range to be about 0.43 centimeters greater than the actual

distance. At longer distances, the number of cycles needed to fire the Schmitt
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Trigger varied. The number recorded represented the average observed over a

period of a couple of minutes.

To examine the affect of object composition, Yamabico-1 1 moved slowly

towards an object, stopping when the sonar range fell below 150 centimeters.

Recording the actual distance from the various objects to the front of the stopped

Yamabico-1 1 enabled a comparison of objects with different material

composition. Although the value of actual measurement was not important, the

difference between the measurements was significant. Table 2 lists some of

these distances. Since the point at which the Schmitt Trigger fires varies, it is

impossible to develop a software algorithm to calculate the distance accurately

using the circuitry of Figure 4.

OBJECT

ENSONIFIED

DISTANCE

( ± 0.5 cm)

Cardboard Box 137.0

Carpeted Room Divider 139.5

Foam Rubber 130.0

Plastic Trashcan 143.5

Wall 140.0

Table 2

Sonar Distance Variations Based on Material Composition

B. MULTIPATH INTERFERENCE

The anechoic chamber experiments showed that the bare sonar pair

produced a wide beam pattern whereas the coned sonar pair produced a narrow

beam with side lobes. Therefore, the next testing configuration placed the bare

sonar pair, Sonar 0, above the coned sonar pair, Sonar 3, at a height of

approximately 45.5 centimeters from the floor on robot centerline. This would

allow usage of both wide and narrow beam sensors. Additionally, the front

corner sonars, Sonar 10 and Sonar 1 1 , became bare sonar pairs. Repeating

the previously described distance experiments for both the bare and coned

sonar pairs, Sonar and Sonar 3 respectively, revealed problems. The coned
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sonar pair performed consistently, but at approximately 3 meters, the return

signal disappeared for bare sonar pair. Although both the corner sonars, Sonar

10 and Sonar 1 1 , had the same bare sonar pair configuration, their return

signals were consistent. The only difference between the three bare sonar pairs

was mounting height. The corner sonars were mounted at approximately 36.5

centimeters from the floor.

Although the bare sonar pair provided a significant increase in obstacle

detection capability, it was susceptible to multipath interference. Figure 29

shows the multipath phenomena. If the path length difference, 2d-D, in Figure

29 is equal to an odd number of half-wavelengths, then total destructive

interference occurs

2d-D =
(

n + — U
2

(Eq. 6-2)

where n is a positive integer and the wavelength of sound, X = 8.575

millimeters.

W 8

/77/7777T7
Figure 29

Multipath Interference Problem

Countering the multipath interference effect requires varying either the

height, the beam width or the wavelength. The operating frequency fixes the

wavelength so beam width and height are the only variables. The sensor height

is given by
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h = dsm0 (Eq. 6-3)

Combining Equations 6-2 and 6-3 means that total destructive interference will

occur if

f \

0>sin
(

U 2)
A + D

(Eq. 6-4)

J

At a height of 36.5 centimeters and distance of 4.214 meters, total destructive

interference will occur is 0> 9.96°. For a distance of 2 meters, a sensor at this

same height will experience total destructive interference if 0> 21.35°.

However, the thresholding caused by the Schmitt Trigger means that 9 is a

function of reflected signal strength and difficult to predict. This makes it

virtually impossible to calculate the optimum height to avoid total destructive

interference within the operating range of Yamabico-1 1 ; however, one can

restrict the vertical beam width to reduce the reflected amplitude.

C. ROTATIONAL SCAN ANGLE MEASUREMENTS

A rotational scan experiment, similar to that conducted in the anechoic

chamber, verified the detection capabilities of both the bare sonar pair, Sonar 0,

and the coned sonar pair, Sonar 3, using MML 1 1 with the SPARC4

microprocessor. The rotational scan took place at approximately 73.5, 123.5,

173.5 and 223.5 centimeters from a continuous wall on the 5th deck of Spanagel

Hall at the Naval Postgraduate School. Fortunately, multipath interference was

not a problem at these distances. Instead of recording raw range data as in the

previous experiment, the experiment recorded the global x-y coordinates of each

data point. If no sonar return occurred in the allotted time period, the raw range

was set to infinity, defined for Yamabico-1 1 as 1 .0 x 10^; if the range was

infinity, the global coordinate did not print to the data file. Figures 30 and 31

plot these global data points.

At longer distances, the global coordinates of the return are more spread

out due to the time required for sound to travel to and from the wall. Although

the bare sonar pair produced smooth data, the coned sonar pair gave
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inconsistent returns due to the narrowness of the beam and the presence of side

lobes. The absence of returns occurred where the beam pattern of the coned

sonar pair had a node. In both cases, at large angles, the sonars measured a

shorter distance because the side of the beam generated the return vice the

center of the beam. Since the global coordinate calculation assumed that the

return occurred on beam centerline, the plots in Figures 30 and 31 curve at the

edges.

Before this work began, others had observed that Yamabico-1 1 could not

receive returns unless almost perpendicular to an object. At the time of these

observations, Yamabico-1 1 had the sonar configuration of Figure 1 and used a 5

Volt supply voltage. Based on the beam patterns produced in the anechoic

chamber, the original hypothesis made claimed that the cones caused this

limitation. However, Figures 30 and 31 show virtually no difference between the

measured angular response of the coned and bare sonar pairs using a supply

voltage of 12 Volts. Previously, the amplitude of the returns generated by the

side lobes using the 5 Volt supply were insufficient to trigger the Schmitt Trigger.

With the increase in supply voltage, the side lobes are able to fire the Schmitt

Trigger, giving a similar angular response as the bare sonar pair, disproving the

original hypothesis.

Rotational Scan of Wall by Bare Sonar Pair
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Figure 30

Rotational Scan of Wall by Bare Sonar Pair on Yamabico-1
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Rotational Scan of Wall by Coned Sonar Pair
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Figure 31

Rotational Scan of Wall by Coned Sonar Pair on Yamabico-1 1

D. OBSTACLE AVOIDANCE

The Yamabico-1 1 research group had demonstrated successfully various

methods for obstacle avoidance using only ultrasonic sensor information. In the

past, if the user programmed Yamabico-1 1 to move forward until it detected an

object, there were two basic motions the user could use to avoid the object. The

user, knowing both the location and size of the object, could calculate the

obstacle avoidance path and program Yamabico-1 1 to maneuver around the

obstacle using the pre-determined avoidance path. The user had to calculate

the pre-determined avoidance path for each object encountered. Alternatively,

the user could program Yamabico-1 1 to turn right or left and perform a wall-

hugging motion to maneuver around an object.

Although both of these methods have been demonstrated, they each have

drawbacks. In the first case, the user had to determine the proper avoidance

path for each object. If a new object was added, or the starting configuration

changed, the avoidance paths had to be recalculated and reprogrammed. In the

second case, a simple wall-hugging heuristic in which Yamabico-1 1 turned right
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when it detected an object could cause Yamabico-1 1 to take the long path

around an object as Figure 32 demonstrates. Combining these approaches will

give Yamabico-1 1 the ability to determine its own intelligent obstacle avoidance

path, bringing it one step closer to being truly autonomous.

