
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1990-06

Guide to develop a refresher for MA1117, single

variable calculus

Lampugnano, Matthew

Monterey, California: Naval Postgraduate School

http://hdl.handle.net/10945/27776

00-- NAVAL POSTGRADUATE SCHOOL
= Mmterey, Califoria

7G R ADTIC
ELECTE

THESIS SB
Guide to Develop a Refresher for MA1117,

Single Variable Calculus

by

Matthew Lampugnano

June 1990

Thesis Advisor: Gordon E. Latta

Approved for public release; distribution is unlimited.

91-01876

IllMIililil154

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

la. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release;
Zb. DECLASSIFICATION / DOWNGRADING SCHEDULE distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Naval Postgraduate (If applicable)

School 1 380 Naval Postgraduate School
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA. 93943-5000 Monterey, CA. 93943-5000

8a. NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMIER
ORGANIZATIONj (If applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM IPROJECT ITASK IWORK UNIT
ELEMENT NO. NO. NO ACCESSION NO.

11 TITLE (include Security Classification)

GUIDE TO DEVELOP A REFRESHER FOR MAl117, SINGLE VARIABLE CALCULUS

12. PERSONAL AUTHOR(S)

Lamipugnano, Matthew
13a. TYPE OF REPORT 113b TIME COVERED 114. DATE OF REPORT (Year, Month, Day) 115. PAGE COUNT

Materls Thesis FROM TO I June 1990 I iAA

16. SUPPLEMENTARY NOTATION The views expressed in this thesis are those of the author and do not

reflect the official policy or position of the Department of Defense or the U. S. Government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP ISUB-GROUP Refresher for MA1117, Single Variable Calculus

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Refreshers for introductory courses have a variety of useful purposes. They may be used
as a tool for newly arriving students to assist in their return to an academic environment, as
a review for tests, or as a prelude to what a course offers. They may also be sent to inter-
ested personnel in the field. The primary benefit of the refresher is to experience faster

learning and greater retention of the material covered.
This thesis is a step by step instruction of how to develop a microcomputer based refresh-

er for any subject. These refreshers, in the form of a series of questions and answers, are
easy to develop as well as easy to use. A Zenith-248 microcomputer or compatible is the main
tool used to develop the refresher. An initial file, written on a word processor containing
the questions and answers, is the raw data. By following a few simple instructions when
creating this file, it can be transformed into a refresher in a minimal amount of time. A
refresher for MA1117, single variable calculus, is developed as an example.

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

[2UNCLASSIFIEDfUNLIMITED 0 SAME AS RPT. 0 OTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 122b. TELEPHONE (Include Area Code) 72c. OFFICE SYMBOL

(-rrnn 1'_ Tf-1fn T 7AR-R2F -99AF T."

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete a U.,. (leveranmi Prlmnin O1fle g - -.

Approved for public release; distribution is unlimited

Guide to Develop a Refresher for MA1117, Single Variable
Calculus

by

Matthew Lampugnano
Captain, United States Marine Corps

B. S., United States Naval Academy, 1980

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN APPLIED MATHEMATICS

from the

NAVAL POSTGRADUATE SCHOOL

June, 1990

Author:

Matthew Lampugnano

Approved by:

Gordon E. Latta, Thesis Advisor

Donald A. Danielson, Second Reader

epartment of Mathematics

ii

ABSTRACT

Refreshers for introductory courses have a variety of useful purposes. They

may be used as a tool for newly arriving students to assist in their return to an

academic environment, as a review for tests, or as a prelude to what a course offers.

They may also be sent to interested personnel in the field. The primary benefit of

the refresher is to experience faster learning and greater retention of the material

covered.

This thesis is a step by step instruction of how to develop a microcomputer

based refresher for any subject. These refreshers, in the form of a series of questions

and answers, are easy to develop as well as easy to use. A Zenith-248 microcomputer

or compatible is the main tool used to develop the refresher. An initial file, written

on a word processor containing the questions and answers, is the raw data. By

following a few simple instructions when creating this file, it can be transformed into

a refresher in a minimal amount of time. A refresher for MAl117, single variable

calculus, is developed as an example.

Aoession For

NTIS GRA&I
DTIC TAB 0
Unannounced 0
Justificatlon-

By . .

Distribut ion
Availability Codes

Avail and/or
Dist special

TABLE OF CONTENTS

1. INTRODUCTION.................................. 1

Il. NATURE OF PROBLEM............................. 3

III. PROCEDURE.................................... 4

IV. SUMMARY...................................... 27

V. OPERATING INSTRUCTIONS........................ 28

VI. MISCELLANEOUS INSTRUCTIONS..................... 29

VII. CONCLUSION................................... 31

APPENDIX A (STRIP. COM)........................... 33

APPENDIX B (CONTC.COM)........................... 37

APPENDIX C (ALIGN.EE)........................... 41

APPENDIX D (COUNT.COM)........................... 48

APPENDIX E (HEXASC.COM)........................... 55

APPENDIX F (RESIDENT.COM)......................... 61

APPENDIX G (DISPLAY.COM).......................... 65

APPENDIX H (TESTTEMP.ASM)......................... 69

APPENDIX I (TEMPLATE.ASM)......................... 82

APPENDIX J (MODE3.COM)........................... 95

APPENDIX K (MODE4cOM)........................... 96

APPENDIX L (UDISPLAY.CDM)......................... 97

APPENDIX M (CHNGCOLS.EXE)........................ 100

APPENDIX N (FINAL.DOC)........................... 107

REFERENCE................................... 138

INITIAL DISTRIBUTION LIST........................ 139

iv

ACKNOWLEDGMENT

I wish to thank my thesis advisor, Professor Gordon Latta for his expert

opinion and advice. All assembly language programs were written by Professor

Latta. Only through his dedicated efforts and constant encouragement was this

thesis completed.

v

I. INTRODUCTION

The transition from military officer to graduate student is one that many

newly arriving Naval Postgraduate School students find most challenging. As many

students have been out of an academic environment for a number of years, they may

rely on refreshers to assist in making the transition as smooth as possible. Simply

put, a refresher is a series of questions and answers which highlight the objectives

of the course. For ease of use, the refresher is developed and run on a Zenith-248

microcomputer or compatible machine.

The purpose of this thesis is twofold. First, a quick and easy procedure is

developed so that anyone may produce a refresher. The second part of the thesis is

the actual refresher for single variable calculus, MA 1117. The questions and answers

for this refresher are based on the book Calculus, Second Edition, by Dennis D.

Berkey. The refresher will then be administered to students enrolled in the MA1117

course to help them in their mastering of the material.

A refresher has many useful purposes. A refresher may be used to determine

the level of a student's knowledge in order that he be properly placed in the introduc-

tory courses (level 1000 and 2000). Using the refresher, the student may determine

whether or not he feels comfortable with the material. If the student cannot answer

the questions confidently, then he should take the course. If the student believes

that the material has been mastered, then he should validate the course and move

on to the next level.

Another important use of the refresher is its value as a tool for reviewing the

material in the course. This can be accomplished in one of two ways. First, since

the questions in the refresher are based on the course objectives, the refresher can be

1

used as an excellent review for a midterm or final exam. Second, once the course has

been completed, the refresher can be used to review concepts previously mastered.

Lastly, the refresher can be used by students to decide whether or not to take

the course, mainly as an elective. Since the major topics of the course are covered,

students can look at the refresher to see if they are interested in the subject matter.

This should facilitate the students' decision to enroll in the course.

2

II. NATURE OF PROBLEM

The refresher, when running on a Zenith-248 or compatible microcomputer,

is a series of questions and proposed answers. Each question and proposed answers

appear in random order on the screen in yellow starting in the upper left corner. The

student reads the question and tries to decide the correct answer. By pressing any

key, the correct answer along with any pertinent information appears in red brackets

under the proposed answers. By pressing any second key, the next question appears

on the screen and the process continues. The process is ended by pressing the control

C(C) at any time. By cycling through the questions in random order, the student

should obtain a feel for the material. Graphs or pictures may also be incorporated

in the questions to assist in learning the subject material.

The fundamental problem is to develop a framework in which anyone can

write the refreshers to be placed on disks for use on a Zenith-248 or compatible

microcomputer. One begins with the raw data of questions and proposed answers,

along with the correct answers. Then a series of programs, written in assembly

language, input the raw data into the refresher. The raw data is entered into a

document file using a word processor. By following a simple set of instructions, the

author of the questions and answers can proceed quickly to the refresher. Within

this framework, a refresher for MA1117, single variable calculus, is developed as an

example.

3

III. PROCEDURE

The following items are essential to develop the refresher:

* A Zenith-248 microcomputer or a compatible machine

* A word processor, used to enter the question and answers and to make any

changes to the assembly language programs that were written to develop the

refresher (e.g., WORDSTAR)

" A copy of the following machine language programs:

- strip.com

- contccom

- alignexe

- count.com

- hexasc.com

- resident.com

- display.com

- testtemp.asm

- template.asm

- masm.exe

" If graphs are desired, then the graphs should be of the format of a highlighted

background with the actual graph or pictures in black. PCPAINT with a

mouse is ideal for this purpose. Also, simple basic programs can be written to

4

perform the same objective. Graphs are displayed in mode 4 (320 pixels by

200 pixels).

The following nine steps are used to develop the refresher.

STEP 1: Writing the questions and answers on a wordprocessor.

This step is the hardest and most time consuming of all the steps in the process

and should be taken with great care. The questions in the Calculus refresher are

designed to be answered with minimal computations, if any. Definitions, theorems,

and simple computational problems are the main focus of the Calculus refresher.

The refresher uses two control characters to control the flow of the program. The

square brackets, [and], are used to bracket the correct answers and * is used to

determine where graphs are to be located. (Sometimes * is not a convenient symbol

to use for graph control since it may be used in the questions and answers, as a

symbol for multiplication for example. If this is the case, then another character

that will not be used in any question or answers such as \ or @ can be used for the

graph control character in place of *. This new character is used to identify which

questions have a graph associated. In Step 8 a slight change is made so that the

refresher recognizes this new control character). Therefore, when writing questions

and proposed answers on the word processor, the characters [,], and * must not be

avoided.

When typing the questions and proposed answers using the word processor,

the correct answer should be placed between the brackets, I and], three lines after

the last proposed answer. Any amount of information can be placed between the

brackets, including a reference for the answer (see Figure 3.1).

Graphs may also he displayed with the questions to assist in developing an idea.

These are easily incorporated into the refresher by placing the control character *

for graph control in the space preceding the left bracket of the answer. If more than

one graph is needed for a question, then place the same number of graph control

characters (*'s) before the left bracket of the correct answer (see Figure 3.2).

The right bracket of the correct answer is the control character for where that

question ends and the following question begins. When using the word processor to

input questions and answers, if the next question begins on the line immediately after

the line containing the correct answer to the previous question, then the questions

will appear on the screen starting in the upper left corner. If a different starting

point is desired, say five lines from the top of the screen, then one should leave five

blank lines between the previous correct answer and the start of the new question.

These blank lines have the effect of moving the question down the screen. (see

Figures 3.3 and 3.4)

When writing the questions and answers, sometimes it is easier to work on sev-

eral shorter files. Each file, or submodule, contains a specific topic such as integra-

tion, differentiation, power series, etc. These submodules can then be concatenated

into one larger file. This approach is very reasonable and also very flexible. When

each submodule is completed, the following DOS command is given to concatenate

each submodule into the final file containing all the questions and answers:

COPY FILEl. DOC+FILE2.DOC+FILE3.DOC+FILE4.DOC FINAL.DOC

FINAL.DOC is the file which the assembly language programs will manipulate to

produce the refresher. As one final check, use the word processor to make sure that

where the files were joined together, the questions run in sequential order and that

the spacing between questions is correct.

In summary, the output of this step is a file called FINAL.DOC. Contained in

this file are all questions and possible answers followed in square brackets by the

correct answers and any other pertinent information.

6

1. Which of the following describes an even function?

a) f(x)= f(-x)

b) f(x) -f(-x)

c) f(x) -f(x)

d) none of the above

[a] or [a, ref. page 123, Berkey]

(Either answer in the square brackets is correct.)

Figure 3.1

2. Which of the following graphs is an even function?

a.) A

b.)B

c.) C

d.) D

*[b]

character is used to include a graph with this question.

(Program transfers control to a graph with four pictures on it.)

Figure 3.2

7

1. Which of the following describes an even function?

a) f(x) f(-x)

b) f(x) = -f(-x)

c) f(x) -f(x)

d) none of the above

[a]
2. Which of the following describes an odd function?

a) f(x) =-f(x)

b) f(x) -- f(-x)

c) f(x) f(-x)

d) none of the above

(With this format, question 2 will begin in the upper left corner of the screen.)

Figure 3.3

Questions with graphs are indicated by the * appearing in the space just before

the left bracket of the answer. Remember that the special characters *, [, and] must

not appear anywhere else except to indicate the presence of a graph and to bracket

an answer, respectively.

Before proceeding to Step 2, it is important to save a copy of the file FINAL. DOC.

The copy file FINAL. DOC is slightly altered during its transformation into a refresher.

8

1. Which of the following describes an even function?

a) f(x)= f(-x)

b) f(x) -f(-x)

c) f(x)-f(x)

d) none of the above

[a]

2. Which of the following describes an odd function?

a) f(x)--f(x)

b) f(x) -f(-x)

C) f(x) f(-x)

d) none of the above

(With this format, question 2 appears left justified and five
lines down from the top of the screen. This is used to center
the questions on the screen.)

Figure 3.4

9

Therefore, if any changes are to be made, adding questions for instance, then these

changes can be made to the original file FINAL.DOC, and not the copy file that was

transformed into the refresher.

STEP 2: Editing Step I.

The search and replace feature of the word processor is now used to place two

spaces before and after the brackets of the actual answer in the file FINAL. DOC. This

is needed to ensure that the program flows properly.

STEP 3: Editing Step II.

If the file FINAL. DOC was originally typed in document mode, extraneous car-

riage return/line feed pairs and other control characters may have been placed in

the document. This is done to make the original text look neat, but is not necessary

in the development of the refresher. Non-ASCII characters can be eliminated by

invoking the following command:

STRIP FINAL.DOC

The program STRIP. COM removes these extraneous control characters. A new file is

created, called FINAL. STR, which is then used to develop the refresher. An alterna-

tive method is to type the original document in the nondocument mode of the word

processor. By using the nondocument mode, the extraneous control characters are

not embedded in the file and thus Step 3 can be deleted.

The previous steps may seem to be very tedious in nature. Unfortunately,

there is no simple way around this.

The following steps are the critical part of the programming to transform the

file FINAL.DOC into the refresher and, fortunately, are very automated.

10

STEP 4: Preparing the questions.

In order to display only the question and putative answers and not the actual

answer, a control C (^C or 03h) is placed just before each left bracket of the actual

answer. The program CONTC.COM is designed to perform this task. The following

command is used:

CONTC FINAL.STR

or

CONTC FINAL.DOC

After the program CONTC .COM is run, the control C characters are placed in the

space just prior to the left bracket of the actual answer in the file FINAL.STR (or

the file FINAL.DOC) (see Figure 3.5).

1. Which of the following describes an even function?

a) f(x)= f(-x)

b) f(x) =-f(-x)

c) f(x) = -f(x)

d) none of the above

^C[a]

(File FINAL.DOC updated with control C placed before left bracket
of correct answer.)

Figure 3.5

11

STEP 5: Blocking the output.

This step involves aligning the file FINAL.DOC in blocks of 128 bytes. This is

accomplished by adding spaces after the right bracket of the correct answer so that

each question/answer pair uses a multiple of 128 bytes. This is done in order to ease

in the random selection of the questions. It is of the utmost importance that we

know where each question begins and ends so that the refresher functions properly.

The program ALIGNM.XE accomplishes this task. The program is invoked by using

the following command:

ALIGN FINAL.STR

or

ALIGN FINAL.DOC

In a few seconds, a new file called FINAL.ALI is created. This file contains the

questions and answers in aligned form that the refresher will use.

STEP 6: Separating question blocks.

The next step is to count how many 128 byte blocks are used in each question

and to record these numbers. This data is used to determine where each question

starts and how long it is. The programs COUNT. COM and HEXASC. COM are used for

this purpose on the file FINAL.ALI. Type the following command:

COUNT FINAL.ALI

Before this program executes, the following message appears "Enter the hex word

for the offset from earlier portions of the program (4 hex digits)." Respond by

entering four zeros (0000).

12

DW 0000

DW 0002H,0004H,0006H,0008H,OOOAH,OOOBH,000CH,OOOEH

DW O00FH,OO12HO0014H,0016H,0018H,00IAHOOICH,0O1DH

DW 0020H,002l1H,0025H,0028H1 0029H,OO2AH,0O2BH,OO2CH

DW OO2EH,0030H, 0032H,0035H,0036H,0037H, OO3AH, OO3CH

DW OO3DH, OO3EH, 0040H,0043H,0046H,0048H, OO4AH,OO4CH

DW OO4EH,0050H,0052H,0054H,0056H,0058H,OO5BH,005DH

DW OO5FH,0061H,0063H,0065H,0067H,0069H,OO6CH,0070H

DW 0073H, 0075H,0077H,0079H,OO7BH,OO7DH,OO7EH, 0080H

DW 0082H,0084H,0086H,0088H,OO8AH,OO8CH,OO8EH,OO8FH

DW 0092H,0093H,0095H,0097H,0098H,0O9AH,OO9BH,OO9CH

DW OO9EH,OOAOH,OOA2H,OOA4H,OOA6H,OOA8H,OOAAH,OOACH

DW OOADH, OOAFH, OOB1H,OOB3H,OOB5H,OOB7H, OOB9H,OOBAH

DW OOBBH, OOBCH, OOBEH SOOCOH,OOC2H, OOC4H,00C6H,OOC8H

DW OOCAH,OOCCH,OOCDH,OOCFH,OODOH,00D2H

(file FINAL. AAA)

Figure 3.6

13

A new file called FINAL .CNT is created. This new file contains the data that

is needed but in hex format. The refresher needs this information in ASCII format.

To transform the data from hex format to ASCII format, the following command is

used:

HEXASC FINAL.CNT

This creates the file FINAL.AAA. The file FINAL.AAA contains the data which will be

used in the refresher (see Figure 3.6).

This data is used to determine the random access for the .ALI file. The hex

words are the starting addresses of each question. The length of each question (in

128 long blocks) is the difference between consecutive entries. For example, question

3 starts in address 0004H and is two blocks long (the difference between 0006H and

0004H).

At this point in the procedure, the two files that will be used in the refresher

are FINAL. ALI and FINAL. AAA.

STEP 7: Producing graphs.

This step is used to incorporate the graphs that will be used in the refresher.