Avoid Path 2

Original Path ->

Avoid Path 1

Figure 32. Two Obstacle Avoidance Paths

In order to determine its obstacle avoidance path, Yamabico-1 1 needs

information about the size and location of the obstacle. With this information, it

can decided the best path for avoiding the object intelligently given its a priori

knowledge of the world and its desired path. Figure 33 shows a generic

Figure 33. Geometry of the Obstacle Avoidance Problem
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obstacle avoidance situation for a convex polygonal object. This method uses

an avoidance path that is parallel to the original path to minimize robot

movements. If the object is known, then the coordinates of the vertices A and B

are known and intelligent obstacle avoidance is implemented easily. As can be

seen in Figure 33, the obstacle has been grown by a safety factor. The signed

distances d1 and d2 are calculated by the formula

^-(x,-xe)sin0+(.y,-.yc)cos0+r (Eq. 6-5)

where the subscript /' represents Point A or B, the subscript c stands for the

robot's center position, and r is the safety margin. A positive d means the point

is to the left of the robot; a negative signed distance places the point to the

robot's right.

To calculate the avoidance path, the magnitudes of d1 and 62 are

compared. Ideally, the robot should maneuver to the short side to avoid the

object. Knowing the appropriate signed distance d, the avoidance path

configuration is defined by

where

y = yc +dcos0

where the orientation, 0, is that of the original path and curvature, k, is zero,

defining a straight line.

If the obstacle detected does not correspond to any known object, then

other means are needed to get the required information. Although Yamabico-

1 1's current sonar system can easily detect the presence of an object, it is not

suitable for determining the object size quickly. Using only its sonar system,

Yamabico-1 1 would have to physically move, testing for the object, in order to

determine the outer boundaries of the object. This movement is time consuming

and inefficient. A better method for localizing an object requires the use of a

sensor which can detect the width of an object.

One solution is to use a visual system which has the ability to determine

the projection of an object onto a vertical plane. Given the range and the global

x - y coordinates of an object, a visual system could determine the widths, d1
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and d2, in Figure 33, assigning a negative width to 62. Combining this

information with knowledge of the robot's environment map and desired path

allows calculation of a safe and appropriate path to avoid the obstacle using

Equation 6-6.

Determining when the robot is past the object and can transition safely

back to the original path is difficult. By using a side facing sonar, the robot can

ensonify the object, checking for a distance greater than the magnitude of the

signed distance d. A problem arises if the sonar is enabled before the robot has

maneuvered abreast of the object. The time required for the robot to maneuver

to the avoidance path is a factor of both the magnitude of the signed distance

and the robot's speed.

The robot will be abreast the initial detection point of the obstacle when

x„ = xa +dcosOJa (e* 6-7 )

where xc and yc are the global coordinates of the robot at any instant in time,

xa and ya are the global coordinates of the avoidance path defining point, d is

the detection distance, and 9 is the orientation of the original path. Once the

robot has reached this point, it can enable the side-facing sonar safely.

Figures 34 and 34 show the path followed by Yamabico-1 1 in

maneuvering around an object. In Figure 34, the (x,y) object boundaries given

to Yamabico-1 1 were (150.0,105.0) and (150.0, 25.0). The initial path started at

the origin at an orientation of 30° and with zero curvature. Yamabico-1

1

correctly calculated an avoidance path to the left of the object and returned to

the original path once past the object. In Figure 35, the coordinates were

(150.0,175.0) and (150.0,55.0) and the initial path was the same. This time,

Yamabico-1 1 decided to maneuver to the right to avoid the object.
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Obstacle Avoidance to the Left
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Figure 34

Dynamic Obstacle Avoidance to the Left
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Obstacle Avoidance to the Right
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Figure 35

Dynamic Obstacle Avoidance to the Right
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VII. NEW SONAR DESIGN

A. JUSTIFICATION

The results of the experiments in the anechoic chamber and on

Yamabico-1 1 show the necessity of re-configuring the sonar system on

Yamabico-1 1 to provide consistent sonar returns and to provide full 360°

coverage throughout its operating range. Simply removing the cones from the

sonar pairs will allow consistent sonar returns. Repositioning the twelve sonar

pairs evenly around the periphery of the robot at 30° increments will provide the

most comprehensive coverage. Overlapping the sonar coverage provides an

added benefit in that returns from neighboring sonar pairs can be compared to

give a gross estimate of obstacle orientation.

B. DESIGN

1. Hardware System Modifications

The sonar suite was modified as follows:

a. Removed cones from all sonar pairs.

b. Moved Sonars 0, 2, 5 and 7 to centerline front, back, left and

right, respectively.

c. Moved Sonars 3, 1 , 4, 6 to the right of Sonars 0, 2, 5 and 7,

respectively, at a 30° angle clockwise from the centerline sonar pair on each

side.

d. Moved Sonars 1 1, 10, 8 and 9 to the left of Sonars 0, 2, 5 and

7, respectively, at a 30° angle counter-clockwise from the centerline sonar pair

on each side.

Figure 36 shows the new locations of the sonars. This new system

configuration gives Yamabico-1 1 full 360° sonar coverage with consistent sonar

returns.
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Figure 38

New Sonar Pair Locations

2. Software System Modifications

The file "sonar.c" in MML 11, contains the sonar table with the sonar

location information. This table reflects the new sonar positions in Figure 36.

New mnemonics, based on relative position of each sonar, describe the sonars

in MML 1 1 . Table 3 lists each sonar pair, its mnemonic and its group.

A new function called "ScanSonar (int, double)" created in MML 1 1 allows

the user to scan for obstacles in one of four directions: forward, backward, left or

right. This function automatically pings the appropriate sonar pairs in the

direction specified, giving the user the global x-y coordinates of the first obstacle

detected within the user-specified range. Another function called

"avoidPathVertex (double, POINT)" gives Yamabico-1 1 the ability to determine

dynamically an avoidance path based on the vertices of a convex polygons as
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described in Chapter VI while "avoidPathWidth(double, POINT)" gives a

dynamic avoidance path based on the width of an object relative to the robot's

orientation. The vertices and/or widths are provided by the dummy functions

"getBoundaries(POINT)" and "getWidth(POINT,int)"; although these functions

return values, the values must be inputted manually by the user. However, the

structure exists for future implementation of these functions.

Additionally, modifications to the variable naming convention in the sonar

table located "sonar.c" make it more readable. The sonar positional information

is now named "sonartable[n].SonarPosit.X", "sonartable[n].SonarPosit.Y" and

"sonartable[n].Theta" where n stands for the sonar number. Modifications to the

files "sonar.h" and "sonarmath.c" ensured the consistency of these changes.

Mnemonic Sonar Group

sooo

S030 3 1

S060 10 2

S090 7

S120 6 1

S150 9 2

S180 2

S210 1 1

S240 8 2

S270 5

S300 4 1

S330 11 2

Table 3

New Sonar Mnemonics
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VIII. CONCLUSIONS AND RECOMMENDATIONS

A. BEAM WIDTH

This work investigated the sonar hardware on Yamabico-1 1 , including its

characteristics and limitations, and will serve as a major reference for further

improvements to the sonar system. Increasing supply voltage to the sonar driver

boards from 5 volts to 12 volts caused the effective beam width to increase

because the side lobes now provided usable returns. However, the data was

inconsistent due to the nodes in the beam pattern. Removing the cones

eliminated the side lobes, providing consistent range data. The effective beam

width without the cones is about the same as it was with the cones. The wider

beam width produced by the increased supply voltage has the negative effect of

introducing multipath interference. The wider beam width improves the sonar

system coverage, but signal cancellation reduces the range of the sonar system.