If the refresher contains no graphs, skip Step 7 and proceed to Step 8.The graphs

used in the refresher have a white background with the actual graph either colored

or black. There are two simple ways to accomplish this, however they are not the

only ways.

The first way is to use the program PCPAINT with a mouse. By using the

draw commands in PCPAINT, graphs are generated quickly and easily. The DOS

graphics mode used by PCPAINT is mode 4 (320 pixels by 200 pixels). This may

seem crude, however, it makes simple graphs that are quite useful.

14

A second way to generate graphs easily is by writing a basic program to draw

the graphs on the screen. By using some of the following basic commands, color,

line, set, pset, circle etc., simple graphs are quickly produced.

In order for the refresher to use the the graph generated above, a 'snapshot'

of the graph must be taken from the screen. This is accomplished by the program

RESIDENT. COM. This is a terminate and stay resident program. (A terminate and

stay resident program is loaded into computer memory and terminates. It will

not execute until a "hot key" is pressed to call it into action.) The "hot key" for

RESIDENT. COM is the print screen key. Before the graph is generated on the screen,

type the following command:

RESIDENT

This loads the program RESIDENT. COM in memory and it will run when the print

screen key is pressed on the keyboard.

The next step is to generate the graph on the screen. When the desired graph

is on the screen, press the print screen key. A new file, VIDRAM.DTA of length 16k, is

created which contains the 'snapshot' of the graph on the screen. After VIDRAM. DTA

is created, the system is rebooted to restore the original DOS pointers and to guar-

antee full DOS compatibility. After the reboot, VIDRAM.DTA is renamed to VID. 000.

If other graphs are desired for subsequent questions, the same procedure is fol-

lowed. However, when renaming the 'snapshot' file VIDRAM.DTA, the file extension

is changed to 001, 002 etc. As an example, if only questions 17, 38, 43 and 79 had

graphs, then the graph for question 17 would be named VID .000. The graph for

question 38 would be renamed from VIDRAM. DTA to VID. 001, the graph for question

43 would be renamed from VIDRAM.DTA to VID. 002 and the graph for question 79

15

would be renamed from VIDRAM . DTA to VID. 003. The process of renaming graphs is

crucial before the next 'snapshot' is taken to avoid writing over the file VIDRAM. DTA.

Since the majority of the graph consists of white background space, the files

VID. *** can be compacted to save on disk space. The program DISPLAY. COM com-

pactifies the 16K VID. *** files and renames them as PAK.*** files which are ap-

proximately 3K long. To accomplish this task, the following command is used:

DISPLAY VID.000

Repeat the process until all the VID.*** files are compacted to PAK.*** files. The

refresher uses the compacted PAK.*** files in its presentation.

STEP 8: Organizing the process flow.

In this step, changes are made to the shell program. The shell program controls

such things as the color that is displayed on the monitor, clearing the monitor

after each question, displaying a new question, etc. The changes are necessary to

accommodate the specifics of the refresher, such as total number of questions, the

name of the file which contains the questions and answers, which question has a

graph, etc. There are two versions of the shell program.

In the first version, the refresher prompts the user for a question number.

This version is used mainly by the author of the refresher as a test to check that

the questions are aligned properly on the screen and to ensure that the graphs are

matched with the proper questions. The file TESTTEMP. ASM is the shell program

used for this version.

The second version of the assembled refresher differs from the first in that a

random integer generator is incorporated into the program. This is used to choose

questions to appear on the screen in random order. It is this version that should

16

be given to the students to sharpen their skills. The file TEMPLATE. ASH is the shell

program used for this version.

The following information is needed to change the shell program:

" the total number of questions (from Step 1)

" the file FINAL.ALI (from Steps 2 thru 5)

" the file FINAL. AAA (from Step 6)

If graphs are used, the following is also required:

" the questions which have a graph (from Step 1)

" the total number of graphs

* the new control character for graphs, if * was not used.

The following changes are common to both shell programs, TESTTEHP.ASM

and TEMPLATE. ASM. The changes are accomplished to the shell program with a word

processor in the nondocument mode.

On line 46, replace MC2.ALI with the name of the .ALI file created in Step 5.

In this example FINAL.ALI is placed on line 46 (see Figure 3.7).

On line 58, replace MC2.AAA with the .AAA file created in Step 6. In this

example, FINAL.AAA is placed on line 58 (see Figure 3.8).

If graphs were used in the refresher, place the number of the question(s) which

had a graph(s), on line 67. For example, if questions 17, 38, 43, and 79 had graphs,

then change line 67 from DB 255 to DB 17, 38, 43, 79, 255 (255 is a number

used by the program for proper flow). The corresponding PAK files are PAK.000,

PAK.001, PAK.002, and PAK.003 (see Figure 3.9). (If question 17 needed three

17

graphs, then 17 would appear three consecutive times on line 67 and there would

be three corresponding *'s in question 17 in the aligned file, FINAL.ALI.)

On line 72 enter the total number of graphs that will be used in the refresher

in decimal format. In the example above, a 4 is placed on line 72 (see Figure 3.10).

The last change that needs to be made is to change the message that initially

appears on the screen, the INMSG. The INMSG starts on line 19. The message

should contain pertinent information for the specific refresher, i.e. the course title,

date, any particular instructions or messages, etc. The message is typed inside single

quotation marks, a line at a time. Before the first quotation mark, type DB. After

the last quotation mark, type a ,13,10. These are used for line feed and carriage

return (see Figure 3.11).

In addition to the above changes, the following changes are made specifically to

the file TESTTEMP.ASM. On line 154, input a number equal to 1 less than the number

of questions in the refresher in hex format, not decimal format. For example, if the

refresher had 90 questions, then 59H (59H = 89 decimal) and not 90, is placed on

line 154 (see Figure 3.12). The number input on line 154 is one less than the actual

number of questions because the questions start at 000 and not at 001.

18

line 46 in original file

;.
;in place of the MC2 . ALI file, insert your FILE. ALI

FILEX DB 'MC2.ALI',13

;.
line 46 in updated file

;.
;in place of the MC2 . ALI file, insert your FILE. ALI

FILEX DB 'FINAL.ALII, 13
.

Figure 3.7

Line 58 in original file

.
;in place of the MC2 . AAA file, insert your file. AAA

INCLUDE MC2.AAA

;.
line 58 in updated file

;.
;in place of the MC2 . AAA file, insert your file.AAA

INCLUDE FINAL.AAA

Figure 3.8

19

line 67 in original file

;
;Refer to Step 8. Place the number of the question which has a graph on
;line 67. Place them in ascending order. Leave 255 at the end of the list.

PICDAT DB 255

S..........

line 67 in updated file

; , o.........................
;Refer to Step 8. Place the number of the question which has a graph on
;fine 67. Place them in ascending order. Leave 255 at the end of the list.

PICDAT DB 17,38,43,79,255
......

Figure 3.9

line 72 in original file
; ...
;change the 0 to the number of graphs in use (not counting 255)

PICCNT DB 0 ;THE NUMBER OF PICTURES
S..

line 72 in updated file
. ,........................

;change the 0 to the number of graphs in use (not counting 255)

PICCNT DB 4 ;THE NUMBER OF PICTURES
.

Figure 3.10

20

line 19 in original file

;..

INNSG DB 'PRESENTATION QUESTIONS IN SELECTED ORDER',13,1O,13,iO

change INMSG as appropriate

..

line 19 in updated file

;..

INMSG DB 'WELCOME TO THE CALCULUS Rr'FRESHER' ,13,10

DB 'VERSION 1.0 24 MAY 1990',13,10,13,10

change INMSG as appropriate

..

Figure 3.11

21

line 154 in original file

;..

;Replace the FFh by the hex number of questions(less one). This
;number is initially set at its maximum (255).

CMP AL,FFH ;THE NUMBER OF QUESTIONS

......

line 154 in updated file

;..........................

;Replace the FFh by the hex number of questions(less one). This
;number is initially set at its maximum (255).

CMP AL,59H ;THE NUMBER OF QUESTIONS

...

Figure 3.12

If the control character for graphs was changed from * to \ for example, the

following changes are necessary. On line 281, replace the * to \. On line 451, the

same change is made (see Figure 3.13).

To change the opening message to reflect the number of questions in the re-

fresher, line 33 must be updated. The number of questions in line 33 is one less

than the actual number of questions. Enter the appropriate number as a three digit

number, i.e., 089 rather than 89 if there are 90 questions used. It is one less because

the first question is located in position 000 rather than at 001 (see Figure 3.14).

When these changes are made to TESTTEMP.ASM, save them and exit to DOS.

22

line 281 in original file

;..
;If flag for graphs is to change, replace * in line 281 with new
;flag such as \. see line 451 for a similar change.

DISP22: CMP AL, '*' ;CHECK IF QUESTION HAS A GRAPH

;..

line 281 in updated file

;..
;If flag for graphs is to change, replace * in line 281 with new
;flag such as \. See line 451 for a similar change.

DISP22: CMP AL, '\' ;CHECK IF QUESTION HAS A GRAPH

;o..... o..

line 452 in original file

..,,.
;If flag was changed in line 281, then make same change to line
;451 (replace * with \ for example)

CMP AL,'* ;ARE THERE MORE GRAPH PAGES?

..

line 452 in updated file

;
;If flag was changed in line 281, then make same change to line
;451 (replace * with \ for example)

CMP Al '\' ;ARE THERE MORE GRAPH PAGES?

...................................

Figure 3.13

23

line 33 in original file

;.....

;Replace the 135 by one less than the LAST question number.

DB '(000 THROUGH 135;THE NUMBERS DO NOT ALWAYS',13,10

.. ... ,..........

line 33 in updated file

..... ...

;Replace the 135 by one less than the LAST question number.

DB '(000 THROUGH 089;THE NUMBERS DO NOT ALWAYS',13,10

..

Figure 3.14

In addition to the initial changes, the following changes must be made specif-

ically to the file TEMPLATE. ASM.

On line 196 and line 198, input the actual number of questions in the refresher

in hex format, not decimal format. For example, if the refresher had 104 questions,

then 68H is placed on lines 196 and 198. These lines update the the random number

generator for version two of the refresher (see Figure 3.15).

If the control character for the graphs was changed from * to \ for example,

the following changes are also necessary. On line 274 change * to \. On line 446,

the same change is made (see Figure 3.13).

When these changes are made to TEMPLATE. ASM, save them and return to DOS.

24

lines 196-198 in original file

;

;In two places, change FFh to the hex number of questions.

;This is the random number generator.

GET1: CMP AL,FFH

JBE EXITi

SUB AL,FFH

.......................................

lines 196-198 in updated file

....

;In two places, change FFh to the hex number of questions.

;This is the random number generator.

GET1: CMP AL,68H

JBE EXITi

SUB AL,68H

......................................

Figure 3.15

25

STEP 9: Final assembly.

The final step in producing the refresher is to assemble it into an executable file.

Before any commands are given to assemble the refresher, make sure that the shell

program (TESTTEMP. ASM or TEMPLATE. ASH), the files FINAL. ALI and FINAL. AAA, the

PAK. *** files and MASM. EXE are in the same directory. To assemble the refresher the

following command is input:

MASM TESTTEMP

or

MASM TEMPLATE

While MASM. EXE is assembling the program, it will prompt for additional file names.

A carriage return at each prompt will suffice. After MASM. EXE is finished, the fol-

lowing command is typed:

LINK TESTTEMP

or

LINK TEMPLATE

Link will also prompt for file names. Again, carriage returns will suffice. After link

is through executing, the executable file is created, TESTTEMP. EXE or TEMPLATE. EXE.

At this point it is a good idea to rename the executable file to a file name which

corresponds to the name of the course the refresher was written for. This is accom-

plished by using the DOS command RENAME. As an example,

RENAME TEMPLATE.EXE MA1117.EXE

will change the name from TEMPLATE.EXE to MA1117.EXE. Now by typing MA1117

followed by a carriage return, the refresher begins.

26

IV. SUMMARY

The following outline is meant to be used as a reference when developing a

refresher.

* DEVELOP FILE OF QUESTIONS AND ANSWERS (FINAL.DOC)

* STRIP FINAL.DOC (IF NECESSARY)

e CONTC FINAL.DOC

* ALIGN FINAL.DOC (PRODUCES FINAL.ALI)

* COUNT FINAL.ALI (PRODUCES FINAL.CNT)

* HEXASC FINAL.CNT (PRODUCES FINAL.AAA)

9 UPDATE TEMPLATE.ASM OR TESTTEMP AS NECESSARY

e MASM TESTTEMP OR MASM TEMPLATE

* LINK TESTTEMP OR LINK TEMPLATE

If graphs are used, see Step 7 for instructions.

27

V. OPERATING INSTRUCTIONS

The following files are needed to be in the same directory for the refresher to

function properly:

e the executable file (MA1117.EXE)

e the aligned file (FINAL.ALI)

e the PAK.*** files

The refresher is started by typing the file name (MA 117). After the opening message

appears, press any key to proceed to the first question. When the question is

answered, press any key and the correct answer appears in red under the question.

To proceed to the next question, press any key. If a graph appears, press control Q

to toggle back to the question or control A to toggle to the answer. If control A is

pressed, press any key for the correct answer to appear, then any other key for the

next question. To end the refresher, press control C at any time.

28

VI. MISCELLANEOUS INSTRUCTIONS

Additionally, the following instructions may be of some use in developing the

refresher.

" If a question is more than one screenful in length, then the question is split up

using the 'MORE' command. In the file FINAL.ALI, change any unimportant

character to 02 (^b). This will cause the display to pause at that spot until

any key is pressed. To enter the 02 (^b), debug is used as most word processors

will not be up to the task. Otherwise, stick to a screenful at a time.

* If graphs are used in the refresher then the following programs may be used

to assist in developing the the graphs. The programs are used to view a graph

outside of the refresher environment.

- MODE3.COM

- MODE4.COM

- UDISPLAY.COM

- CHNGCOLS.COM

The graphs in the refresher are in mode 4. In mode 4, the screen is manipulated

pixel by pixel. When the computer initializes itself, it sets the mode to mode 3,

alpha-numeric. To change the mode of the computer to mode 4 so that a graph can

be seen outside the refresher, type

MODE4

The program MODE4.COM changes the mode from mode 3 to mode 4. By typing

29

UDISPLAY PAK.000

the PAK. 000 file will be displayed on the screen. To place the terminal into mode 3,

type

MODE3

The terminal will return to its original mode, mode 3.

" The program CHNGCOLS. COM is used to change any specific color to any other

specific color in mode 4. By typing

CHNGCOLS

the program prompts for color changes for use in the graphs.

" When typing the questions and proposed answers along with the correct an-

swer, the extended ASCII character set may be used. These are input by

holding the Alt Key and typing in the corresponding ASCII code. For exam-

ple, if the mathematical constant pi is to be displayed, then by holding the

Alt Key and typing 227, the symbol ir appears.

" If more than one refresher is to be placed on a diskette, then overlap of the

PAK.*** files will occur. This overlap occurs because the graph PAK. 000 will

be the first graph that will appear in each refresher on the diskette. To alleviate

this problem, rename all the PAK. *** files that belong to a particular refresher

to DAK.*** files. (This renaming is anything appropriate, such as CAK.*** or

HAK.***). In addition, the shell program needs to be updated to reflect this

change. In the shell TESTTEMP.ASM, change the P on line 213 to a D. In the

shell program TEMPLATE. ASM, this change occurs on line 206.

30

VII. CONCLUSION

The main benefit of the refresher is for students to experience faster learning

and greater retention of course objectives. Observations have been made which

indicate that the use of refreshers have accomplished this goal. Professor Gordon

Latta of the Naval Post Graduate School has collected data on medical students

which confirm this. On average, medical students would take a difficult medical

exam ten times before passing it. By allowing students to study from refreshers

developed similarly to the calculus refresher, the medical students passed the exam

on their first try. Similar statistics should be kept on students who use the calculus

refresher.

Within the fra .,2 ork of the refresher, other uses may be developed. As an

example, each sr -n may be copied onto slides. These can be used to highlight

specific points of interest instead of questions and answers. By paging through

the screens in sequential order using the TESTTEMP. ASM shell, presentations can be

made. Another use is for organizing and storing lecture notes and lesson plans for

a class. If a new instructor teaches a class, he may refer to notes recorded by a

previous instructor using this method to help him organize and teach the class more

effectively.

With slight modifications, the questions that appear in random order can

also be printed. Hence, a test bank of questions and answers for exams could be

developed. If an instructor wanted to give a practice exam or a validation exam, he

could ask the refresher to print 40 or 50 questions aL random from the test bank.

This could then constitute the validation exam. In this way, time could be saved

by the instructor in preparing and grading an exam and each student would receive

31

a different exam. New questions could easily be added and old questions deleted to

keep the test bank current.

Following the framework described, many refreshers (on a variety of course

objectives) may be developed much to the benefit of students in the armed forces.