The range can be increased by increasing the height of the sensors, but this

also increases the minimum detection distance of objects near the floor. Using a

height of about 36.5 centimeters for the sensors, consistent range data is

achievable out to a range of over 2 meters. Over this range, the data return is

intermittent due to the cancellation affects of multipath interference. An even

re-distribution of the twelve sonar pairs around the periphery ensures that

Yamabico-1 1 has 360° sonar coverage. With twelve evenly spaced sonars, full

coverage can be achieved with a minimum full beam width of 30°. A smaller

beam width will reduce the multipath interference effects. This smaller beam

width can be achieved by placing the sensors in a properly shaped horn.

Investigation of the proper shape for the horn is left for future work.

B. SIGNAL PROCESSING

The current signal processing, which uses a threshold to determine

detection of a return signal, limits the ability of Yamabico-1 1 to calculate sonar

ranges accurately . The current threshold, set at 1 .4 Volts, may or may not be

reached by the time the return signal hits its maximum at 0.5 milliseconds after

the return signal first reaches the receiver. Therefore, thresholding causes a
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dynamic error of up to ± 8.6 centimeters. To remove dynamic error, the signal

processing must change. Since the occurrence of the return signal's peak is

predictable and constant, it could be used to stop the clock counter, thereby

ensuring that the clock counter stops at the same point for each pulse

regardless of distance to, or material composition of, an object. New signal

processing could use either analog or digital circuits to remove the dynamic

error. A recommended solution could use a circuit which detects a change in the

sign of the return signal's slope. Also, if this circuit maintains the voltage

amplitude of the return signal's peak, Yamabico-1 1 could perform even more

sophisticated signal processing, using signal strengths from different sonar pairs

to localize an object. Further investigation of these and other signal processing

techniques will greatly enhance the sonar system on Yamabico-1 1 and allow

Yamabico-1 1 to move more precisely within its world.

Although much smaller, the system has static errors caused by hardware

timing constraints. Once the dynamic error is removed, the clock-distance

conversion algorithm can be modified to account for the static offsets. Ideally,

this would allow the accuracy of the sonar ranges to be within one clock tick or ±

0.1029 centimeters.
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APPENDIX A.

DATA FROM ANECHOIC CHAMBER EXPERIMENTS

This appendix contains the analog graphs recorded by the HP 7090A

Plotter during the anechoic chamber experiments discussed. In each case, the

rotator speed was 1 rpm. The direction of rotation varied for each experiment.

Each graph has the x-axis divided into 10° increments. The peak voltage occurs

at 0°. This series of experiments compares the beam widths determined by the

x-axis. The y-axis scale varies among the graphs, but no comparison of voltage

is made among the graphs. The voltage is only a factor in determining the half-

amplitude point.

Graph A corresponds to Experiment 1 in Chapter V. This data was

collected on April 24, 1994. The bare Nicera transmitter was rotated while the

bare receiver was held steady at a distance of about 199.3 centimeters.

Graph B corresponds to Experiment 2 in Chapter V. This data was

collected on April 24, 1994. The transmitter with small cone was rotated while a

bare receiver was held steady at a distance of about 198.0 centimeters.

Graph C corresponds to Experiment 3 in Chapter V. This data was

collected on May 20, 1994. The receiver with large cone was rotated while a

bare transmitter was held steady at a distance of about 200.0 centimeters.

Graphs D, E and F support to Experiment 4 in Chapter V. The data was

collected by rotating a coned sonar pair with a wall located at a distance of

about 76 centimeters. For Graph D, produced on April 7, 1994, the coned sonar

pair was mounted horizontally with the transmitter t the left of the receiver.

Graph E and F, produced on April 13, 1994, mounted the coned sonar pair

vertically. In Graph E, the receiver was above the transmitter and in Graph F,

the receiver and transmitter were reversed. The beam pattern produced in all

three graphs was the same.

Graphs G, H, and I support Experiment 5 in Chapter V and were produced

on April 13, 1994. In this series, a bare sonar pair was rotated about 80

centimeters from the wall. In Graph G, the bare sonar pair was mounted

vertically with the receiver above the transmitter. In Graphs H and I, the bare

sonar pair was mounted horizontally with the transmitter to the left of the

receiver. In Graph H, the bare sonar pair was rotated counter-clockwise and
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rotated clockwise in Graph I. In all three cases, a similar beam pattern was

produced.
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APPENDIX B. USER PROGRAMS

This appendix contains the user programs written to perform testing on

Yamabico-1 1 . Each file contains an explanation in the heading and indicates

the MML version. User files written in MML 10 and MML 1 1 differ greatly.

Comments within each user file explain the logic.
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/*** **************************************************

* User File: DistTest
* Description: Tests distance accuracy of sonar
* MML Version: MML 10
* Author: Jane Lochner
* Date: 15 JUL 94
* Notes: Change #define statement to reflect
* sonar number or mnemonic of sonar
* under investigation. Once program
* is run, be sure to rename the data
* file "RAW" on the host before
* running the program again.
*****************************************************

#include "mml.h"

#define SONAR 3

#define FILETYPE
#define FILENUMBER

User ()

{

long int i

;

void initialize () ;

void cleanup ();

initialize ( )

;

motor_on=OFF;

do
(i + +;

sonar (SONAR) ; } /* Gives 21 readings */

while (i<50000);

cleanup ( )

;

}

void initialize () /* sets up data logging */

{

enable_sonar (SONAR)

;

set_log_interval (SONAR, 1) ;

enable_data_logging (SONAR, FILETYPE, FILENUMBER) ;

}

void cleanup () /* transfers data to host */

{

disable_sonar (SONAR)

;

disable_data_logging (SONAR, FILETYPE)

;

xfer_raw_to_host (FILENUMBER, "RAW")

;

}
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User File: ContSonar
Description: Continuously pings given sonar
MML Version: MML 11

Author: Jane Lochner
Date: 6 OCT 94
Notes: Change #define statement to reflect

sonar number or mnemonic of sonar
under investigation. Program must
be stopped using the manual interrupt
switch on Yamabico-11.

r**************************************************/

#include "user.h"

(define SONARUSED

void
user (

)

(

EnableSonar (SONARUSED)

;

do
(

Sonar (SONARUSED)

;

}

while (TRUE)

;

DisableSonar (SONARUSED)

;

}
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*

* User File: Scan
* Description: Tests sonar scanning function
* MML Version: MML 11
* Author

:

Jane Lochner
* Date: 15 OCT 94
* Notes

:

Prints out to the screen the
* Global X-Y Coordinates of object
* detected.
***•*************•***** + ** + ****•••*•**•••*******••***/

#include "user.h"

void
user (

)

{

POINT obstacle;

obstacle = ScanSonar (FORWARD, 150 . )

;

printf("X coord is: %f\nY coord is: %f \n\n" , obstacle .X, obstacle .Y)

;
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* User File: RotScanWall
* Description: Records the Global X-Y Coordinates
* of objects detected.
* MML Version: MML 11
* Author: Jane Lochner
* Date: 7 OCT 94
* Notes: Change #define statement to reflect
* sonar number or mnemonic of sonar
* under investigation. Used to determine
* the angular response of a given sonar
* by facing the sonar down the hallway,
* then rotating 180 degrees. Infinite
* returns can be deleted from the data
* file and results plotted.
***************************************************** /

#include "user.h"

#define SONARUSED 3

#define USERBUFSIZE
#define FREQ 1

#define MODE SONAR_GLOBAL

void
user (

)

{

CONFIGURATION Start , Current

;

POINT obstacle;

EnableSonar (SONARUSED)

;

SonarLog ( FREQ , USERBUFS I ZE , SONARUSED , MODE I

Start = def ineConf ig(0 .0, .0, .0, .0:

setRobotConf igImm(Start )

;

setRotVelImm(5 . ) ;

Current = getRobotConf ig ( )

;

Rotate (PI)

;

waitSec(lO)

;

}
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/
* + ****************************** + *******************

* User File: SonarTest
* Description: Gives distance from sonar face to
* object in centimeters
* MML Version: MML 11
* Author: Jane Lochner
* Date: 15 SEP 94
* Notes: Change #define statement to reflect
* sonar number or mnemonic of sonar
* under investigation.
******************+**********************************/

#include "user.h"

#define SONARUSED 3

#define USERBUFSIZE
#define FREQ 5

#define MODE SONAR_RAW

void
user (

)

( .

long int i

;

EnableSonar (SONARUSED)

;

SonarLog ( FREQ , USERBUFS IZE , SONARUSED , MODE )

;

do
{

LogSonarData (SONARUSED)

;

i + +;}
while (i<50)

;

/* Gives 7 distance readings */

DisableSonar (SONARUSED)

;
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/****** ••If*****************************************

* User File: demo
* Description: Robot moves until 1 meter from
* an object then executes a 135 degree turn
* Robot will repeat this maneuver until
* the manual interrupt button is pushed.
* MML Version: MML 11
* Author: Jane Lochner
* Date: 29 SEP 94
* Notes: Change #define statement to reflect
* sonar number or mnemonic of sonar
* under investigation.
* it***************************************************/

#include "user.h"

#define SONARUSED

void
user ( )

(

int GOING = 1;

double hit;
CONFIGURATION Start, JustGo, CurrentPosit , Jump, NewPosit;

Start = defineConfig(0 .0, 0.0, 0.0, 0.0);
JustGo = defineConf ig ( .0, 0.1, 0.0, 0.0);
Jump = defineConf ig ( .0, 45 . , -1 . 5*HPI, 0.0);

EnableSonar (SONARUSED)

;

setLinVelImm(15.0)

;

setRobotConf igImm(Start )

;

hit = 9999.9;

line (JustGo)

;

do{
while(hit >=100.0 II hit <= 1.0)

{

hit = Sonar (SONARUSED)

;

printf("\n Range is: %f ",hit);

}

CurrentPosit = getRobotConf ig ( )

;

NewPosit = compose (ScCurrent Posit , ScJump) ;

setRobotConf iglmm(NewPosit)

;

hit = 9999.9;

printf (
" \n\nNew Sonar Range is %f\n",hit);

waitSec (2 )

;

} while (GOING)

;
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*

* User File: avoidPathVertex
* Description: Tests ability of Yamabico to determine
* obstacle avoidance path autonomously.
* MML Version: MML 11
* Author: Jane Lochner
* Date: 26 NOV 94
* Notes: Change #define statements to reflect
* sonar number or mnemonic of sonar
* under investigation, safety factor, and
* obstacle notification distance
*****************************************************/

ttinclude "user.h"

#define SONARUSED
#define USERBUFSIZE
#define FREQ 10

#define MODE SONAR_RAW
#define SAFETY 20.0
#define DISTANCE 150.0
#define DIRECTION FORWARD

void
user (

)

{

double width, hit , distance;
CONFIGURATION Start , JustGo, Avoid, vehicle;
POINT obstacle;
int sonar;

Start = defineConfig(0.0, .1, PI/6, 0.0)

;

JustGo = def ineConfig (0.0, 0.0, PI/6, 0.0)

;

Mot ionLog ( NULL ,25,0) ;

EnableSonar (SONARUSED)

;

setRobotConf ig( Start) ;

setLinVelImm(15.0)

;

line (JustGo)

;

obstacle = ScanSonar (DIRECTION, DISTANCE)

;

vehicle = getRobotConf ig ( )

;

Avoid = avoidPathVertex (SAFETY, obstacle)

;

width = - (Avoid. Posit .X-vehicle. Posit .X) *sin(vehicle.Theta)

+

( Avoid. Posit .Y-vehicle. Posit . Y) *cos (vehicle .Theta)

;

if (width < 0)

{

width = width - SAFETY;
sonar = S27 0;

distance = -width;
}

else
(

width = width + SAFETY;
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sonar = S090;
distance = width;

}

line (Avoid)

;

while
( (vehicle. Posit .X < (Avoid. Posit .X+DISTANCE*cos ( JustGo .Theta) )

)

I I

(vehicle. Posit .Y < (Avoid . Posit . Y+DISTANCE*sin (JustGo .Theta) )

)

(

vehicle = getRobotConf ig ( )

;

waitMS(50 0)

;

)

EnableSonar ( sonar )

;

hit = Sonar (sonar )

;

waitMS(30)

;

while (hit <= distance)
{

hit = Sonar ( sonar )

;

printf( "Distance = %f \n" , hit)

;

waitMS(30)

;

}

line (JustGo)

;

waitSec(20)

;

stopIiran( ) ;

}
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APPENDIX C. MML11 LIBRARY FILES

This appendix contains the MML1 1 files which contain changes

resulting from this work. The heading of each new function explains the inputs

and outputs of the functions and describes the function's use.
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/Up*************************************************
* File: sonar.

h

* Comments: 12-07-94 Updated for new sonar naming
* convention by Jane Lochner.
* it***************************************************/

#ifndef SONAR_H
#define SONAR_H

#include "constants .h"

#include "definitions .h"

#def ine NUM_SONARS 16

/* Sonar locations */

#def ine SOOO
#def ine S030 3

#def ine S330 11

#def ine S090 7

#def ine S060 10

#def ine S120 6

#def ine S180 2

#def ine S150 9

#def ine S210 1

#def ine S270 5

#def ine S240 8

#def ine S300 4

/* Types of sonar logging */

#def ine SONAR..NONE 0x00
#def ine SONAR..RAW 0x01
#def ine SONAR..GLOBAL 0x02
#def ine SONAR..SEGMENT 0x04
#def ine SONAR..ALL 0x07

#define SONAR CTL 0xfc0083f9

typedef struct {

int fitting,
globalCoord,
update;