32

APPENDIX A

CODE SEGMENT PARA PUBLIC 'CODE'
FCB EQU O05CH
DTA EQU 0080H
OPENF EQU OFH ;OPEN FILE REFERENCED IN THE FCB
CLOSEF EQU 1OH ;CLOSE FILE
SRCHFRST EQU 11H ;SEARCH FOR FIRST OCCURRENCE
SRCHNEXT EQU 12H ;SEARCH FOR NEXT OCCURRENCE
DELETEF EQU 13H ;DELETE FILE
READS EQU 14H ;READ SEQUENTIALLY
WRITES EQU 15H ;WRITE SEQUENTIALLY

MAKEF EQU 16H ;MAKE FILE
SETDMA EQU 1AH ;SET DISK TRANSFER ADDRESS
PARSE EQU 29H ;PARSE FILENAME, SEE PG 5-71 TECH.REF
SELDSK EQU OEH ;SELECT DRIVE
ORG 0100H

START PROC FAR
ASSUME CS:CODE
ASSUME ES:CODE ;ES POINTS TO OUR PROG. SEGMENT
ASSUME DS:CODE ;NOW POINT DS TO OUR SEGMENT
CALL CRLF
MOV DX,OFFSET INMSG
MOV AH,9
CALL BDOS
CALL CRLF
MOV BX,OFFSET DTA
MOV AL,[BX)
OR ALAL
JNZ BEG

JMP ERR3
BEG: MOV DX, FCB
MOV AH,SRCHFRST
CALL BDOS
OR ALAL ;00 ->MATCHING FILENAME FOUND

JZ BEG1
JMP FNFERR
BEG1: MOV DX, FCB
MOV AH,0PENF
CALL BDOS ;OPEN THE FILE
MOV DX,OFFSET BUFFER

33

BEG2: PUSH DX
NOV AH,SETDMA
CALL BDOS
NOV AHREADS
NOV DX, FCB

CALL BDOS ;READ A SECTOR
OR ALAL
JZ BEG3
JMP ENTER ;WRITE BACK TO DISK
BEG3: POP DX
NOV SI,80H
ADD DX,SI

JMP BEG2 ;LOOP UNTIL EOF
ENTER: POP DX

ADD DX,80H
NOV BX,OFFSET BUFFER

SUB DX,BX

NOV CX,DX ;COUNT IS IN CX

NOV BX,OFFSET BUFFER
ENTERi: NOV AL, [BX)
AND AL,7FH ;STRIP NOW

NOV [BX) ,AL
INC BX
DEC CX

JNZ ENTER1
NOV BXFCB
NOV CX, WORD PTR 16[BX]
NOV DXWORD PTR 18[BX] ;THE BYTE COUNT

NOV BXCX
NOV CX,7

SHR BX,CL
NOV CX,9

SHL DXCL
ADD BX,DX ;BX HAS THE NUMBER OF RECORDS

INC BX ;TO ACCOUNT FOR FRACTIONS

NOV CX,BX ;THE COUNT IN RECORDS

NOV BX,FCB
NOV BYTE PTR 9[BX],'S'
NOV BYTE PTR 1O[BX],'T'

NOV BYTE PTR 11[BX],'R' ;NEW FILE TYPE IS STR

NOV BYTE PTR 32[BX],O ;RESET THE FILE

NOV AH,DELETEF

34

MOV DX,FCB
CALL BDOS ;REMOVE ANY EARLIER VERSIONS
MOV AHMAKEF
MOV DX,FCB
CALL BDOS ;CREATE THE FILE
MOV DX,OFFSET BUFFER
ELOOP: PUSH DX
MOV AH,SETDMA

CALL BDOS
MOV DX,FCB
MOV AH,WRITES

CALL BDOS
POP DX
NOV SI,80H
ADD DX,SI
DEC CX
JZ ELUP
JMP ELOOP
ELUP: MOV AH,CLOSEF
MOV DXFCB
CALL BDOS
INT 20H ;FAR RETURN, ALL DONE
FNFERR: MOV DX,OFFSET FNFMSG
MOV AH,9
CALL BDOS ;REPORT FILE NOT FOUND
CALL CRLF
INT 20H ;FAR RETURN
ERR3: MOV DX,OFFSET ERR3MSG
MOV AH,9
CALL BDOS
INT 20H ;FAR RETURN
CRLF PROC NEAR

PUSH DX
PUSH AX
MOV DL,ODH
MOV AH,02H
CALL BDOS ;DO A <CR> AND <LF>
MOV DLOAH
MOV AH,02H ;SAVING MOST REGISTERS
CALL BDOS
POP AX
POP DX

35

RET
CRLF ENDP
BDOS PROC NEAR
PUSH SI

PUSH ES

PUSH DX
PUSH CX
PUSH BX

INT 21H
POP BX
POP CX

POP DX
POP ES

POP SI
RET

BDOS ENDP
INMSG DB 'THIS PROGRAM STRIPS THE HIGH BIT FROM ASCII FILES',13,10
DB ' AND CREATES A NEW FILE WITH THE TYPE .STR',13,10
DB 'ENTER ANY KEY TO CONTINUE',13,10,'$'

FNFMSG DB 'FILE NOT FOUND, RETURNING TO DOS' ,13,10,'$'
ERR3MSG DB 'NO PARAMETERS ENTERED, RETURNING TO DOS',13,10
DB 'THE CORRECT FORMAT IS',13,10

DB 'STRIP FILE.NAM',13,10,13,10,'$'
BUFFER EQU $
START ENDP
CODE ENDS
END START

36

APPENDIX B

CODE SEGMENT PARA PUBLIC 'CODE'

ORG 0100H

ASSUME CS:CODE, ES:CODE,DS:CODE

START: JMP BEGIN

DTA EQU 80H

FCB EQU O05CH
OPENF DB OFH ;OPEN FILE REFERENCED IN THE FCB
CLOSEF DB 1OH ;CLOSE FILE

SRCHFRST DB 11H ;SEARCH FOR FIRST OCCURRENCE
SRCHNEXT DB 12H ;SEARCH FOR NEXT OCCURRENCE

DELETEF DB 13H ;DELETE FILE
READS DB 14H ;READ SEQUENTIALLY
WRITES DB 15H ;WRITE SEQUENTIALLY
MAKEF DB 16H ;MAKE FILE
SETDMA DB 1AH ;SET DISK TRANSFER ADDRESS
PARSE DB 29H ;PARSE FILENAME, SEE PG 5-71 TECH.REF
SELDSK DB OEH ;SELECT DRIVE
INMSG DB 'INSERTS CONTROL C CHARACTERS TO MARK ANSWERS' ,13,10
DB 'ENTER ANY KEY TO CONTINUE',13,10,'$'
FNFMSG DB 'FILE NOT FOUND, RETURNING TO DOS' ,13,10,'$'

ERR3MSG DB 'NO PARAMETERS ENTERED, RETURNING TO DOS',13,10
DB 'THE CORRECT FORMAT IS',13,10
DB 'CONTC FILE.NAM',13,10,13,10,'$'

LSAVE DW OOH
ADDR DB 4 DUP(O)

BEGIN: MOV DX,OFFSET INMSG

MOV AH,9
CALL BDOS
CALL CRLF
MOV AH,1
CALL BDOS
MOV BX, DTA
MOV AL,[BX)
OR AL,.AL
JNZ BEG
JMP ERR3

BEG: MOV DX, FCB
MOV AH,SRCHFRST
CALL BDOS

37

OR AL,AL ;00 ->MATCHING FILENAME FOUND
JZ BEGI
JMP FNFERR
BEGI: NOV DX, FCB
NOV AH,OPENF
CALL BDOS ;OPEN THE FILE
NOV DXOFFSET BUFFER
BEG2: NOV AH,SETDMA
INT 21H ; OPEN THE BUFFER FOR DATA TRANSFER
PUSH DX
NOV AH,READS
NOV DX, FCB
CALL BOOS ;READ A SECTOR
CNP AL,i
JNZ BEG3 ;1=>EOF
POP DX
ADD DX,80H
NOV AX,OFFSET BUFFER
SUB DX,AX
INC DX
NOV CX,DX

NOV WORD PTR LSAVE,DX ;SAVE FILE LENGHT
NOV BX,OFFSET BUFFER
BEG4: NOV AL,EBX)
CMP AL,5BH
JNZ BEG42
JMP FIXIT
BEG42: INC BX
DEC CX
BEG41: JNZ BEG4

NOV BX,0O5CH
NOV ALO
NOV 12(BX),AL
NOV 13[BX),AL
NOV 32 CBX).A ; ZERO OUT CURRENT RECORD AND BLOCK
NOV CX,WORD PTR LSAVE
NOV DX,OFFSET BUFFER
LAST: NOV AHSETDNA
INT 21H ; PREPARE TO WRITE THE FILE BACK
PUSH DX
NOV DX,FCB
NOV AH,WRITES

38

INT 21H
POP DX
ADD DX,80H

SUB CX,80H
JGE LAST
POP AX
NOV AHCLOSEF
NOV DXFCB
INT 21H ;CLOSE THE FILE AND GO HOME
INT 20H ; ALL DONE
BEG3: POP DX
ADD DX,80h

JMP BEG2 ;LOOP UNTIL EOF
FIXIT: DEC BX
MOV AL,03H
MOV [BX) ,AL
INC BX
INC BX
DEC CX
JMP BEG41
FNFERR: MOV DX,OFFSET FNFMSG
MOV AH,9
CALL BDOS ;REPORT FILE NOT FOUND
CALL CRLF
RET ;FAR RETURN
ERR3: NOV DX, OFFSET ERR3MSG
MOV AH,9
CALL BDOS
RET ;FAR RETURN
CRLF PROC NEAR

PUSH DX
PUSH AX
MOV DL,ODH
MOV AH,02H
CALL BDOS ;DO A <CR> AND <LF>
MOV DL,OAH
MOV AH,02H ;SAVING MOST REGISTERS
CALL BDOS
POP AX
POP DX
RET

CRLF ENDP

39

BDOS PROC NEAR
PUSH SI

PUSH ES
PUSH DX
PUSH CX
PUSH BX

INT 21H
POP BX
POP CX
POP DX
POP ES

POP SI
RET

BDOS ENDP
BUFFER EQU $
START ENDP
CODE ENDS
END START

40

APPENDIX C

STACK SEGMENT PARA STACK 'STACK'

DB 256 DUP(O)
STACK ENDS

DATA SEGMENT PARA PUBLIC 'DATA'
DSKMSG DB 'DISK FULL, RETURNING TO DOS$'
ADDR DB 4 DUP(0)
SIGNON DB 'FILE ALIGNMENT PROGRAM VERS. 1.1',10,13

DB 'READS MEDICAL ASCII FILES AND ',10,13
DB 'PADS TO A MULTIPLE OF 128 BYTES FOR',10,13
DB 'RANDOM ACCESS USE LATER.',10,13,'$'

CORRECTION DB 'THE CORRECT COMMAND IS',ODH,OAH

DB 'ALIGN FILE.NAM',ODH,OAH
DB 'START OVER$'

INERR1 DB 'INPUT ERROR, START OVERS'
BUFFER DB O080H DUP(O)
DB OOH,OOH

FCB DB 37 DUP(O)
FCB1 DB 37 DUP(O)

OPENF EQU 15
SELDSK EQU 14
SRCHFRST EQU 17

MAKEF EQU 22
READS EQU 20
SETDMA EQU 26

WRITES EQU 21

CLOSEF EQU 16
DELETEF EQU 19
COUNT DB 0
CHAR DB OAH ;DENOTES END OF ANSWER
BIGBUF DB OF400H DUP(O)
DATA ENDS
CODE SEGMENT PARA PUBLIC 'CODE'
START PROC FAR
ASSUME CS:CODE
PUSH DS

NOV AX,O
PUSH AX ;RETURF ADDRESS TO DOS
MOV AX,DATA
MOV ESAX

41

ASSUME ES:DATA ;POINT ES TO DATA SEGMENT FOR PARMS TRANSFER
NOV SI,SCH
MOV DI,OFFSET FCB
CLD

MOV CX,12
REP MOVSB ;FIRST,GET FILE NAME

MOV SIO080H
MOV DIOFFSET BUFFER
MOV CX,128
REP MOVSB ;THEN GET THE DEFAULT DMA BLOCK
MOV DSAX

ASSUME DS:DATA ;NOW GO TO OUR OWN DATA SEGMENT
BEG: MOV DX, OFFSET SIGNON

CALL PRINT
CALL CRLF
MOV BX,OFFSET BUFFER

NOV AL, [BX)
OR AL,AL
JNZ BEGI ;0-N0 FILE NAME ENTERED AT ALL
MOV DX,OFFSET CORRECTION
CALL PRINT
JMP EXITI ;REPORT THE OMISSION AND QUIT

BEGi: CALL CRLF
BEG3: MOV BX,OFFSET FCB

MOV DI,OFFSET FCB1
MOV CL,08H

BEG3LUP: INC BX

INC DI

NOV AL, [BX]
MOV [DI] ,AL
DEC CL
JNZ BEG3LUP ;COPY FILE NAME TO FCB1
INC DI
NOV AL,'A'

MOV [DI] ,AL
INC DI
NOV BYTE PTR (DI],'L'
INC DI
NOV BYTE PTR [DI] 'I'
MOV AHDELETEF ;DELETE ANY FILE WITH SAME ENTRY
NOV DXOFFSET FCB1
CALL DDOS

42

MOV AH,OPENF ;OPEN THE FILES
MOV DX, OFFSET FCB
CALL BDOS
MOV AH,MAKEF ;OR MAKE THEN AS APPROPRIATE
MOV DXOFFSET FCBI
CALL BDOS ;OPEN BOTH FILES

MOV DX,OFFSET BUFFER
MOV AH,SETDMA
CALL BDOS ;SET DMAADD FOR DISK TRANSFER

MOV DIOFFSET BIGBUF ;FOR THE REPLACE FILE
RLUP: MOV BX,OFFSET BUFFER
RLUPO: CALL FLUP ;READ IN ONE SECTOR TO DMAADD

MOV CH,80H
RLUPI: NOV AL, [BX)

CMP AL,03H

JNZ RLUP2
JMP FIXIT2
JMP RLUP3 ;TRANSFER TO BIGBUF, REPLACING AS WE GO

RLUP2: MOV [DI] ,AL
RLUP3: INC BX

INC DI

DEC CH
JNZ RLUP1 ;BY HERE, THE SECTOR IS NOW IN BIGBUF
JMP RLUP

WLUP: MOV AL,iAH

MOV [DI) ,AL
INC DI
MOV [DI] ,AL ;APPEND TWO ^Z=IAH FOR EOF
MOV BX,OFFSET BIGBUF
SUB DI,BX ;DI NOW EQUALS LENGTH OF FILE IN BYTES
MOV CL,7
SHR DI,CL ;DIVIDE BY 128

INC DI ;DI NOW EQUALS THE NUMBER OF SECTORS
;IN THE FILE, TO BE WRITTEN

PUSH DI ;SAVE THE RECORD COUNT

MOV AHSETDMA
NOV DX,OFFSET BIGBUF
CALL BDOS ;NEW DAADD FOR FILE TRANSFER

POP DI
MOV SIOFFSET BIGBUF ;POINTER FOR DMAADD
PUSH SI

WLUPI: MOV DX,OFFSET FCB1

43

MOV AHWRITES
PUSH DI ;SAVE COUNT

CALL BDOS
POP DI
OR ALAL
JZ WLUP2

JMP DISKFULL
WLUP2: POP SI

ADD SI,80H
MOV DX,SI
PUSH SI
PUSH DI
MOV AHSETDMA ;INCREMENT THE DTA THROUGH BIGBUF

CALL BDOS
POP DI
DEC DI
JNZ WLUPI

POP SI
MOV AHCLOSEF
MOV DX,OFFSET FCB1

CALL BDOS ;FILE TRANSFERED AND CLOSED
RET ;RETURN TO DOS, TRANSFER COMPLETED

FIXIT2: MOV AL,[BX]
CMP ALCHAR
JNZ FIXIT1

FIXIT21: PUSH CX
CALL SPACFILL

FIXIT211: MOV [DI],AL
MOV AL,'
INC DI
DEC CH
JNZ FIXIT211
POP CX
INC BX ;POINT PAST THE LF
DEC CH
JNZ FIXIT212
JMP RLUP

FIXIT212: JMP RLUPI
FIXITI: MOV (DI],AL

INC BX
INC DI
DEC CH

44

JNZ FIXIT2
NOV BXOFFSET BUFFER
CALL FLUP
NOV CH,80H
JNP FIXIT2
SPACFILL PROC NEAR

PUSH AX
PUSH BX
NOV BX,OFFSET BIGEUF
NOV AX,DI
SUB AX,BX
AND AL,7FH
NOT AL
INC AL
AND AL,7FH
NOV CH,AL
POP BX
POP AX
RET

SPACFILL ENDP
FLUP PROC NEAR

PUSH DI
NOV AHSREADS ;ROUTINE TO READ ONE SECTOR TO DTA
NOV DX,OFFSET FCB
CALL BDOS
CNP AL,1
JZ EXIT
POP DI
RET

EXIT: POP DI
POP AX ;FIX UP THE STACK

JMP WLUP
FLUP ENDP
CRLF PROC NEAR
PUSH DX
PUSH CX
PUSH BX
PUSH AX

NOV DL,ODH
NOV AH,02H
lINT 21H ;DO A <CR> AND <LF>
NOV DLOAH

45

NOV AH,02H

INT 21H

POP AX
POP EX
POP Cx
POP DX

RET
CRLF ENDP
CONOUT PROC NEAR ; CONSOLE OUTPUT WITH PAUSE
PUSH DX
PUSH CX

PUSH BX
PUSH AX

NOV AH,06H ;TEST FOR INPUT

NOV DL,OFFH
INT 21H

OR AL,AL ;AL-1 IF KEY PRESSED, ELSE 0

JNZ PAUSE
OUTI: POP AX

PUSH AX

NOV DL,AL
MOV AH,02H

INT 21H
POP AX

POP BX

POP CX

POP DX
RET

PAUSE: NOV AH,06H

NOV DL,OFFH
INT 21H

OR AL,AL
JZ PAUSE
imp OUTi

CONOUT ENDP
PRINT PROC NEAR
PUSH AX
PUSH BX
PUSH CX

PUSH DX
NOV AH,09H
INT 21H ;CALL HERE WITH DX-OFFSET MESSAGE

46

POP DX
POP CX
POP BX
POP AX
RET
PRINT ENDP
DISKFULL: POP SI

NOV DXOFFSET DSKMSG
CALL PRINT

JMP EXITI
BDOS PROC NEAR
PUSH BX
PUSH CX
PUSH DX

PUSH ES

INT 21H

POP ES
POP DX
POP CX
POP BX

RET
BDOS ENDP
EXITI: RET ;FAR RETURN, HOPEFULLY

START ENDP
CODE ENDS
END START

47

APPENDIX D

CODE SEGMENT PARA PUBLIC 'CODE'

FCB EQU O05CH

DTA EQU 0080H

OPENF EQU OFH ;OPEN FILE REFERENCED IN THE FCB

CLOSEF EQU 10H ;CLOSE FILE

SRCHFRST EQU 11H ;SEARCH FOR FIRST OCCURRENCE

SRCHNEXT EQU 12H ;SEARCH FOR NEXT OCCURRENCE

DELETEF EQU 13H ;DELETE FILE
READS EQU 14H ;READ SEQUENTIALLY
WRITES EQU 15H ;WRITE SEQUENTIALLY

MAKEF EQU 16H ;MAKE FILE

SETDMA EQU 1AH ;SET DISK TRANSFER ADDRESS

PARSE EQU 29H ;PARSE FILENAME, SEE PG 5-71 TECH.REF

SELDSK EQU OEH ;SELECT DRIVE
ORG 0100H
START PROC FAR

ASSUME CS:CODE

ASSUME ES:CODE ;ES POINTS TO OUR PROG. SEGMENT

ASSUME DS:CODE ;NOW POINT DS TO OUR SEGMENT

CALL CRLF

MOV DX,OFFSET INMSG

MOV AH,9

CALL BDOS
CALL CRLF
MOV DX,OFFSET MSG1
MOV AH,9
CALL BDOS
CALL CRLF

CALL IN4

CALL CONV4

MOV WORD PTh SHIFT,DX ;SAVE THE SHIFT OFFSET

MOV BX,OFFSET DTA

MOV AL, [BX]

OR AL,AL

JNZ BEG

JMP ERR3

BEG: MOV DX, FCB
MOV AH, SRCHFRST
CALL BDOS

48

OR ALAL ;00 -->MATCHING FILENAME FOUND

JZ BEGI
JMP FNFERR
BEGI: MOV DX, FCB
MOV AHOPENF
CALL BDOS ;OPEN THE FILE

NOV DX,OFFSET BUFFER
BEG2: PUSH DX
MOV AH,SETDMA
CALL BDOS ;OPEN BUFFER FOR DMA
MOV AHREADS
NOV DX, FCB
CALL BDOS ;READ A SECTOR
CMP AL,1
JNZ BEG3
JMP ENTER ;DONE LOADING, NOW COUNT RECORDS
BEG3: POP DX
MOV SI,80H

ADD DX,SI
JMP BEG2 ;LOOP UNTIL EOF
ENTER: POP DX
ADD DX,80H ;WHOLE FILE NOW INCLUDED
MOV BX,OFFSET BUFFER ;THE FILE BEGINNING
SUB DX,BX ;FILE LENGTH IN DX

MOV SI,OFFSET CNTBUF
ENTER2: MOV AL,[BX] ;READ THE BUFFER FOR CNTL-C
CMP AL,03H

JZ ENTEi1
INC BX
DEC DX
JNZ ENTER2
JMP ENTER21
ENTERI: MOV AL, [BX]
CMP AL,OAH
JZ ENTERll
INC BX

JMP ENTERI
ENTERI1: MOV AX,BX
SUB AX,OFFSET BUFFER
NOV CX,7

SHR AX,CL
INC AX

49

ADD AX,WORD PTR SHIFT
NOV [Si) ,AX

INC SI
INC SI
INC BX
JMP ENTER2
ENTER21: MDV AX, OFFSET CNTBUF
SUB SI ,AX ;LENGTH OF COUNT BUFFER
NOV CX,SI

NOV BX,FCB
NOV AL,'C'
NOV 9[BX] ,AL
NOV AL,'N'
NOV iO[BX),AL

NOV AL,'T'
NOV 11(BX),AL

NOV AL,O
NOV 32 [BXJ ,AL
NOV 12[BX),AL
NOV 13 EBX),A ; REMOVE ANY EARLIER VERSIONS
NOV AH,MAKEF
NOV DX,FCB
CALL BDOS ;CREATE THE FILE
NOV DX,FCB,
NOV AH,OPENF
INT 21H
NOV DXOFFSET CNTBUF
ELOOP: PUSH DX
NOV AH,SETDNA

CALL BDOS

NOV DX,FCB
NOV AH,WRITES

CALL BDOS
POP DX

NOV SI,80H
ADD DX,SI
SUB CX,80H

JNS ELOOP
ELUP: NOV AH,CLOSEF

NOV DX,FCB
CALL BDOS
INT 20H ;FAR RETURN, ALL DONE

50

FNFERR: NOV DX,OFFSET FNFMSG
NOV AH,9
CALL BDOS ;REPORT FILE NOT FOUND
CALL CRLF
INT 20H ;FAR RETURN
ERR3: NOV DX,OFFSET ERR3MSG
NOV AH,9
CALL BDOS
INT 20H ;FAR RETURN
ZCAH PROC NEAR

SUB AL,30H ;CONVERT ASCII BYTE IN AL TO HEX DIGIT IN AL
JB ERR2
CMP AL.OAH
JNB ZCAH1 ;ON RETURN, 20H a ERROR CONDITION
RET

ZCAHI: SUB AL,07H ;USES AL ONLY
CMP AL.OAH
JB ERR2
CMP ALiOH
JNB ERR2
RET

ERR2: NOV AL,20H
RET

ZCAH ENDP
ZCHA PROC NEAR

AND ALOFH ;CONVERT HEX DIGIT IN AL TO ASCII BYTE IN AL
ADD AL,90H
DAA
ADC AL.40H ;DIGIT IS IN LOW NYBBLE
DAA
RET ;OPTIMIZED SUBROUTINE

ZCHA ENDP
ZEN PROC NEAR

NOV CL,04H ;EXCHANGE NYBBLES
ROL ALCL
RET ;USES CLAL

ZEN ENDP
CRLF PROC NEAR

PUSH DX
PUSH AX
NOV DL.ODH

NOV AH02H

51

CALL BDOS ;DO A <CR> AND <LF>

MOV DL,OAH
MOV AH,02H ;SAVING MOST REGISTERS

CALL BDOS

POP AX
POP DX

RET
CRLF ENDP

CONV4 PROC NEAR
MOV BXOFFSET ADDR ;AFTER IN4, CONVERTS 4 ASCII BYTES

NOV CH,4 ;INTO A 2 BYTE ADDRESS (WORD)
CONV4A: NOV AL, [BX]

CALL ZCAH ;USES AL,BX,CX
AND AL,OFH

NOV CL,4H
SHL DX,CL
OR DLAL

INC BX
DEC CH
JNZ CONV4A

RET ;RETURN WITH HEX ADDRESS IN DX

CONV2: MOV BX,OFFSET ADDR
MOV CH,2

CONV2A: MOV AL, [BX] ; AS ABOVE, ONLY AFTER IN2
CALL ZCAH

AND AL,OFH
MOV CL,4H
SHL DX CL
OR DL,AL

INC BX
DEC CH
JNZ CONV2A
RET

CONV4 ENDP
IN4 PROC NEAR

MOV BX,OFFSET ADDR ;GETS 4 ASCII BYTES INPUT FROM
CALL ZIN ;KEYBOARD, STORING SAME IN ADDR

MOV [BX) ,AL
INC BX
CALL ZIN

MOV [BX) ,AL
INC BX

52

CALL ZIN
NOV [BX] ,AL
INC BX
CALL ZIN
MOV [BX) ,AL
CALL CRLF
RET

IN2: MOV BX,OFFSET ADDR ;SEE ABOVE
CALL ZIN
MOV [BX] AL
INC BX
CALL ZIN
MOV [BX] ,AL

RET
IN4 ENDP
ZIN PROC NEAR

MOV AH,01H
CALL BDOS
RET

ZIN ENDP
BDOS PROC NEAR
PUSH SI

PUSH ES
PUSH DX
PUSH CX
PUSH BX

INT 21H
POP BX
POP CX
POP DX
POP ES

POP SI
RET

BDOS ENDP
MSG1 DB 'ENTER THE HEX WORD FOR THE OFFSET FROM EARLIER',13,10

DB 'PORTIONS OF THE PROGRAM (4 HEX DIGITS)',13,10,'$'
INMSG DB 'THIS PROGRAM COUNTS THE NUMBER OF RECORDS', 13,10
DB ' OF 128 BYTES FOR USE IN RANDOM ACCESS FILES' ,13,10,'$'
FNFMSG DB 'FILE NOT FOUND, RETURNING TO DOS',13,10,'$'
ERR3MSG DB 'NO PARAMETERS ENTERED, RETURNING TO DOS' , 13,10
DB 'THE CORRECT FORMAT IS',13,10
DB 'COUNT FILE.NAM',13,10,13,10,'$'

53

SHIFT DH OOH
ADDR DE 8 DUP(O)
DB 0
CNTBUF DW 512 DUP(O)
BUFFER EQU $
START ENDP
CODE ENDS
END START

54

APPENDIX E

FCB EQU O05CH

DTA EQU 0080H
CODE SEGMENT PARA PUBLIC 'CODE'
ORG 0100H
START PROC FAR
ASSUME CS:CODE
ASSUME ES:CODE
ASSUME DS:CODE ;ESTABLISH OUR DATA SEGMENT
MOV BX,OFFSET DTA ;CHECK HERE FOR PARAMETER

MOV AL, [BX)
OR ALAL ;IF ZERONO PARM ENTERED

JNZ STEP1
JMP INERR ;IN WHICH CASE FLAG AN INPUT ERROR

STEPI: MOV DX,OFFSET DESCMSG
MOV AH,9
CALL BDOS
CALL CRLF
MOV AH,1
CALL BDOS

CALL CRLF

MOV DX,OFFSET FCB
MOV AH,17 ;SEARCH FOR FIRST
CALL BDOS ;SEE IF THE FILE EXISTS
INC AL
JNZ STEP2 ;O=FILE NOT FOUND
JMP FNFERR ;REPORT IF NOT FOUND

STEP2: MOV DI,OFFSET FCB2+1
MOV SI,OFFSET FCB+I
MOV CX,8
REP MOVSB ;COPY FILE NAME FROM INPUT PARM
MOV DI,OFFSET FCB2+9
MOV AL,'A'
MOV (DI] ,AL
INC DI
NOV [DI] ,AL

INC DI
MOV [DI] ,AL ;MAKE FILE TYPE AAA-ASCII

STEP3: MOV DX,OFFSET FCB
MOV AH,15 ;OPEN FILE

55

CALL BDOS ;OPEN INPUT FILE
MOV DX,OFFSET FCB2
MOV AH,17 ;SEARCH FOR FIRST
CALL BDOS ;SEE IF SUCH A FILE ALREADY EXISTS

INC AL

JZ STEP31
MOV DXOFFSET FCB2

MOV AH,19
CALL BDOS ;DELETE OLD FILE

STEP31: MOV DX,OFFSET FCB2
NOV AH,22 ;MAKE FILE
CALL BDOS ;CREATE THE ASCII FILE
MOV BX,OFFSET BUFFERI
MOV WORD PTR LOCALB,BX ;SAVE OFFSET INTO BUFFER IN LOCALB

STEP4: NOV DX,OFFSET FCB
MOV AH,20
CALL BDOS ;READ SEQUENTIAL
CMP ALl
JNZ STEP41
JMP STEP5 ;END OF FILE

STEP41: MOV BX,OFFSET LOCALB

MOV BX, [BX) ;GET BUFFER OFFSET IN BX
MOV DH,40H ;DMABUFER LENGTH IN WORDS

MOV DL,08H ;COUNTER FOR <CR>,<LF>
MOV SI,OFFSET DTA

STEP42: MOV AL,'D'

MOV [BX],AL
INC BX
MOV AL,'W'
MOV [BX ,AL
INC BX
MOV AL,'

MOV [BX] ,AL
INC BX
STEP421: MOV AX, [SI) ;TRANSFER HEX BYTE FROM DMAADD
OR AX,AX
JNZ STEP422
JMP STEPSO
STEP422: CALL WORDASC ;CONVERT IT TO ASCII BYTES

INC SI
INC SI
DEC DL

56

JNZ STEP43 ;UNTIL END OF DMABUFFER
DEC BX ;DELETE THE LAST COMMA

NOV AX,OAODH
NOV [BX],AX ; CR+LF
INC BX

INC BX ;ADD A CR,LF EVERY 8 WORDS
NOV DL,8 ;RESET CRLF COUNTER
DEC DH

JZ STEP431
JMP STEP42
STEP43: DEC DH

JMP STEP421
STEP431: NOV WORD PTR LOCALB,BX

JMP STEP4 ;GET NEXT SECTOR AND REPEAT
STEP50: DEC BX
NOV AX,OAODH

NOV [BX ,AX
INC BX
INC BX
NOV WORD PTh LOCALB,BX
STEP5: NOV BX,OFFSET LOCALB

NOV BX, [BX]
NOV AL,1AH ;AT END OF FILE FILL WITH -Z
NOV CL,OFFH

STEP51: NOV [BX],AL
INC BX
DEC CL
JNZ STEP51
NOV BX,OFFSET BUFFER

NOV WORD PTR LOCALB,BX
NOV DXBX ;GET NEW DMAADD FROM BUFFER

STEP52: NOV AH,26
CALL BDOS
NOV DX,OFFSET FCB2 ;AND WRITE SEQUENTIAL
NOV AH,21
CALL BDOS
NOV BX,LOCALB
ADD BX,80H ;ADVANCING THE DMAADD AS WE GO
NOV WORD PTR LOCALB,BX
NOV DXBX

NOV AL, [BX]
CMP AL, 1AH ;CHECK EACH NEW SECTOR FOR EOF MARK

57

JZ STEP53
JNP STEP52 ; AND WRITE UNTIL EOF IS ENCOUNTERED

STEP53: NOV DX,OFFSET FCB2
NOV AH,16
CALL BDOS ;THEN CLOSE THE FILE
INT 20H ;AND RETURN TO DOS, A FAR RETURN

WORDASC PROC NEAR
PUSH AX
NOV AL,AH
CALL ZCHA
NOV [DX] * H

INC BX
NOV [BX) ,CL
INC BX
POP AX
CALL ZCHA
NOV [BX) ,CH
INC BX
NOV [BX) ,CL
INC BX
NOV AL,'H'

NOV [BX] ,AL

INC BX
NOV AL,','

NOV [BX) ,AL
INC BX
RET

WORDASC ENDP
INERR: CALL CRLF

NOV DX,OFFSET STRTNSG
NOV AH,9
CALL BDOS ; NO PARAMETER ENTERED ERROR

INT 20H
BDOS PROC NEAR

PUSH ES
PUSH DX

PUSH CX

PUSH DX
INT 21H

POP DX

POP CX

POP DX

58

POP ES ;SAVE ES IN BDOS CALLS
RET

BOOS ENDP
FNFERR: CALL CRLF

NOV DX,OFFSET FNFMSG
NOV AH,9
CALL BOOS ;FILE NOT FOUND MESSAGE
INT 20H

CRLF PROC NEAR
NOV DL,ODH
NOV AH,02H
CALL BOOS

NOV DL,OAH
NOV AH,02H
CALL BDOS ;ENTER <CR> AND <LF>
RET

CRLF ENDP
ZCHA PROC NEAR

PUSH AX

AND AL,OFOH
NOV CL,4
ROL AL,CL ;EXCHANGE LEFT AND RIGHT NYBBLES
CALL CONVERT ;CONVERT HEX DIGIT TO ASCII BYTE
NOV CHAL

POP AX
AND AL,OFH
CALL CONVERT ;CONVERT BOTH NYBBLES
NOV CLAL

RET
CONVERT: ADD AL,90H

DAA
ADC AL,40H

DAA ;OPTIMIZED HEX DIGIT TO ASCII BYTE
RET

ZCHA ENDP
DESCMSG DB 'CONVERTS A HEX FILE TO EQUIVALENT 7 BIT ASCII',13,10

DB 'FORMAT FOR TRANSMISSION TO THE MAINFRAME OR OTHER',13,10
DB 'DESTINATION RESTRICTED TO 7 BIT ASCII',13,10,13,10
DB 'THE FILE IS SAVED AS .AAA WITH SAME FILENAME',13,10
DB 'ENTER ANYTHING TO CONTINUE' ,13,10,'$'
STRTMSG DB 'THE CORRECT FORMAT IS',13,10

DB 'HEXASC FILE.NAM',13,10

59

DB 'START OVERS'
FNFMSG DB 'FILE NOT FOUND; RETURNING TO DOS$'
DIRMSG DB 'NO DIRECTORY SPACE LEFT$'
DSKMSG DB 'NO DISK SPACE LEFT$'
DMAADD DB 80H DUP(O) ;DEFAULT DMAADD
LOCALB DW OOOOH ;RESERVE SPACE FOR LOCAL STORAGE
FCB2 DB 36 DUP(O) ;FCB FOR .AAA FILE
BUFFER DB 'DW 0000',13,10
BUFFERI EQU $;RESERVE SPACE FOR THE AAA FILE
START ENDP
CODE ENDS
END START

60

APPENDIX F

;fixed the zeroing of the current record number
;can nov use repeatedly without rebooting; although it is
;recommended that a warm boot be done at the end of the session.
CODE SEGMENT PARA PUBLIC 'CODE'
ORG 0100H
ASSUME CS:CODE
ASSUME DS:CODE
ASSUME ES:CODE
start: jmp begin
filnam db 'vidram.dta',13
please db 'Please reboot at this stage',13,10
db 'enter any key to continue',13,10,'$'
begin: MOV AH,25H ;SET INTERRUPT VECTOR
NOV AL,05H
MOV DX,OFFSET RESIDE
CALL BDOS ;SET THE INTERRUPT 05H
MOV AH,31H ;TERMINATE BUT STAY RESIDENT
MOV ALO ;EXIT CODE
MOV CX,OOOOH ;GET THE WHOLE FILE
MOV BX,OFFSET LAST
SUB BX,CX
NOV CL,4
SHR BXCL
INC BX ;ROUND UP TO THE NEXT INTEGER
MOV DX,BX ;DX=MEM SIZE IN PARAGRAPHS
CALL BDOS ;TERMINATE HERE
RESIDE: push ds
push es
push ax
push bx
push cx
push dx
push si
push di
MOV AX,CS ;THE INTERRUPT CHANGES ONLY THE CS REGISTER
NOV DS,AX ;IN ORDER TO ACCOMODATE A DS: FETCH
MOV ESAX ;WE MUST BE SURE TO HAVE DS-CS, AND
mov dx,0080h
mov ah,lah

61

call bdos ;set this dta
mov bxOO05ch ;fcb
mov al,O
may 32[bz) ,al ;zero out the current record number
may si,offset filnam
may di,5ch ;fcb
may al,Ofh
may ah,29h ;parse filename
call bdos
mov ah,1ih
may dx,OO5ch
call bdos ;search for first
or al,al
jnz residel
jmp killit
residel: mov ah,16h ;create the file
mov dx,OO5ch
call bdos
may ah,Ofh ;video interrupt, status call
mnt 10h
may di,0080h
may [di] ,ax ;cols/mode
inc di
inc di
mov [di) ,bx ;bh - display page
mov dx,OO5ch
may ah,15h
call bdos ;write the header record
may ax,Ob800h
may es,ax ;point to video ramn
mov di,4080h ;total count
moy bx,OOO0h
reside2: may cx,40h

mov si,0080h ;dta
res3: may ax,es:[bx)
may [si),ax
inc si
inc si
inc bx
inc bx
dec cx
jnz res3

62

sub di,80h
jnz next
jmp done
next: mov dx,OO5ch
mov ah,15h ;vriteseq
call bdos
jap reside2
done: mov dx,OO5ch
mov ah,l0h ;close the file
call bdos
mov dxoffset please
mov ah,09h
int 21h
mov ah,1
jut 21h
pop di
po Si

pop dx
pop cx
pop bx
pop ax
pop es
pop ds
pop ax
pop ax
pop ax ;restore the stack
mov ah,4ch
mov al,O
mnt 21h
killit: mov ah,13h ;delete file
may dxOO05ch
call bdos
jmp residel
BDOS PROC NEAR