/*flag to indicate linear fitting request */

/*flag to indicate coordinate conversion request */

/*flag to indicate presence of new data */

double d, /* range data */

t, /* robot's orientation angle at time of range */

SonarTheta; /* angle of sonar from robot center */

POINT posit; /* robot's position at time of range (x, y) */

POINT global; /* global position of sonar return (gx, gy) */

POINT SonarPosit; /* position of sonar from center (rob_x, rob_y) */

} SONARD

;

/* defines a basic segment with the start and end points, and the sonar
it is associated with */

typedef struct {

POINT start;
POINT end;
double alpha, /* angle and length of normal from origin */

r; /* to the segment */

int sonarNumber;
} SEGMENT;
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typedef struct {

/* (headx, heady, tailx, taily, sonar, alpha, r) */

SEGMENT seg;
/* length of the segment */

double length;
} LINE_SEG;

typedef struct { /* revised by Y. Kanayama, 07-07-93 */

double mOO, /* moments */

mlO,
mOl,
m20,
mil,
m02;

SEGMENT seg; /* (startx, starty, endx, endy, n, alpha, r) */

} CUR_DATA;

/*** Global variables ***/

extern int service_f lag;
extern SONARD sonar_table [ ]

;

/*** Prototypes ***/

void InitSonar ( void)

;

double WaitSonar ( int )

;

/* Interrupt handler */

void SonarSysControl (void)

;

/* So the user doesn't have to include all the
sonar header files... */

#include "sonarcard.h"
# include "sonarmath.h"
#include "sonarlog.h*

#endif
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/**********************************************************•
* File: sonarmath.h
* Comments: 12-07-94 Update to support scanning function
* and new functions related to
* dynamic obstacle avoidance.
* Update for sonar table changes of
* rob_t to SonarTheta and
* offset to SonarPosit
***********************************************************

#ifndef SONARMATH_H
#define SONARMATH_H

# include " sonar. h"

/* Types of Scanning -- Added by Jane Lochner */

#define FORWARD
#define BACKWARD 1

#define LEFT 2

#define RIGHT 3

/* The following typedef was added to support the
getBoundaries ( ) function written as part of the
thesis work of LCDR Lochner. */

typedef struct {

POINT left;
POINT right;

} BOUNDARY

;

void InitSonarmath(void)

;

void SetSonarParameters (double, double);

double Sonar (int);
POINT Global (int)

;

LINE_SEG *GetSegment ( int)

;

LINE_SEG *EndSegment ( int )

;

void CalculateGlobal (int)

;

void GenerateSegment ( int)

;

void EnableLinearFitting ( int )

;

void DisableLinearFitting ( int)

;

void LinearFitting ( int )

;

/* The following prototypes were added to support
the new functions added in sonar. c as part of
the thesis work of LCDR Lochner */

POINT ScanSonar( int, double)

;

BOUNDARY getBoundaries (POINT)

;

double getWidth ( POINT, int )

;

CONFIGURATION avoidPathVertex (double, POINT)

;

CONFIGURATION avoidPathWidth (double, POINT)

;

#endif
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/
*•** + •** + •••••****** •***••*•*******•#******•****-»**•****•

* Author
* Date
* File
* Description

Patrick Byrne , Yutaka Kanayama
2 November 1993
sonar .

c

Provides the global generic sonar functions

* Comments:
* - Fri 07-22-94 Updated for Sparc mmlll FEK
* - updated by Khaled morsy 11-22-94
* - Updated on 6 Dec 94 by Jane Lochner to add new
* sonar positions and to rename offset to SonarPosit
* and rob_t to SonarTheta in the sonar table.
***+***•**+******************************************+*****/

#include "definitions .h"

# include "memsys.h"
#include "motion. h"

# include " sonarcard .h"

#include " sonarmath .

h"

#include "sonarlog.h"
#include "system. h"

# include "time.h"
#include " sonar. h"

/*** Global variables ***/

int service_flag ;

SONARD sonar_table[NUM_SONARS]

;

/*one of the above struct 's for each sonar

/* used by ServeSonar */

static const int group_array [4] [4] = {

{0, 5, 2, 7},

{3, 4, 1, 6},

{10, 11, 8, 9},

{12, 13, 14, 15}

}; /* array maps sonar numbers to groups */

void
InitSonar (void)

{

int i;

/* .initialize sonar_table */

for (i = 0; i < NUM_SONARS; i++)
memset (&sonar_table [ i] , 0, sizeof (SONARD) )

;

/
* set up

sonar..table [0] .

sonar..table [1] .

sonar..table [2] .

sonar._table[3] .

sonar..table [4] .

sonar..table [5] .

sonar..table [6] .

sonar..table [7] .

sonar..table [8] .

sonar..table [9] .

sonar..table [10]
sonar._table[ll]
sonar..table [12]
sonar..table [13]
sonar._table[14]
sonar..table [15]

compensation
SonarTheta =

SonarTheta =

SonarTheta =

SonarTheta =

SonarTheta =

SonarTheta =

SonarTheta =

SonarTheta =

SonarTheta =

SonarTheta =

.SonarTheta

.SonarTheta

.SonarTheta

.SonarTheta

.SonarTheta

.SonarTheta

for sonar position */

0.0; / * *

/

5.0*PI/6.0; /**/

PI; /**/

-PI/6.0; /**/

PI/3.0; /**/

PI/2.0; /**/

-2.0*PI/3.0; /**/

-PI/2.0; /**/

2.0*PI/3.0; /**/

-5.0*PI/6.0; /**/

= -PI/3.0; /**/

= PI/6.0; /**/

= 0.0;
= 1.5708;
= 4.7124;
= 0.0;
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sonar..table 0] .SonarPosit .X = 23.6;
sonar..table 1] .SonarPosit .X = -23.0;
sonar..table 2 ] .SonarPosit .X = -22.6;
sonar..table 3] .SonarPosit .X = 24.7;
sonar..table 4] .SonarPosit .X = 13.4;
sonar..table 5] .SonarPosit .X = 0.0;
sonar..table 6] .SonarPosit .X = -12.6;
sonar..table 7] .SonarPosit .X = 0.0;
sonar..table 8] .SonarPosit .X = -13.4;
sonar..table 9] .SonarPosit .X = -23 .5;

sonar..table 10] .SonarPosit .X = 12.1;
sonar..table 11] .SonarPosit .X = 25.2;
sonar..table 12] .SonarPosit .X = 0.0;
sonar..table 13 ] .SonarPosit .X = 1.5708;
sonar..table 14] .SonarPosit .X = 4.7124;
sonar..table 15] .SonarPosit .X = 0.0;

sonar..table 0] .SonarPosit .Y = -0.5;
sonar..table 1] .SonarPosit .Y = 13.1;
sonar..table 2] . SonarPosit .Y = -1.0;
sonar..table 3] .SonarPosit .Y = -14.6;
sonar..table 4] .SonarPosit .Y = 21.3;
sonar..table 5] .SonarPosit .Y = 2 0.6;
sonar..table 6] .SonarPosit .Y = -21.3;
sonar..table 7] .SonarPosit .Y = -20.5;
sonar..table 8] .SonarPosit .Y = 21.3;
sonar..table 9] .SonarPosit .Y = -14.9;
sonar..table 10] . SonarPosit.