PUSH ES
PUSH DX
PUSH CX
PUSH BX

11ff 21H
POP BX
POP CX
POP DX

63

POP ES
RET

BOOS ENDP
LAST DB OOH
CODE ENDS
END start

64

APPENDIX G

code segment para public 'code'
org 0100h
start proc far
assume cs: code, es: code,ds: code
jmp begin
header db 80h
pakend dv 0
mode db 04h
pageno db Ol1h
nblanks db 00h
ndata db 00h
datvrd dv 0000h
begin: mov bx,B0h ;dta
mov alEbx]
or al,al
jnz starti ;O => no parms entered
jmp inerr
starti: mov ali,11h
mov dx,OO5ch ;the file in the fcb
int 21h ;search for first
or al,al
jz start2 ;0 => file found
jmp fnferr
start2: mov ah,Ofh
mov dx,OO5ch
int 21h ;open the file
mov dx,offset buffer
rdlup: may ah,lah
mnt 21h ;set up buffer as DTA
mov ah,14h
push dx
mov dx,0O5ch
mnt 21h ;read a sector to the DTA
cap, al,Olh
jz done
pop dx
add dx,80h
jmp rdlup
done: pop ax ;readjust the stack

65

nov ah,10h ;close this file here
nov dx,OO5ch
int 21h
nov bx,offset buffer
add bx,80h
nov di,offset packbuf
nov cx,4000h
nov dx,O
pakiup: nov al ,(bx)
cnp alOffh
jz paki
nov [di) 1dx
inc di
inc di
nov dxO ;reset count
nov word ptr datwrd,di
inc di
inc di
pak4: nov al, [bx]
cmp al,Offh
jz pak3
nov [di) ,aJ.
inc dx
inc bx
inc di
dec cx
jnz pak4
jmp last
nov Edi) ,al
paki: inc dx
inc bx
dec cx
jnz pakiup
jMP last
pak3: nov sivword ptr daturd
nov [si] ,dx ;data count here
nov dx,O
jnp paklup
last: nov word ptr pakend,di
nov cx,offIset packbuf
sub di,cx ;di -> byte number in pakbuf
nov cx,7

66

shr di,cl ;divide by 128
mov cxdi
inc cx ;bumup to account for fractions
mov di,0068h ;zero out the rest of the fcb
mov dl,24
mov al,O
lasti: mov [di) ,al
i nc di
dec dl
jnz lasti
mov bx,OO6ch ;dial up the fcb
Nov al",'P
Nov 1 [bx , a).
Nov al,'A'
mov 2[bx) ,al
mov a.1,'K'
mov 3[bx) ,al
NOV dx,OO6ch ;fcb
mov ah,16h ;create new file
int 21h
mov dx,offset packbuf
wiup: NOV ah,lah ;set dta
int 21h
push dx
mov dx,OO5ch
Nov ah,15h ;write seq
int 21h
pop dx
add dx,80h
dec cx
jnz wlup
Nov ah,10h ;close file
NOV dx,OO5ch
mnt 21h
int 20h
fnf err: NOV dx,offset fnfmsg
NOV ah.9

mnt 21h
call crlf
mnt 20h
inerr: NOV dx,off set errmsg
NOV ah,9

67

int 21h ;report the lapse
call crlf
int 20h ;exit
crlf proc near
mov ah,1
mov dl,Odh
int 21h

uov dlOah
mov ah,1
int 21h
ret

crlf endp
fnfmsg db 'file not found, exiting to DOS',13,10,'$'
errmsg db 'no parameters entered, the correct format is',13,10
db 'DISPLAY FILE.NAM',13,10
db 'returning to DOS',13,10,'$'
buffer db 4080h dup(O)
packbuf db 4000h dup(O)

start endp
code ends
end start

68

APPENDIX H

STACK SEGMENT PARA STACK 'STACK'

DB 256 DUP(O)

STACK ENDS
DATA SEGMENT PARA PUBLIC 'DATA'

OPENF DB OFH ;OPEN FILE REFERENCED IN THE FCB
CLOSEF DB 1OH ;CLOSE FILE
SRCHFRST DB 11H ;SEARCH FOR FIRST OCCURRENCE
SRCHNEXT DB 12H ;SEARCH FOR NEXT OCCURRENCE
DELETEF DB 13H ;DELETE FILE
READS DB 14H ;READ SEQUENTIALLY
READR DB 21H ;READ RANDOM
WRITES DB 15H ;WRITE SEQUENTIALLY
MAKEF DB 16H ;MAKE FILE
SETDMA DB 1AH ;SET DISK TRANSFER ADDRESS
PARSE DB 29H ;PARSE FILENAME, SEE PG 5-71 TECH.REF
SELDSK DB OEH ;SELECT DRIVE
MOORE DB 10,13,' ENTER ANY KEY TO DISPLAY MORE$'

INMSG DB 'PRESENTATION QUESTIONS IN SELECTED ORDER',13,10,13,10

change INMSG as appropriate

db 00h
FNFMSG DB 'FILE NOT FOUND, RETURNING TO DOS',13,10,'$'
ERR34SG DB 'NO PARAMETERS ENTERED, RETURNING TO DOS',13,10
DB 'THE CORRECT FORMAT IS',13,10

DB 'INDM FILE.NAM',13,10,13,10,'$'

QUERY DB 'ENTER A NUMBER AS THREE DECIMAL DIGITS' ,13,10

;Replace the 135 by one less then the LAST question number
DB '(000 THROUGH 135,THE NUMBERS DO NOT ALWAYS',13,10

DB 'CORRESPOND TO THE QUESTION NUMBERS)',13,10
DB 'ONCE THE DESIRED NUMBER IS ENTERED, HIT ENTER.',13,10
DB 'TO DISPLAY ANSWERS, HIT ANY KEY; THEN ANY',13,10
DB 'KEY TO CONTINUE',13,10,'$'
ENTRY DB 'ENTER DESIRED NUMBER (CONTC - -C TO TERMINATE)',13,10,'$'

69

ERRMSG DB 'NUMBER OUT OF RANGE, TRY AGAIN' ,13,10,'$'
DTA DB 80H DUP(O) ;PROGRAM'S DATA TRANSFER ADDRESS
FCB DB 37 DUP(O) ;PROGRAM'S FILE CONTROL BLOCK
FCB1 DB 37 DUP(O)

;in place of the MC2.ALI file insert your FILE.ALI
FILEX DB 'MC2.ALI',13

CSAVE DW 0
COLORON DB 1BH,'[1;33m$' ;SET COLOR TO YELLOW
COLOROFF DB 1BH,'[0;0Om$' ;RESET MONITOR
COLORANS DB IBH,'[1;31m$' ;SET COLOR TO RED
BLANK db lbh,'[2J$' ;BLANK SCREEN
RNDSAV DW OOH
ADDR DB 4 DUP(O)
LUKUPTBL LABEL WORD

;in place of the MC2.AAA file, enter your own FILE.AAA
INCLUDE MC2.AAA

INBUFF DB 8
DB OOH
DB 8 DUP(O) ;FOR BUFFERED INPUT

;refer to step eight and place the number of the question which
;has a graph on line 66. Place them in ascending order. Leave
;255 at the end of the list.
PICDAT DB 255

PICNUM DB '000'

;change the 0 to the number of graphs in use (not counting 255)
PICCNT DB 0 ;THE NUMBER OF PICTURES

PROBNO DB 30H
BUFFER DB 4000H DUP(O)
DATA ENDS ;ALL OTHER DATA GOES IN HERE
CODE SEGMENT PARA PUBLIC 'CODE'
START PROC FAR
ASSUME CS:CODE
PUSH DS
NOV AX,O

70

PUSH AX ;RETURN ADDRESS TO THE PSP ON THE STACK
NOV AX,DATA
NOV ES,AX
ASSUME ES:DATA ;ES POINTS TO OUR PROG. SEGMENT
NOV SI,80H ;PSP DTA
NOV DI,OFFSET DTA

NOV CX,80
REP MOVSB ;TRANSFER DTA AREA TO OUR SEGMENT
NOV SI,5CH ;PCP FCB
NOV DI,OFFSET FCB

NOV CX,37

REP NOVSB ;TRANSFER ANY FILE PARAMETERS TOO
NOV DS,AX

ASSUME DS:DATA ;NOW POINT DS TO OUR SEGMENT
NOV AH,SETDMA
NOV DX,OFFSET DTA
CALL BOOS ;OPEN DMAADD
CALL CRLF
PUSH DS

POP ES ;ES = DS HERE
NOV AH,PARSE
NOV SI,OFFSET FILEX
NOV DI,OFFSET FCB

NOV ALOFH
CALL BDOS ;SET UP FCB
NOV BX,OFFSET INMSG

STARTI: NOV AL, [BX]
CMP AL,OOH
JZ START2

CALL DISPASC ;DISPLAY OPENING MESSAGE
INC BX
JMP START1

START2: NOV DX,OFFSET FCB
NOV AH,SRCHFRST
CALL BDOS
OR AL, AL ; 00 -- >MATCHING FILENAME FOUND
JZ BEGI
JMP FNFERR
BEG1: NOV DXOFFSET FCB

NOV AH,OPENF
CALL BDOS ;OPEN THE FILE

NOV DX,OFFSET QUERY

71

NOV AH, 9
CALL BDOS

CALL CRLF
START3: MOV DX,OFFSET ENTRY
MOV AH,9
CALL BDOS
CALL CRLF

NOV DX,OFFSET INBUFF ;PREPARE TO GET BUFFERED INPUT
NOV AH,OAH
CALL BDOS
NOV BX,OFFSET INBUFF
MOV AL,1[BX] ;CHECK FOR 3 DIGIT ENTRY
CNP AL,3
JZ START30
JMP INERR ;IF BAD INPUT, DISPLAY ERROR MESSAGE
START30: NOV AL,2[BX) ;THE HUNDREDS DIGIT
SUB AL,30H ;CONVERT TO A DECIMAL DIGIT
MOV DH,AL ;DH SHOULD READ O,HUNDREDS DIGIT

MOV AL,3[BX]
SUB AL,30H
CALL ZEN

NOV DLAL
MOV AL,4[BX]
SUB AL,30H

OR DL,AL ;FOLD IN THE REST
CALL DECTOHEX ;ON RETURN, DX SHOULD HAVE THE HEX INTEGER
MOV BYTE PTR PROBNO,DL

;Replace the FFh by the hex number of questions(less one). This

;number is initially set at its maximum (255).

CNP DL,FFH

JBE START31

JMP INEER
START31: MOV DL,BYTE PTR PROBNO
MOV CL,O
NOV SI,OFFSET PICDAT
NOV DH,BYTE PTR PICCNT
START312: NOV AL, [SI
CMP AL,DL
JNZ START311
NOV AL,CL

72

NOV DLCL ;ALSO SAVE CL IN DL FOR LATER USE
CALL ZEN
CALL ZCHA
NOV BX,OFFSET PICNUM
NOV 1[BX] ,AL
NOV ALDL ;CL HAS BEEN USED IN ZEN
CALL ZCHA

NOV 2[BXJ ,AL
CALL PICFIX
START311: INC CL
INC SI
DEC DH
JNZ START312
START313: NOV DL,BYTE PTR PROBNO
NOV DH,O
NOV SI,OFFSET LUKUPTBL
NOV BX,DX
ADD BX,BX ;MULTIPLY BY 2
NOV AX,[BX+SI]
NOV CX, [BX+SI+2]
SUB CX,AX ;NUMBER OF SECTORS TO DISPLAY
NOV BX,OFFSET FCB
NOV 33[BX],AX ;SET UP THE RANDOM FIELD
NOV AX,O
NOV 12[BX) ,AX ;THE CURRENT BLOCK
BEG2: NOV AH,READR
NOV DX,OFFSET FCB
CALL BDOS ;READ A SECTOR
BEG3: NOV WORD PTh CSAVE,CX

CALL DISPLAY
NOV CX,WORD PTR CSAVE
DEC CX
NOV WORD PTR CSAVE,CX
JNZ BEG31
NOV AH,08H
CALL BDOS
NOV DX,OFFSET BLANK
NOV AH,9
CALL BDOS
JKP START3
BEG31: NOV SI,OFFSET FCB
NOV AX,33[SI]

73

INC AX
NOV 33[SI1,AX ;BUMP THE SECTOR COUNTER

JNP BEG2

PICFIX PROC NEAR ;NAMING THE VIDIO FILES,PAK.O00 ETC.
NOV BX,OFFSET FCB1

NOV AL,'P'

NOV I[BX] ,AL
NOV AL,'A'

NOV 2 .BX) ,AL
NOV AL,'K'
NOV 3[BX],AL
NOV CL,5
NOV AL,'
ADD BX,4
PICFIXI: NOV EBX),AL ;INITIALIZE FILE CONTROL BLOCK

INC BX
DEC CL

JNZ PICFIX1
NOV SI,OFFSET PICNUM
NOV DI,BX
NOV CX,3

REP MOVSB
NOV DX,OFFSET FCB1
NOV AH,OPENF
CALL BDOS
RET ;THE PIC FILE IS OPEN AND READY TO SHOW

PICFIX ENDP
INERR: NOV DXOFFSET ERRMSG ;ERROR MESSAGE IF INPUT WAS OUT OF RANGE

NOV AH,9

CALL BDOS
CALL CRLF
JMP START3

DECTOHEX PROC NEAR ;TURN DECIMAL NUMBER TO HEX NUMBER
NOV AH,O
NOV BX,O
PUSH DX
AND DX,OOOFH

NOV BL,DL ;CONSTRUCT THE HEX INTEGER IN BX
POP DX
PUSH DX ;PREPARE NEXT DIGIT

AND DX,OOFOH ;THE TENS DIGIT
NOV CL,4

74

SHR DX,CL ;GET THE TENS DIGIT INTO DL
NOV ALDL

MOV CH,OAH
MUL CH ;MULTIPLY BY 10
ADD BX,AX ;RUNNING TOTAL IN BX
POP DX
PUSH DX
AND DX,OFOOH

MOV CL,8
SHR DX,CL
MOV AL,DL

NOV CH,100
MUL CH ;THE HUNDREDS PLACE
ADD BX,AX
POP DX
NOV DX,BX
RET

DECTOHEX ENDP
DISPLAY PROC NEAR ;DISPLAY QUESTION TO SCREEN
MOV DX,OFFSET COLORON ;SET COLOR TO YELLOW
MOV AH,9
CALL BDOS

MOV SI,OFFSET DTA ;START OF THE 128 BYTE DATA
MOV CL,80H
DISP2: MOV AL, [SI] ;GET BYTE

CMP AL,02H ;CHECK FOR -B, MORE

JNZ DISP22
CALL MORE

;If flag for graphs is to change, replace * in line 281 with new
;flag such as \. See line 451 for a similar change.
DISP22: CMP AL, '*'

JNZ DISP21 ;IF NO GRAPH, CHECK -C FOR END OF QUESTION

INC SI
MOV AH,8

INT 21H ;WAIT HERE TO READ QUESTION
CALL PICDISP
DISP210: MOV AH,1
INT 21H ;GET KEYBOARD INPUT

CNP AL,'Q'-'Q' ;JUMP BACK TO QUESTION
JZ QUES

75

CMP AL,'A'-'@' ;JUMP TO AWAIT ANSWER

JZ ANS
JMP DISP210 ;ACCEPT ONLY QUEST OR ANS
QUES: NOV AH,O ;RESTORE TEXT MODE
NOV AL,3
INT 1OH ;RESTORE ALPHA MODE
POP AX ;PREPARE TO EXIT THE NEAR CALL

JMP START31 ;DISPLAY QUESTION AGAIN

ANS: MOV AH,O ;RESTORE TEXT MODE TO DISPLAY ANSWER
MOV AL,3
INT 1OH
DISP21: NOV AL,[SI]
CMP AL,03H ;CHECK FOR -C FOR BEGINNING OF ANSWER
JZ DISPANS
CALL DISPASC ;PRINT SAME
INC SI
DEC CL
JNZ DISP2

MOV DX,OFFSET COLOROFF
MOV AH,9

CALL BDOS
RET ;DONE WITH THIS SECTOR

DISPANS: NOV AH,O8H
CALL BDOS ;WAIT FOR ANY KEYPRESS
MOV DX,OFFSET COLOROFF
MOV AH,9
CALL BDOS
MOV DX,OFFSET COLORANS

MOV AH,9
CALL BDOS ;SET COLOR TO RED
INC SI
DEC CL ;MOVE PAST THE ETX
JNZ DISPAl
DISPANSI: MOV CX,WORD PTR CSAVE

DEC CX
MOV WORD PTR CSAVE,CX

MOV SI,OFFSET FCB
MOV AX,33[SI]
INC AX
MOV 33[SI],AX
MOV AH,READR
NOV DX,OFFSET FCB

76

CALL BDOS
NOV CL,80H
NOV SI,OFFSET DTA
DISPAI: NOV AL, [SI]
CMP ALOAH ;LOOK FOR CARRIAGE RETURN IN ANSWER

JZ DISPA2
CALL DISPASC
INC SI
DEC CL

JNZ DISPAl
JMP DISPANS1
DISPA2: MOV AL, [SI)
CALL DISPASC
INC SI
DEC CL

JNZ DISPA2
MOV DX,OFFSET COLOROFF

MOV AH,9
CALL BDOS
RET

DISPLAY ENDP
MORE PROC NEAR ;PROCEDURE IF TEXT IS MORE THAN ONE SCREEN
PUSH DX
PUSH CX
PUSH SI

MOV DL,ODH
MOV AH,2
CALL BDOS
MOV AL,OAH
MOV AH,2
CALL BDOS
MOV DX,0FFSET MOORE

MOV AH,9
CALL BDOS ;PRINT THE "MORE" MESSAGE
MOV AHl
CALL BDOS
POP SI
POP CX

POP DX
RET
MORE ENDP
DISPASC PROC NEAR ;DISPLAY TO SCREEN IN ASCII

77

CMP AL,ODH
JZ DASC2
CMP ALOAH
JZ DASC2
CMP AL,09H
JZ DASC2

CMP AL ,20H ; IGNORE ALL CONTROL CODES EXCEPT
JB DASMi ;<CR>,<LF>, AND <HT>
DASC2: NOV DL AL

MOV AH,2
CALL BDOS
RET
DASMi MOV DL,20H
MOV AHJI2
CALL BDOS

RET
DISPASC ENDP
PICDISP PROC NEAR ; PROCEDURE TO DISPLAY GRAPHS
PICO: PUSH SI
PUSH CX
NOV BXIOFFSET FCB1

NOV AL,O
ADD BX,32
MOV [BX) ,AL ;RESET CURRENT RECORD FOR LOOPING PURPOSES

NOV AH,O
NOV AL,4

INT ION ;SET UP MODE4
CALL BUFFNULL

NOV DX,OFFSET BUFFER

PICLUP: NOV AH,lAH ;SET DTA
INT 21H
NOV AH,14H ;READS
PUSH DX

NOV DX,OFFSET FCB1
INT 21H
CII? AL,i
JZ DONE
POP DX

ADD DX,80H
JHP PICLUP ;READIN THE PIC FILE TO BUFFER

DONE: POP AX ;RESET THE STACK
NOV SI,OFE BUFFER

78

NOV AXOBBOOH
NOV ES,AX
NOV DI,OOO0
DONEl: NOV CX, (SI)
OR CXCX
JZ LAST

INC SI
INC SI

NOV AL,OFFH
DONE2: NOV ES:EDI),AL
INC DI
DEC CX
JNZ DONE2
NOV CX, [SI)
NOV BP,DI
ADD BPCX

CNP BP,4000H
JG LAST
INC SI
INC SI

REP MOVSB
JNP DONEl
LAST: PUSH DS
POP ES
POP CX

*POP SI
HOV DX,OFFSET DTA
NOV AH,SETDMA
INT 21H ;RESET THE DTA
NOV AL,[SI)

;If flag was changed in line 280, then make same change to line
;451(replace * with \ for example)
CNP AL,'*' ;ARE THERE MORE GRAPHICS PAGES?