Y

= -21.3;
sonar..table 11] . SonarPosit.

Y

= 14.1;
sonar..table 12] .SonarPosit .Y = 0.0;
sonar..table 13] .SonarPosit .Y = 21.5;
sonar..table 14] .SonarPosit .Y = 21.5;
sonar..table 15] .SonarPosit .Y = 0.0;

/**/
/**/
/**/
/**/
/**/
/**/
/**/
/**/
/**/
/**/
/**/

/**/
/**/
/**/
/**/
/**/
/**/
/**/
/**/
/**/
/**/

/* initialize the sonar components */

InitSonarmath( )

;

InitSonarlog ( )

;

SetSonarParameters ( . 02, 5.0);

/** + ******* + ** + * + + ****************•************************************
* Procedure: wait_sonar (n)
* Description: waits in a loop until new data is available for
* sonar n.
*******•*************•********************************************+**/

double
WaitSonar ( int n)

{

sonar_table [n] .update = 0;

while (sonar_table [n] .update == 0)

/* NULL statement */

return sonar_table [n] .d;
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'******************+ ****** r******************* ***#*****
* Procedure : serve_sonar (x, y , t , ovf 1 , datal , data2 , data3 , data4 , group)
* Description: this procedure is the "central command" for the
* control of all sonar related functions. It is linked with the
* ih_sonar routine and loads sonar data to the sonar_table from
* there. It then examines the various control flags in the
* sonar_table to determine which activities the user wishes to take
* place, and calls the appropriate functions. This procedure is
* invoked approximately every thirty milliseconds by an interrupt
* from the sonar control board.
***+**************•****************#******************************/

void
SonarSysControl (void)

{

static int cnt = 0;

int n ;

int l ;

int data [4]

;

int group;
CONFIGURATION current;

/* overflow bit is bit 15 */

#def ine
#def ine
#def ine
#def ine
#def ine
#def ine

OVERFLOWMASK
GROUP_MASK
SONAR_DATA0
S0NAR_DATA1
SONAR_DATA2
SONAR DATA3

0x8000
0x18
0xfc0083f0
0xfc0083f2
0xfc0083f4
0xfc0083f6

/* blink the #1 LED */

if (++cnt > 10) {

cnt = ;

changeLEDstate ( 1 ) ;

}

current = getRobotConf ig

(

group = (

(

* ( BYTE* ) SONAR_CTL
data[0] = *(WORD*)SONAR_DATA0
data[l] = *(WORD*)SONAR_DATAl
data [2] = * (WORD* ) SONAR_DATA2
data [3] = * (WORD* ) S0NAR_DATA3

& GROUP_MASK) » 3)

;

for (i = 0; i < 4; i++) {

n = group_array [group] [ i]

;

sonar_table [n] .posit .X = current . Posit . X;
sonar_table [n] .posit .Y = current . Posit . Y;
sonar_table [n] . t = current .Theta;

/* -1 was returned if there was no echo */

if (data[i] & OVERFLOWMASK)
sonar_table[n] .d = INFINITY;

else
( /* only first 12 bits are data, so mask the data */

data[i] &= Oxfff;
sonar_table[n] .d = data[i] * 0.1029; }

CalculateGlobal (n)

;

if (sonar_table [n] . fitting == 1)

LinearFitting (n)

;

/* log the data for this sonar */

LogSonarData (n)

;
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/ * * * *

* Author
* Date
* File
* Description

******* + **************•****»********•* + * + *** + ******

Patrick Byrne
2 November 1993
sonarmath.

c

Provides the main sonar functions

* Comments:
Fri 07-22-94 Updated for Sparc mmlll FEK
Wed 12-07-94 Five new functions added by

* Jane Lochner to support scanning
* and dynamic obstacle avoidance
***********************•************* + ** + ***********•*****• +

#include "definitions .h"

#include " sonar. h"

#include "stdiosys.h"
#include "math.h"
# include " mot ion. h"

#include "memsys.h"
#include "sonarlog.h"
#include " sonarmath. h"

#define QMAX 50

#define SONARS 11

/*** Local variables ***/

static double CI, C2

;

static LINE_SEG
static int
static int
static int

Queue [SONARS] [QMAX]

;

Head [SONARS]

;

Tail [SONARS]

;

Empty [SONARS]

;

static LINE_SEG segstruct; /* temporary storage for get_segment func

,

7

static int
static int

static LINE_SEG
*/

static CUR DATA

SegListHead[NUM_SONARS]

;

SegListTail [NUM_SONARS]

;

seg_list [NUM_SONARS] [5]

;

segment_data [NUM_SONARS

]

/*points to oldest segment array element */

/*points to newest segment array element */

/*segments for working memory

/"interim data for all sixteen sonars */

/*** Global variables ***/

/*** Local Prototypes ***/

void Enqueue (int, LINE_SEG*)

;

void AddToSegment (int, POINT);
void ResetMoments ( int )

;

void BuildList (LINE_SEG*, int);

/*** Code ***/

void
InitSonarmath (void)

(

int i ;

for (i = 0; i < NUM_SONARS; i++) {

ResetMoments ( i)

;

memset (&segment_data [ i] , 0, sizeof (CUR_DATA) )

;

Empty [i] = TRUE;
Head[i] = 1;

Tail[i] = 1; 92



* Procedure: set_sonar_parameters (cl , c2)
* Description: allows the user to
* adjust constants which control the linear fitting algorithm. Cl is
* a multiplier to allow more lenancy for greater sonar ranges.
* C2 is an absolute value; both are used to determine if an
* individual data point is usable for the algorithm. Default values
* are set in main.c to .02, 5.0 respectively.
IT*****************************************************************/

void
SetSonarParameters (double cl, double c2)

{

Cl = cl;

C2 = c2;

/it********************************************************************
* Procedure: sonar (n)

* Description: returns the distance (in
* centimeters) sensed by the n_th ultrasonic sensor. If no echo is
* received, then INFINITY ( 1 . 0e6 ) is returned. If the distance is less than 10
* cm, then a is returned.
***** + ** + *********•***********•»•*********••**»**********************/

double
Sonar ( int n)

{

return sonar_table [n] .d;

}

/****•**•**••***** + ************* + ***************************************
* Procedure: global (n)
* Description: returns a structure of type
* posit containing the global x and y coordinates of the position of
* the last sonar return.

POINT
Global (int n)

(

return sonar_table [n] .global;

}

/*****************••******************************

void Enqueue (

)

This function is called by generate_segment ( ) . The
sonar number and newest line_segment for that sonar
are passed int. It simply places the latest segment
produce by a sonar with linear_f itting and places it

into a circular queue.
*****************************•****************•***/

void
Enqueue (int i, LINE_SEG *Seg)

{

int j ;

if (Head[i]==Tail[i] && Empty [i] == FALSE)
print f

( "Sonar segment queue is Full");
else {

j = Tail[i]

;

Queue [ i] [ j ] = *Seg;

Tail[i] = 1 + (Tail[i] % QMAX)

;

Empty [i] = FALSE; 93
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LINE_SEG get_segment (sonar)
returns the pointer to the oldest completed unread
segment of the sonar passed in. If there is no completed
unread segment NULL is returned.
*********************•*******************************/

LINE_SEG *

GetSegment ( int i)

(

LINE_SEG *Current_seg;
int j ;

if ( Empty [i])

Current_seg = NULL;
else {

j = Head [ i ] ;

Current_seg = &Queue[i] [j]

;

Head[i] = 1 + (Head[i] % QMAX)

;

if (Head[i] == Tail[i]

)

Empty [i] = TRUE;
}•

return Current_seg;

/**+*****•************+**********************+**•*•****************************
* Procedure: EndSegment (n)
* Description: this procedure allocates
* memory for the segment data structure, loads the correct values
* into it and returns a pointer to the structure.
•it**************************************************

LINE_SEG *

EndSegment ( int n)

{

SEGMENT tmpSeg

;

LINE_SEG *seg_ptr;
double length, delta;

seg_ptr = &segstruct;

tmpSeg = segment_data [n] .seg;
delta = tmpSeg . start .X * cos (tmpSeg .alpha) +

tmpSeg. start .Y * sin (tmpSeg. alpha) - tmpSeg. r;
tmpSeg. start .X -= delta * cos (tmpSeg. alpha )

;

tmpSeg . start .Y -= delta * sin (tmpSeg. alpha )

;

delta = tmpSeg. end. X * cos (tmpSeg .alpha) +

tmpSeg. end. Y * sin (tmpSeg. alpha) - tmpSeg. r;
tmpSeg. end. X -= delta * cos (tmpSeg. alpha )

;

tmpSeg. end. Y -= delta * sin (tmpSeg. alpha )

;

length = sqrt (SQR (tmpSeg. start .X - tmpSeg. end. X) + SQR (tmpSeg .start .Y - tmpSeg. end. Y)

)

seg_ptr->seg = tmpSeg

;

seg_ptr->length = length;
seg_ptr->seg.sonarNumber = n;

return seg_ptr;
}
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* Procedure: CalculateGlobal (n)
* Description: this procedure
* calculates the global x and y coordinates for the range value and
* robot configuration in the sonar table. The results are stored in
* the sonar table.

void
CalculateGlobal ( int n)

{

double lx, ly, It, range, SonarTheta, rob_x, rob_y;
CONFIGURATION global;

range = sonar_table [n] . d;
if (range >= INFINITYO) {

sonar_table[n] .global. X = INFINITY;
sonar_table[n] .global. Y = INFINITY;

}

else {

rob_x = sonar_table [n] . SonarPosit .X;

rob_y = sonar_table [n] . SonarPosit .Y;

SonarTheta = sonar_table [n] .SonarTheta;
global = getRobotConf ig ( )

;

/* vehicle compose sonar */

lx = global. Posit .X + (cos (global .Theta) * rob_x) -

(rob_y * sin(global. Theta) )

;

ly = global . Posit .Y + (sin (global .Theta) * rob_x) +

(rob_y * cos (global .Theta) )

;

It = SonarTheta + global .Theta;

/* vehicle compose sonar range */

sonar_table [n] .global .X = lx + (cos(lt) * range);
sonar_table [n] .global .Y = ly + (sin(lt) * range);

}

}

/***•*****•***************•**********************************•***•*
* Procedure: add_to_segment (n, x, y) * Description: this procedure
* calculates new interim data for the line segment and stores it in
* segment_data [n] . It also changes the end point values to the point
* being added.

void
AddToSegment ( int n, POINT p)

{

double mOO, mlO, mOl, m20, mil, m02;
double alpha, r;

double mux, muy, mm20, mmll, mm02;

mOO = segment_data [n] .mOO += 1.0
mlO = segment_data [n] .mlO += p.X;
mOl = segment_data[n] .mOl + = p.Y;
m20 = segment_data[n] .m20 += SQR(p.X);
mil = segment_data [n] .mil + = p.X * p.Y;
m02 = segment_data[n] .m02 += SQR(p.Y);

if (mOO < 1.5)
segment_data [n] . seg. start = p;

mux = mlO / mOO;
muy = mO 1 / mO ;

mm20 = m20 - SQR(mlO) / mOO;
mmll = mil - mlO * mOl / mOO;
mm02 = m02 - SQR(mOl) / mOO; 95



if (mOO > 1.5) (

alpha = atan2(-2.0 * mmll, (mm02 - mm20)) / 2.0;
r = mux * cos(alpha) + muy * sin(alpha);

segment_data [n] . seg .alpha = alpha;
segment_data [n] . seg . r = r;

segment_data [n] . seg. end = p;

}

}

* Procedure: reset_moments (n)

;

* Description: resets the accumulative
* values in segment_data [n] (m00,ml0,m01,m20,mll,m02) to zero.
********** + ********************** + ****************** + + * + + *** + * + ******** + /

void
ResetMoments ( int n)

{

segment_data [n] .mOO = 0.0
segment_data [n] .mlO = 0.0
segment_data [n] .m01 = 0.0
segment_data [n] .m20 = 0.0
segment_data [n] .mil = 0.0
segment_data [n] .m02 = 0.0

}

* Procedure: generate_segment (n)
* Description: this function
* completes segments at the end of a data run. Necessary because the
* linear fitting function only terminates a segment based on the data
* - it has no way of knowing that the user has stopped collecting data.
••it**********************************************************************/

void
GenerateSegment ( int n)

{

LINE_SEG *seg_ptr;

if (segment_data[n] .mOO > 10.0) {

seg_ptr = EndSegment (n)

;

BuildList (seg_ptr, n)

;

Enqueue (n, seg_ptr)

;

}

ResetMoments (n)

;

/*•****+***************#*****************+****************************
* Procedure: EnableLinearFitting (n)
* Description: causes the background system to gather data points
* from sonar n and form them into line segments as governed by
* the linear fitting algorithm.
• ••it*************************************************************/

void
EnableLinearFitting ( int n)

{

sonar_table [n] . fitting = 1;
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/* Procedure: DisableLinearFitting (n)
* Description: causes background system to cease forming line
* segments for sonar n.

****** + * + *******************************************•****************/

void
DisableLinearFitting ( int n)

{

GenerateSegment (n)

;

sonar_table [n] . fitting = ,-

/********+**************************•******+*******•****************
* Procedure: LinearFitting (n)
* Revised by Y. Kanayama, 07-07-9 3

* Description: this procedure controls the fitting of point
* data to straight line segments. First it tests if the new coming
* point is not far from the fitted line. If the test is passed, the
* point is added to test if the thinness test is passed. If it is
* passed, the addition is finalized. If any of the tests fail,
* the line segment is ended and a new one started. The completed line
* segment is stored in a data structure called segment, and segments
* are linked together in a linked list.

void
LinearFitting ( int n)

{

POINT p;
double mOO;
double alpha, r, delta;
double sonar_range;
LINE_SEG *f inished_segment;

sonar_range = sonar_table [n] .d;

if (sonar_range < 9.3 II sonar_range > 409.0) {

GenerateSegment (n)

;

return;
}

p = sonar_table[n] .global; /* temporary moments */

mOO = segment_data[n] .mOO;

if (mOO < 1.5) {

AddToSegment (n, p) ;

return;

)

r = segment_data [n] . seg . r

;

alpha = segment_data[n] . seg .alpha;
delta = fabs(r - p.X * cos(alpha) - p.Y * sin (alpha) )

;

if (delta > MAXVAL(C2, CI * sonar_range)

)

GenerateSegment (n) ;

AddToSegment (n, p)

;

return;
/* end linear_f itting */
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* Procedure: build_list (ptr, n)

;

* Description: this function accepts
* a pointer to a segment data structure and a sonar number, and
* appends the segment structure to the tail of a linked list of
* structures for that sonar.