JZ NXTPAGE
JMP LASTLAST
NXTPAGE: NOV AH,8
INT 21H ;PAUSE BETWEEN PAGE CHANGES
INC SI
NOV BX,OFFSET FCB1
NOV AL,11[BX) ;NEXT PAGE

79

INC AL
MOV 11[BX,AL
MOV DXBX

MOV AH,OPENF
CALL BDOS ;GET READY TO DISPLAY IT
JmP PICO
LASTLAST: RET
PICDISP ENDP
BUFFNULL PROC NEAR
MOV BXOFFSET BUFFER
MOV CX,4000H

MOV AL,0
BNULL1: NOV [BX],AL
INC BX
DEC CX
JNZ BNULL1

RET
BUFFNULL ENDP
FNFERR: MOV DX,OFFSET FNFMSG
NOV AH,9
CALL BDOS ;REPORT FILE NOT FOUND
CALL CRLF
RET ;FAR RETURN
ERR3: NOV DX, OFFSET ERR3MSG
MOV AH,9
CALL BDOS
RET ;FAR RETURN

ROUTINE UTILITIES (NOT NECESSARILY ALL USED)

ZCHA PROC NEAR
AND ALOFH ;CONVERT HEX DIGIT IN AL TO ASCII BYTE IN AL
ADD AL,90H
DAA
ADC AL,40H ;DIGIT IS IN LOW NYBBLE

DAA
RET ;OPTIMIZED SUBROUTINE

ZCHA ENDP
ZEN PROC NEAR

NOV CL, 04H ; EXCHANGE NYBBLES

ROL AL,CL
RET ;USES CLAL

80

ZEN ENDP
CRLF PROC NEAR

PUSH DX
PUSH AX
NOV DL,ODH
MOV AH,02H

CALL BDOS ;DO A <CR> AND <LF>
MOV DL,OAH
NOV AHO2H ;SAVING MOST REGISTERS
CALL BDOS
POP AX
POP DX
RET

CRLF ENDP
BDOS PROC NEAR ;FOR DOS 3.0 AND HIGHER, BDOS IS SUPERSEEDED BY
PUSH SI ;INT 21H ALONE. BDOS IS USED FOR COMPATIBILITY

PUSH ES ;PURPOSES WITH VERSIONS OF DOS PRIOR Tl 3.0
PUSH DX
PUSH CX
PUSH BX
INT 21H

POP BX
POP CX
POP DX
POP ES

POP SI

RET
BDOS ENDP

START ENDP
CODE ENDS
END START

81

APPENDIX I

STACK SEGMENT PARA STACK 'STACK'

DB 256 DUP(O)
STACK ENDS
DATA SEGMENT PARA PUBLIC 'DATA'
OPENF DB OFH ;OPEN FILE REFERENCED IN THE FCB

CLOSEF DB 1OH ;CLOSE FILE
SRCHFRST DB 11H ;SEARCH FOR FIRST OCCURRENCE

SRCHNEXT DB 12H ;SEARCH FOR NEXT OCCURRENCE

DELETEF DB 13H ;DELETE FILE
READS DB 14H ;READ SEQUENTIALLY
READR DB 21H ;READ RANDOM

WRITES DB 15H ;WRITE SEQUENTIALLY
MAKEF DB 16H ;MAKE FILE
SETDMA DB IAH ;SET DISK TRANSFER ADDRESS
PARSE DB 29H ;PARSE FILENAME, SEE PG 5-71 TECH.REF

SELDSK DB OEH ;SELECT DRIVE

MOORE DB 10,13,' ENTER ANY KEY TO DISPLAY MORE$'

INMSG DB 'PRESENTATION QUESTIONS IN RANDOM ORDER',13,10,13,10

change INMSG as appropriate

DB OOh
FNFMSG DB 'FILE NOT FOUND, RETURNING TO DOS',13,10,'$'

ERR3MSG DB 'NO PARAMETERS ENTERED, RETURNING TO DOS',13,10

DB 'THE CORRECT FORMAT IS',13,10

DB 'RNDM FILE.NAM',13,10,13,10,'$'

QUERY DB 'WHEN A GRAPH APPEARS, PRESS CONTROL Q TO TOGGLE BACK',13,10

DB 'TO QUESTION, CONTROL A TO TOGGLE BACK TO ANSWER',13,10,13,10
DB 'TO DISPLAY ANSWERS, HIT ANY KEY;',13,1O

DB 'THEN ANY KEY TO CONTINUE',13,10,13,10

DB 'CONTROL C (-C) TERMINATES THE PROGRAM',13,10,13,10

DB 'PRESS ANY KEY TO CONTINUE',13,10,'$'
ENTRY DB 'ENTER DESIRED NUMBER (CONTC a -C TO TERMINATE)',13,10,13,10

DB 'ENTER ANY KEY TO CONTINUE',13,10,'$'
ERRMSG DB 'NUMBER OUT OF RANGE, PLEASE REBOOT',13,10,'$'
DTA DB 80H DUP(O) ;PROGRAM'S DATA TRANSFER ADDRESS

FCB DB 37 DUP(O) ;PROGRAM'S FILE CONTROL BLOCK

82

FCB1 DB 37 DUP(0)

;in place of the mc2.ali file insert your file.ali
FILEX DB 'MC2.ALI',13

CSAVE DW 0
COLORON DB 1BH,'[1;33m$' ;CHANGE COLOR TO YELLOW
COLOROFF DB IBH,'EOO;00m$' ;RESET COLOR
COLORANS DB 1BH,'[1;31m$' ;CHANGE COLOR TO RED
BLANK db lbh,'[23$' ;BLANK SCREEN
RNDSAV DW OOH
ADDR DB 4 DUP(O)
LUKUPTBL LABEL WORD

;in place of the MC2.AAA file insert your file.aaa
INCLUDE MC2.AAA

INBUFF DB 8
DB OOH
DB 8 DUP(0) ;FOR BUFFERED INPUT

;Refer to step eight. Place the number of the question which
;has a graph on line 58. Place them in ascending order. Leave
;255 at the end of the list.
PICDAT DB 255

PIONUM DB '000'

;change the zero to the number of graphs in use (not counting 255)
PICONT DB 0 ;THE NUMBER OF PICTURES

PROBNO DB 30H
BUFFER DB 4000H DUP(0)
DATA ENDS ;ALL OTHER DATA GOES IN HERE
CODE SEGMENT PARA PUBLIC 'CODE'
START PROC FAR
ASSUME CS:CODE
PUSH DS
MOV AX,O

83

PUSH AX ;RETURN ADDRESS TO THE PSP ON THE STACK

NOV AX,DATA
NOV ESAX
ASSUME ES:DATA ;ES POINTS TO OUR PROG. SEGMENT

MOV SI,80H ;PSP DTA

NOV DI,OFFSET DTA

NOV CX,80

REP MOVSB ;TRANSFER DTA AREA TO OUR SEGMENT
NOV SI,5CH ;PCP FCB
NOV DI OFFSET FCB

NOV CX,37

REP MOVSB ; TRANSFER ANY FILE PARAMETERS TOO

NOV DS,AX

ASSUME DS:DATA ;NOW POINT DS TO OUR SEGM ENT

NOV AH,SETDMA
NOV DX,OFFSET DTA

CALL EDOS ;OPEN DNAADD

CALL CRLF
PUSH DS
POP ES ;ES a DS HERE
NOV AH,PARSE

NOV SI,OFFSET FILEX

NOV DI,OFFSET FCB

NOV AL,OFH
CALL BDOS ;SET UP FCB

NOV BX,OFFSET INMSG

STARTi: NOV AL, EBX]

CliP ALOOH
JZ START2
CALL DISPASC

INC BX

3I'W START 1

START2: NOV DX,OFFSET FCB

NOV AH,SRCHFRST
CALL BDOS

OR ALAL ;00 -->MATCHING FILENAME FOUND

JZ BEGI

3M!' FNFERR
BEGI: NOV DX,OFFSET FCB

NOV AHOPENF
CALL BDOS ;OPEN THE FILE

NOV DX,OFFSET QUERY

84

NOV AH,9
CALL BDOS
NOV AH, I
CALL BDOS
CALL CRLF
START3: CALL GETSEED ;GET RANDOM INTEGER
MOV BYTE PTR PROBNO,DL

;Replace the FFh by the hex number of questions(less one). This
;number is initially set at its maximum (255).
CMP DL,FFH

JBE START31

JMP INERR

START31: MOV CL,O
MOV SI,OFFSET PICDAT

MOV DH,BYTE PTR PICCNT
START312: MOV AL, [SI)
CMP AL,DL
JNZ START311

NOV AL,CL
MOV DLCL ;ALSO SAVE CL IN DL FOR LATER USE
CALL ZEN
CALL ZCHA
MOV BX,OFFSET PICNUM
MOV 1 [BX] ,AL
MOV AL,DL ;CL HAS BEEN USED IN ZEN

CALL ZCHA
MOV 2[BX] ,AL
CALL PICFIX
START311: INC CL

INC SI
DEC DH

JNZ START312
START313: MOV DL,BYTE PTR PROBNO

MOV DH,O
NOV SI,OFFSET LUKUPTBL

MOV BX,DX
ADD BXBX ;MULTIPLY BY 2

MOV AX, [BX+SI]
MOV CX,(BX+SI 2]
SUB CX,AX ;NUMBER OF SECTORS TO DISPLAY

85

NOV BX, OFFSET FCB
NOV 33[BX] ,AX ;SET UP THE RANDOM FIELD
NOV AXO
NOV 12[BX] ,AX ;THE CURRENT BLOCK
BEG2: NOV AH,READR
NOV DX,OFFSET FCB
CALL BDOS ;READ A SECTOR
BEG3: NOV WORD PTH CSAVE,CX
CALL DISPLAY

NOV CXWORD PTR CSAVE
DEC CX
NOV WORD PTR CSAVE,CX

JNZ BEG31
MOV AH.08H
CALL BDOS
MOV DX OFFSET BLANK
NOV AH,9
CALL BDOS

JMP START3
BEG31: MOV SI,OFFSET FCB

NOV AX,33[SI]

INC AX
NOV 33[SI],AX ;BUMP THE SECTOR COUNTER

JMP BEG2
GETSEED PROC NEAR ;RANDOM INTEGER GENERATOR
MOV DX,40H

IN AL,DX

;in 2 places, change FFh to the hex number of questions

;this is the random number generator
GETi: CNP ALFFH

JBE EXITI
SUB AL,FFH

JNP GETI
EXITI: MOV DLAL
RET

GETSEED ENDP
PICFIX PROC NEAR ;DISPLAY GRAPHS

MOV BXOFFSET FCB1
NOV AL,'P' ;IF USING DIFFERENT GRAPH NAMES
MOV 1[BX],AL ;CHANGE THE P IN LINE 206

86

MOV AL,'A'
MOV 21BXJAL
MOV AL,'K'
MOV 3[BX],AL
MOV CL,5
MOV AL,' '

ADD BX,4
PICFIXI: MOV [BX],AL
INC BX
DEC CL
JNZ PICFIXI

MOV SI,OFFSET PICNUM
MOV DI,BX
MOV CX,3
REP MOVSB
MOV DXOFFSET FCB1
MOV AH,OPENF

CALL BDOS
RET ;THE PIC FILE IS OPEN AND READY TO SHOW

PICFIX ENDP
INERR: MOV DX,OFFSET ERRMSG

NOV AH,9
CALL BDOS
CALL CRLF

JMP START3
DECTOHEX PROC NEAR ;DECIMAL TO HEX CONVERSION
MOV AH,O
MOV BX,O
PUSH DX
AND DX,OOOFH

MOV BL,DL ;CONSTRUCT THE HEX INTEGER IN BX
POP DX
PUSH DX ;PREPARE NEXT DIGIT
AND DX,OOFOH ;THE TENS DIGIT
MOV CL,4
SHR DX,CL ;GET THE TENS DIGIT INTO DL

MOV AL,DL
MOV CH,OAH
MUL CH ;MULTIPLY BY 10
ADD BXAX ;RUNNING TOTAL IN BX
POP DX

PUSH DX

87

AND DX, OFOOH
NOV CL,8
SHR DX,CL
NOV ALDL

NOV CH,100
MUL CH ;THE HUNDREDS PLACE
ADD BX,AX
POP DX
NOV DX,BX
RET
DECTOHEX ENDP
DISPLAY PROC NEAR ;DISPLAY TO SCREEN
NOV DX,OFFSET COLORON
NOV AH,9
CALL BDOS
NOV SIOFFSET DTA ;START OF THE 128 BYTE DATA
NOV CL,80H
DISP2: NOV AL,[SI] ;GET BYTE
CMP AL,02H ;CHECK FOR ^B, MORE THAN ONE SCREEN
JNZ DISP22
CALL MORE

;If flag for graphs is to change, replace * in line 274 with new
;flag such as \. See line 444 for similar change.
DISP22: CMP AL, '*

JNZ DISP21 ;DISPLAY QUESTION
INC SI
NOV AH,8
INT 21H ;WAIT HERE TO READ QUESTION
CALL PICDISP
DISP210: NOV AH,1
INT 21H ;GET KEYBOARD INPUT
CMP AL,'Q- 'O ;CHECK FOR CONTROL Q
JZ QUES
CMP AL,'A'-'' ;CHECK FOR CONTROL A
JZ ANS
JMP DISP210 ;ACCEPT ONLY QUEST OR ANS
QUES: NOV AH,O
NOV AL,3
INT 10H ;RESTORE ALPHA MODE
POP AX ;PREPARE TO EXIT THE NEAR CALL

88

JMP START313
ANS: NOV AH,o ;BLANK SCREEN
NOV AL,3
INT IOH
DISP21: NOV AL,[SI]
CMP AL,03H ;CHECK FOR CONTROL C
JZ DISPANS ;IF CONTROL C, PRINT ANSWER TO SCREEN
CALL DISPASC ;PRINT SAME
INC SI
DEC CL
JNZ DISP2

NOV DX, OFFSET COLOROFF
NOV AH,9
CALL BDOS
RET ;DONE WITH THIS SECTOR
DISPANS: NOV AH,08H
CALL BDOS ;WAIT FOR ANY KEYPRESS
NOV DX,OFFSET COLOROFF
NOV AH,9
CALL BDOS
NOV DX,OFFSET COLORANS ;SET COLOR TO RED
NOV AH,9
CALL BDOS
INC SI
DEC CL ;MOVE PAST THE ETX
JNZ DISPA1

DISPANSi: NOV CXWORD PTR CSAVE
DEC CX
NOV WORD PTR CSAVE,CX
NOV SI,OFFSET FCB

NOV AX,33[SI]
INC AX
NOV 33[SI1,AX
NOV AHREADR
NOV DX,OFFSET FCB

CALL BDOS
NOV CL,80H
NOV SI,OFFSET DTA
DISPAl: NOV AL,1SI
CMP ALOAH ;CHECK FOR CARRIAGE RETURN
JZ DISPA2

CALL DISPASC

89

INC SI
DEC CL
JNZ DISPAl
JMP DISPANSI
DISPA2: NOV AL,ESI)
CALL DISPASC
INC SI
DEC CL
JNZ DISPA2
NOV DX,OFFSET COLOROFF
NOV AH,9
CALL BDOS
RET
DISPLAY ENDP
MORE PROC NEAR ; USE IF MORE THAN ONE SCREENFUL
PUSH DX
PUSH CX
PUSH SI
NOV DL,ODH

NOV AH,2
INT 21H
NOV DL,OAH
NOV AH,2
INT 21H
NOV DX,OFFSET MOORE
NOV AH,9
INT 21H
NOV AH,l
INT 21H
POP SI
POP CX
POP DX

RET

MORE ENDP
DISPASC PROC NEAR ;DISPLAY IN ASCII
CMP AL,ODH ;CHECK FOR CONTROL CODES

JZ DASC2

CNP AL,OAH
JZ DASC2
CMP AL,09H
JZ DASC2
CMP AL,20H ;IGNORE ALL CONTROL CODES EXCEPT

90

JB DASCI ;<CR>,<LF>, AND <HT>
DASC2: NOV DLAL
NOV AH,2
CALL Boos

DASCi: NOV DL,20H
NOV AH,2
CALL BOOS
RET
DISPASC ENDP
PICDISP PROC NEAR ;SHOW GRAPHS
PICO: PUSH SI
PUSH CX
NOV BX,OFFSET FOBi
NOV AL,O
ADD BX,32
NOV [BX] AL ; RESET CURRENT RECORD FOR LOOPING PURPOSES
NOV AHO
MOV AL,4
INT 1OH ;SET UP MODE4
CALL BUFFNULL
NOV DX,OFFSET BUFFER
PICLUP: NOV AH,1AH ;SET DTA
INT 21H
NOV AH,14H ;READS
PUSH DX
NOV DX,OFFSET FCB1
INT 21H
CMP AL,1
JZ DONE
POP DX
ADD DX,80H
JNP PICLUP ;READIN THE PIC FILE TO BUFFER
DONE: POP AX ;RESET THE STACK
NOV SI,OFFSET BUFFER
NOV AX,OB800H
NOV ES,AX
NOV D1,0000
DONEl: NOV CX, £1
OR CX,CX
JZ LAST
INC SI

91

INC SI
NOV ALOFFH
DONE2: NOV ES: [DI) ,AL
INC DI
DEC CX
JNZ DONE2
MDV CX, [SI]
NOV BP,DI
ADD BP,CX
CMP BP,4000H
JG LAST
INC SI
INC SI
REP MOVSB
JMP DONEI
LAST: PUSH DS
POP ES
POP CX
pop SI
NOV DX,OFFSET DTA
NOV AH,SETDMA
INT 21H ;RESET THE DTA
MOV ALESI]

;If flag was changed in line 274, then make same changes to line
;444(replace * with \ for example).
CMP AL,'*' ;ARE THERE MORE GRAPHICS PAGES?

JZ NXTPAGE
JMP LASTLAST
NXTPAGE: NOV AH,8
INT 21H ;PAUSE BETWEEN PAGE CHANGES
INC SI
NOV BX,OFFSET FCB1
NOV AL,11[BX] ;NEXT PAGE
INC AL
NOV 11[BX),AL
NOV DX,BX
NOV AH,OPENF
CALL BDOS ;GET READY TO DISPLAY IT
imp PICO
LASTLAST: NOV BX,OFFSET FCB1

92

MOV AL,11[BX]
SUB AL,2
NOV 11 [BX] ,AL ;RESET THE FCB1 FOR ANOTHER PASS THROUGH
NOV DX,BX
NOV AH,OPENF
INT 21H ;RE-OPEN THE MASTER FILE
RET
PICDISP ENDP
BUFFNULL PROC NEAR
NOV BX,OFFSET BUFFER
NOV CX,4000H

NOV AL,O
BNULL1: MOV [BX],AL
INC BX
DEC CX
JNZ BNULL1

RET
BUFFNULL ENDP
FNFERR: NOV DX,OFFSET FNFMSG ;FILE NOT FOUND ERROR MESSAGE
NOV AH,9
CALL BDOS ;REPORT FILE NOT FOUND
CALL CRLF
RET ;FAR RETURN
ERR3: MOV DX,OFFSET ERR3MSG ;ERROR MESSAGE
MOV AH,9
CALL BDOS
RET ;FAR RETURN
ZCHA PROC NEAR ;STANDARD SUBROUTINES FOLLOW, NOT ALL USED

AND AL,OFH ;CONVERT HEX DIGIT IN AL TO ASCII BYTE IN AL
ADD AL,90H
DAA
ADC AL,40H ;DIGIT IS IN LOW NYBBLE
DAA
RET ;OPTIMIZED SUBROUTINE

ZCHA ENDP
ZEN PROC NEAR

MOV CL,04H ;EXCHANGE NYBBLES
ROL AL,CL
RET ;USES CL,AL

ZEN ENDP
CRLF PROC NEAR

PUSH DX

93

PUSH AX
MOV DL,0DH
MOV AH,02H
CALL BDOS ;DO A <CR> AND <LF>
MOV DL,OAH
MOV AH,02H ;SAVING MOST REGISTERS
CALL BDOS
POP AX

POP DX
RET

CRLF ENDP

BDOS PROC NEAR ;CAN BE REPLACED AS INT 21 FOR DOS 3.0 OR HIGHER

PUSH SI ;FOR COMPATIBILITY, BDOS IS USED FOR ALL
PUSH ES ;VERSIONS OF DOS
PUSH DX

PUSH CX
PUSH BX

INT 21H

POP BX
POP CX
POP DX

POP ES

POP SI

RET

BDOS ENDP
START ENDP

CODE ENDS

END START

94

APPENDIX J

code segment
* org 100h

assume cs:code
mov ah,O
mov al,3 ;this is the desired mode number
int 10h ;video interrupt
int 20h ;terminate this fragment correctly
code ends
end

95

APPENDIX K

code segment
org 100h
assume cs:code
mov ah,O
mov al,4 ;this is the desired mode number
int 10hi ;video interrupt
int 20h ;terminate this fragment correctly
code ends
end

96

APPENDIX L

code segment para public 'code'
org 0100h
start proc far
assume cs: code, es: code,ds: code
jmp begin
mode db 04h
pageno db O1h
begin: mov bx,80h ;dta
mov al,[bx)
or al,a.
jnz starti ;O -=> no parms entered
jmp inerr
starti: mov ah,lih
mov dx,OO5ch ;the file in the fcb
mnt 21h ;search for first
or al,al
jz start2 ;O ==> file found
jmp fnferr
start2: mov ah,Ofh
mov dx,OO5ch
mnt 21h ;open the file
mov dx,offset buffer
rdlup: mov ah,lah
mnt 21h ;set up buffer as DTA
mov ah,14h
push dx
mov dx,OO5ch
mnt 21h ;read a sector to the DTA
cmp al,Olh
jz done
pop dx
add dx,80h
jmp rdlup
done: pop ax ;readjust the stack
mov si,offset buffer
m07 ax,Ob800h
mov es,ax
mov di,OOO0h
donel: mov cx, Esi)

97

or cx,cex
jz last
inc Si

inc si
nov al,Offh
done2: nov es: [di) ,al
inc di
dec cx
jnz done2
nov cx, Esi)
inc si
inc Si

rep movsb
jmp donel
push cs
pop ds
last: int 20h
fnf err: nov dx,offset fnfmsg
nov ah.9
mnt 21h
call crlf
mnt 20h
inerr: nov dx,off set errmsg
nov ah,9
mnt 21h ;report the lapse
call crlf
int 20h ;exit
crlf proc near
nov ah,1
nov dl,Odh
int 21h
nov dl,Oah
nov ali,1
mnt 21h
ret
crlf endp
fnfnsg db 'file not found, exiting to DOS' ,13,1O,'$'
errinsg db 'no parameters entered, the correct format is',13,1O
db 'DISPLAY FILE.NAM',13,10
db 'returning to DOS',13,1O,'$'
buffer db 4000h dup(O)
start endp

98

code ends
end start

99

APPENDIX M

STACK SEGMENT PARA STACK 'STACK'

DB 256 DUP(O)
STACK ENDS

DATA SEGMENT PARA PUBLIC 'DATA'
VIDFILE DB 'VIDRAM.DTA',0

OPENF DB OFH ;OPEN FILE REFERENCED IN THE FCB
CLOSEF DB IOH ;CLOSE FILE

SRCHFRST DB 11H ;SEARCH FOR FIRST OCCURRENCE
SRCHNEXT DB 12H ;SEARCH FOR NEXT OCCURRENCE
DELETEF DB 13H ;DELETE FILE
READS DB 14H ;READ SEQUENTIALLY
READR DB 21H ;READ RANDOM
WRITES DB 15H ;WRITE SEQUENTIALLY

MAKEF DB 16H ;MAKE FILE
SETDMA DB 1AH ;SET DISK TRANSFER ADDRESS

PARSE DB 29H ;PARSE FILENAME, SEE PG 5-71 TECH.REF
SELDSK DB OEH ;SELECT DRIVE
INMSG DB 'SET ANY COLOR TO ANY OTHER SPECIFIC COLOR',13,10

DB 'IN MODE 4 GRAPHICS: O0=>BACKGRUND',13,10

DB ' O1==>FIRST COLOR',13,10
DB ' 10==>SECOND COLOR',13,10
DB ' 11==>THIRD COLOR',13,10
DB 'OF THE PALETTE CURRENTLY IN USE' ,13,10

DB 'THUS, TO CHANGE FIRST COLOR TO THIRD COLOR' ,13,10
DB 'ENTER 0111 FOLLOWED BY A <CR>',13,10,'$'

FNFMSG DB 'FILE NOT FOUND, RETURNING TO DOS' ,13,10,'$'
ERR3MSG DB 'NO PARAMETERS ENTERED, RETURNING TO DOS',13,10
DB 'THE CORRECT FORMAT IS',13,10

DB 'SETCOLOR XY UV',13,10,13,10
DB 'WHERE XY IS THE ORIGINAL COLOR, AND UV IS THE NEW COLOR',13,10,'$'

DTA DB 80H DUP(O) ;PROGRAM'S DATA TRANSFER ADDRESS
FCB DB 37 DUP(O) ;PROGRAM'S FILE CONTROL BLOCK
ADDR DB 4 DUP(O)
OLDCOL DB 0

NEWCOL DB 0

MASKI DB 0
MASK2 DB 0

MASK3 DB 0
MASK4 DB 0

100

MASKI DB 0
MASK12 DB 0
MASK13 DB 0
MASK14 DB 0
INBUFF DB 5
DB 0

DB 5 DUP(30H)
BUFFER DB 4080H DUP(O)
DATA ENDS ;ALL OTHER DATA GOES IN HERE
CODE SEGMENT PARA PUBLIC 'CODE'
START PROC FAR
ASSUME CS:CODE
PUSH DS
MOV AX,O
PUSH AX ;RETURN ADDRESS TO THE PSP ON THE STACK
MOV AXDATA

MOV ESAX
ASSUME ES:DATA ;ES POINTS TO OUR PROG. SEGMENT
MOV SI,80H ;PSP DTA
MOV DI,OFFSET DTA
MOV CX,80
REP MOVSB ;TRANSFER DTA AREA TO OUR SEGMENT
MOV SI,5CH ;PCP FCB
MOV DI,OFFSET FCB

MOV CX,37
REP MOVSB ;TRANSFER ANY FILE PARAMETERS TOO
MOV DS,AX
ASSUME DS:DATA ;NOW POINT DS TO OUR SEGMENT
MOV AH,SETDMA
MOV DX,OFFSET DTA
CALL BDOS ;OPEN DMAADD
CALL CRLF
PUSH DS
POP ES ;ES - DS HERE
MOV DX,OFFSET INMSG
MOV AH,9

INT 21H ;DISPLAY INTRO
CALL CRLF
MOV AH,10
MOV DX,OFFSET INBUFF
INT 21H ;GET USER INPUT
STARTI: MOV BX,OFFSET INBUFF

101

NOV ALi([BX) ;GET FIRST PARAMETER
OR AL,AL
JNZ START2
JHP ERR3
START2: NOV AL,2[BX)
SUB AL,30H ;CONVERT TO HEX DIGIT
SHL AL.1 ;MAKE IT HIGH BIT
NOV AH,AL
NOV AL,3[BXJ
SUB ALD30H
ADD AL,AH ;FORM THE BYTE
NOV BYTE PTR OLDCOL,AL ;SAVE SAME
NOV AL,4[BXJ
SUB AL,030H

SHL AL,1
NOV AHAL

NOV AL,5[BX)
SUB AL,30H

ADD AL,AH
NOV BYTE PTh NEWCOL,AL ;SECOND PARAMETER IS THE NEW COLOR

NOV SI,OFFSET VIDFILE
NOV DIOFFSET FCB

NOV AL,OFH
NOV AH,*29H
INT 21H ;PARSE VIDFILE
NOV DX,OFFSET FCB
NOV AH,SRCHFRST

INT 21H
OR ALAL ;O ==>SUCCESS
JZ NEXT
JMP FNFERR
NEXT: NOV AH,OPENF

INT 21H ;ATTEMPT TO OPEN SAME
STRT2: NOV DX,OFFSET BUFFER

NOV CX.4080H
STRT3: NOV AH,SETDNA

INT 21H ;SET UP BUFFER TO RECEIVE VIDRAM.DTA

NOV AH,READS
PUSH DX
NOV DX,OFFSET FCB

INT 21H
CMP AL,1

102

JZ START21
POP DX
ADD DX,80H

SUB CX,8OH
JNZ STRT3
START21: Nov ALBYTE PTR OLDCOL
NOV CL,6
SHL AL,CL
NOV BYTE PiTR NASKIAL
NOV AL ,BYTE PiTR OLDCOL
NOV CL,4
SHL AL,CL
NOV BYTE PmR NASK2,AL
NOV AL ,BYTE PTm OLDCOL
NOV CL,2
SHL AL,CL
NOV BYTE PmR MASK3,AL
NOV AL,BYTE PTh OLDCOL
NOV BYTE PmR NASK4,AL
NOV AL,BYTE PTR NEWCOL
NOV CL,6
SHL AL,CL

*NOV BYTE PmR NASK11,AL
NOV AL ,BYTE PTR NEWCOL
NOV CL,4

*SHL AL,CL
NOV BYTE PTR MASK12,AL
NOV ALIBYTE PmR NEWCOL
NOV CL,2
SHL AL,CL
NOV BYTE PmR MASK13,AL
NOV AL,BYTE PmR NEWCOL
NOV BYTE PmR MASK14,AL
BUFLOOP: NOV EX, OFFSET BIUFFER + 80H
NOV CX,4000H
LUP: NOV DH,O
NOV AL,[EX)
NOV DLAL ;SAVE A COPY IN DL
AND ALJPOCOH ;ISOLATE ONE PIXEL
CMP AL,BYTE PmR NASKI
JZ CHCOL1
LOOP1:OR DH,AL ;BUILD THE NEW BYTE 2 BITS AT A TINE

103

NOV ALDL ;GET ORIGINAL BYTE BACK
AND AL,30H ;SECOND PIXEL
CMI' AL BYTE PTh NASK2
JZ CHCOL2
LOOP2: OR DH,AL
NOV ALIDL
AND ALOCH
CMI' ALBYTE PmR NASK3
JZ CHCOL3
L00P3: OR DH,AL
NOV AL,DL
AND AL,03H
CMI' AL,BYTE PmR NASK4
JZ CHCOL4
LOOM4 OR DH,AL
NOV [EX) ,DH ;REPLACE OLD COLORS WITH NEW IN WHOLE BYTE
INC BX
DEC CX
JNZ LUP
JNP SAVEIT
CHCOLI: NOV ALBYTE PmR MASK11
JNP LOOPI
CHCOL2: NOV AL,BYTE PTR MASK12
JNP LOOP2
CHCOL3:NOV ALBYTE PTh MASK13
JMP LOOP3
CHCOM4 NOV AL,BYTE PTR MASK14
JMP LOOM4
FNFERR: CALL CRLF
NOV DX,OFFSET FNFNSG
NOV AH,9
INT 21H
RET ;FAR RETURN TO DOS
ERR3: NOV DXOFFSET ERR3MSG
NOV AH,9
CALL BDOS
RET ;FAR RETURN
SAVEIT: NOV BX,OFFSET FCB + 9
NOV AL,'N'
NOV [EX) ,AL
INC BX
NOV AL,'E'

104

NOV [BX , AL
INC BX
NOV AL,'W'
NOV [EX) AL ; SET UP NEW FILE NAME
NOV AH,MAKEF
NOV DX,OFFSET FCB
INT 21H ;CREATE SAME
NOV BX,OFFSET FCB
NOV AL,O
NOV 32 [BXJ AL ; RESET CURRENT RECORD
NOV DX,OFFSET BUFFER
NOV CX,4080H
WLUP: NOV AH,SETDHA
INT 21H ; OPEN BUFFER FOR TRANSFER
NOV AH,WRITES
PUSH DX
NOV DX,OFFSET FCB
INT 21H ;WRITE ONE SECTOR
POP DX
ADD DX,80H
SUB CX,80H
JNZ WLUP
NOV AH,CLOSEF
NOV DX,OFFSET FCB
INT 21H
RET
ZCHA PROC NEAR

AND AL,OFH ;CONVERT HEX DIGIT IN AL TO ASCII BYTE IN AL
ADD AL,90H
DAA
ADC AL,40H ;DIGIT IS IN LOW NYBBLE
DAA
RET ;OPTIMIZED SUBROUTINE

ZCHA ENDP
ZEN PROC NEAR

NOV CL,04H ;EXCHANGE NYBBLES
ROL AL,CL
RET ;USES CLIAL

ZEN ENDP
CRLF PROC NEAR

PUSH DX
PUSH AX

105

NOV DL,ODH
NOV AH,02H
CALL BDOS ;DO A <CR> AND <LF>
NOV DL5OAH
NOV AH,02H ;SAVING MOST REGISTERS
CALL BDOS
POP AX
POP DX
RET

CRLF ENDP
EDOS PROC NEAR
PUSH SI

PUSH ES
PUSH DX
PUSH CX
PUSH BX

INT 21H
POP EX
POP CX
POP DX
POP ES

POP SI
RET

EDOS ENDP
START ENDP
CODE ENDS
END START

106

APPENDIX N

I. Which of the following describes an even function.

a: f(x) = f(-x)

b: f(x) = -f(x)

c: f(x) = -f(-x)

d: none of the above

[a]

2. Which of the following describes an odd function.

a: f(x) = f(-x)

b: f(x) = -f(x)

c: f(x) = -f(-x)

d: none of the above

[c]

3. The integral of an odd function over a symmetric interval is

a: V

b:w

c: 2 times the value of the integral from zero to the upper

limit

d: 0

[d]

4. An even function is a reflection through which of the

following.