*******************************************+****••*****+***•***+****+********/

void
BuildList (LINE_SEG *ptr, int n)

{

int next ;

if (SegListTail [n] == -1)

SegListHead[n] = 0;

next = (SegListTail [n] < 4) ? ++SegListTail [n] : 0;

if (next == SegListHead[n]

)

SegListHead[n] = (SegListHead [n] < 4) ? ++SegListHead [n]

seg_list [n] [next ] = *ptr;
LogSonarSegmentData (n, seg_list [n] [next ] )

;

0;

/***+**********+•*****+*****++*+**+***********************+*+*********
* Procedure: ScanSonar ( int dir, double dist)
* Description: Function allows user to scan in one of four
* directions for obstacles. Function will return
* when it detects an obstacles within the specified
* distance. Default is forward scan.
* Inputs: Scan Direction and detection distance
* Outputs: Global coordinates of obstacle
* Date: 6 DEC 94
* Author: LCDR Jane Lochner

POINT
ScanSonar ( int dir, double dist)

{

double hitl=9999.9,hit2=9999.9,hit3=9999.9;
POINT obstacle;
int sonarl, sonar2 , sonar3

;

•**»»********* + **

switch(dir) {

case FORWARD:
.sonarl=S330
sonar2=S000
sonar3=S030
break;

case BACKWARD
sonarl=S210
sonar2=S180
sonar3=S150
break;

case LEFT:
sonarl=S300
sonar2=S270
sonar3=S240
break;

case RIGHT:
sonarl=S060
sonar2=S090
sonar3=S120

default

:

sonarl=S330
sonar2=S000
sonar3=S030
break;

}
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EnableSonar ( sonarl)
EnableSonar ( sonar2

)

EnableSonar ( sonar3

)

do {

waitMS(30) ;

hitl=Sonar (sonarl)

;

waitMS(30) ;

hit2=Sonar (sonar2)

;

waitMSOO) ;

hit3=Sonar ( sonar3 )

;

} while ( (hitl>dist II hitl<1.0) &&
(hit2>dist II hit2<1.0) S=&

(hit3>dist I I hit3<1.0) ) ;

if (hitl<dist)
obstacle=Global (sonarl )

;

if (hit2<dist)
obstacle=Global (sonar2)

;

if (hit3<dist)
obstacle=Global (sonar3 )

;

DisableSonar ( sonarl )

;

DisableSonar ( sonar2)

;

• DisableSonar (sonar3 )

;

return (obstacle)

;

/it************************************************************
* Procedure: getBoundaries ( POINT scan)
* Description: Function returns the left and right
* boundaries of an object. This is a
* dummy function to be implemented at
* a later date. The user just inputs
* values to be returned.
* Date: 6 DEC 94
* Author: LCDR Jane Lochner
***•**********•**********•*******•***************************/

BOUNDARY
getBoundaries (POINT scan)

(

BOUNDARY obstacle;

obstacle. left .Y = 105.0
obstacle. left .X = 150.0
obstacle. right .Y = 25.0
obstacle. right .X = 150.0

return (obstacle)

;

}
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* Procedure: getWidth (POINT scan, int direction)
* Description: Function returns the width of object
* on the designated side. This is a
* dummy function to be implemented at
* a later date. The user just inputs
* the values for testing purposes.
* Date: 06 DEC 94
* Author: LCDR Jane Lochner
*•*****•*****************+*****•***+***********************/

double
getWidth (POINT scan, int direction)
{

double width;

if (direction == LEFT)
width = 8 0.0;

else
width = -55.0;

return (width)

;

}

/it************************************************************
* Procedure: avoidPathVertex( double safety, POINT scan)
* Description: Calculates path to avoid obstacle
* using designated safety margin and the
* outer vertices of the object
* Inputs: safety margin, global coordinates of closest
* point
* Outputs : New path to avoid obstacle
* Date: 06 DEC 94
* Author : LCDR Jane Lochner
***********************************************************/

CONFIGURATION
avoidPathVertex( double safety, POINT scan)

(

CONFIGURATION Current , avoid;
POINT left, right;
BOUNDARY obstacle;
double LeftDist, RightDist;

Current = getRobotConf ig ( )

;

obstacle = getBoundaries ( scan)

;

LeftDist = - (obstacle. left .X-Current .Posit .X) * sin (Current .Theta)

+

(obstacle. left .
Y-Current . Posit . Y) *cos (Current .Theta) +safety

;

RightDist = - (obstacle .right .X-Current . Posit .X) *sin (Current .Theta)

+

(obstacle .right .Y-Current . Posit . Y) *cos (Current .Theta) -safety;

left.X = Current .Posit .X - LeftDist*sin(Current .Theta)

;

left.Y = Current .Posit .Y + LeftDist*cos (Current .Theta)

;

right. X = Current . Posit .X - RightDist*sin (Current .Theta)

;

right. Y = Current . Posit .Y + RightDist*cos (Current .Theta)

;

if (LeftDist > -RightDist) {

avoid. Posit .X = right. X;
avoid. Posit .Y = right. Y;}

else {

avoid. Posit .X = left.X;
avoid. Posit. Y = left.Y;}

avoid. Theta = Current .Theta

;

avoid. Kappa = Current .Kappa

;

return (avoid)

;
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* Procedure: avoidPathWidth (double safety, POINT scan)
* Description: Calculates path to avoid obstacle
* using designated safety margin and the
* left and right widths of the object
* Inputs: safety margin, global coordinates of closest
* point
* Outputs: New path to avoid obstacle
* Date: 06 DEC 94
* Author: LCDR Jane Lochner
*********************************************************

CONFIGURATION
avoidPathWidth (double safety, POINT scan)
{

CONFIGURATION Current , avoid;
POINT left, right;
double LeftDist, RightDist;

Current = getRobotConf ig ( )

;

LeftDist = getWidth (scan, LEFT)

;

RightDist = getWidth (scan, RIGHT)

;

left.X = Current .Posit. X - LeftDist*sin (Current .Theta)

;

left.Y = Current .Posit .Y + LeftDist*cos (Current .Theta)

;

right. X = Current . Posit .X - RightDist *sin (Current .Theta)

;

right. Y = Current . Posit .Y + RightDist *cos (Current .Theta)

;

if (LeftDist > -RightDist)
{

avoid. Posit .X = right. X;
avoid. Posit .Y = right. Y;

)

else
{

avoid. Posit .X = left.X;
avoid. Posit.Y = left.Y;

}

avoid. Theta = Current .Theta

;

avoid. Kappa = Current .Kappa

;

return (avoid)

;

}
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