107

a: x axis

b: y axis

c: origin

d: the line y = x

[b]

5. An odd function is a reflection through which of the

following.

a: x axis

b: y axis

c: the origin

d: the line y = x

[c]

6. Which of the following graphs is an even function?

a: a

b: b

c: c

d: d

[a)

7. Which of the following graphs is an odd function?

a: a

b: b

c: c

d: d

108

[b]

8. The composite function f(g(x)) is the result of

a: f(x) * g(x)

b: f(x) acting on the values of g(x)

c: g(x) acting on the values of f(x)

d: f(x) + g(x)

[b, ref. page 31, Berkey]

10. Does f(g(x)) = g(f(x))?

a: yes

b: no

c: sometimes

[c, ref. page 31, Berkey]

11. The domain of the composite function f(g(x)) is the set of

all x

a: in the domain of g

b: in the domain of f

c: in the domain of g for which the number u = g(x) lies

in the domain of f

d: in the domain of f for which the number u = f(x) lies in

the domain of g

[c, ref. page 31, Berkey]

12. The range of the composite function f(g(x)) is

109

a: the range of g

b: the range of f

c: contained in the range of g

d: contained in the range of f

[d]

13. What is the domain of the composite function f(g(x)) where

f(x) = /x and g(x) = x + 4?

a: (-c ,+)

b: (0, + aD

c: (-4, + co

d: (-4, 4)

e: (0, +)

[c, ref. page 31, Berkey]

14. What is the range of the composite function f(g(x)) where

f(x) = sin(x) and g(x) = x^3?

a: (0, + co

b: (-1, 1)

c: (- , +)

d: (0, 1)

[b]

15. A tangent line

a: intersects a curve in at most one point

b: is the limiting position of a secant line

110

c: is parallel to the x axis

d: is perpendicular to the x axis

[b, ref. page 46, Berkey)

16. The slope of a line tangent to a function at a point

(x,f(x)) is

a: lim f(x + h)
h->o

b: lim(f(x + h) - f(x))
h->o

c: lim (f(x + h) - f(x)) / h
h->o

d: y / f(y)

[c, ref. page 47, Berkey]

17. The slope of the tangent of f(x) = x2 at the point (2,4) is

a: 0

b: 2

c: 4

d: 6

[c, ref. page 48, Berkey]

18. Which of the following is false?

a: 1 = lim f(x) implies that f(x) is near 1 when x
x->a

is near a

b: lim f(x) exists implies that f(a) exists
x->a

c: lim f(x) is determined by the behavior of f for

il

x->a

x near a

d: lim f(x) exists implies that f(a+) = f(a-)
x->a

[b, ref. page 51, Berkey]

19. Find lim (x2 - 3x + 2) / (x2 + x - 6).
x->2

a: 2

b: 4

C: .5

d: -3

e: .2

[e, ref. page 53, Berkey]

20. The formal definition of a limit is that the number I is the

limit of the function f as x approaches a, written 1 = lim f(x)
x->a

if and only if, given any number e > 0 there exists a

corresponding number 6 >0 so that if 0 < Ix - al < 6 , then

If(x)-lI < C.

a: true

b: false

[a, ref. page 57, Berkey]

21. Assume lim f(x) = 1 and lim g(x) = m. Let c
x->a x->a

be any constant. Which of the following is false?

a: lim (f(x) + g(x)) = 1 + m
x->a

112

b: lrn (c*f(x)) = c*1
x->a

C: urn (f (x)*g (x)) 1*rn
x->a

d: lrn (f(x)/g(x)) = r/i provided 1 <> 0
x->a

e: lrn {f(x))^n = 1^n
x->a

(d, limit is 1/rn provided mn <> 0, ref. page 62, Berkey]

22. Find lrn (3x^4 + 7 X2 + 4x).
x->2

a: 14

b: 34

c: 64

d: 84

*[d, ref. page 63, Berkey]

23. Find lrn (1/x^3 - 3/X 2 + 5x-3).

a: -327/8

b: -8

c: -20

d: -60

[a, ref. page 63, Berkey]

24. Find lrn (sin(x) / x).
x->o

a: 0

b: 1

C: + 00

113

d: -o

[b, ref. page 66, Berkey]

25. Find lim (sin(x) / tan(x)).
x-> r /4

a: r /4

b: 4/ r

c: .12/2

d: 1

e: 2

[c, sin(x) / tan(x) = cos(x))

26. The function f is continuous at x = a if f is

defined on an open interval containing a and f(a) = lim f(x).
x->a

a: true

b: false

[a, ref. page 76, Berkey]

27. Find the numbers x at which f(x) = (x2 - 4) / (x - 2) is

continuous.

a: 2

b: 4

c: all x

d: all x <> 2

e: all x <> 4

114

[d, ref. page 77, Berkey]

28. For what values of x is f(x) = (x + 2) / (x 2 - x - 2)

discontinuous?

a: x = -2

b: x = -1

c: x = -2 and -1

d: x = 2 and -1

e: x = 2 and 1

[d]

29. -x x <= -1

For what values of x is f(x) = 4 - x2 -1 < x <= 2

kx-1 2 < x
discontinuous?

a. x = -1

b. x =2

c. x = -1 and 2

d. none of the above

[a)

30. The function f(x) = x / cos(x) is continuous on the open

interval (0, r).

a: true

b: false

[b)

31. The function f(x) = Ixi is continuous on the closed interval

115

(-3, 3).

a: true

b: false

[a]

32. If the functions f and g are continuous at x = a and if c is

any real number, then which of the following is false?

a: f + g is continuous

b: c*f is continuous

c: f*g is continuous

d: f/g is continuous provided g(a) <> 0

e: none of the above

[e, ref. page 78, Berkey]

33. The derivative of f(x) = 1 / (2x + 3) at x= 1 is

a: -2 / 3

b: -2 / 25

c: 1 / 5

d: 0

e: none of the above

[b)

34. The derivative of f(x) = lxi at x = 0 is

a: 0

b: 1

c:

116

d: not defined

[d]

35. The derivative of f(x) = cos(x) is

a: 1 / cos(x)

b: sin(x)

c: tan(x)

d: -sin(x)

[b]

36. The derivative of f(x) = 2x-3 + 6x2 - 5x - Jx is

a: 6x2 + 12x - 5 - (.5 / Jx)

b: 6x + 12x - 5x - kx

c: 6x2 + 12x + 5 + .51x

d: 6x2 + 12x - 5 -.5/x

[a]

37. The derivative of the function f on the interval I, denoted

by f', is the function with values

f' (x) = lim {f(x + h) - f(x)) / h
h->o

provided this limit exists for all x contained in I.

a: true

b: false

[a, ref. page 94, Berkey]

38. If the function s gives the position of an object moving

117

along a line, then which of the following describe the velocity

of the object?

a: 1 / s

b: s)

c: the first derivative of s with respect to time

d: the second derivative of s with respect to time

[c, ref. page 113, Berkey]

39. How is speed related to velocity?

a: speed = 1 / velocity

b: speed = Ivelocityl

c: speed = velocity)

d: speed = first derivative of velocity

[b, ref. page 114, Berkey]

40. When the velocity of an object is zero, the position of the

object is a constant.

a: true

b: false

[a]

41. Geometrically, the first derivative at a point a is a line

which is parallel to the x axis and contains the point a.

a: true

b: false

118

[b]

42. Geometrically, the slope of a line tangent to a curve at a

point a is the

a: first derivative

b: second derivative

c: asymptotic line

d: third derivative

[a]

43. What is the equation of the line tangent to the function

f(x) = x2 at the point (3,9)?

a: y = 6x

b: y = 6x + 3

c: y = 6x - 9

d: y = 2x + 3

[c]

44. What is the equation of the line tangent to the function

f(x) = sin(x) + cos(x) + 2 at x = v/2?

a: y = -x + 3 + r/2

b: y -x

c: y = 2x + 3 + T/2

d: y = 2x - 3 + r/2

[a]

45. What is the first derivative of f(x) = tan(x)?

a: cos(x)

119

b: -sin(x)

c: sec2 Wx

d: cot (x)

e: -csc (x)

[c, ref. page 109, Berkey]

46. What is the first derivative of f(x) = x^4 -6X
2)^3?

a: (4x^3 - 12x)^3

b: 3(x^4 - 6X2)2

c: 12x-3 - 36x

d: 3*(x^4 - 6X 2)*(4x^3 - 12x)

[d]
4

47. What is the first derivative of f(x) =sin(6X2 X)

a: (12x - 1)*{cos(6X2 -X))

b: cos(6X2 - X)

c: {12x - 1)*cos(x)

d: (12x - 1)*(sin(6x2 - x)

[a, ref. page 123, Berkey)

48. If the function g is differentiable at x and the function f

is differentiable at u = g(x), then the composite function (f

composite g) is differentiable at x, and

(f composite g)'(x) = gl(f(x))f'(x) (the chain rule).

a: true

b: false

120

[b, (f composite g)'(x) = f'(g(x))g'(x), ref. page 122, Berkey]

49. What is the first derivative of f(x) = (x^3 - x2 + 3)^ %?

a: () * (x^3 - x2 + 3)^{-3/4)

b: {3x 2 - 2x)}{})

c: () * ((x^3 -x 2 + 3)^(-3/4)) * {3x 2 - 2x)

d: none of the above

[c]

50. What is the slope of the line tangent to the graph of the

ellipse {xI / 16) + (y2 / 9) = 1 at the point

(2, 3 { 3/2)?

a: 3 / 4

b: - (3 / 4

c: 2

d: -3 / 4

[b, ref. page 127, Berkey]

51. What is the slope of the line tangent to the graph of

y2 + x2 *y = 3x2 at the point (2, 2)?

a: 2

b: h

c: 4

d: 1

121

[d, ref. page 128, Berkey]

52. What is the minimum value of the function f(x) = x on the

half open interval (-1, 1)?

a: 1

b: 0

C: -1

d: none of the above

[d, ref. page 150, Berkey]

53. A continuous function will always have both a maximum and a

minimum value on a closed finite interval (a, b).

a: true

b: false

[a, ref. page 150, Berkey]

54. What is the maximum value of f(x) = 4- x2 on the interval

(-3, 3)?

a: -5

b: 0

c: 4

d: 5

[c]

55. Let f be a continuous function on the interval (a, b), let

f'(x) exist for each x in (a, b) and let f(a) = f(b). Does there

exist at least one number c in (a, b) for which f'(c) = 0 ?

122

a: yes

b: no

[a, Rolle's Theorem, ref. page153, Berkey]

56. Let f be continuous on (a, b) and let f'(x) exist for each x

in (a, b) and let there exist at least one number c in (a, b) for

which f'(c) = (f(b) - f(a)) / {b - a). This describes what

theorem?

a: Rolle's theorem

b: mean-value theorem

c: intermediate value theorem

d: extreme value theorem

[b, ref. page 154, Berkey)

57. Let s(t) be a differentiable position function of an object.

The average velocity from time t = a to time t = b equals the

instantaneous velocity v(t) - s'(t) for at least one time t = c

where c is between a and b. This an example of

a: Rolle's theorem

b: the mean-value theorem

c: the intermediate value theorem

d: the extreme value theorem

(b]

58. Let f(x) = x^(2/3) in the interval (-1, 1). What part of the

mean-value theorem is not satisfied for f?

123

a: f is not continuous for each x in (-1, 1)

b: f is not differentiable for each x in (-1,1)

c: f(2/3) does not exist in (-1,1)

d: (f(l) - f(-l)) / (I - (-1)) does not exist

(b]

59. Let f(x) = (x on the interval (0, 4). By the mean

value theorem, a number c exists in the interval (0, 4) such that

f'(c) = (f(4) - f(O)) / (4 - 0). What is c?

a:

b:

c: 1

d: 2

e: 4

[C]

60. Let f be defined over an interval I. Let x and y be

elements of I. If x < y and f(x) > f(y) then

a: f is increasing from x to y

b: f is decreasing from x to y

c: f is constant from x to y

d: none of the above

[b, ref. page 158, Berkey]

61. Let f be continuous on the open interval I and let V exist

for all x in I. Then f'(x) < 0 for all x in I implies

124

a: f is increasing on I

b: f is decreasing on I

c: f is constant on I

d: none of the above

[b, ref. page 159, Berkey)

62. For a function f, those numbers c in the domain of f for

which either f'(c) = 0 or f'(c) fails to exist are called

a: critical points

b: inflection points

c: extreme points

d: points of discontinuity

(a, ref. page 162, Berkey3

63. The second derivitive of a function describes

a: slope of tangent line

b: concavity of the function

c: critical points

d: none of the above

[b, ref. page 178, Berkey)

64. Let f(x) = (x + 3}^3. what are the inflection points of f?

a: 0

b: 3

c: -3

d: 6

125

[C]

65. Let f(x) = x-(2/3) - (1/5)x^(5/3). Over what interval is f

concave downward?

a: (-1, + oo

b: (- o , -1)

C: (-1, 0)

d: (0, + aD

[a, ref. page 181, Berkey]

66. The function f(x) = (x + 2) / x has an asymptote at the line

a: x = 1

b: y = 1

C: x =0

d: y= -2

e: b and c

[e, ref. page 186, Berkey)

67. Use Newton's method to approximate the zero of the function

f(x) = x-3 - 10 in the interval (0, 4).

a: 0

b: 2

c: 2.17

d: 2.68

e: 1.68

126

[c, ref.page 143, Berkey]

68. To approximate solutions to f(x) = 0,

Newton's method uses the approximation

(see graph)

a: true

b: false

[a, ref. page 143, Berkey]

69. Depending on the function and the initial approximation,

Newton's method for solving for zeros of functions always

converges to the desired zero?

a: true

b: false

[b, ref. page 145, Berkey]

70. Approximate the 137 by using a linear approximation to

f(x) = lx where x = 36.

a: 6

b: 6.08

c: 6.16

d: 6.32

[b]

71. The symbols dy and dx are referred to as

a: derivative

b: differentials

c: approximations

127

d: none of the above

[b, ref. page 141, Berkey]

72. dy = cos(x)dx is the differential form of

a: y = sin(x)

b: y = -sin(x)

C: y = cos(x)

d: y = tan(x)

[a, ref. page 141, Berkey)

73. If f(x) = ln(x) then f'(x) =

a: 1 / x

b: x

c: -1 / x2

d: 1

e: none of the above

[a]

74. Assume that the rate of growth of a population of fruit

flies is proportional to the size of the population at each

instant of time. If 100 fruit flies are present initially and 300

are present after 10 days, how many will be present after 15

days?

a: 400

b: 450

C: 500

d: 520

128

[d, ref. page 406, Berkey)

75. Simplify eA{ln(3)).

a: 3

b: 1/3

C: 9

d: -1/3

[a]

76. Let x and y be any real numbers. Let r be a rational

number. which of the following is false:

a: e-x , e-y = e-(x + y}

b: e-x / ey = e^(x - y)

c: (e~x)-r = e'(xr)

d: none of the above

[d, ref. page 390, Berkey]

77. Let a, x and y be any real numbers. Which of the following

is false:

a: a~x a'y = a^(x + y)

b: a~x / a~y = a^(x - y)

c: (a-x)y = a^(x y)

d: none of the above

[d, ref. page 398, Berkey]

78. The function y = tan(x) is periodic.

129

a: true

b: f alse

[a, ref. page 427, Berkey]

79. What is the domain of the principal branch of the function

y = tan(x)?

a : (0, 7r

b: (0, vr

c: (- 7r/2, vr/2)

d: (-1, 1)

[c, ref. page 427, Berkey]

80. What is arctan(l)?

a: vr

b: vr/2

c : 7r/4

d: vr/8

[c, ref. page 428, Berkey)

81. What is arctan(0)?

a: 0

b: 7r

c: vr/2

d: vr/4

(a, ref. page 428, Berkey]

82. What is the range of the principal branch of arcsin(x)?

130

a: (-1, 1)

b: (-1, 1)

c: (0, 7)

d: (- w12, x/2)

[d, ref. page 429, Berkey]

83. What is the range of the principal branch of arccos(x)?

a: (0, w}

b: - w/2, r/2)

c: (-1, 1)

d: (- o , + o)

[a, ref. page 429, Berkey]

84. What is the derivative of arcsin(x)?

a: 1 / .(1 - x2) abs(x) < 1

b: 1 / (1 + x 2) - 1 < x < + 1

c: -1 / .(1 - x 2) abs(x) < 1

d: -1 / (. + x2) - 1 < x < + 1

[a, ref. page 433, Berkey]

85. What is the derivative of arccos(x)?

a: 1 / 1(l - x2) abs(x) < 1

b: 1 / (1 + x2) - 1 < x < + 1

c: -1 / J(1 - x2) abs(x) < 1

d: -1 / (1 + x2) - 1 < x < 1

[c, ref. page 434, Berkey]

131

86. If f(x) = arctan(3x) then f'(x) is

a: 1 / (1 + 3x)

b: 1 / {1 + 9x2)

c: 3 /(1 + 9x2)

d: 3 / (1 + 3x)

[c, ref. page 433, Berkey]

87. What is the derivative of tanh(x)?

a: (sech2 (x))

b: -{csch(x))2

c: -sech(x) * tanh(x)

d: -csch(x) * coth(x)

[a, ref. page 440, Berkey]

88. Sinh(x) is defined as which of the following?

a: h * (e'x - e^(-x))

b: 2 / (e&x - e^(-x))

c: ln(x + (./(x2 + 1))

d: {e-x + e-(-x)) / 2

[d, ref. page 438, Berkey]

89. l'Hopital's rules are used to evaluate which of the

following?

a: integrals

b: derivatives

c: limits of the form 0/0

d: limits of the form w/w

132

e: c and d

[e, ref. page 484, Berkey]

90. Determine lim (sin(x) /x) using L'Hopital's Rule.
x->0

a: 0

b: 1

C: ir

d: v/2

[b, ref. page 485, Berkey]

91. What is the limit as x goes to zero of

{x - tan(x)) / (x - sin(x).}?

a: -2

C: 0

d: 1

[a, ref. page 486, Berkey]

92. What is the limit as x goes to infinity of

{X2 + 5) / (x + e~x)?

a: 5

b:lI

C:O0

d:

133

[c, ref. page 487, Berkey]

93. What is the limit as x goes to one of ln(x) / (x - 1)?

a: 1

b:co

c: 0

d: none of the above

[a, use L'Hopital's Rule]

94. What is the indefinite integral of 2x^3 - 4x2 + 5x -2?

a: 6x2 - 8x + 5

b: x^4 - 4/3x^3 + 5/2x 2 - 2x

c: kx^4 + 4/3x'3 + 5/2x2 + 2x

d: kx-4 - 4/3x^3 + 5/2X 2 - 2x + constant

[d]

95. What is the indefinite integral of e~x?

a: x*e~x + e~x + constant

b: e'x + constant

c: xe'x + constant

d: e'x

[b]

96. What is the indefinite integral of tan(x)?

a: cot(x) + constant

b: sec(x) + constant

c: -ln Icos(x)l + constant

134

d: -cot(x) + constant

cc]

97. Evaluate the integral of (4x + 6) from 1 to 2.

a: 20

b: 14

c: 12

d: 4

[c]

98. Evaluate the integral of cos(x) from 0 to r/2.

a: 1

b: 0

c: -1

d: f/4

[a]

99. Evaluate the integral of Ix - 21 from -1 to 5.

a: 0

b: 12

C: 9

d: 3

[c]

100. Let f(x) = sin(x). Let g(t) = the integral of f(x) from a

to t. What is g'(t)?

a: 1

b: sin(t)

135

c: -cos (t)

d: 0

[b, Fundamental Theorem of Calculus, ref. page 282, Berkey]

101. To approximate the integral from a to b of f(x)dx,

the following formula can be used:(see graph)

this formula is the

a: trapezoidal rule

b: midpoint rule

c: half angle formula

d: Simpson's rule\

[a, ref. page 307, Berkey]

102. Approximate the integral of (l/x) from 1 to 4 using the

trapezoidal rule with n = 6.

a: .8

b: 1.0

c: 1.2

d: 1.6

[c, ref. page 307, Berkey]

103. When using Simpson's rule to approximate definite

integrals, n, the number of subdivisions of the interval

(a, b), must be odd.

a: true

b: false

[b, n must be even, ref. page 308, Berkey]

136

104. Approximate the integral of (1/x) from 1 to 4 of using

Simpson's rule with n = 6.

a: 1.39

b: 1.24

c: .83

d: 4.17

[a, ref. page 309, Berkey]

105. Find the volume of the cone obtained by revolving about the

x-axis the region bounded above by the graph of f(x) = x/3 and

below by the x-axis for 0 < x < 3.

a: 1.5

b: 1

C: r

d: 3

[c, ref. page 318, Berkey]

137

REFERENCE

Berkey, D.D., Calculus, Second Edition, W. B. Saunders, 1988.

138

INITIAL DISTRIBUTION LIST

1. Commandant of the Marine Corps
Code TE 06
Headquarters, U.S. Marine Corps
Washington, D.C. 20380-0001

2. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

3. Library
Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

4. Professor G. E. Latta
Code MA LZ
Department of Mathematics
Naval Postgraduate School
Monterey, California 93943

5. Professor H. M. Fredricksen
Code MA FS
Department of Mathematics
Naval Postgraduate School
Monterey, California 93943

6. Captain Matthew Lampugnano
4903 N. Oconto
Harwood Heights, Illinois 60656

139

